
Dynamic Picking and Storage Optimization of
Robotic Picking Systems
Cheng Chi 

Shandong University
Shasha Wu 

Shandong University
Delong Xia 

Shandong University
Yaohua Wu  (  yaohua.wu@sdu.edu.cn )

Shandong University https://orcid.org/0000-0002-5561-8049

Research Article

Keywords: Robotic picking , Parts-to-picker , Storage allocation , Simulation analysis

Posted Date: July 9th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-687207/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-687207/v1
mailto:yaohua.wu@sdu.edu.cn
https://orcid.org/0000-0002-5561-8049
https://doi.org/10.21203/rs.3.rs-687207/v1
https://creativecommons.org/licenses/by/4.0/


 ·1· 

 
 

 

Dynamic picking and storage optimization of Robotic Picking Systems 

 
Cheng Chi1 • Shasha Wu1 • Delong Xia1 • Yaohua WU1，* 

 
 
 
 
 
  
 

 
Abstract: With the development of e-commerce and the 
improvement of logistics requirements, more and more ‘parts-to-
picker’ picking systems begin to replace the inefficient ‘picker-to-
parts’ picking systems in various scenarios. As the mainstream 
‘parts-to-picker’ system, the robotic mobile fulfillment system has 
been attracting much attention in recent years. In addition to the 
customer's changing requirements, the rapid response of the 
picking system to the order is particularly important. In the above 
context, to seek a breakthrough in the picking system's picking 
efficiency without increasing the cost of additional equipment, the 
storage allocation of the pods becomes very important. This article 
focuses on the dynamic storage allocation of robotic mobile 
fulfillment system, which has positive theoretical and practical 
significance. By analyzing the pod storage process of the robotic 
mobile fulfillment system, a dynamic pod storage allocation model 
suitable for the robotic mobile fulfillment system is established 
with the goal of minimizing the pod handling distance. Two 
dynamic pod storage allocation strategies are proposed for the 
system. By simulating the picking systems of different scales, the 
effectiveness of the dynamic storage allocation strategy is verified, 
which has a certain reference to the operation of the robotic mobile 
fulfillment system in practice. 
 

Keywords: Robotic picking • Parts-to-picker • Storage allocation 
• Simulation analysis  

 

1  Introduction 

 

With the continuous development of automatic and e-
commerce technology in recent years, many kinds of mobile 
robots have been widely used and studied in modern 
intelligent warehousing field. Robotic Mobile Fulfillment 
System (RMFS) which is a storage and retrieval system that 
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uses autonomous robots to transport movable pods with 
items came into being widely used in e-commerce 
distribution centers[1].  

The concept of RMFS has been first proposed by 
Jünemann in 1989[2]. In 2008, the most common RMFS 
system which names ‘Kiva systems’ applied a patent in the 
United States, which was later acquired by Amazon and 
renamed ‘Amazon robot’[3]. Currently, the systems are 
running in several order fulfillment centers of Amazon 
around the world. RMFS has strong expansibility and 
flexibility that is because it can rapidly improve the 
throughput capacity of the system by increasing the number 
of robots and pickers during the peak period, such as 
shopping festival. Due to its flexibility, automation and 
intelligence, RMFS has been widely used in the field of 
practice. Since its launch,it has been successfully applied to 
many major e-commerce order fulfillment centers around 
the world, including Amazon, Walgreens, Staples, Jingdong, 
Alirookie, etc[4]. 

The main operation process of RMFS includes not only  
order batching, task allocation to robots manual picking, 
pod automatic returning, but also the robot charging and pod 
replenishment. How to improve the efficiency of each 
process and the cooperation in processes, has related to the 
response speed of the entire warehouse center and the 
customer satisfaction with sales. 

However, compared with the heat in the field of 
practice, there are few literatures on the theoretical research 
of RMFS. According to different research purposes, it can 
be divided into three categories: system analysis, design 
optimization and operation strategy. 

Among them, the operation strategy belongs to the 
decision-making of short-term execution level, and its main 
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goal is to shorten the delivery time, reduce the waiting time, 
improve the order response speed and reduce the equipment 
vacancy rate. This kind of decision-making mainly includes 
vehicle task allocation, congestion prevention mechanism, 
equipment stand-by strategy (that is, the selection of parking 
point after equipment completes a task), storage location 
allocation and work station task allocation. Nigam et al. 
(2014) [5] studied the storage strategy of mobile pods. 
Compared with random storage strategy, closed open 
allocation of removable pod units results in low utilization 
of storage space. However, the closed open storage strategy 
can slightly improve the order throughput. Yuan et al. [6] 
studied the rate based reservoir allocation strategy of RMFS 
and constructed a continuous fluid model. Rate based 
storage allocation strategy means that according to the best-
selling degree of goods, the more popular goods are stored 
closer to the picking platform. Compared with the random 
storage allocation strategy, a two or three class rate based 
storage allocation strategy can reduce the total moving 
distance of robot by 8% to 10%. Lamballais et al. [7] pointed 
out that using ABC classification based on product turnover 
rate, the maximum order throughput of the system can be 
increased by 50%. Lamballais et al. assume that only one 
item is stored in a pod unit. Therefore, for multi-line order 
picking, multiple pod units are needed. However, in practice, 
a pod unit can store multiple items of goods. Therefore, a 
single pod unit may be able to meet the needs of a multi-line 
order. In order to solve this problem, Lamballais et al. 
further expanded their research, distributed products to 
multiple storage units, and built a SOQN model to estimate 
throughput time. Then, to minimize throughput time, the 
number of pod units allocated for each item, the ratio of 
picking station and replenishment station, and the 
replenishment level of each pod unit are optimized. The 
results show that in order to minimize the throughput time, 
the more pod units the inventory should be distributed, the 
better. In addition, they found that the best ratio of picking 
platform and replenishment platform is 1 to 2, and the best 
replenishment level of pod unit is 50%. Boysen et al. [8] 
studied the order scheduling problem of picking stations in 
RMFS. They abstracted the problem as a mixed-integer 
programming problem. The results show that compared 
with the first come first service order scheduling strategy, 
the optimal order scheduling strategy can save half of the 
number of robots. They also proved that the number of 
robots can be further reduced by introducing the shared 
storage strategy (and the same item can be stored in multiple 
pod units). Zou et al. (2019) [9] established a SOQN model 
based on the battery charging process to study the different 
battery power recovery strategies of RMFS and pointed out 

that the wireless induction charging strategy is the best. At 
the same time, the model realizes the efficiency estimation 
of battery replacement strategy and wired charging strategy. 

This paper selects the pod storage location allocation 
direction as the research object, and optimizes the picking 
efficiency without increasing the original equipment cost. 
This research is of great value to improve the throughput 
and customer satisfaction of the picking center, and it is 
helpful to improve the speed of logistics in the process of 
picking. It is also a reference for the optimization of RMFS 
in various application scenarios. 

 

2  DESCRIPTION AND MODELLING 

 

2.1  problem description 

The purpose of studying the dynamic pod storage 
problem of RMFS is to obtain the best matching between 
the storage position of the pod and the order picking demand. 
Therefore, the aim is to design the system dynamically 
adjusts the position of the pod in the storage area according 
to the real-time order so that the pod storage position of the 
picking system has certain adaptability to the requirement[10].  

 

 

Figure 1  Dynamic storage allocation 

 

In the picking process of the RMFS, the storage 
operation of the pod is one of the most frequent operations. 
Optimizing the storage position of the pod is an effective 
way to improve the efficiency of the system. [11] During the 
order picking process, the robot moves the required pod 
from the storage area to the picking station. After the picker 
completes the item picking process, then, the robot moves 
the corresponding pod from the picking station to the 
storage area (as is shown in Figure 1 by red line ). In the 
process of the pod returning to warehouse, the system will 
reallocate the storage space of the pod according to certain 
optimization principles, so that the new storage position of 
the pod can meet the needs of order picking. With the 
continuous order picking process, the above process 



 

 

·3· 

constantly optimizes the location of each pod, making the 
storage structure of the entire picking system match the 
demand for order picking. 

The moving distance of the pods is closely related to the 
efficiency of the picking system. In this paper, the dynamic 
storage allocation model of the picking system is established 
to minimize the handling distance of the pods in the picking 
process. Different dynamic storage strategies are designed 
for the model. The simulation of the picking system is used 
to simulate the actual storage process of the pods, and 
different configuration systems are obtained under the 
optimal strategy. 

 

2.2  System Assumption 

To facilitate the analysis of the model without losing 
generality, the following assumptions are made for the 
model:  

(1) the congestion, queuing or collision of the storage 
robot in the driving process is not considered;  

(2) the goods in the pod are sufficient in the picking 
process, and the replenishment situation is not considered;  

(3) the energy consumption problem is not considered, 
and the storage robot power is sufficient in the picking 
process;  

(4) The task quantity of each picking station is balanced, 
and the whole picking process is periodic;  

(5) the order combination processing is already done in 
the picking system so that a pod only serves one picking 
station in the same picking cycle, and multiple picking 
stations will not compete for one pod at the same time;  

(6) The location coordinates of the whole storage area 
remain unchanged, and the shortest distance from the fixed 
location to the picking table is a fixed value. 

Definition of parameters and variables is as the table 
bellow: 
Table 1  Definition of parameters and variables 

Symbol Meaning 𝑅 
The total row number of the pods in the 

warehouse 𝐶 
The total column number of the pods in the 

warehouse 𝑆 
Number of picking stations in the picking 

system 𝑃 Number of pods in the picking system 𝑁 Number of AGV 𝐻 Number of all SKUs in the picking system 𝑇 The total period of the picking process 𝑇′ The set of picking period {1, 2, ⋯ , 𝑇} 𝑡 Picking period 𝑡 ∈ 𝑇′ 

𝑙 Picking station id 𝑙 ∈ {1, 2, ⋯ , 𝑆} 𝑆𝑙 Picking station No.𝑙 𝑝 Pod number 𝑝 ∈ {1, 2, ⋯ , 𝑃} 𝑟 Row number 𝑟 ∈ {1, 2, ⋯ , 𝑅} 𝑐 Column number 𝑐 ∈ {1, 2, ⋯ , 𝐶} ℎ SKU number ℎ ∈ {1, 2, ⋯ , 𝐻} Ω𝑙𝑡 
Set of the pods used by No.𝑙 picking station in 

picking period 𝑡 Ψ𝑝 Set of SKUs stored in pod 𝑝 

𝐿 
Driving distance from row 𝑟  column 𝑐 

location to the picking station 

𝑥𝑟𝑐𝑝𝑡
 

0-1 variable, Whether the pod 𝑝 is stored in the 

storage space of 𝑟 row 𝑐 column at time 𝑡, if 

true the value is 1, otherwise, the value is 0. 

The initial value is at 𝑡 = 0. 

𝑑𝑟𝑐𝑡  

0-1 variable, whether the location of 𝑟 row 𝑐 

column is empty at time 𝑡, if true the value is 1, 

otherwise, the value is 0. The initial value is at 𝑡 = 0. 

 

2.3  System dynamic storage allocation model 
Under the above assumptions, the following dynamic 

storage allocation model is established according to the 
objective of minimizing the sum of pod moving distances in 
the picking process. 

 𝑚𝑖𝑛 𝑍 = ∑ ∑ ∑ ∑ ∑ (𝑓𝐴∗(𝑥𝑟𝑐𝑘(𝑡−1), 𝑆𝑙) +𝐶𝑐=1𝑅𝑟=1𝑘∈Ω𝑙𝑡𝑆𝑙=1𝑇𝑡=1 𝑓𝐴∗(𝑥𝑟𝑐𝑘𝑡 , 𝑆𝑙))            (1) 
s.t. ∑ ∑ 𝑥𝑟𝑐𝑝𝑡𝐶𝑐=1𝑅𝑟=1 = 1   ∀1 ≤ 𝑝 ≤ 𝑃, 𝑡 𝜖 𝑇′   (2) ∑ 𝑥𝑟𝑐𝑝′(𝑡−1)𝑝′𝜖Ω𝑙𝑡 + 𝑑𝑟𝑐𝑡−1 − ∑ 𝑥𝑟𝑐𝑝𝑡𝑝𝜖Ω𝑙′𝑡 − 𝑑𝑟𝑐𝑡 = 0   ∀1 ≤𝑟 ≤ 𝑅, 1 ≤ 𝑐 ≤ 𝐶, 1 ≤ 𝑙 ≤ 𝑆, 1 ≤ 𝑙 ′ ≤ 𝑆  (3) ∑ 𝑥𝑟𝑐𝑝𝑡𝑃𝑝=1 + 𝑑𝑟𝑐𝑡 = 1    ∀1 ≤ 𝑟 ≤ 𝑅, 1 ≤ 𝑐 ≤ 𝐶, 𝑡 𝜖 𝑇′ 

(4) 𝑓𝐴∗(𝑥𝑟𝑐𝑘𝑡 , 𝑆𝑙) = { 𝐿,  𝑥𝑟𝑐𝑘𝑡 = 1 0,  𝑥𝑟𝑐𝑘𝑡 = 0          (5) 𝑥𝑟𝑐𝑘𝑡  𝜖 {0,1}              (6) 𝑑𝑟𝑐𝑡  𝜖 {0,1}              (7) 
 

Where formula (1) is the objective function, which 
represents the sum of the moving distances of the pods in all 
periods in the whole picking process. Formula (2) indicates 
that at any time 𝑡, each pod has storage space. Formula (3) 
represents the relationship between the change of storage 
space in a continuous cycle. If the location of column 𝑐 
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row 𝑟 is empty or storing the pod used in time 𝑡 at time 𝑡, 
then the location is empty or storing the pod used in time 𝑡 
at time 𝑡 − 1. Formula (4) indicates that at any picking time, 
the location of column 𝑐 row 𝑟 is empty or storing pod. 
Formula (5) calculates the moving distance of the pod. 
When 𝑥𝑟𝑐𝑘𝑡 = 1 , i.e. the location of column 𝑐  row 𝑟  is 
storing the pod 𝑘, then the value is the moving distance of 
A* algorithm from column 𝑐 row 𝑟 to the picking station, 
otherwise, the value is 0. Formulas (6) and (7) are 
constraints on variable values. 
 

 

3  DYNAMIC STORAGE STRATEGIES 

 

Because the problem is difficult to get the exact solution 
in a short time when the number of orders is large, it is 
necessary to design the heuristic strategy to simulate the 
whole model. In this problem, the position 𝑥𝑟𝑐𝑘𝑡 where the 
pod back to is the most important decision variable. Two 
kinds of dynamic storage strategies are designed based on 
the storage location of the pod: partition dynamic storage 
strategy and buffer-based storage strategy. [12] 

 

3.1  Partition dynamic storage strategy 

3.1.1  Region dividing  

Region dividing is the first step in the implementation 
process of partition dynamic storage strategy: Area A for 
best-selling products, area B for general sales, and area C 
for unsalable products. The main purpose of the regional 
division is to allocate the cargo space reasonably according 
to the demand frequency of SKU. Due to different standards, 
the regional division can be divided into distance strategy 
and time strategy.  

According to the distance partition strategy (as shown 
in Figure 2(a)), as a classic ABC partition strategy, it is 
widely used in the traditional mannalwarehouse. The 
warehouse area is divided according to the average distance 
from the storage area point to the picking platform. 
Euclidean and Manhattan are two commonly used distance 
selection methods[13]. 

 

Area 

A

Area 

B

Area 

C

Area 

A

Area 

B

Area 

C

(a) Distance partition strategy (b) Partition strategy by the A * algorithm  

Figure 2  Partition of the storage area 

 

The time partition strategy uses the A * algorithm[14] 
with the shortest walking time to partition the whole storage 
area. In the whole process of partition, the shortest time 
from each storage area point to the picking platform is 
calculated according to the A * algorithm (including the time 
of robot turning) and then sorted according to the length of 
time. Then, according to the proportion of different areas, 
each storage area point is assigned the area type. The 
shortest time is assigned to area A, and the longest time is 
assigned to area C. Compared with the distance partition 
strategy, the time partition strategy integrates some 
characteristics of the pod handling robot picking system, 
such as one-way driving in the roadway, and considers 
various physical movement characteristics of the handling 
robot, so that the best-selling area, unsalable area and other 
areas after partition are more suitable for the picking system. 

Through the simulation of the time partition of the pod 
handling robot picking system, the partition (as shown in 
Figure 3) is roughly consistent with the description of the 
schematic diagram in Figure 3-2 (b), in which the regional 
proportion is generated according to 3:3:4, and the regional 
distribution of most of the best-selling areas and unsalable 
areas fit the schematic diagram. However, the regional 
distribution is not completely regular, and a small number 
of reservoirs are distributed across regions. The reason for 
this phenomenon is that in the pod handling robot picking 
system, to improve the robot handling efficiency, the storage 
area roadway is a single lane, and some of the storage spaces 
are too many turns in the process of walking from the 
picking platform to the storage area, resulting in a long 
walking time. As the standard of regional division is planned 
according to the driving time, the distribution of a small part 
of the area is irregular. 

 

Area A Area B Area C
Replenishment 

station

Picking 

station   

Figure 3  Schematic diagram of time partition in simulation 

 

3.1.2  Partition dynamic storage strategy based on pod 
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turnover rate 

In the partition dynamic storage strategy based on pod 
turnover rate, pod turnover rate becomes an important basis 
for dynamic storage allocation. The calculation method of 
the pod turnover rate is the cumulative number of times the 
pod is used. After each picking, the turnover rate of all pods 
will be updated in real-time, to ensure the reliability of data 
in decision-making.  

In equation (8), 𝑝(𝑝, 𝑙, 𝑡) indicates whether the pod 𝑝 
is used by the picking table 𝑙 in the 𝑡 cycle. If it is, the 
value is 1; otherwise, the value is 0. 𝑓1(𝑝. 𝑡′)  is the 
turnover rate of the pod 𝑝 at time 𝑡′, which is calculated as 
shown in formula (9) by accumulating the number of times 
pod 𝑝 used in the historical period. 

 𝑝(𝑝, 𝑙, 𝑡) = {1, 𝑝 ∈ Ω𝑙𝑡0, 𝑝 ∉ Ω𝑙𝑡               (8) 𝑓1(𝑝. 𝑡′) = ∑ ∑ 𝑝(𝑝, 𝑙, 𝑡)𝑆𝑙=1𝑡′𝑡=1         (9) 
 

According to this strategy, when calculating the 
location of pod 𝑝 , the storage location of the pod is 
determined by obtaining the ranking of the circulation rate 𝑓1(𝑝. 𝑡′)  of pod 𝑝  among all pods. If the turnover rate 𝑓1(𝑝. 𝑡′) of the pod 𝑝, is less than the capacity of the best-
selling area in all the pods, and there is still space in the best-
selling area, the pod is allocated to space nearest to the 
picking table in the best-selling area. If the turnover rate 1 𝑓1(𝑝. 𝑡′) of 𝑝 is greater than the sum of the capacity of the 
best-selling area and the general storage area, the pod will 
be allocated to the unsalable area; otherwise, the location 
will be allocated to the general sales area B. 

 

3.1.3  Partition dynamic storage strategy based on the 
item flow rate 

Similar to the strategy based on the turnover rate of 
pods, the partition strategy based on item turnover rate pays 
more attention to the turnover rate of each item in the pod. 
After each picking at the picking station, the system will 
automatically increase the flow rate of the items involved in 
the picking. Because one item exists in multiple pods, the 
utilization rate of all related pods will increase, thus 
providing reliable data support for decision-making. 

In equation (10), 𝑞(ℎ, 𝑝) indicates whether the goods 
stored in pod 𝑝  contain item ℎ . If so, the value is 1; 
otherwise, the value is 0. In equation (11), 𝑑𝑡′ℎ  is the 
cumulative times of picking item ℎ at the time 𝑡′. In (12), 𝑓2(𝑝, 𝑡′) means the comprehensive turnover rate of pod 𝑝 
at the time 𝑡′ is calculated according to the item turnover 
rate. 

𝑞(ℎ, 𝑝) = {1, ℎ ∈ 𝛺𝑝0, ℎ ∉ 𝛺𝑝           (10) 𝑑𝑡′ℎ = ∑ ∑ 𝑝(𝑝, 𝑙, 𝑡)𝑞(ℎ, 𝑝)𝑆𝑙=1𝑡′𝑡=1       (11) 𝑓2(𝑝, 𝑡′) = ∑ 𝑑𝑡′ℎℎ∈𝛺𝑝          (12) 
 

When calculating the storage location of pod 𝑝 , the 
system will integrate the circulation rate of all items in the 
pod to obtain the ranking of 𝑓2(𝑝, 𝑡′) corresponding to pod 𝑝 in all pods, and allocate the corresponding storage area 
and storage location according to the ranking of the pod. If 
the pod is in the top rank to meet the requirements of the 
best-selling area A, and there are free storage spaces in this 
area, the storage space nearest to the picking station is 
selected as the storage point. Otherwise, the storage space is 
selected in the general area and the unsalable area according 
to the ranking of each item flow rate of the pod.  

 

3.2  Buffer-area based dynamic storage strategy 

 

3.2.1  Buffer partition 

The storage strategy based on buffer area is to divide a 
fast buffer area in the whole storage area and store the 
recently used pod in this area temporarily.Therefore, when 
the pod is needed for reordering,it can effectively reduce the 
handling distance of the robot, so as to reduce the storage 
time of the pod, improve the throughput of the picking 
station, and increase the transportation efficiency of the 
whole system efficiency. 

The partition standard of buffer area is consistent with the 
time algorithm in 3.1, and the A * shortest time algorithm is 
adopted. We sort the average time from all storage points to 
the picking station and select the storage area with the 
shortest time as the buffer area to divide the whole storage 
area into two parts: the buffer area and the conventional 
storage area (as shown in Figure 4). 

 

Buffer area

conventional 

storage area

  

Figure 4  Diagram of the buffer storage layout  

   

Because the pods that have just been used will enter the 
buffer area for temporary storage, if some pods in the buffer 
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area are not eliminated in time, the entire buffer area will be 
piled up too much or even reach the upper limit, which will 
cause serious robot congestion in the buffer area, and then 
affect the operation efficiency of the buffer area. To avoid 
the backlog in the buffer area, when the number of pods 
stored in the buffer area reaches a certain threshold, the pods 
in the buffer area will be eliminated according to a certain 
strategy, and the handling robot (blue robot shown in Figure 
4-2) will carry the pods to the conventional picking area. 
According to the different elimination modes, the buffer-
area based dynamic storage strategy can be divided into four 
types: first in first out (FIFO) elimination mode, the 
elimination mode according to the frequency, the least 
frequently used elimination mode and the random 
elimination mode.  

 

3.2.2  first in first out elimination mode 

FIFO elimination mode is a strategy to eliminate the 
pods in the buffer area of the picking system according to 
the order of arrival. Ω𝑝𝑡  is used to represent the pods set of 
the buffer at time 𝑡 .  By comparing the time of pod 
entering buffer area 𝑡(𝑝), 𝑝 ∈ Ω𝑝𝑡 , the corresponding pods 𝑝′  satisfying min 𝑡(𝑝′), 𝑝′ ∈ Ω𝑝𝑡   is selected as the pods 
eliminated in the buffer area.  

In the pre-processing operation of the system's picking 
work, such operations as order batching and order 
fulfillment sequence optimization make the recently used 
pods be used in the subsequent picking probability. Due to 
the limitation of buffer capacity in the system with FIFO 
strategy, if the storage capacity of the pods in the buffer 
reaches a certain threshold, the mobile robot will move the 
pod that first enters the buffer to the nearest free 
conventional storage area. While ensuring that the buffer 
can effectively store the nearest pod, the mobile robot will 
eliminate the pod that first enters the buffer. This strategy 
can greatly improve the efficiency of the system when 
cooperating with the order clustering operation. 
 

3.2.2  Elimination mode according to the frequency of use 

According to the use frequency elimination mode is a 
strategy to eliminate the pods in the buffer area of the 
picking system according to the use frequency of the pods. 
During the picking process, the system will record the use 
frequency of each pod in real-time. When the storage 
capacity of the pods in the buffer reaches a certain threshold, 
the mobile robot will move the pods with the lowest 
frequency in the buffer to the nearest conventional storage 
area, so that the pods stored in the buffer are the pods with 
higher frequency. 

Before eliminated pod 𝑝′  is selected, the utilization 

frequency 𝑓1(𝑝′, 𝑡′), 𝑝′ ∈ Ω𝑝𝑡  of all pods in the buffer area 
is calculated first. Traversing the pods in Ω𝑝𝑡 , we find the 
pods 𝑝′ with the least use frequency, such that 𝑓1(𝑝′, 𝑡′) =𝑓1(𝑝, 𝑡′), 𝑝 ∈ Ω𝑝𝑡 . Finally, pod 𝑝′ is selected as the pod to 
move out of the buffer. 

Because the change of turnover rate is closely related 
to the order structure, the efficiency of the system under this 
strategy is greatly affected by the order structure. If the order 
structure is unstable, the update speed of the buffer area will 
be faster, which will reduce the capacity of the buffer and 
increase the walking time of the robot. Finally, the 
throughput of the picking station will be reduced, and the 
expected work efficiency can not be achieved. 
 

3.2.3  The least frequently used elimination mode 

The most infrequently used elimination mode is to 
eliminate the pods in the buffer area of the picking system 
according to the latest usage time of the pods. The least 
frequently used elimination strategy is one of the commonly 
used page replacement algorithms in computer memory 
paging. It is used to maximize the probability of hitting the 
cache page and reduce the interruption of the operating 
system due to page missing. It is also a common algorithm 
for various large websites to deal with the back-end cache. 

The pods in the buffer area are regarded as a queue 
when they are carried by the handling robots in the system. 
Whenever the pod is moved from the picking station to the 
buffer area in period 𝑡, or whenever the new pod enters the 
buffer storage area, the pod is placed at the head of the queue. 
Once the queue capacity reaches the threshold, the pod at 
the end of the queue will be eliminated directly. 
 

3.2.3  random elimination mode 

The random elimination strategy is to eliminate the 
pods in the buffer area of the picking system at random. By 
introducing random quantity, when the number of pods 
stored in the buffer reaches the specified threshold, the pods 
that are not pre-selected in the buffer are randomly selected 
and moved to the nearby conventional storage area. 

For random selection, the system randomly generates 
the pod number 𝑝′ = 𝑟𝑎𝑛𝑑𝑜𝑚(Ω𝑝𝑡 ) , and moves the pod 
number 𝑝′ out of the buffer. 

In the process of random selection, the efficiency of 
system operation is unstable due to the influence of 
probability. Under this strategy, the operation efficiency is 
less affected by the order structure, and the influence of 
random quantity becomes the primary factor. 
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4  RESULTS ANALYSIS 

 

4.1  Simulation design 

 

This simulation uses software RAWSim-O[15] as the 
overall framework to independently develop the above 
strategies in the controller layer. RAWSim-O was developed 
by Merschformann and his parterners. As a simulation 
software for RMFS, RAWSim-O has many advantages, 
such as open source, easy to use, visualization and so on. It 
has become a high-quality RMFS simulation software after 
AlphabetSoup. 

The architecture of RAWSim-O is shown in Figure 5. 
The software provides various entities, complete underlying 
code and some basic strategy interfaces. Moreover, the 
software is an open source software. Researchers can carry 
out secondary development according to their own 
strategies and reuse the underlying framework code, thus 
greatly reducing the repeated workload of researchers. 

 

Figure 5  Software architecture diagram of the RAWSim-O 

 

In order to simulate the warehouse picking situation 
under different scales and increase the reliability of the 
strategy, this simulation designs three warehouses of 
different scales: small-scale warehouse, medium-scale 
warehouse and large-scale warehouse, and subdivides the 
warehouses under three different scenarios under different 
scales, with a total of nine different warehouse scales. 
Independent simulation experiments are carried out for nine 
scenarios to explore the effects of various storage strategies 
on the pod handling distance and operation efficiency in 
different scenarios. 

Table 2 shows the basic parameters under different 
warehouse scenarios, where 𝑅 is the total row number of 
pods in the direction of the picking station, 𝐶 is the total 
column number of pods in the storage area, 𝑃 is the total 
number of pods in the storage area, 𝑆  is the number of 
picking stations in the system, 𝑁ℎ is the number of lanes in 
the horizontal direction of the storage area of the picking 
system, 𝑁𝑣 is the number of lanes in the vertical direction, 

𝑁𝑏  is the total number of handling robots in the picking 
system, including the number of eliminated robots in the 
buffer storage strategy, so as to ensure the consistency of 
picking conditions under different strategies. 

 
Table 2 

Warehous

e size 
Scenario Row Column Pod Station 𝑁ℎ 𝑁𝑣 𝑁𝑏 

small-

scale 

Scenario 

1 
25 6 102 1 2 4 3 

Scenario 

2 
25 10 170 2 4 4 6 

Scenario 

3 
25 14 238 3 6 4 9 

medium-

scale 

Scenario 

4 
35 14 333 3 6 6 9 

Scenario 

5 
35 18 428 4 8 6 16 

Scenario 

6 
45 18 550 4 8 8 16 

large-

scale 

Scenario 

7 
45 22 673 5 10 8 25 

Scenario 

8 
55 22 822 5 10 10 30 

Scenario 

9 
55 26 972 5 12 10 30 

 

 

Figure 6 is the storage layout diagram of Scene 3, 
Scene 5 and Scene 7 in the above storage layout. According 
to the above information of roadway, pod and picking 
station, the layout of real storage is simulated to restore the 
actual picking process to the greatest extent, and the 
direction of each roadway and the path of the picking station 
are planned, to ensure the safety and efficiency of the 
handling robot in the process of driving, and provides a 
guarantee for the reliability of simulation data. 
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Scene 3 Scene 5

Scene 7  

Figure 6  Simulation diagram of partial scale warehouse layout 
 

Table 3 describes the properties of some pod robots, the 
properties of pods and other conventional parameters. This 
part of the parameters is obtained by referring to the part of 
the warehouse data to simulate the picking situation in the 
real warehouse as far as possible. Based on the following 
parameters, we restore a variety of actual scenes, such as the 
robot carrying pods, one-way driving in the roadway, 
picking platform picking and so on in the simulation, in 
order to analyze different operations 

 

Table 3 General parameter of the picking system 

Parameter Value 

The absolute value of maximum 

acceleration/deceleration of the mobile robot 𝑎 
1 𝑚/𝑠2 

The maximum speed of the mobile robot 𝑣 1.5 𝑚/𝑠 

The time required for the mobile robot to rotate 90 

degrees 𝑡1 
2 𝑠 

The time required for the mobile robot to lift/put 

down pods 𝑡2 
2.2 𝑠 

The maximum quantity of SKUs that can be stored on 

a single pod 𝑁𝑝𝑐 
500 

The total time for a picker to pick an SKU and put it 

in the picking box 
3 𝑠 

 

4.2  Results 

 

The simulation results are divided into three parts: 
partition dynamic storage strategy results, dynamic storage 
strategy based on buffer area results and Comprehensive 
comparison of strategies. The results of partition dynamic 
storage strategy and dynamic storage strategy based on 
buffer area are mainly the effects of different partition or 
buffer elimination schemes. The part of strategy 
comprehensive comparison is to explore the advantages and 
disadvantages of each strategy and provide better solutions 

for different application scenarios. 
 

4.2.1  Analysis of partition dynamic storage strategy 
simulation results 

Firstly, two different regional classification standards 
are compared to determine the impact of different 
classification standards on the test as a whole. In order to 
ensure the comprehensiveness of the application scenarios 
in the simulation, experiments are carried out for the 
different number of handling robots and different warehouse 
sizes, so as to comprehensively compare the impact of two 
different classification standards on the handling robot 
picking system. In the simulation, the system is studied 
under the three determined partition ratios, that ratios are 
fixed as θ𝑎 = 0.2 , θ𝑏 = 0.3  and θ𝑐 = 0.5 . And the 
turnover rate adopts the operation situation under the item 
turnover rate calculation mode. One scene is selected for 
simulation in each of the three different storage scales, so as 
to get the sum of the distance between the picking station 
and the storage area of the handling robot of the two area 
division standard systems in different scenes. The 
simulation results of the two partition methods in scenario 
3, scenario 5 and scenario 7 are shown in table 4. 

Table 4 shows the comparison of the two partition 
strategies in different scenarios, in which the value 
represented by the data is the carrying distance between the 
picking station and the storage area (unit: m) during the 
picking process. It can be seen from the data in the table that 
in three different scenarios, the carrying distance of the 
system under the time partition strategy is smaller than that 
under the distance partition strategy. The main reason for 
this difference is that the roadways of the pod handling robot 
picking system are all unidirectional, and the simple 
distance as the partition consideration can not fully fit the 
walking path of the robot in the system, and the time strategy 
is more suitable for the system in the application scenario, 
so the picking distance is less than the system under the 
distance partition.  

 

Table 4 Simulation comparison of two partition modes  

Warehouse 

size 

Order 

quantity 

Pod handling distance/m 

Time partition 

strategy 

Distance partition 

strategy 

Scenario 3 

500 7540 7677 

1500 24735 25706 

2500 42651 45264 

Scenario 5 500 7624 7681 
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1500 25507 26311 

2500 45813 47357 

Scenario 7 

500 8645 8735 

1500 28762 29483 

2500 49612 50551 

 

 

Under the above conditions, we explore the influence 
of item turnover rate and pod turnover rate on the picking 
distance in the system picking process. In order to ensure 
the uniqueness of the variables in the simulation, the 
proportion of the storage area of the three partitions, 𝜃𝑎 =0.2, 𝜃𝑏 = 0.3, and 𝜃𝑐 = 0.5 is fixed, and then the system 
operation using the time partition mode is explored. One 
scene is selected for simulation in each of the three different 
scales of storage, so as to get the sum of the robot walking 
distance between the picking station and the storage area 
under two different flow rate calculation methods in 
different scenes. The simulation results of the two partition 
methods in scenario 3, scenario 5 and scenario 7 are shown 
in table 5. 

The data in table 5 shows the comparison of the two 
calculation methods of turnover rate under different 
scenarios, in which the value represented by the data is the 
carrying distance between the picking station and the 
storage area (unit: m) during the picking process. By 
comparing the data of the two turnover rate calculation 
methods in the table we know that the picking and handling 
distance of the system based on the pod turnover rate 
calculation method is smaller than that of the system based 
on the item turnover rate calculation method. In Scene 3, 
Scene 5 and Scene 7, the average picking distance of the 
system based on the pod turnover rate is 137 meters, 401 
meters and 505 meters shorter than the system based on the 
item turnover rate, respectively. The corresponding 
difference also gradually increases with the gradual increase 
of the storage scale. The location of each return is 
determined by the frequency of the pod in the pod turnover 
rate mode, while that location is determined by the average 
turnover rate of various items stored on the pod in the item 
turnover rate mode. Due to the situation that one kind of 
item can be stored in multiple pods, and the storage capacity 
of the best-selling area and the storage area with general 
sales volume is limited, the pod containing the same best-
selling item may be repeatedly stored in the best-selling area 
under the calculation method of item turnover rate. But the 
calculation method based on the pod turnover rate will 
reduce the occurrence of this kind of situation. Therefore, 

the picking distance of the pod turnover rate calculation 
method in different scenarios is smaller than that of the 
picking system based on the item turnover rate. 

 

Table 5 Simulation comparison of two calculation methods of 

turnover rate  

Warehouse 

size 

Order 

quantity 

Pod handling distance/m 

Based on item 

turnover rate 

Based on pod 

turnover rate 

Scenario 3 

500 7540 7509 

1500 24735 24471 

2500 42651 42534 

Scenario 5 

500 7624 7451 

1500 25507 25342 

2500 45813 44920 

Scenario 7 

500 8645 8294 

1500 28762 27920 

2500 49612 49289 

 

Through the above data analysis, we can know that in 
the above three scenarios, the time partition mode is more 
suitable for the picking system, and the partition storage 
strategy based on pod turnover rate is better than the 
partition storage strategy based on item turnover rate in all 
aspects. 

 

4.2.2  Analysis of buffer area dynamic storage strategy 
simulation results 

For the simulation experiment of buffer strategy, this 
paper mainly explores the influence of the proportion of 
buffer area in the total storage area 𝜃𝑏𝑓 , the elimination 
threshold of the buffer area 𝜑𝑏𝑓 and four elimination mode 
strategies of different buffer areas to the pod handling 
distance of the picking system, so as to find the suitable 
configuration for the picking system in different scenarios. 
Because the number of robots determined in the scenario is 
fixed, the buffer elimination does not use additional robots 
to ensure the consistency of the variable. The number of 
buffer elimination robots used in small-scale warehouse, 
medium-scale warehouse and large-scale warehouse is 1, 2 
and 3 respectively, and the rest robots are all used for 
picking tasks. 

First of all, the size of the buffer 𝜃𝑏𝑓 is explored. This 
paper takes 𝜃𝑏𝑓 as the independent variable to explore the 
influence of different buffer sizes on the picking distance in 
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the process of picking operation, so as to determine the 
optimal buffer proportion for different sizes of picking 
system. The simulation strategy adopts the FIFO strategy, 
and the buffer elimination threshold 𝜑𝑏𝑓 is 0.8. In the case 
of the above parameters, the simulation results of the system 
in scenario 3, scenario 5 and scenario 7 are shown in table 
5, in which 𝑆1, 𝑆2, 𝑆3, 𝑆4 and 𝑆5 represent the picking 
system when 𝜃𝑏𝑓  values are 0.1, 0.15, 0.2, 0.25 and 0.3 
respectively. 

It can be seen from the data in table 6 that the 
proportion of the buffer area in the picking area has an 
impact on the carrying distance of the picking pod. When 𝜃𝑏𝑓 = 0.15 , the picking distance is the shortest in most 
scenarios. It can be concluded that when the size of the 
buffer area accounts for about 15% of the whole storage area, 
the buffer area can better realize the buffer function of the 
pod used in the near future, and cooperate with the handling 
robot to play a better work efficiency and improve the 
throughput of the picking station. When the buffer area is 
small, the buffer is prone to accumulate, that is, the speed of 
entering the buffer area is faster than the speed of 
eliminating the buffer, which makes the buffer lose its due 
performance. When the buffer area is too large, the strategy 
of the whole buffer will be changed to the nearby storage 
strategy, and the elimination working distance of the buffer 
will be longer, thus reducing the overall efficiency of the 
system. 

 

Table 6 Simulation comparison of different buffer sizes  

Warehouse 

size 

Order 

quantity 

Pod handling distance/m 

S1 S2 S3 S4 S5 

Scenario 3 

500 6940 6700 6850 7166 7275 

1500 23225 23140 24671 24156 23572 

2500 40461 40434 41009 41143 41219 

Scenario 5 

500 7684 6915 7203 7590 7385 

1500 24953 25009 25843 25335 25911 

2500 44915 43338 45455 44859 46336 

Scenario 7 

500 8087 7518 7894 7766 7917 

1500 26039 24562 24873 25650 25153 

2500 43909 42583 43094 43280 43442 

 

Table 7 shows the system performance comparison 
under different buffer elimination strategies, in which the 
data is the handling distance (unit: m) between the picking 
platform and the storage area during the picking process. 

Among them, strategy 1, strategy 2, strategy 3 and strategy 
4 respectively represent the buffer dynamic storage 
strategies under the first in first out elimination mode, 
according to the frequency of use elimination mode, the 
least frequently used elimination mode and random 
elimination mode. Through the data in the table, the system 
of four elimination strategies is compared. Scenario 3 shows 
that in a small-scale warehouse, strategy 3 is better than 
strategy 2 when the order quantity is small. With the 
increase of order quantity, strategy 2 becomes the strategy 
with the least pod handling distance in the system picking 
process. Strategy 4 is a random elimination strategy with the 
worst performance. Scenario 5 is a storage scenario with a 
medium storage scale. In scenario 5, the sequence of the 
four strategies is: strategy 2 > strategy 3 > strategy 1 > 
strategy 4. Strategy 2 is to eliminate the pod in the buffer 
area according to the pod usage frequency, so as to clean the 
buffer area under the condition that the buffer area does not 
reach the upper limit, and improve the overall performance. 
Scenario 7 is a large-scale warehousing scenario. In this 
scenario, the order of the four strategies is strategy 2 > 
strategy 1 > strategy 3 > strategy 4. In the three scenarios, 
strategy 4 has the worst comprehensive performance among 
the four strategies, and strategy 2 has the best 
comprehensive performance. 

 

Table 7 Simulation comparison of different elimination strategies  

Warehouse 

size 

Order 

quantity 

Pod handling distance/m 

Strategy 

1 

Strategy 

2 

Strategy 

3 

Strategy 

4 

Scenario 3 

500 6700 6817 6611 7382 

1500 23140 23066 23427 25088 

2500 40434 39758 39989 43461 

Scenario 5 

500 6915 6512 6646 7233 

1500 25009 22289 22662 26546 

2500 43338 40119 40624 44635 

Scenario 7 

500 7518 7472 7627 7930 

1500 24562 23686 24351 27615 

2500 42583 41972 43874 48665 

 

4.2.2  Comprehensive comparative analysis 

 

Through the above analysis of the system pod handling 
distance under the partition storage strategy and the buffer 
storage strategy, the optimal configuration of different 
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strategies in different scenarios is obtained. The simulation 
comparison of various strategies under the above 
configuration is carried out, and the applicability of various 
strategies is analyzed by comparing the system throughput 
under various strategies and different warehouse sizes. 

Among them, strategy A is the partition picking 
strategy, the dynamic partition is used in the partition, and 
the storage allocation is based on the pod turnover rate. 
Strategy B is the buffer dynamic storage strategy based on 
the usage frequency elimination mode, and the proportion 
of buffer area in the total storage area is 15%. Among them, 
the number of buffer eliminated robots in Scene 1, 2 and 3 
is 1, the number of buffer eliminated robots in Scene 4, 5 
and 6 is 2, and the number of buffer eliminated robots in 
Scene 7, 8 and 9 is 3. Strategy C is a static storage strategy, 
that is, pod storage strategy is fixed without any dynamic 
storage optimization. Table 7 shows the comparison of 
various simulation strategies under different warehouse 
sizes, in which the data represents the number of orders 
completed by a single picking station in a unit hour. 

According to the data in table 8, when the warehouse 
scale is small, strategy C is better than strategy B, but the 
gap between them is small. This is because the eliminated 
robots in strategy B do not directly participate in order 
picking under the condition of a certain number of robots, 
so the performance of strategy B is the worst when the 
storage scale is small. When the storage scale reaches 
medium scale, strategy A becomes the best one among the 
three strategies. When the storage scale is large, strategy B 
performs best among the three strategies. This is because 
when the storage scale is large, the overall size of the 
warehouse is too large, and the moving distance of the pod 
in the warehouse increases correspondingly during the 
picking process. The buffer area can effectively cache some 
high-frequency used pod, which indirectly reduces the 
moving distance in the picking process, thus increasing the 
picking efficiency of the picking table. 

 

Table 8 Simulation comparison of different strategies in different 

scale warehouses  

 Warehouse 

size 

Order 

quantity 

Pod handling distance/m 

Strategy 

A 
Strategy B 

Strategy 

C 

Scenario 1 

500 216.76 193.94 216.73 

1500 213.97 186.67 214.64 

2500 211.23 175.94 210.51 

Scenario 2 500 216.03 202.29 215.62 

1500 212.73 196.16 212.06 

2500 212.74 195.30 210.60 

Scenario 3 

500 218.44 205.76 217.86 

1500 213.32 199.53 209.47 

2500 210.88 197.01 209.00 

Scenario 4 

500 215.59 202.77 214.44 

1500 205.24 195.06 203.20 

2500 204.88 195.01 203.79 

Scenario 5 

500 218.66 217.21 216.67 

1500 218.91 217.08 215.83 

2500 217.66 216.85 214.35 

Scenario 6 

500 214.18 213.67 212.36 

1500 214.86 212.87 211.93 

2500 213.19 212.65 212.04 

Scenario 7 

500 217.32 218.98 216.00 

1500 217.11 217.30 215.92 

2500 217.25 217.38 215.57 

Scenario 8 

500 215.31 216.72 213.13 

1500 214.57 215.59 213.44 

2500 214.44 215.61 213.37 

Scenario 9 

500 214.67 216.14 212.96 

1500 214.14 215.18 212.71 

2500 214.32 215.47 212.24 

 

The advantages and disadvantages of storage 
allocation in the picking process can be reflected through 
the statistics of the walking path of the handling robot in the 
picking process. Figure 7 shows the walking thermal 
diagram of the robot in the medium-sized picking system. 
The darker the color is, the more frequent the robot visits the 
position. The red area on the right of the figure is the picking 
station area. It can be seen from the three groups of thermal 
diagram that in this scenario, the most intensive storage 
areas accessed by strategy A robots are concentrated in the 
best-selling areas and some areas with general sales volume; 
the most intensive storage areas accessed by strategy B 
robot are concentrated in the buffer area and some areas 
close to the picking table; In strategy C, the robot access to 
the thermal diagram is relatively uniform, and the 
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centralized area of thermal diagram covers most of the 
storage area. In the thermal diagram of this scenario, the 
centralized area in strategy A is closest to the picking 
platform, which reflects that the average moving distance of 
the robot in the picking process is short, while the average 
moving distance in strategy C is the longest. 

 

(a) Strategy A

(b) Strategy B

(c) Strategy C  

Figure 7  Thermodynamic diagram of robot walking in the 
medium scale picking system 

 

Figure 8 shows the walking thermodynamic diagram of 
the robot in the picking process of the large-scale picking 
system. Due to the large storage scale in this scenario, the 
buffer area of strategy B can effectively reduce the moving 
distance of the robot, so the most concentrated walking path 
in figure (b) is concentrated in the buffer area, and the 
concentrated area of strategy B is closer to the picking 
platform than that of strategy a, while the average moving 
distance of the robot in the picking process of strategy C is 

longer due to the fixed storage location. 
 

(a) Strategy A

(b) Strategy B

(c) Strategy C   

Figure 8  Thermodynamic diagram of robot walking in the large 
scale picking system 

 

5  CONCLUSION 

 

This paper first introduces the related concepts of 
dynamic storage allocation, and takes the pod handling 
robot picking system as an example to analyze the problems 
to be solved. Then, a dynamic storage allocation model 
suitable for the pod handling robot picking system is 
constructed, and two dynamic storage allocation strategies 
are proposed for solving the model-partition dynamic 
storage strategy and buffer based dynamic storage strategy. 
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According to the different modes, the partition dynamic 
storage strategy is divided into the partition strategy based 
on the pod turnover rate and the partition strategy based on 
the item turnover rate. The buffer based storage strategy is 
divided into the first in first out elimination strategy, the 
elimination strategy according to the frequency of use, the 
least frequently used elimination strategy and the random 
elimination strategy, and the characteristics of each strategy 
are introduced in detail. Finally, simulation experiments are 
carried out on different scale picking systems to find out the 
optimal configuration of the partition storage strategy and 
cache storage strategy to adapt to different systems. Finally, 
by comparing the static storage strategy, the effectiveness of 
the dynamic storage strategy is proved. The partition storage 
strategy is more suitable for the small and medium-sized 
warehouse system, and the buffer storage strategy performs 
better than the large-scale picking system. 
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