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Abstract Mobile edge computation (MEC) is a potential technology to re-
duce the energy consumption and task execution delay for tackling computation-
intensive tasks on mobile device (MD). The resource allocation of MEC is an
optimization problem, however, the existing large amount of computation may
hinder its practical application. In this work, we propose a multiuser MEC
framework based on unsupervised deep learning (DL) to reduce energy con-
sumption and computation by offloading tasks to edge servers. The binary
offloading decision and resource allocation are jointly optimized to minimize
energy consumption of MDs under latency constraint and transmit power con-
straint. This joint optimization problem is a mixed integer nonconvex problem
which result in the gradient vanishing problem in backpropagation. To address
this, we propose a novel binary computation offloading scheme (BCOS), in
which a deep neural network (DNN) with an auxiliary network is designed.
By using the auxiliary network as a teacher network, the student network can
obtain the lossless gradient information in joint training phase. As a result,
the sub-optimal solution of the optimization problem can be acquired by the
learning-based BCOS. Simulation results demonstrate that the BCOS is effec-
tive to solve the binary offloading problem by the trained network with low
complexity.
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1 Introduction

With the dramatic growth of Internet of Things (IoT) devices, various computation-
intensive mobile applications, such as speech recognition, language processing,
online game and reality augmentation, are emerging. Executing computation-
intensive applications poses great challenges on the MDs due to the limited
battery energy and low computing power. A potential solution to address the
challenges is mobile cloud computation (MCC) [1]. In MCC, the devices of-
fload the computation tasks to remote cloud servers for execution over wireless
link. Nevertheless, the execution latencies may be very large due to the long
distance and the huge additional transmission load between MDs and cloud
servers [2]. To handle this problem, mobile edge computing (MEC) is pro-
posed, which reduces network latency by placing small edge servers near end
users [3]. Hence MEC servers can execute and deliver the computation services
rapidly to reduce the delay and save the energy consumption, which are the
pivotal challenges for future radio network.

It is the common cognition in academia and industry that the efficiency of
MEC is largely determined by the offloading decision [4]. Moreover, reasonable
resource allocation is also important for the improvement of the performance
of MEC [5]. Therefore, it is necessary to jointly optimize the policies, which
comprise the offloading decision and resource allocation, to acquire the optimal
solution for the delay sensitive tasks. Most of the joint optimization problems
are typically NP-hard problems [6]. Owing to its non-convex property, the
conventional methods used in the literatures are either exhaustive search or
iterative optimization of approximation problem. Thus, the existing complex-
ity and convergence issues of these methods may hinder their practice appli-
cation. What is worse, the computation complexity of these problems would
exponentially grow against the number of MDs, and the growing complexity
even result in the infeasibility. In recent years, DL has achieved great success
in nature language processing, speech recognition and some other fields. Some
researches show that it can also be used to process hard communication is-
sues, for instance channel precoding [7,8,9], power control [10] and channel
estimation [11]. Thus, we try to tackle the MEC optimization problem by a
deep-learning-based method with lower complexity. Meanwhile, computational
offloading problems are generally divided into two categories: partial offloading
which only offloads a subset of the task components to edge servers, and bi-
nary offloading which hands over all the task to edge servers. However, partial
offloading requires to calculate the computational cost for each task compo-
nent, thus puts additional work load on computation resources and energy
reserves [12]. Compared with partial offloading, binary offloading is more suit-
able to tackle atomic tasks that are not partitionable and easier to implement
in practice. Hence, it makes sense to tackle the binary offloading and resource
allocation issue in MEC network with low complexity by deep-learning-based
approach.

In this work, we consider a multiuser mobile-edge computation offload-
ing (MECO) network based on Time Division Multiple Access (TDMA). To
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minimize the energy comsumption of MDs, we model the MECO issue as
a joint optimization problem which jointly optimizes offloading decision and
resource allocation. Then, a novel unsupervised deep-learning-based BCOS
is proposed to find the sub-optimal solution. Compared with the supervised
deep-learning method, the unsupervised deep-learning method don’t need the
training dataset. Particularly, it is difficult to obtain the training dataset in
this joint optimization problem due to its nonconvex nature. Moreover, this
optimization problem is a mixed integer programming problem, and it causes
gradient vanishing issue in DL network. To tackle this issue, we design a DNN
with an auxiliary teacher network to acquire the lossless gradient information
by using the auxiliary network as the teacher network in joint training phase.
Then the main contributions are summarized as follows:

1. By taking latency constraint, transmit power constraint and energy con-
sumption into account, we model the multiuser binary MECO process un-
der TDMA system as a mixed integer programming (MIP). The optimiza-
tion policies including offloading decision, transmit time slot and transmit
power are jointly optimized to minimize the sum energy consumption of
MDs.

2. To tackle the binary offloading issue, we propose the BCOS in which the
original optimization problem is transformed as an unsupervised deep-
learning problem to reduce the computation complexity. Comparing with
the supervised DL, the unsupervised DL does not require the training
dataset, which the is generally difficult to be obtained by solving the opti-
mization problem with conventional mathematical method.

3. To address the gradient vanishing problem caused by binary offloading
decision, we design a DNN with an auxiliary network. With the aid of
the auxiliary teacher network, the student network can acquire the lossless
gradient information directly. Therefore, the binary offloading problem can
be solved effectively by the designed DNN. Moreover, we can obtain the
sub-optimal solution by the trained DNN with low complexity.

The remainder of this paper is organized as follows. In section II, the re-
lated work of deep learning and MECO are introduced. The system model
and problem formulation are proposed in section III. In section IV, binary
computation offloading algorithm is presented, which includes deep learning
framework, proposed deep-learning-based problem formulation and the joint
training mechanism with auxiliary network. The fifth section gives the simu-
lation results and discussions. Finally, we conclude the research work in the
last section.

2 Related Works

A large amount of study works are done to improve the performance of MDs
computation offloading by utilizing the advantages of edge servers [13,14]. To
adapt the real-time computation offloading, several low-complexity algorithms
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have been proposed to deal with the binary computation offloading problem.
However, most of these works tackle the computation offloading problems with
mathematical analysis fashions [2,15,16,17]. Liu et al. have presented an novel
one-dimensional search algorithm to process the power-constrained delay min-
imization problem, which obtained the optimal offloading decision according
to the queuing state of the application buffer, the available power at local
processing unit and remoting transmission unit, as well as the CSI between
MDs and the MEC servers [18]. However, to make offloading decision, the
MDs require feedback from MEC servers in this algorithm, which increases
signaling overhead additionally. In [2], a distributed computation offloading
algorithm based on game theoretic method is designed to obtain efficient com-
putation offloading decision, which requires multiple communication iterations
between MDs and MEC servers. Similarly, references [19] and [20] update the
binary offloading decision iteratively to solve the joint task offloading and
resource allocation issue. Reference [21] propose a constrained stochastic suc-
cession convex approximation (C-SSCA) algorithm for minimizing the sum
energy consumption of MDs by jointly optimizing the transmit power, offload-
ing decision and the assignment of computation resource with low-complexity.
However, all those algorithms are not applicable for the real-time computing
offloading of the MEC network due to the limitation of the trade-off between
computational complexity and optimality.

Machine learning has replaced traditional method in many fields, such
as computer vision, natural language processing, and face recognition. The
performance of DL has transcended that of the traditional machine learn-
ing methods, and DL has been widely exploited in communication fields and
achieved excellent results [22,23,24,25]. The optimization framework proposed
in [26] exploits deep reinforcement learning method to tackle the resource al-
location in wireless MEC. In [27], a smart energy-efficient partial computa-
tion offloading scheme based on DL is proposed to minimize the cost func-
tion by selecting an offloading set which depends on the mobiles’ remaining
energy, energy consumption of application components, channel conditions,
data size for transmission, computational load, and latency in communica-
tion. Furthermore, Gong Y et al. exploit DL method to solve the MEC of-
floading problem, which minimize the cost function by optimize the state
of mobile environment [28]. Nevertheless, most of the aforementioned deep-
learning-based methods are supervised DL and is difficult to acquire the ap-
propriate training dataset. Hence, this motivates us to design an unsupervised
deep-learning-based method without training dataset for intelligent offloading
decision-making processes in multiuser MEC network.
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Fig. 1 Multiuser MECO system.

3 System Model And Problem Formulation

3.1 Network Model

We consider a multiuser MECO system that contain K single-antenna MDs
with computation-intensive tasks and a single-antenna base station (BS) equipped
with edge cloud server as shown in Fig. 1. Time is separated into slot of T
seconds for K mobiles and each slot contains two phases:1) local computing
or offloading and 2) cloud computing and fetching the computational results
from the edge cloud server to MDs. During the time slot, the computation-
intensive tasks of K MDs can be locally executed by the CPU of the terminal
MDs or remotely executed via offloading to the edge servers based on TDMA.
Meanwhile, we assume that the tasks are atomic and can’t be split further
as the strong dependence on each other. In other words, the tasks are either
executed locally or completely offloaded to the edge servers. So as to enable
the BS to select the offloading MDs and allocate time slots and transmit power
to the offloading MDs, we also suppose that the BS masters the channel state
information (CSI), the energy consumption of computing per bit and the size
of task data for all users. Moreover, channels are supposed to keep unchanged
within a slot.

3.2 Local Execution Model

The model of local execution is depicted as follows. We first model the compu-
tation power consumption by p = εf3,where ε is determined by the structure
of chip, and f denotes the computational speed of the CPU measured by the
cycle numbers per second [29]. Bk and Ck denote the size of task data and
the number of cycles CPU to process 1-bit data for MD k respectively. And
fk denotes computational speed of MD k. Particularly, we assume that Ck

and fk of each mobile are fixed, which may vary over different MDs. Due to
the assumption that all the tasks are atomic, we denote ak ∈ {0, 1} as the
offloading strategy, ak = 1 if MD k offloads its total task to edge server to
compute, otherwise ak = 0. Then the required number of CPU cycles for MD
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k to process a Bk Kilobyte task is (1− ak)CkBk and the time consumption
of local computation for MD k can be given as follow:

tk,l =
(1− ak)CkBk

fk
. (1)

Then the energy consumption of local computation for MD k denoted as Eloc,k,
is given by

Eloc,k = pktk,l = ε(1− ak)BkCkfk
2. (2)

3.3 Offloading Model

The energy consumption of computation offloading is modeled in this subsec-
tion. Computation offloading comprises three phases for 1) uplink task trans-
mission (i.e., wireless access to edge servers via TDMA), 2) edge execution and
3) result fetching. Assume the cloud server has infinite capacity and the tasks
can run in parallel. Consequently, the latency of cloud execution is very small,
and result fetching is much faster than uplink task transmission due to the
relatively smaller size of the computation result. For this reason, the latency
and energy consumption of edge execution and result fetching are assumed
to be negligible compared with the uplink task transmission. Thus, the re-
source allocation of the above two phases are not considered. Then the uplink
transmission rate rk of MD k can be expressed as

rk = W log(1 +
pkh

2
k

N0
), (3)

where pk and hk refer to the transmission power and channel gain for MD k,N0

is the variance of complex white Gaussian channel noise, W is the bandwidth.
The time required for offloading task on MD k can be denoted as

t
′

k

∆
=

akBk

rk
=

akBk

W log
(

1 + pkhk

N0

) . (4)

The fraction of time slot allocated to mobile k denotes as tk, thus t
′

k should
not be larger than tk to ensure the transmission of the completed task data.
Based on the depiction above, the energy consumption of offloading Eoff,k for
MD k can be expressed as

Eoff,k = pkt
′

k. (5)

3.4 Problem Formulation

Our objective is to minimize the weighted sum mobile energy consumption for
K MDs by adjusting the binary offloading decision a, transmit time slot t and
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transmit power p. According to the local execution model and the offloading
model, the corresponding optimization problem can be formulated as follows:

P1 : min
ak,pk,tk

∑K

k=1 βk

[

pktk + ε (1− ak)BkCkf
2
k

]

s.t. C1 :
∑K

k=1 tk ≤ T ,

C2 : (1−ak)CkBk

fk
≤ T, ∀k,

C3 : 0 ≤ pk ≤ pmax, ∀k,

C4 : ak ∈ {0, 1} , ∀k,

C5 :t
′

k ≤ tk, ∀k,

(6)

where βk denotes the positive weight factors accounting for the fairness of
MD k. Here, C1 is the time allocation constraint for K MDs. C2 denotes the
latency constraint of local computation. C3 specifies the maximum transmit
power constraints for per MD. C4 indicates that a task can be executed locally
or offloaded to edge server for remote processing. Last, C5 ensures that a
task can be offloaded completely for MD k within specified time. It can be
seen that problem P1 is a mixed integer nonconvex problem which is NP-
hard. It is challenging to solve the NP-hard problem directly by conventional
mathematical analysis method [30].

4 Proposed Binary Compution Offloading Algorithm

In order to solve the NP-hard problem P1, the unsupervised deep-learning-
based DNN model is used to implement the mapping from channel gain to
offloading decision and resource allocation. In this section, we describe the
binary computation offloading scheme containing details of the basic opera-
tion of the fully connected DNN, the proposed deep-learning-based problem
formulation and the joint training mechanism with auxiliary network.

4.1 Deep learning framework

First, let us briefly introduce the operation of the fully connected network
(FCN) in Fig. 2. The FCN used in this paper is composed of one input layer,
two hidden layers and one output layer. The channel gain vector h of K

MDs and optimization policies a,p, t are as the input layer and output layer
respectively. The number of nodes of i− th layer is denoted as li, i = 1, 2. The
output of the i− th hidden layer is computed as follows:

xi = ReLU (BN (Wixi−1 + bi)) , (7)

where xi and xi−1 are the output vectors of current and force layers, and their
dimensions are li × 1 and li × 1 respectively; Wi is the weight matrix with
dimensions of li × li−1; bi is the bias vector with dimensions of li × 1; ReLU
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Output

Hidden Hidden

Input

Fig. 2 A fully connected network with 2 hidden layers.

is the Rectified Linear Unit function (max (x, 0)); and BN denotes the batch
normalization (BN). Then, sigmoid function is chosen as the last activation
function and the computation is given as follows:

xi = Sig (Wixi−1 + bi) , (8)

where the sigmoid function is given as:

Sig (x) =
1

1 + exp (−x)
. (9)

Accordingly, the output of the FCN can be written with the parameterization
model as

xo = xi = φ(h,θ), (10)

where h is the channel gain, and θ is the network parameters set of {W , b}
[31].

4.2 Proposed deep-learning-based problem formulation

Due to the standard DL issues are unconstrained issues, the approaches used
to address these problems can not be adopted directly to the complex MECO
problem with constraints [32]. The common approaches used to eliminate the
constraints are to concatenate self-defined activation layer as output layer, or
to add additional terms to the objective function as the DNN loss function for
punishing the constraint violations. In this subsection, the tricks mentioned
above are used to transform the origin optimization problem P1 into an un-
constrained DL problem.

First, the DNN used to address the optimization problem P1 is comprised
of three parallel FCNs. For this DNN, the input is the channel gain h and the
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output is the solution of problem P1, namely, the offloading decision a, the
time allocation t and the transmit power allocation p. According the equation
(10), we employ the near universal parametrization method to parameterize
the offloading decision and the resource allocation function:

a = φa(h,θ),
t = φt(h,θ),
p = φp(h,θ),

(11)

where h is the input channel gain, and θ is the network parameters. Then the
problem P1 can be modified as:

P2 : min
θ

∑K

k=1 βk[φ
k
p(h,θ)φ

k
t (h,θ)

+ε
(

1− φk
a(h,θ)

)

BkCkf
2
k ]

s.t. C1 :
∑K

k=1 φ
k
t (h,θ) ≤ T ,

C2 :
(1−φk

a
(h,θ))CkBk

fk
≤ T, ∀k,

C3 : 0 ≤ φk
p (h,θ) ≤ pmax, ∀k,

C4 : φk
a(h,θ) ∈ {0, 1} , ∀k,

C5 : t
′

k ≤ φk
t (h,θ), ∀k,

(12)

where ak = φk
a (h,θ), pk = φk

p (h,θ) and tk = φk
t (h,θ) denotes the sub-

optimal policies for MD k. Although the problem P2 is non-convex, the loss
of the optimality is small for the near-universal parameterizations according
to the Theorem1 in [31].

To meet the constraints of the offloaded decision a and resources allocations
p and t, we concatenate different self-defined activation layers at the end of
the FCN, and xo in equation (10) is the input of self-defined layers. Then, the
different self-defined layers are given respectively as follows:

1. To satisfy the transmit power constraint C3 in problem P2, the activation
function of the last layer for the FCN is expressed as:

p = pmaxφ(h,θ). (13)

2. To satisfy the time allocation constraint C1 in problem P2, the normaliza-
tion activation function of the last layer for the FCN is given as:

t = T min(1, ||φ(h,θ)||)
φ(h,θ)

||φ(h,θ)||
. (14)

3. The binary offloading decision need to satisfy the constraints C2 and C4.
Namely, if the whole task can not be completed in the specified time locally,
it must be offloaded to edge servers for execution. In light of constraint C4,
we can obtain a ratio ak ≥ m+

k with mk = 1− fkT
CkBk

and x+ = max {x, 0}
for MD k, which denotes the ratio of task beyond local computing power.
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Once the ratio is greater than 0, then ak = 1. Accordingly, the activation
function of the last layer for FCN can be given as:

a = sign

[

sign (2φ(h,θ)− 1) + 1

2
+ sign

(

m
+

k

)

]

, (15)

where the vector m+
k denotes the task ratio vector, and the sign function

is given as follows:

sign (x) =







−1, x < 0
0, x = 0
1, x > 0.

(16)

As a result, the constraints C1, C2, C3 and C4 are addressed by the activation
layers at the end of the FCN. Further, the optimization problem P2 can be
transformed as follows:

P3 : min
θ

∑K

k=1 βk[φ
k
p(h,θ)φ

k
t (h,θ)

+ε
(

1− φk
a(h,θ)

)

BkCkf
2
k ]

s.t. C5 : t
′

k − φk
t (h,θ) ≤ 0, ∀k.

(17)

However, the optimization problem P3 is still constrained. To remove the
constraint C5, the penalty term is introduced in the loss function of DNN. Since
we are merely focus on eliminating the states that dissatisfy the constraints, we
can neglect the value of function t

′

k−φk
t (h, θ) when constraint C5 is satisfied.

Consequently, the Hinge function is defined as follows:

H (c) =

{

c, c ≥ 0
0, c < 0.

(18)

The constraint C5 can be replaced equally by H(t
′

k−φk
t (h,θ)) = 0, ∀k without

changing the origin formulation. Specifically, H(t
′

k − φk
t (h,θ)) can be thought

as the loss when constraint C5 is dissatisfied. If the constraint is satisfied,
the loss is zero. Hence, the optimization problem P2 can be transformed to
minimize a new loss function of DNN which penalizes the constraint violation.
That is, the overall learning problem can be expressed as:

P3 : min
θ,λB

lossbinary (θ, λB) , (19)

where the loss function can be expressed as:

lossbinary = E
{

∑K

k=1 βk[φ
k
p(h,θ)φ

k
t (h,θ)

+ε(1− φk
a(h,θ))]

+λB

∑K

k=1 H(t
′

k − φk
t (h,θ))

}

.

(20)

In the loss function (20), to make the DNN output satisfy the offloading

time constraints, penalty term is introduced. If t
′

k > φk
t (h,θ), thenH

(

t
′

k − φk
t (h,θ)

)

>
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Fig. 3 Schematic of the proposed joint training with auxiliary DNN. The FCN of offloading
decision is shared by the auxiliary teacher network and the student network. In training
phase, the parameters of the auxiliary teacher network and the student network are updated
alternatively. Then, the shared FCN can obtain the lossless gradient information during
backpropagation.

0, namely, the offloading time constraints are not satisfied. To minimize the loss
function, the penalty term compels the DNN updating along the direction of

constraint satisfaction. In the opposite, if t
′

k ≤ φk
t (h,θ),H

(

t
′

k − φk
t (h,θ)

)

= 0

and the penalty term has no effect on the loss function. In this instance, the
training process concentrates on the satisfaction of other MDs and the mini-
mization of the energy consumption of K MDs. λB is the scaling factor, which
is used to balance the gap between different terms of the loss function. There-
fore, λB needs to be adjusted carefully as a hyperparameters: if too small, the
DNN may minimize the energy consumption mainly and output an infeasible
solution violated the constraint; if too large, the DNN may concentrates on the
satisfaction of the constraints while neglecting the minimization of the sum
energy consumption. It is generally difficult to select a suitable hyperparame-
ter in DL and many optimization problems. In this work, we use sub-gradients
to handle the non-differentiability caused by the Hinge function, and the pa-
rameter update equation of λB can be written as:

λ
(i+1)
B ← λ

(i)
B + α∇λB

lossbinary(θ, λB), (21)

where

∇λB
lossbinary(θ, λB) =

∑K

k=1
H(t

′

k − φk
t (h,θ)). (22)

4.3 Joint training mechanism with auxiliary network

Although the problem P3 is an unconstrained optimization problem, the bi-
nary offloading decision considered in the MECO network will result in gradi-
ent vanishing issue in the training process. In other words, the back-propagation
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method can not effectively update the gradients of the neural layers before the
binary layer when the non-differentiable operators are adopted. To address
this issue, a DNN with an auxiliary network is designed in Fig. 3. In this
subsection, we introduce the training process of the proposed DNN in detail.

To map the channel gain to a binary offloading decision of 0 or 1, the
common binarization operators (e.g., sign()) may be applied in the activa-
tion function of DNN. While the fact that the derivative of the output of
the binarization operator neuron is zero everywhere except the origin where
the function is non-differentiable, may result in the vanishing gradient problem
during backpropagation. The most common practice to overcome this problem
is to approximate the activation function of binarization layer with a smooth
differentiable function during backpropagation. Such an approximation of a
binarization layer during backpropagation is taken as straight-though estima-
tion (STE), which is first proposed by G. E. Hinton [33,34]. However, the
approximation may cause noisy signal when updating the parameters of DNN
due to the incorrect updating direction [35,36].

To mitigate this, we design the DNN containing an auxiliary teacher net-
work and a student network in Fig. 3. Moreover, we suppose that the tasks
can be tailored and the offloading decision constraint C4 are relaxed as 0 ≤
akauxi ≤ 1, ∀k for the auxiliary network. Thus, akauxi denotes the offload ratio
of task on mobile device k. To satisfy this constraint, the last layer activation
function of auxiliary network of offloading decision is defined as:

aauxi = φ(h,θ)(1−m+
k ) +m+

k . (23)

Therefore, the student network and the auxiliary teacher network have the
same structure except the different activation function layer for the offload-
ing decision. The identical structure is effective to transmit information from
the auxiliary network to the student network and reduce the information loss
caused by the structure mismatch between the auxiliary network and the stu-
dent network[9]. Additionally, the network before the last activation layer for
the offloading decision is shared by the auxiliary network (in the red line box)
and the student network (in the green line box) as seen in Fig. 3. Thus, the
student network can directly acquire the lossless gradient from the auxiliary
network.

Similar to the learning problem P3, the loss function of the auxiliary net-
work can be given as:

P4 : min
θauxi,λA

lossauxi (θauxi, λA) , (24)

where the loss function can be expressed as:

lossauxi = E
{

∑K

k=1 βk[φ
k
p(h,θauxi)φ

k
t (h,θauxi)

+ ε(1− φk
a(h,θauxi))]

+λA

∑K

k=1 H(t
′

k − φk
t (h,θauxi))

}

.

(25)
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To utilize the auxiliary network in training phase, we exploit a joint training
approach to alternatively train the auxiliary network and the student network
[33, 34]. The detailed procedure is presented in Algorithm 1. The auxiliary
network and the student network are sequentially updated in each iteration
process. Therefore, the teacher network can guide the student network effec-
tively to obtain lossless information for generalization, and the corresponding
joint training prohibits the student network from being trapped at a poor local
minimum [33-35].

Algorithm 1 Joint Training the Proposed DNN

1: Initialize θ, θauxi, λB , λA, α.

2: Generate 20000 channel data samples with the minibatch-size 1000.

3: for i = 1:num iterations do

4: Update teacher network parameters θauxi by minimizing

lossauxi(θauxi, λA) with ADAM.

5: Update student network parameters θ by minimizing

lossbinary(θ, λB) with ADAM.

6: Update penalty terms hyperparameters λA and λB by

λ
(i+1)
A

← λ
(i)
A

+ α∇λA
lossauxi(θauxi, λA) and

λ
(i+1)
B

← λ
(i)
B

+ α∇λB
lossbinary(θ, λB).

7: end for

5 Numerical Simulation

In this section, numerical simulations are carried out to evaluate the efficiency
of BCOS. We consider a multiuser MEC system comprising of a single-antenna
BS equipped with edge servers and K MDs. We model the channel as indepen-
dent Rayleigh fading and set the large-scale fading average power loss as 10−6.
Other simulation parameters are shown in Table 1 unless specified otherwise.

To evaluate the performance of our proposed BCOS, we take three offload-
ing schemes into account and explain them particularly as follows:

1. Minimum computation offloading scheme (MCOS): In this approach, we
give priority to local execution. If the local computation capacity is insuf-
ficient, all of the remainder will be offloaded with maximum transmitting
power to edge servers and the weighted sum energy consumption of K MDs
is computed.
2. Partial computation offloading scheme (PCOS): Assume that the tasks
can be partitioned arbitrarily, we use the single teacher network to optimize
the offloading ratio, transmitting power, and transmitting time of tasks
for minimizing the energy consumption of K MDs by unsupervised DL
method.
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Table 1 Simulation Parameters

Notation Parameter Value

W Total bandwidth 10MHz
K Number of mobiles 4-20
Pmax Maximum transmit power 23dBm
N0 Variance of complex White Gaussian noise 10-9W
Bk Size of task input data 100-300KB
Ck CPU cycles per bit 200-400
T Time slot 0.5S
fk Local computation capacity 1-2GHz
βk Equal fairness weight factors 1
ε Chip parameter 1e−28

Fig. 4 The comparison of weighted sum mobile energy consumption between MCOS, PCOS
and BCOS with the increasement of mobile number from 4 to 20, where T = 0.5s.

3. Binary computation offloading scheme (BCOS): The task which is not
partitioned must be tackled all at local or at edge servers. We optimize
the binary offloading decision, transmitting power and transmitting time
for minimizing the energy consumption of K MDs by unsupervised DL
method.

The weighted sum energy consumption of the three different schemes for
K MDs are compared in Fig. 4 with the increase of MD number from 4 to
20, where T = 0.5s. We can find that for all three schemes, the weighted sum
energy consumption increases with the MD number. The energy consumption
of MCOS is always more than the other two schemes, indicating that the
computation offloading is effective to save the energy consumption of MDs.

In addition, the energy consumption of PCOS and BCOS are relatively
close. When the number of MDs is less than 8, the energy consumption of
PCOS and BCOS are approximately the same. While MD number is more
than 8, the gap of energy consumption between PCOS and BCOS begin to
increase. This is because that when the number of MD is small, the time
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Fig. 5 The comparison of weighted sum mobile energy consumption between MCOS, PCOS
and BCOS with the increasement of time slot T from 0.3s to 1.6s, where the mobile number
is 14.

deadline is relatively loose, and the devices can be allocated enough time to
offload all the tasks. With the increase of mobile device number, the time
deadline is tightened and the tasks may need to be tailored. In view of the
task integrity, BCOS can’t offload as many tasks as PCOS does.

We further investigate the effect of communication resource on the weighted
sum energy consumption. The comparison of weighted sum mobile energy
consumption between MCOS, PCOS and BCOS with the increasement of time
slot T from 0.3s to 1.6s is shown in Fig. 5, where K = 14. Compared with
another two schemes, the energy savings of the proposed BCOS are evaluated.
With the growth of time slot T , the energy consumption of PCOS and BCOS
first decrease and then stabilize when T ≥ 1.5s, while the energy consumption
of MCOS remains almost unchanged. This is because that the increased time
slots allow more MDs to be selected to offload their tasks. when time slot
T is greater than 1.5s, the energy consumption of PCOS and BCOS are not
abating. It indicates that the allocated time has reached saturation and meets
the requirement of offloading all the tasks. Therefore, the further increase of
time slot T has no effect on energy consumption. For MCOS, it gives priority
to local computation and the assigned time always meets the requirement of
offloading the remainder task.

Furthermore, we can see that the energy consumption of PCOS is slightly
lower than that of BCOS at the beginning and then the gap become smaller
with the increasement of T . Due to that the partial offloading decision is
exploited by PCOS, the tasks on MD can be tailored flexibly and offloaded
as much as possible. However, PCOS violates the integrity of the task. Hence,
the relaxed latency constraint can help to reduce the difference between binary
offloading and partial offloading, since the tasks can be offloaded as a whole
without compromising the integrity.
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Fig. 6 CDF of the sum of realistic task offloading time for K MDs where T = 1s and
K = 14.

Finally, we depict the cumulative distribution function (CDF) of the sum
of the realistic task offloading time for K MDs in Fig. 6, where T = 1s and
K = 14. It is seen that for MCOS, all MD have a high probability of the
realistic task execution delay at 0.5s, which is much lower than the prescribed
delay constraint 1s. For the reason that MCOS gives priority to local execution,
only a small number of tasks are offloaded to edge servers, and the required
time is relatively less. However, both PCOS and BCOS have a few samples
whose realistic offloading time is beyond the prescribed time constraint. It
is because that the number of the samples violated the delay constraint is
affected by hyperparameters λB and λA of penalty terms in loss function (20)
and (25). The hyperparameters are used to balance the objective function
and realistic offloading time constraint in loss function. If too large, the DNN
would concentrate on meeting the realistic offloading time constraint and the
number of samples violated the delay constraint would be further reduced or
even become 0 while sacrificing the sum energy consumption; If too small,
the DNN would mainly minimize the weighted sum energy consumption and
output an infeasible solution with the increased number of samples violated the
delay constraint. Hence, there are a few samples violated the delay constraint
obtain the sub-optimal offloading decisions and the lowest energy consumption.
On the whole, both PCOS and BCOS complete the offloading tasks with a very
high probability within the prescribed delay.

6 Conclusion

In this study, we have proposed an unsupervised DL binary offloading prob-
lem for computation intensive tasks on MD in multiuser MEC network to save
the MD energy consumption. The problem is formulated as an optimization
issue, which jointly optimize the binary offloading decision, transmit time and
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transmit power, to minimize the energy consumption of K MDs under the con-
straints of latency and transmit power. Due to the binary offloading decision,
the optimization issue is a MIP problem, and the gradient vanishing prob-
lem occurs in backpropagation. To tackle this, we have proposed the BCOS,
in which we design a DNN with a auxiliary network. With the assistance of
the auxiliary network, the student network acquire the gradient information
without loss. Finally, the sub-optimal solution of the optimization issue is ob-
tained by the unsupervised DL based BCOS. The simulation results indicate
that the mobile edge computation offloading approach is effective to reduce the
energy consumption of MDs. Moreover, both BCOS and PCOS can solve the
optimization problem effectively with binary offloading decision and partial of-
floading decision respectively by trained DNN with low complexity. Especially,
the binary offloading decision is suitable for the sample tasks which can’t be
tailored. In the future, we will expand the proposed MEC network model to
consider the computation resource allocation of edge servers, multi-antenna
access point and interference channel, etc.
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Figures

Figure 1

Multiuser MECO system.



Figure 2

A fully connected network with 2 hidden layers.



Figure 3

Schematic of the proposed joint training with auxiliary DNN. The FCN of o�oading decision is shared by
the auxiliary teacher network and the student network. In training phase, the parameters of the auxiliary
teacher network and the student network are updated alternatively. Then, the shared FCN can obtain the
lossless gradient information during backpropagation.



Figure 4

The comparison of weighted sum mobile energy consumption between MCOS, PCOS and BCOS with the
increasement of mobile number from 4 to 20, where T = 0:5s.



Figure 5

The comparison of weighted sum mobile energy consumption between MCOS, PCOS and BCOS with the
increasement of time slot T from 0.3s to 1.6s, where the mobile number is 14.



Figure 6

CDF of the sum of realistic task o�oading time for K MDs where T = 1s and K = 14.
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