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Abstract: In multiple-input-multiple-output (MIMO) systems, the selection of receive and transmit antennas is not just 

effective in increasing system capacity, but also in reducing RF link costs and system complexity. The exhaustive algorithm, 

i.e. the joint transmit and receive antenna selection (JTRAS) with the best accuracy, can search all the subsets of both 

transmit and receive antennas in order to find the optimal solution. However, with the increase of the number of antennas, 

the computational complexity is too large and its applicability is limited. In this paper, the antennas are coded by fractional 

coding with the maximization of channel capacity as the basic criterion, and three intelligent algorithms, namely genetic 

algorithm, cat swarm algorithm and particle swarm algorithm, are applied for antenna selection. The simulation results 

demonstrate that all three algorithms can efficiently accomplish the antenna selection. In the end, we compare them in terms 

of speed, accuracy and complexity of the search in MIMO systems. 

Keywords: JTRAS, fractional coding, cat swarm optimization, genetic algorithm, particle swarm optimization 

1. Introduction 

MIMO (Multiple-Input-Multiple-Output) systems can exponentially enhance the capacity of communication systems [1-2] and 

the linkage of wireless transmission. Moreover, it can greatly improve system performance without the sacrifice of 

bandwidth compared to single-input and single-output systems [3-5]. And multiple antennas, space-time coding and other 

techniques can significantly improve spectrum utilization, which is a major breakthrough in smart antenna technology in 

mobile communications. However, in a typical MIMO system, using the same number of RF links as the antennas to ensure 

the normal communication of the MIMO system will greatly increase the complexity of the system and the cost of 

implementation, making the MIMO system much larger than the ordinary communication system, resulting in its limited 

application and promotion. The selection of antennas is therefore crucial, the core of which is to follow certain criteria for 

the selection of all antennas. Selecting a subset of multiple antennas can achieve high speed and high capacity 

communication, which can effectively reduce the number of RF links, thus simplifying the system and effectively improving 

the practicality of MIMO systems. 

The optimal selection of antenna subset is the exhaustive algorithm (EA)[6-7], which calculates all possible combinations 

of antenna subsets, so as to select the subset that can make the system performance optimal. However, the EA algorithm also 
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greatly increases the computational complexity, especially in the case of a large scale antennas the EA calculation time is too 

long, the computational volume is exponentially increasing, which means that it is difficult to obtain results in a limited time 

and finally reducing its practicality. In order to further improve the performance of the AS system, a joint transceiver antenna 

selection (JTRAS) algorithm is proposed [8], which yields good results in terms of channel capacity. But the computational 

complexity of the algorithm is still very high and the performance is poor in terms of practicality. As a result, many scholars 

have proposed JTRAS algorithms [9-10] to reduce the computational complexity of the algorithm from various aspects, which 

can still maintain a relatively high channel capacity while reducing the computational complexity of the algorithm. 

Alternatively, the AS is based on the principle of maximizing the minimum column parametrization of the channel matrix 

according to the maximum Frobenius parametrization [11], which has no matrix operations and low computational complexity. 

A fast and global AS algorithm is proposed [12], in which the number of receiver antennas is the same as the number of 

transmit antennas. A real-time antenna-by-antenna iterative swapping enhancement is proposed based on the maximum 

capacity submatrix approach (RAISE) transmit antenna selection algorithm [13], but it also needs to be based on the premise 

that the number of antennas is equal to the number of users, meaning that they can only handle square submatrices, which is 

less realistic and practical. On this basis, the theory of rectangular maximum-volume (RMV) submatrices[14] is proposed to 

eliminate the limitations of the traditional square maximum volume (SMV) antenna selection method, while maintaining the 

same good performance as the SMV method.A low-complexity AS scheme[15], which maximizes the constructive 

interference between users and identifies a subset of antennas with the highest constructive interference, thus maximizing the 

power received by the user. Interestingly, Inspired by the branch-and-bound (BAB) search method for finding a subset of the 

beam, the BAB algorithm[16]is also used to find a subset of antennas to maximize channel capacity(MCC), which shows 

three orders of magnitude higher than poor method when the number of antennas is large.  

It can be observed that a suitable algorithm can help to solve the AS problem well, replacing the EA in reality. 

Intelligent algorithms are inspired by the laws of nature and designed to mimic their principles in solving problems. In recent 

years, intelligent algorithms have achieved numerous convincing results in solving practical problems, such as genetic 

algorithms (GA)for complex optimisation problems and industrial engineering applications, and particle swarm algorithms 

(PSO)which are now widely used in function optimisation, neural network training, and medicine. Thus, the combination of 

AS and intelligent algorithms is a new way of thinking and a different direction for exploring multiple AS techniques.  

In this paper, a comprehensive comparison of three swarm intelligence algorithms, namely particle swarm algorithm 

(PSO), cat swarm algorithm (CSO) and genetic algorithm (GA) is presented. All three are heuristic algorithms, among which 

the GA is a simulation of the superiority and inferiority of biological populations in nature [12-13], with the advantages of low 

computational complexity, good robusts, parallel search of the solution space, fast convergence, etc.; the CSO[14-15] is derived 

from the observation of feline behaviour, involving few parameters, simple principles, fast convergence, and has better 

global detection and local search The PSO is a kind of evolutionary algorithm, which originates from the observation of the 

predatory behaviour of birds. The basic idea is to find the optimal solution through collaboration and information sharing 

between individuals in a group. The algorithm is designed with few parameters and is easy to implement with high accuracy. 

All three algorithms can be well integrated with the AS problem to solve realistic problems efficiently. Not only to this, we 



 

 

refer to the fractional coding (FC) method, which can be used in most intelligent algorithms because it can still encode and 

decode normally in the actual process without affecting the operation of the algorithm, and is more general than binary 

encoding and real encoding. Moreover, we specify how the three intelligent algorithms are nested with the antenna problem 

and analyze the characteristics and advantages of the three algorithms in this problem, with the aim of choosing the right 

algorithm according to the actual situation and needs. 

 

2. System model 

To greatly increase the channel capacity [1-2], MIMO systems use multiple antennas at both the transmitter and receiver ends, 

and information is transmitted and received through multiple antennas between the transmitter and receiver ends. Without 

increasing spectrum resources and transmitting power, multi-antenna systems can increase the capacity of the system, 

improve the quality of the wireless transmission link, and increase the bandwidth of the system exponentially and reliability. 
Assuming a MIMO system with Nt transmitting antennas and Nr receiving antennas, at the transmitting end, the transmitted 

information stream is coded in space-time to form Nt identical data sub-streams, which are transmitted simultaneously from 

Nt antennas and received by Nr antennas after passing through the spatial channel, the multi-antenna receiver is able to 

separate and decode these data sub-streams using space-time coding, thus achieving spatial diversity gain. Because the 

receiver obtains multiple independent signal copies of the same information from multiple channel bearers, and the signals 

are not in deep fading at the same time, so at least one copy of the signal with sufficient strength is guaranteed to be accepted 
at any given moment, then the receiver can achieve bigger signal-to-noise ratio (SNR) than single antenna.  

 

Figure 1. System model 

However, as many RF links are used to ensure proper communication in a MIMO system, it will increase the complexity and 

cost of the system. Hence, AS is a key technology that can significantly reduce processing complexity and hardware costs 

while maintaining the benefits of MIMO technology. As shown in figure 1, let Lt and Lr denote the subset of antennas 

selected from Nt and Nr by the AS algorithm, satisfying Nt ≥ Lt and Nr ≥ Lr. In addition, H is a random channel matrix, 

denoted as the unselected Nt×Nr channel matrix, assuming that the symbols transmitted at each antenna cell are uncorrelated 

and have normalized power. In the case of frequency-flat fading, the signal at the receiver can be expressed as 
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Where R is receiving signal vector, S is the transmitting signal vector, ρ is the average signal-to-noise ratio of each 



 

 

transmitting antenna of the transmitter, and W is the additive Gaussian white noise (AWGN) with a variance of 1/2 in both 

the real and imaginary parts. 

The system capacity is one of the most important signs characterizing a communication system and represents the 

maximum transmission rate of the communication system. The channel capacity of a MIMO system is expressed as 

HC
r t L ×Lr t

Lr L ×L

t

Ibdet
L

 
  

 
I H H                                       (2) 

where I is the unit matrix of Lt × Lr, (·)H is the conjugate transpose, det(·) denotes taking the determinant, and cell hij is the 

channel fading coefficient from transmit antenna j to receive antenna i in the channel matrix H. hij is independently 

distributed and satisfies a Gaussian distribution with mean zero variance of 1/2. The channel capacity C is numerically equal 

to the channel efficiency (bits/Hz). There is sufficient fading in the channel and the envelope conforms to the Rayleigh 

distribution. The aim of antenna selection is therefore to select a new channel matrix from H so as to maximize the channel 

capacity.  

3 . Swarm intelligence algorithm design 

3.1 Genetic coding 

Most of the coding methods in AS are binary coding, e.g., the use of 0, 1 mask for antenna coding, but in the process of 

swarm intelligence algorithm, the number of antennas required is different. Hence, it is difficult to ensure the certain number 

of antennas to be selected. To tackle with the problem, this paper investigates fractional coding (FC), which can avoid the 

number of antennas that does not correspond to the problem, to ensure the general operation. Specifically, a random decimal 

encoding of 0 to 1 is used for Nt+Nr antennas, and the number indices are selected from largest to smallest, in accordance 

with the number of antennas required. Take the following GA as an example, we set Nt=4, Nr=3, Lt=2, Lr=2: figure 2 shows a 

chromosome encoding, the number of genes depends on the total number of antennas, the first Nt bits indicate the transmitter 

antennas, the last Nr bits indicate the receiver antennas. Given a random decimal number and then arranged from highest to 

lowest, Lt and Lr are selected according to the requirement of 2 out of 4 chosen from the transmitter, then antennas {2,4} are 

selected, and 2 out of 3 from the receiver, then {1,2} are selected. 

 

Figure 2. Chromosome encoding 

The following figure shows an example of a crossover operation of a GA to better understand FC. 



 

 

 

Figure 3. Crossover operation of chromosome 

In this paper, three intelligent algorithms are used to solve the AS problem. 

3.2 Genetic algorithms 

Firstly, the genetic algorithm(GA), as a class of randomised search method that simulates the evolutionary laws of the 

biological world, is a bionic algorithm with a strong global search for superiority, in which more individuals with higher 

fitness are passed on to the next generation according to the rules of superiority and inferiority, so that some individuals with 

lower fitness in the population are gradually eliminated, while some individuals with higher fitness become more and more 

numerous. The process of AS based on genetic algorithm is shown in figure 4. 

Step 0: Setting the parameters. Firstly, the relevant parameters required for the algorithm should be set, such as the number 

of chromosomes, the number of iterations of the algorithm, the number of transmitting and receiving antennas of the MIMO 

system, the number of antennas selected for the target, the crossover probability, the variation probability, etc. 

Step 1: Initialization: Initialize the parent population, the size of the population is popsize. Each chromosome represents a 

combination of antennas, and the number of genes contained in the chromosome is the sum of the number of antennas at the 

sending and receiving ends, i.e. Nr+Nt. Each gene is a random decimal number between 0 and 1, and the decimal numbers 

are sorted from largest to smallest to take the corresponding position. Each chromosome corresponds to a set of selected 

antennas. 

Step 2: Adaptation evaluation and chromosome selection replication. Each chromosome corresponds to a set of antennas, 

and each set of selected antennas corresponds to a channel matrix Hs. 

Step 3: Chromosome crossover operation. In this paper, a single point crossover is used to generate a random crossover 

point in the chromosome string, and when the crossover is implemented, the two genes after that point are swapped 

according to a certain probability to generate a new chromosome string. 



 

 

Step 4: Chromosomal variation operation. The probability of variation is such that a random number between 0 and 1 is 

generated at the point of variation in place of the original gene. 

Step 5: Update the population. The chromosome adaptations in the gene pool are calculated after crossover and mutation, 

and the chromosome with the highest adaptation is found in the population and compared with the maximum adaptation of 

the chromosome in the original population, if it is larger, the chromosome with the highest adaptation in the population is 

replaced with the newly generated chromosome in the pairing pool, and vice versa. The new population is obtained by 

repeated iteration through all the chromosomes generated in the pool. 

Step 6: Repeat/end: Repeat steps 2-5 above until the number of iterations is reached. The chromosome with the greatest 

fitness in the final population is the optimal antenna combination sought. Finally, the number of antennas at both transmitter 

and receiver is decoded according to the required selection, resulting in the Lt transmit antenna and Lr receive antenna with 

excellent performance.  
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Figure 4. AS based on GA 

3.3 Cat swarm optimization  

The cat swarm optimization (CSO) is a group intelligence bionic algorithm proposed by observing the behavior of cats, each 

of which represents a combination of antennas. The algorithm divides the behavior of the cats into search mode, whereby the 

cats are resting and looking, and tracking mode, whereby the cats are tracking a dynamic target. Different interaction rates 

are set to randomly assign cats to the search and tracking modes. In the search mode, the memory pool records the 

neighborhood searched by the cat, the size of the pool represents the number of locations the cat can search, and the pool 

stores the new locations that the cat can search in its own neighborhood. The location code corresponding to the largest 

fitness value is selected to replace the current location value of the corresponding cat. In the tracking mode, in each iteration, 

the cat will track an ‘extreme value’ to update itself, which is the optimal solution found by the whole population, so that the 

cat moves in the direction of the global optimal solution. The algorithm involves few parameters, reaches convergence 

values quickly and has excellent global detection as well as local search capabilities. The AS process based on the cat swarm 

optimization is shown in figure 5:  



 

 

Step 0: Set the parameters required for the algorithm: in addition to the population size of the cat population, the number of 

iterations of the algorithm, the number of transmitting and receiving antennas of the MIMO system, the number of antennas 

selected for the target, the parameters required in the search mode such as the memory pool, the change domain, etc., the 

interaction rate, etc. 

Step 1: Initialise and calculate the fitness value: each cat represents an antenna combination, then each cat's position is coded 

as (Nt+Nr) fractional codes, and these cats are randomly assigned to the tracking mode and the searching mode according to 

the interaction rate. 

Step 2:Update the speed and position: according to the two modes each cat is in, update the position and speed. 

Step 3:Calculate the new fitness value. The largest fitness value in the population is the new optimal solution, if it is larger 

than the previous optimal solution then the new fitness value is replaced with the new optimal solution. 

Step 4: Judgment condition: if the optimal solution is satisfied or the set number of iterations has been reached, the global 

optimal solution is output and finished; otherwise, repeat step 2-3 to continue the search for the optimal solution. 
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Figure 5. AS based on CSO 

3.4 Particle swarm algorithms 

The particle swarm algorithm (PSO) simulates the predatory behavior of a flock of birds. PSO is essentially a stochastic 

search algorithm and an optimization algorithm based on population intelligence theory, so PSO can converge to the global 

optimum with a higher probability. Compared to GA, PSO retains the population-based global search strategy and uses a 

simple velocity-displacement model without the need for complex genetic operations. However, in the case of convergence, 

as all particles converge to the optimal solution, the particles tend to homogenize making the convergence rate significantly 

slower in the later stages. The AS process based on the particle swarm algorithm is shown in figure 6: 



 

 

Step 0: Set parameters. Set the relevant parameters required by the algorithm, in addition to those mentioned above at the 

beginning there are acceleration constants c1, c1, inertia weights ω, etc. 

Step 1: Initialise and calculate the fitness value. initialise the velocity and position of the particles, where each particle 

position and velocity is represented by a decimal code and each particle represents a combination of antennas, then calculate 

the fitness value of all the particles in the population and compare the fitness value of each particle with the individual 

extreme value, and replace the original individual extreme value if it is larger; then compare the fitness value of each particle 

with the global extreme value, and replace the original global extreme value if it is larger. The global polarity is then 

replaced by the fitness value of each particle if it is larger. 

Step 2: Update the velocity and position of the particle according to (3) and (4), where Pi is the individual extremum, Pg is 

the global extremum, c1,c2 is the learning factor, and r1,r2 is a uniform random number in the range [0,1]. 

   1 1 2 2 gc r c riv v p x p x                                  (3) 

x x v                                           (4) 

Step 3: Judgment. If the optimal solution is satisfied or the set number of iterations has been reached, the global optimal 

solution is output and finished; otherwise, repeat step 2 to continue the search. 
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NoYes
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Figure 6. AS based on PSO 

4. Simulation and analysis 

This section will analyze the simulation results of the three algorithms, with parameters all set to: signal-to-noise ratio SNR 

= 4; number of populations, popsize=20; number of iterations G=200; Nt=10; Nr=10; Lr=5; Lr=5. From figure 7, we can see 

that all three algorithms can be well applied in the AS problem, and as the number of iterations increases, the fitness values 

all show the upward trend. 



 

 

   Figure 7. Fitness v.s. iteration 

By comparing the maximize channel capacity (MCC) versus SNR in figure 8, it can be seen that the best values obtained by 

all three algorithms and the optimal EA are very close, and the MCC will increase with the SNR. 

   Figure 8. Capacity v.s. SNR 

We would like to investigate above four algorithms in terms of accuracy, speed of finding the optimum, stability and 

complexity. The results obtained by the exhaustive enumeration method are regarded as the optimal solution. Set the initial 

value of the number of iterations G=100 and the number of populations, pop size=20, then run the simulation 20 iterations to 

obtain the results. 

The accuracy is defined as the ratio of the maximum value of the channel capacity for the intelligent algorithm to the EA 

solution, and the table shows that the accuracy of the three algorithms to solve the AS problem of the MIMO system from 

largest to smallest is PSO > CSO > GA, in which the accuracy of PSO is above 90% for all three antenna numbers, and the 

accuracy is similar in the cases of 10 and 15 transmit-and-receive antennas. The accuracy of both CSO and GA decreases 

significantly with the increase of the number of antennas, and it is also obvious that PSO has higher accuracy compared with 

the other two algorithms. Therefore, PSO is much close to the optimal solution in solving the AS problem.  

Table 1 Accuracy of intelligent algorithms 

 Nt=5 Nr=5 Lt=2 Lr=2 Nt=10 Nr=10 Lt=4 Lr=4 Nt=15 Nr=15 Lt=5 Lr=5 

CSO 95.76% 90.52% 87.02% 

PSO 98.05% 91.86% 92.29% 



 

 

GA 96.11% 87.17% 83.75% 

optimal 100% 100% 100% 

 

Figure 6. Precision of swarm intelligence algorithms 

The stability is defined as the standard deviation of the optimal solution for 20 consecutive runs, and a small standard 

deviation means that the algorithm is the most stable. Table 2 shows that the standard deviation obtained by PSO is lower 

than that obtained by the other two algorithms, indicating that PSO is able to obtain the optimal value with a greater 

probability and with a smaller error. The stability of the other two algorithms is similar. 

Table 2 Stability of intelligent algorithms 

 Nt=5 Nr=5 Lt=2 Lr=2 Nt=10 Nr=10 Lt=4 Lr=4 Nt=15 Nr=15 Lt=5 Lr=5 

CSO 0.043 0.035 0.039 

PSO 0.021 0.034 0.016 

GA 0.039 0.046 0.045 

The search speed is defined as the number of iterations to reach convergence for the first time, and the comparison shows 

that the number of iterations required to reach convergence increases with the number of antennas for all three algorithms. 

The speed of the search is from fast to slow is CSO>GA>PSO, especially the advantage of CSO in the speed of the search is 

very obvious, compared to the slowest speed of PSO. 

Table 3 Search speed of Intelligent algorithms 



 

 

 Nt=5 Nr=5 Lt=2 Lr=2 Nt=10 Nr=10 Lt=4 Lr=4 Nt=15 Nr=15 Lt=5 Lr=5 

CSO 2.13 4.06 4.31 

PSO 22.31 35.25 47.94 

GA 18 31.6 38 

In terms of complexity, the EA requires calculations to 
r

r

t

t

L

N

L

N CC  complete one AS, while the complexity of the 

remaining three algorithms is related to the population size and the number of iterations at convergence, i.e. 

complexity=popsize×iter. The table below shows that the complexity of the three algorithms is much lower than that of the 

EA, which means that all three algorithms greatly reduce the complexity of operation in JTRAS, In addition, the CSO has 

the lowest complexity among the three algorithms. 

Table 4 Complexity of intelligent algorithms 

 Nt=5 Nr=5 Lt=2 Lr=2 Nt=10 Nr=10 Lt=4 Lr=4 Nt=15 Nr=15 Lt=5 Lr=5 

CSO 43 81 86 

PSO 446 705 989 

GA 360 632 760 

EA 100 >4.4x104 >9.0x106 

 

Table 5 Performances of intelligent algorithms 

 CSO PSO GA 

Accuracy Good Excellent Fair 

Speed Excellent Fair Good 

Complexity Low High Average 

Stability Fair Excellent Good 



 

 

 

5. Conclusions 

This paper investigates three intelligent algorithms, GA, CSO and PSO in joint transmit and receive antenna selection 

(JTRAS) for MIMO system. We employ the fractional coding (FC) method in the chromosome gene. The simulation results 

show that the PSO has the highest accuracy and stability, but the search speed is slower and the complexity is higher; the 

CSO has the fastest search speed and the lowest complexity, and the accuracy is worse compared with the PSO. However, 

the complexity of all three algorithms is much lower than that of the exhaustive enumeration method, so the appropriate 

algorithm can be used according to the actual needs. 

In the future, large-scale MIMO systems will serve as an option for beyond 5G. Since the number of antennas in 

large-scale MIMO systems may be dozens or hundreds, intelligent algorithms should play more inportant role for JTRAS in 

MIMO systems. 
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