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Abstract: A neural network-based decoder, based on a long short-term memory (LSTM) network, is 

proposed to solve the problem of high decoding delay caused by the poor parallelism of existing 

decoding algorithms for turbo codes. The powerful parallel computing and feature learning ability of 

neural networks can reduce the decoding delay of turbo codes and bit error rates simultaneously. The 

proposed decoder refers to a unique component coding concept of turbo codes. First, each component 

decoder is designed based on an LSTM network. Next, each layer of the component decoder is trained, 

and the trained weights are loaded into the turbo code decoding neural network as initialization 

parameters. Then, the turbo code decoding network is trained end-to-end. Finally, a complete turbo 

decoder is realized. Simulation results show that the performance of the proposed decoder is improved by 

0.5–1.5 dB compared with the traditional serial decoding algorithm in Gaussian white noise and 

t-distribution noise. Furthermore, the results demonstrate that the proposed decoder can be used in 

communication systems with various turbo codes and that it solves the problem of high delay in serial 

iterative decoding. 

Keywords:  turbo code;  neural network;  bit error rate;  channel noise 

1. Introduction 

With the rapid advancement of information technology, signal types and quantity are increasing 

exponentially[1]. Traditional signal processing methods have difficulties meeting the needs of 

diversified, refined, and intelligent communication demands in the new era[2,3]. How to ensure the 

efficient and reliable transmission of communication systems is the research hotspot in the field of 

communication technology[4,5] Channel coding technology improves the reliability of information 

transmission by adding redundant bits to the information sequence[6,7]. Turbo code is an excellent 

channel coding method with low coding complexity, good error correction performance, and strong 

versatility, widely used in various fields[8,9]. The most commonly used decoding algorithms of turbo 

codes include maximum likelihood sequence detection[10], maximum a posteriori decoding algorithm 

(MAP)[11,12], and improved MAP algorithm, etc. The MAP algorithm can be implemented using Bahl, 

Cocke, Jelinek, and Raviv (BCJR) algorithms[13], grid-graph-based algorithms to maximize the 

posterior probability of error-correcting codes. They use serial iteration decoding, and the bit error rate 

(BER) decreases as the number of cycles increases under a certain signal-to-noise ratio (SNR). 

However, after a certain number of cycles, the decoding performance will no longer improve, and 

redundant iterations significantly increase the decoding delay[14]. In LTE systems, turbo code adopts the 

idea of block parallel decoding and realizes partial parallel decoding of an entire code block through 



 

 

quadratic permutation polynomial interleaver[15]. However, the decoding algorithm’s inherent 

serialization significantly limits throughput. The full parallel decoding algorithm of turbo codes, 

proposed in reference[16], divides the size of each subblock of the entire code block into 1 bit, achieving 

the highest eight-degree parallelism. However, the algorithm is implemented at the expense of 

performance, and parallelism has an upper limit. Ngo, Li et al[17,18]. conducted in-depth research and 

improved full parallel decoding algorithms, including the improved EXIT graph and turbo equalization 

algorithm. However, to achieve the performance of the traditional serial decoding algorithm, a full 

parallel decoding algorithm must increase the number of decoding iterations by approximately six 

times[19]. 

Although the channel condition is complex, deep neural networks are a general function 

approximator with excellent algorithm learning ability[20,21]. O ‘Shea et al[22]. proposed a new idea for 

designing a communication system, namely, designing a physical layer through deep learning (DL). Fei 

Liang et al[23] designed an iterative belief propagation-convolutional neural network architecture using 

convolutional neural networks (CNNs) to decode low-density parity-check codes in correlated noise. 

Because of DL technology’s continuous evolution, channel decoding based on DL has shown 

competitive performance[24]. Xiang Zhang et al[25] used a CNN to decode turbo codes in full parallel 

instead of traditional state transition. When the training set includes all datasets, the BER performance 

of their method is far less than that of one iteration BCJR algorithm. 

To solve the above problems, this paper proposes a turbo code decoding algorithm based on the 

LSTM network, which transforms the decoding process into a big data classification and recognition 

problem. A neural network replaces the traditional decoding without prior coding knowledge, and the 

decoding algorithm model is obtained by directly using the received data and original bits of the 

receiver. The model has better BER performance and lower complexity. In addition, the communication 

system for different types of turbo codes has some generalization ability, which greatly improves the 

decoding efficiency. 

2. Turbo Decoding Problem Description 

Fig.1 shows the structure of the turbo code encoder in the 3GPP protocol. The encoding structures 

of the two-component turbo codes are identical, and they are cyclic system convolutional codes (2, 1, 3) 

with a code rate of 1/2. 
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Fig.1 Encoder structure of standard turbo code 

According to the coding structure in Fig.1, the following relationship can be deduced: 
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Where 
1

1kd   is the state of the first register at a time k . On the basis of Equation (1.1), we can 

deduce the following equation: 

 1 2 1 2 3
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In the same way, 
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The following results can be obtained by combining Equations (1), (2), and (3), 
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  (4) 

When the register states are all unknown, when the encoder state transition is not recorded, the 

more known information there is, the less unknown information is needed to predict the next 

information bit. The traditional BCJR algorithm’s decoding steps are serial, where only the branch 

transition probability calculation does not rely on the leading data to achieve full parallel operation. 

The forward and backward recursive factors must wait for the pre-bit and post-bit calculations to 

complete before performing the parallel operation, which increases the decoding delay. 

Theoretically, to simplify the model and reduce its computational complexity, the noise in the field 

of a wireless communication system is assumed to be Gaussian noise. However, because the 

information is subject to all types of interference when transmitted via radio, the statistical 

characteristics of noise do not always follow a Gaussian distribution. Suppose the model is used to 

describe the actual noise. In that case, the extracted information will be distorted to varying degrees, 

degrading or even damaging the performance of the corresponding information processing algorithm. 

Therefore, it is critical to investigate the channel decoding algorithm in non-Gaussian noise. 

In this paper, a neural network is introduced into the receiver of a communication system. The 

LSTM network structure with a feedback loop is used to decode the turbo code, allowing the value of 

the research variable to be directly learned from the training data rather than deduced through serial 

recursion. Finally, the proposed method achieves a lower decoding delay and higher decoding 

efficiency than the traditional serial decoding algorithm. 



 

 

3. Design of Turbo Decoder based on LSTM Neural Network 

When convolutional codes are used as component codes, turbo codes can achieve excellent 

performance. Convolutional codes are an important basis for studying turbo codes. According to the 

coding structure of turbo codes and the concept of component decoding in the MAP algorithm, two 

sub-decoders are designed in a series, a Neural network decoder for convolutional codes. 

3.1 System model 

This section presents the design of a neural network-based decoder based on component decoding. 

It stacks the LSTM decoder of multiple circulatory convolutional codes and finally realizes the iterative 

decoding of turbo codes. 

An LSTM network can store the received signal characteristics at each time and the signal at the 

previous time when inputting the codeword in a time sequence. Therefore, each component decoder 

uses an LSTM network as the basic network. Suppose a single LSTM network can memorize the 

characteristics of signals received from the forward direction. In that case, a bidirectional LSTM 

structure can take signals received from the forward and reverse directions as input and store the 

characteristics of the received signals at each time, the previous time, and the next time. Fig.2 is a block 

diagram of the system model of the LSTM decoder of cyclic system convolutional code. 
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Fig.2 System model of LSTM decoder for circulatory system convolutional codes 

The LSTM decoder connects a two-layer bidirectional LSTM network with a one-layer fully 

connected network and directly processes the transmitted information to obtain decoding results. The 

LSTM network can effectively reduce noise interference to the system, and then the fully connected 

network calculates the final decoding result from the information processed by the LSTM network. The 

decoder’s performance mainly depends on the denoizing effect of the LSTM network on the received 

information and the feature extraction of information bits. Fig.3 shows the internal structure of the 

turbo decoder based on the LSTM network. 
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Fig.3 Internal structure of turbo decoder based on an LSTM network 

In the first component decoding, for all [ ]k K , the LSTM decoding network uses the unified 

prior information k
b  to estimate the posterior probability 1 2Pr( | (1), (1))

k
b y y . Then, in the second 

component decoding, the interleaved sequence 1( (1))y  is used to estimate 

1 2Pr( | ( (1)), (2))
k

b y y . At this time, the soft output of the first decoding should be used as a priori 

information. Repeat the above process, constantly improve the prediction output of codeword k
b  until 

convergence, and finally estimate each bit to solve the BER at an SNR point. The BER at this point is 

taken as one of the performance criteria of the decoder. 

3.2 Dataset generation 

In a DL-based communication system, data at the transmitter’s end are insufficient. However, at 

the receiver’s end, due to the interference from channel noise, obtainable data become infinite, meeting 

the large data demand DL. The dataset in this study includes a training set and test set, and they are 

independent of each other. Before channel coding, a group of codeword sequences i
Y  is encoded by 

the RSC polynomial function of each component, followed by bipolar mapping, and finally, through 

channel transmission to produce a group of noisy codeword sequences i
X . ( , )

i i
X Y is a group of 

labeled training data, where i
X  is the input data of the decoding network, and i

Y  is the label data. 

The test set is obtained via conventional communication, and binary data are generated randomly and 

passed through a fixed SNR channel. Multiple SNR groups correspond to multiple test data groups. The 

LSTM network is trained using a large amount of labeled data; thus, the decoder can achieve the 

expected results. 

3.3 Construction of decoding network 

According to the design concept in 3.1, considering the complexity of the model building process, 

this section uses some high-level application programming interfaces to facilitate the rapid construction 

of the decoding network. Fig.4 shows the decoding network. The decoder structure of the two RSC 

codes is the same, except for the last output layer. The red circle represents the first RSC—the LSTM 

decoding network in Fig.3, and the green circle represents the second RSC—the LSTM decoding 

network. The output of the first RSC code decoder should be fed into the interleaver to randomly 

separate the burst errors while making the output of the two decoders independent of each other. 

Therefore, the design of the last layer of the two decoders is not identical. When training is completed, 

the model.get_layer command checks and returns all weight parameters of the two decoding networks. 

The set_weights command takes these weights as initialization parameters of the turbo decoding 

networks and loads them into each layer. The blue circle represents the interleaver, and the purple circle 

represents the de interleaver. The iterative process is implemented through a custom neural network 

Lambda layer implementation. 



 

 

 

Fig.4 turbo code decoding network structure 

The decoding network in Fig.4 mainly includes three types of network structures: LSTM layer, 

full connection dense layer, and user-defined Lambda layer. 

(1) LSTM layer, each LSTM layer adopts a bidirectional LSTM structure, enabling it to calculate 

the codeword sequence forward and backward at the same time. Under the premise of doubling the 

computational complexity, it can extract the related features of different information bits more 

accurately. When the LSTM layer inputs codeword in time sequence, it processes a three-dimensional 

tensor with three dimensions. The first dimension represents the number of samples to be processed, 

and its size is unknown when establishing the network, so it is none. The second dimension represents 

the number of time sequences, known as the number of frames to be processed by the loop layer, and 

its size is generally determined according to the time axis. The RSC component decoder decodes a 

fixed-length code block separately. In this section, the length of the code block is set to 100. Therefore, 

the second dimension size should be equal to the length of the code block and set to 100. The third 

dimension represents the characteristic number of each frame. The main research object of this paper is 

(7, 5, 7) turbo code, so the feature number of each frame is 5. In addition, a batch normalization layer is 

configured for each LSTM layer to accelerate network convergence and achieve a better decoding 

effect. 

(2) Full connection dense layer calculates the extracted sequence-related information, selects 

sigmoid as the activation function, normalizes the output value of the network to between [0, 1], and 

estimates the information bits directly according to the output value, without the need for posterior 

probability. 

(3) The user-defined Lambda layer of the neural network has no trainable parameters, only 



 

 

realizes the function of adding noise or calculation, and transmits the results to the corresponding nodes 

in the next network layer. This helps simulate the iterative process. 

3.4 Training of decoding network 

The training method and training times of the decoding networks will affect the convergence 

speed and the optimal solution of network parameters, thereby affecting the performance of the 

decoding networks. Therefore, appropriate training methods should be used to determine the optimal 

solution of network parameters. 

In this paper, stochastic gradient descent is used to train the networks. Each batch size contains 

200 input units, and the networks update parameters after each batch size is processed. The network 

parameters are adjusted by the Adam optimization method. The initial learning rate is set to 0.001, and 

the learning rate is reduced to 1/10. For 10 to 15 epochs, the learning rate is reduced to 0.0001 every 5 

epochs. When the epoch is more than 25, the learning rate decreases to 0.0000001. In addition, the 

training is terminated early if the verification loss does not decrease within 10 epochs to prevent 

overfitting. The binary cross-entropy is the loss function, and the training process goal is to reduce the 

loss as much as possible. The activation function of the LSTM layer is tanh with a faster convergence 

speed. Sigmoid is selected as the activation function of the dense layer, so the output value of the 

networks is between [0–1]. 

The RSC component decoding network decodes a code block separately. In this study, the length 

of the code block is set as 100 or 1000. Then, the BER performance analysis of the LSTM decoder is 

also based on the corresponding length of the code block. 

4. Performance simulation and result analysis 

Based on the structure and parameter settings of the decoding networks in the above section, the 

LSTM decoder is simulated and implemented for different turbo codes in the Gaussian white noise and 

distributed noise environment , respectively. To compare the decoder’s BER performance, the decoding 

results of the traditional BCJR algorithm under the same conditions are provided. The LSTM decoder’s 

performance, in terms of BER performance and computational complexity, will be analyzed in this 

study. The entire simulation process is divided into five parts: data preprocessing, network training, 

network testing, hard decision, and BER calculation. Fig.5 shows the turbo code decoding process 

based on LSTM. 



 

 

Start

Source 
information bits

Channel coding

Map

Parameter 
tuning

Supervised fine 
tuning

Is the objective function 
convergent

Parameter 

tuning

End of training

Source 

information bits

Channel coding

Map

LSTM after pre 
training

LSTM after 
training

Calculation of 
bit error rate

Hard decision

End

Y

N

Initialization 
model

Model best 
parameters

Training 

part

Testing 

part

Data 

preprocessing

LSTM pre 
training

 

Fig.5 turbo decoding process based on LSTM network 

4.1 Performance of LSTM decoder in Gaussian white noise channel 

In the simulation experiment, taking the turbo code in this section (7, 5, 7) as an example, data of 

104 sizes are selected to generate training data that meet the requirements. The training SNR is set to ˗1 

dB, and the length of the code block is set to 100. Once obtained, the best network parameters are 

loaded into the turbo code decoding network as initial weights. Then, 100 turbo codes with a block 

length of 100 are used for end-to-end training, and the number of iterative training epochs is 30. The 

change of training accuracy and loss value with the number of iterations can be observed in real-time 

through the hist command. Other parameter settings are consistent with the above. Then, the test set is 

sent into the LSTM decoder, and the BER of each SNR point is calculated. The range of SNR is ˗1.5–2 

dB, and each SNR point corresponds to data with a 105 size. Also, 100 turbo codes with a block length 

of 1000 are selected for simulation to analyze the applicability of the LSTM decoder. 

When the block length is 100, the BER curve of (7, 5, 7) turbo code using the LSTM decoder is as 

shown in Fig.6. The neural network-based decoder proposed by Xiang Zhang is called a CNN decoder. 

In addition, the decoding results of the traditional BCJR algorithm under the same conditions help 

compare the neural network-based decoder’s performance. Fig.7 shows the BER curves of the two 

decoding methods when the code block length is 1000. 



 

 

 

Fig.6 Comparison of bit error rates of three decoding methods  

when the code block length is 100 

 

Fig.7 Comparison of bit error rates between LSTM decoder and BCJR  

when block length is 1000 

Fig.6 shows the curve of the BER of the LSTM decoder and BCJR algorithm for 1, 6, 10, and 15 

iterations and the BER of the CNN decoder with the SNR in the case of the Gaussian white noise 

channel, where the code block length is 100, the horizontal SNR (dB) represents the SNR. The vertical 

coordinate BER represents the value of BER. As shown in Fig.6, the BER of the LSTM decoder in the 

SNR range is lower than those of the other two decoding methods. When the BER is the same, the 

LSTM decoder has a 0.5 dB performance improvement over the BCJR decoding algorithm after 15 

iterations at BER = 10˗4. It achieves 1 dB performance improvement over the BCJR decoding algorithm 

after 6 iterations. When the SNR is 0.5 dB, the BER of the LSTM decoder is 3 orders of magnitude 



 

 

lower than that of the CNN decoder. 

Fig.7 shows the BER versus SNR curves of the LSTM decoder and BCJR algorithm for 1, 6, 10, 

and 15 iterations , respectively, in the same channel environment and with a block length of 1000. Fig.7 

shows that the LSTM decoder achieves better BER performance when the code block length is 1000. 

When the SNR is ˗0.5 dB, the BER is 2 orders of magnitude lower than that when the code block 

length is 100 at the same SNR, which is sufficient to prove the excellent performance of turbo code in a 

low SNR environment. Furthermore, the LSTM decoder outperforms the BCJR decoding algorithm 

with 15 iterations in the entire SNR range. The SNR performance of the LSTM decoder is 0.4 dB 

higher than that of the BCJR decoding algorithm with 6 iterations at BER = 10˗4. 

Decoding performance depends on the result of the BER and decoding costs, such as time 

complexity and hardware equipment costs. This section compares the different methods’ decoding 

efficiency in terms of computational complexity. The calculation complexity index is set to the GPU 

time required by the above two decoding methods in the Gaussian white noise channel. Table 1 shows 

the various decoding methods’ calculation complexity. 

Table 1 Operational complexity of different decoding modes 

Index 

 

Decoding mode 

GPU Time (Second) 

Block Length = 100 Block Length = 1000 

LSTM Decoder 13.8636 154.0169 

BCJR-1 iter 1.7495 16.7617 

BCJR-6 iters 9.3572 92.8210 

BCJR-10 iters 15.3860 152.3455 

BCJR-15 iters 23.2287 228.0381 

BCJR-20 iters 30.5942 302.9107 

BCJR-30 iters 45.3326 456.2875 

 

Table 1 shows the decoding time required for the LSTM decoder and BCJR algorithm for 1, 6, 10, 

15, 20, and 30 iterations, with block lengths of 100 and 1000, respectively. Table 1 shows that the 

longer the code block length, the longer the decoding time required by the two decoding methods. This 

is because the amount of computation required for decoding increases as the code block length 

increases. Comparing the decoding time of the same block length, the LSTM decoder requires more 

GPU time than the BCJR algorithm, with less than 10 iterations, and less GPU time than the BCJR 

algorithm, with 10, 15, 20, and more iterations. Combined with the above analysis, the BER 

performance of the LSTM decoder is always better than the BCJR algorithm in the same conditions. 

Although the former’s decoding time is 10 times that of the latter, its BER is significantly better. This 

proves that the neural network-based decoding method has lower computational complexity and higher 

decoding efficiency than the traditional decoding method. 

In conclusion, the decoding performance of the decoder based on the LSTM network is better than 

that of the traditional decoding method in the Gaussian white noise channel. 



 

 

4.2 Bit error rate performance of LSTM decoder under t-distributed noise channel 

This study mainly investigates a type of non-Gaussian noise that obeys the student distribution. 

t-distribution is a group of curves, and its shape change is related to the degree of freedom v . The 

smaller the degree of freedom, the lower the distribution curve; the larger the degree of freedom, the 

closer the distribution curve is to the standard normal distribution curve. Therefore, this section 

combines this property to determine whether the LSTM decoder’s BER performance is affected by the 

degree of freedom to verify its robustness. 

In this section, the turbo codes (7, 5, 7) are simulated for 3 and 5 degrees of freedom, respectively. 

The structure of the LSTM decoder is identical to that shown in Fig.4. When the degree of freedom 

3v  , 104 groups of noisy codewords are collected as training data in the simulation environment with 

an SNR of 8 dB. The output data are generated in the same way, as described in Section 3.1. The data 

transmitted by the t-distribution noise channel are selected as the test set, and 105 sets of test data are 

collected at each SNR point. Similarly, we analyzed the BER performance of the LSTM decoder and 

BCJR algorithm when the block length is 100 and 1000, respectively. Other parameters are set per the 

previous section. When the block length is 100, the BER performance curve of the LSTM decoder and 

BCJR algorithm is shown in Fig.8. When the code block length is 1000, the BER curve of the two 

decoding methods is shown in Fig.9. 

 

Fig.8 Comparison of bit error rates between LSTM decoder and BCJR  

when v is 3 and code block length is 100 



 

 

 

Fig.9 Comparison of bit error rates between LSTM decoder and BCJR  

when v is 3 and code block length is 1000 

Fig.8 shows the BER versus SNR curve for the LSTM decoder and BCJR algorithm in 1, 6, 10, 

and 15 iterations, respectively, in the t-distribution noise channel and a code block length of 100. The 

analysis shows that the BER performance of the LSTM decoder is better than that of the BCJR 

algorithm with 15 iterations, and the performance of the traditional decoding algorithm is degraded in 

this non-Gaussian noise environment. Compared with the decoder’s BER (Fig.6), when the BER drops 

to 10˗4 order of magnitude, the SNR is 1 dB. In Fig.8, the required SNR is 1.5 dB, indicating that the 

LSTM decoder performance is also degraded in the non-Gaussian noise environment; however, it is 

still better than the traditional decoding algorithm in the same conditions. 

Fig.9 compares the BER results of the two decoding methods when the code block length is 1000. 

The analysis shows that the performance of the LSTM decoder at BER = 10˗4 is 1.5 dB higher than that 

of the BCJR decoding algorithm with 15 iterations and is much better than that of the BCJR decoding 

algorithm with 1 iteration. 

When 5v  , the generation of training and test data in the simulation experiment is consistent 

with the above, and the training SNR is 8 dB. The BER performance comparison between the LSTM 

decoder and BCJR algorithm is shown in Fig.10 and Fig.11. 



 

 

 

Fig.10 Comparison of bit error rates between LSTM decoder and BCJR  

when v is 5 and code block length is 100 

 

Fig.11 Comparison of bit error rates between LSTM decoder and BCJR  

when v is 5 and code block length is 1000 

Fig.10 and Fig.11 show the BER versus SNR curves for the above two decoding methods when 

the code block length is 100 and 1000, respectively. Fig.10 shows that the BER performance of the 

LSTM decoder is better than that of the BCJR algorithm with 15 iterations. In addition, compared with 

the results in Fig.8, the performance of the LSTM decoder is degraded, which indicates that the change 

of degree of freedom affects decoding performance. An increase in the degree of freedom degrades the 

performance of the two decoding methods. In Fig.11, the LSTM decoder’s performance at BER = 10˗4 

is 1 dB higher than the BCJR algorithm with 15 iterations. The performance is much better than that of 

the BCJR algorithm with 1 iteration. 



 

 

In conclusion, the BER performance of the LSTM decoder and traditional BCJR algorithm has 

different degrees of degradation in the t-distribution noise channel. Furthermore, the performance of the 

LSTM decoder is still better than that of the BCJR algorithm. When the BER is the same, the 

performance of the LSTM decoder is better than that of the traditional BCJR decoding algorithm, and it 

is better than that of the traditional algorithm in the Gaussian white noise channel. In addition, the 

performance of the LSTM decoder is affected by the degree of freedom. The smaller the degree of 

freedom, the greater the improvement of BER performance. The larger the degree of freedom, the 

smaller the improvement of BER performance. The above results show that the LSTM decoder is 

robust to some extent. 

4.3 Bit error rate performance of LSTM decoder under different turbo codes 

This section studies the BER performance of turbo codes with different length constraints. It 

simulates the transmission process of (7, 5, 7), (7, 5, 6), (7, 5, 5), (7, 5, 4), and (7, 5, 3) turbo codes in 

the Gaussian white noise channel to explore the applicability and robustness of the proposed decoder. 

These codes have the same bit rates and different memory depths. The network model and parameter 

settings are consistent with those in Section 3.4. The BER curves of the above five turbo codes are 

obtained through simulation when they are transmitted in the Gaussian white noise channel, as shown 

in Fig.12. 

 

Fig.12 Comparison of bit error rates of different turbo codes  

when the code block length is 100 

Fig.12 shows the BER curves of the LSTM decoder with varying SNRs when turbo codes with 

different constraint lengths are transmitted in the Gaussian white noise channel. Fig.12 shows that the 

LSTM decoder can achieve good decoding performance on the turbo codes with a constraint length of 

3. The BER of the decoder shows no obvious downward trend when the constraint length is reduced 

from 7 to 3. However, the traditional decoding algorithm could not effectively decode the received 

signals with varying SNRs when the constraint length is 3. The shorter the constraint length, the worse 



 

 

the decoding performance of the traditional decoding algorithm. Therefore, the LSTM decoder has 

certain applicability for a variety of turbo codes. 

5. Conclusion 

In this study, a turbo decoder based on an LSTM network is proposed to solve the high decoding 

delay problem caused by the poor parallelism of existing decoding algorithms. From the viewpoint of 

component decoding, this decoder stacks multiple LSTM decoders of cyclic system convolutional 

codes and eventually realizes the iterative decoding of turbo codes. The simulation results show that 

this neural network-based decoding method has lower BER and computational complexity than 

existing decoding methods in the same conditions. Furthermore, the LSTM decoder decodes the 

received signal directly rather than processing the related noise alone, which solves the problem of 

performance degradation of the traditional decoding algorithm in the non-Gaussian noise environment. 

The online network only needs to update the offline network. After training the network parameters, the 

signals in different noise environments can be switched, which greatly improves the decoding 

efficiency. 
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