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Abstract—Analyzing wireless communication performances by using information-theoretic results is of 

practical importance. In this paper, first, an achievable secrecy rate region and an outer bound on the 

secrecy capacity region for the discrete alphabet and memoryless wiretap channel with side information 

non-causally known at the transmitter are obtained. Then, by extending the results to the continuous 

alphabet wireless wiretap channel and by  deriving a closed-form expression on the secrecy coverage region 

(SCR), as a remarkable wireless performance factor, impact of side information on the SCR  is analyzed 

and it is shown that side information increases the SCR as expected intuitively. Numerical evaluation of 

theoretical results is done finally. 

Keywords- Fading wiretap channel, Secrecy capacity, Secrecy coverage region,  Side information. 

I. INTRODUCTION 

Due to the increasing using wireless communication systems, there are many challenges on 

the security situations of these networks. Security is usually considered as the upper layer in 

communication systems, and due to the limited computational capabilities, cryptographic 

algorithms have been used to implement it [1]. Nevertheless, this supposition may not be 

accurate owing to the expansion in computational procedures resulting in opening encryption 

algorithms. Therefore, physical layer security as a branch of theoretical information security is 



 

  

responsible for establishing secure communication against non-permissible accesses. The issue 

of physical layer security was first reported using Shannon in 1949 [2]. Shannon studied the 

secure communication and demonstrated that it was possible to achieve this secure 

communication with a secret key shared between the transmitter and the receiver when the 

entropy of key is greater than or equal to the entropy of the message to be transmitted. In [3], 

Wyner studied the degraded wiretap channel (WC) and showed that secure transmission is 

possible even in the absence of a secret key; the WC is a type of channels in communication 

systems that a transmitter sends a message to a legitimate receiver while the message is kept 

secret from an eavesdropper. In this work, secrecy capacity (SC) has been defined as the 

maximum information rate of the main channel (transmitter-to-legitimate receiver) with the 

complete uninformed at the eavesdropper and it has been demonstrated by assuming that the 

eavesdropper channel (transmitter- to-eavesdropper) is a degraded interpretation of the main 

channel, a affirmative information rate can be obtained. Later, the author’s in [4] generalized 

results of [3] to the general BC (not necessarily degraded) with confidential messages and 

established the SC. The authors in [5] generalized the results of [3] to the Gaussian version. 

Some other researchers have been analyzed the importance of secrecy efficiency measures over 

several fading channels, such as [6-13], etc.  

Shannon studied channels with side information (SI) and found the capacity of the single-

user channel when causal SI is available at the transmitter [14]. Single user channel, when non-

causal SI is available only at the transmitter, was studied in [15]. The results of [14] has been 

generalized to the case where non-causal SI is available at both transmitter and receiver in [16]. 

The Gaussian versions of [15] were studied in [17] and [18]. Recently, this concept was 

demonstrated for the WC. Several works have been done upon this set of channels as [19-22]. 

In [19] an achievable rate equivocation region for the discrete memoryless WC with respect to 



 

  

SI is presented and also the achieved results are generalized to the Gaussian case. In [20] a 

lower bound on the SC of the WC with SI available causally at both the encoder and decoder 

has been established. In [21] an achievable rate equivocation region for a WC (not necessarily 

degraded) with two-sided channel SI available at the transmitter and the legitimate receiver 

was established. In [22] it is illustrated how SI and interference affect secret communications.  

Our work. Information-theoretic analysis of the communication systems performances is of 

practical and theoretical importance. For wireless WC with non-causal SI at the transmitter, 

first, (i) we derive the SC; then, (ii) the coverage region, as a fundamental wireless 

communication performance, not analyzed before for our intended channel, is investigated. 

Specifically, we study the effect of SI on the secrecy coverage region (SCR) of the Rayleigh 

fading WC by finding expressions in terms of infinite series, and eventually compare the 

achieved results with the case without SI.  

The remaining parts of this paper are formed as follows. The system model is presented in 

Section II. In Section III, SC for the wireless WC with considering SI available at the 

transmitter is provided, and then, the SCR of this case is investigated. Numerical results for 

illustrating the impact of SI on the coverage region is studied in Section VI. Finally, we 

conclude the paper in Section V. 

Notations: It has been used from upper case and lower case letters for the random variables 

(RVs) and realization of RVs, respectively. Also, the alphabet set is denoted with calligraphic 

letters. Max min {⋅} represents maximizing the minimization of a function. 

 

II. CHANNEL MODEL AND DEFINITIONS 

The channel model and also some basic necessary definitions that we are going to work upon 

have been characterized in this section. A wireless channel is studied here, where a transmitter 



 

  

needs to send a confidential message to a legitimate receiver while the eavesdropper is trying 

to decode the message from its received signal by knowing the SI known in the transmitter as 

depicted in Fig. 1. 

 

Fig. 1. An uncorrelated Rayleigh fading WC. 

 

Let 𝒳 be the input set, 𝒴𝑚 be the output set of legitimate receiver, 𝒴𝑒 be the output set of 

eavesdropper and 𝒮  be finite set that denotes SI in the transmitter. The SI is non-causally 

known at the encoder and 𝑆𝑖 , 1 ≤ 𝑖 ≤ 𝑛 , are independently and identically distributed (𝑖. 𝑖. 𝑑. )~𝑝(𝑠). We want to forward a message 𝑊𝑘 ∈ {1,2, … , 𝑀} to the legitimate receiver in 𝑛 uses of the channel. Due to the 𝑊𝑘 and 𝑆𝑛, the encoder forwards a codeword 𝑋𝑛 to the main 

channel. Upon obtaining of 𝑌𝑚𝑛  the decoder at the legitimate receiver creates an estimate 𝑊̂𝑘(𝑌𝑚𝑛) of the message 𝑊𝑘 . The corresponding output at the eavesdropper is 𝑌𝑒𝑛 . So, the 

received signals in Rayleigh fading WC by considering legitimate receiver as 𝑌𝑚(𝑖)  and 

eavesdropper as 𝑌𝑒(𝑖) can be specified as follows:                                     𝑌𝑚(𝑖) = ℎ𝑚(𝑖)𝑋(𝑖) + ℎ𝑠𝑚(𝑖)𝑆(𝑖) + 𝜂𝑚(𝑖),                                                 (1)                                 𝑌𝑒(𝑖) = ℎ𝑒(𝑖)𝑋(𝑖) + ℎ𝑠𝑒(𝑖)𝑆(𝑖) + 𝜂𝑒(𝑖), 𝑖 = 1, … , 𝑛                                     (2) 

where 𝑛  is the length of the transmitted signal, 𝜂𝑚(𝑖)  and 𝜂𝑒(𝑖)  are i. i. d.  additive white 

Gaussian noise (AWGN) with zero mean and variances 𝑁𝑚 and 𝑁𝑒 respectively. The channels 



 

  

between the transmitter to legitimate receiver, and transmitter to eavesdropper have fading 

coefficients, indicated by ℎ𝑚 and ℎ𝑒, respectively. The information S is received by legitimate 

receiver and eavesdropper through ℎ𝑠𝑚  and ℎ𝑠𝑒  coefficients respectively, which are 

necessarily not equal to ℎ𝑚 or ℎ𝑒. To consider a Rayleigh fading scenario, all received signals 

are assumed to be attenuated by a Rayleigh fading channel coefficients which are constant 

during a transmission block (block fading) and they are known in all transmitter and receivers. 

So they are fixed in each block (i.e., ℎ𝑚(𝑖) = ℎ𝑚, ℎ𝑠𝑚(𝑖) = ℎ𝑠𝑚, ℎ𝑠𝑒(𝑖) = ℎ𝑠𝑒  and ℎ𝑒(𝑖) =ℎ𝑒, ∀𝑖 = 1, … , 𝑛), and vary randomly from one block to another block. This concept means 

that the channel power gains (i.e., 𝑔𝑚(𝑖) = |ℎ𝑚(𝑖)|2, 𝑔𝑠𝑚(𝑖) = |ℎ𝑠𝑚(𝑖)|2, 𝑔𝑠𝑒(𝑖) = |ℎ𝑠𝑒(𝑖)|2 

and 𝑔𝑒(𝑖) = |ℎ𝑒(𝑖)|2 ) are distributed exponentially, where the fading processes are 

uncorrelated. Moreover, it has been supposed that the codewords forward by transmitter over 

the channels are constrained to the average power limitation as: 

                                                                 1𝑛 ∑ E{|𝑋𝑖|2} ≤ 𝑃𝑛
𝑖=1 ,                                                               (3) 

where the average power of the transmission signal is displayed with 𝑃. The instantaneous 

SNR at legitimate receiver and eavesdropper when there is not any SI at the transmitter are 

respectively specified as 𝛾𝑚(𝑖) = 𝑃|ℎ𝑚(𝑖)|2𝑁𝑚 = 𝑃|ℎ𝑚|2𝑁𝑚 = 𝛾𝑚  and 𝛾𝑒(𝑖) = 𝑃|ℎ𝑒(𝑖)|2𝑁𝑒 = 𝑃|ℎ𝑒|2𝑁𝑒 = 𝛾𝑒; 
and the average SNR at legitimate receiver and eavesdropper are respectively given as 𝛾𝑚̅̅̅̅ (𝑖) =
𝑃𝐸[|ℎ𝑚(𝑖)|2]𝑁𝑚 = 𝑃𝐸[|ℎ𝑚|2]𝑁𝑚 = 𝛾𝑚̅̅̅̅  and 𝛾𝑒̅(𝑖) = 𝑃𝐸[|ℎ𝑒(𝑖)|2]𝑁𝑒 = 𝑃𝐸[|ℎ𝑒|2]𝑁𝑒 = 𝛾𝑒̅ . Since in the quasi-static 

case ℎ𝑚 and ℎ𝑒 are random but remain constant for all time, it is entirely appropriate to see the 

main channel and the eavesdropper’s channel as a complex AWGN channel with SNRs 𝛾𝑚 =
𝑃|ℎ𝑚|2𝑁𝑚  and 𝛾𝑒 = 𝑃|ℎ𝑒|2𝑁𝑒  respectively. It is as well as advantageous to bring up the probability 

density function of 𝛾𝑚 and 𝛾𝑒. Since the channel fading coefficients ℎ are zero-mean complex 



 

  

Gaussian RVs and the instantaneous SNR 𝛾 ∝ |ℎ|2 , it follows that 𝛾  is distributed 

exponentially, in particular 𝑓(𝛾𝑚) = 1𝛾𝑚̅̅ ̅̅ exp (− 𝛾𝑚𝛾𝑚̅̅ ̅̅ ), and 𝑓(𝛾𝑒) = 1𝛾𝑒̅̅ ̅ exp (− 𝛾𝑒𝛾𝑒̅̅ ̅). In considered 

system model, the transmission rate between transmitter and legitimate receiver is indicated as 𝑅 = 𝐻(𝑀)𝑛 . The equivocation rate of eavesdropper that illustrates the secrecy level of 

confidential messages versus eavesdropper is characterized as 𝑅𝑒 = 1𝑛 𝐻(𝑊|𝑍𝑛). Also, we 

define average probability of error as follows. 

                                          𝑃𝑒𝑎𝑣𝑔 ≜ 1𝑀 ∑ Pr(𝑊̂𝑘(𝑌𝑚𝑛) ≠ 𝑖|𝑊𝑘 = 𝑖)𝑛
𝑖=1 ,                                              (4) 

where 𝑊̂𝑘(𝑌𝑚𝑛)  denotes estimated messages by legitimate receiver. The secrecy rate 𝑅𝑠  is 

defined to be achievable, if there exists a code (2𝑛𝑅𝑠 , 𝑛) so that for all 𝜖 ≥ 0and sufficiently 

large 𝑛, 𝑃𝑒𝑎𝑣𝑔 ≤  𝜖 and 𝑅𝑒 ≥ 𝑅𝑠 − 𝜖, where, 𝑅𝑒 and 𝑃𝑒𝑎𝑣𝑔
 have been defined before this. The 

SC 𝐶𝑠 can be defined as                                                                   𝐶𝑠 = 𝑠𝑢𝑝𝑃𝑒𝑎𝑣𝑔≤𝜖𝑅𝑠.                                                                 (5) 

In our paper, we assume that SI exists at the transmitter and define  𝛾𝑠𝑚(𝑖) = 𝑄|ℎ𝑠𝑚(𝑖)|2𝑁𝑚 =
𝑄|ℎ𝑠𝑚|2𝑁𝑚 = 𝛾𝑠𝑚,  𝛾𝑠𝑚̅̅ ̅̅ ̅(𝑖) = 𝑄𝐸[|ℎ𝑠𝑚(𝑖)|2]𝑁𝑚 = 𝑄𝐸[|ℎ𝑠𝑚|2]𝑁𝑚 = 𝛾𝑠𝑚̅̅ ̅̅ ̅ , 𝛾𝑠𝑒(𝑖) = 𝑄|ℎ𝑠𝑒(𝑖)|2𝑁𝑒 = 𝑄|ℎ𝑠𝑒|2𝑁𝑒 = 𝛾𝑠𝑒 , 

and 𝛾𝑠𝑒̅̅ ̅̅ (𝑖) = 𝑄𝐸[|ℎ𝑠𝑒(𝑖)|2]𝑁𝑒 = 𝑄𝐸[|ℎ𝑠𝑒|2]𝑁𝑒 = 𝛾𝑠𝑒̅̅ ̅̅ .  We have following marginal distributions for 

𝛾𝑠𝑚 > 0 and 𝛾𝑠𝑒 > 0, respectively as 𝑓(𝛾𝑠𝑚) = 1𝛾𝑠𝑚̅̅ ̅̅ ̅̅ exp (− 𝛾𝑠𝑚𝛾𝑠𝑚̅̅ ̅̅ ̅̅ ), and𝑓(𝛾𝑠𝑒) = 1𝛾𝑠𝑒̅̅̅̅̅ exp (− 𝛾𝑠𝑒𝛾𝑠𝑒̅̅̅̅̅). 
Note that the Gaussian WC with SI is an expansion of the dirty paper channel by an 

eavesdropper. Using an analogous approach of writing on dirty paper, we will have the 

following communication problem: the transmitter wants to forward a secret message to a 

receiver and he knows existing of an eavesdropper along the way to the legitimate receiver, the 

paper obtains the desired distribution dirt; also, it is assumed that eavesdropper has access to 



 

  

the paper and its distribution. Now the question of our interest is: how much is the SI effect on 

the coverage region of the wireless WC? 

 

III. MAIN RESULTS 

In this section, firstly, for the channel defined in the previous section, related works on SC 

are presented. Then, (i) an achievable secrecy rate region and an outer bound on the SC region, 

(ii) extension of the discrete alphabet results to the continuous alphabet wireless WC, iii) the 

impact of SI at transmitter over SCR are analyzed.  

A. Related works 

 

The discrete memoryless lower bound on SC for WC with considering SI at the transmitter 

has been demonstrated in [19], as:                           𝑅𝑠𝑙𝑜𝑤 = max𝑈→(𝑋,𝑆)→𝑌𝑚→𝑌𝑒 𝐼(𝑈; 𝑌𝑚) − max{𝐼(𝑈; 𝑆), 𝐼(𝑈; 𝑌𝑒)},                                (6) 

and                           𝑅𝑠𝑢𝑝 = 𝑚𝑖𝑛{𝐶𝑚, max𝑈→(𝑋,𝑆)→𝑌𝑚→𝑌𝑒[𝐼(𝑈; 𝑌𝑚) − 𝐼(𝑈; 𝑌𝑒)]},                                       (7) 

where 𝑈 is auxiliary RV such that 𝑈 → (𝑋, 𝑆) → 𝑌𝑚 → 𝑌𝑒 forms a Markov chain. Also, 𝐶𝑚 is 

the capacity of the main channel with considering SI and it is defined as:                                        𝐶𝑚 = max𝑈→(𝑋,𝑆)→𝑌𝑚→𝑌𝑒[𝐼(𝑈; 𝑌𝑚) − 𝐼(𝑈; 𝑆)].                                                 (8) 

Corollary 1. If there exists an auxiliary parameter 𝑈𝑚 such that 

1. 𝑈𝑚 → (𝑋, 𝑆) → 𝑌𝑚 → 𝑌𝑒 forms a Markov chain, 

2. 𝐼(𝑈𝑚; 𝑌𝑚) − 𝐼(𝑈𝑚; 𝑆) = 𝐶𝑚, 

3. 𝐼(𝑈𝑚; 𝑆) ≥ 𝐼(𝑈𝑚; 𝑌𝑒), 

then, for the discrete memoryless WC with SI, the SC 𝐶𝑠 is equal to 𝐶𝑚. 

Corollary 2. If there exists an auxiliary parameter 𝑈𝑒 such that 



 

  

1. 𝑈𝑒 → (𝑋, 𝑆) → 𝑌𝑚 → 𝑌𝑒 forms a Markov chain, 

2. 𝐼(𝑈𝑒; 𝑌𝑚) − 𝐼(𝑈𝑒; 𝑌𝑒) = 𝑅𝑒𝑠, 

3. 𝐼(𝑈𝑒; 𝑌𝑒) ≥ 𝐼(𝑈𝑒; 𝑆), 

then, for the discrete memoryless WC with SI, the SC 𝐶𝑠 is equal to 𝑅𝑒𝑠. 

Lemma 1. The conditions for the above corollaries 1 and 2 are explicitly determined based 

on the system model parameters as 𝐼(𝑈; 𝑆) ≥ 𝐼(𝑈; 𝑌𝑒) ↔ 𝛼 ≥ 𝛼0 𝑜𝑟 𝛼 ≤ 𝛼−0, (𝑈; 𝑌𝑒) ≥ 𝐼(𝑈; 𝑆) ↔ 𝛼−0 ≤ 𝛼 ≤ 𝛼0, 
where 𝛼0 = (1 − 𝑁𝑒𝑃+𝑁𝑒) (1 + √1 + 𝑃+𝑁𝑒𝑄 ), and 𝛼−0 = (1 − 𝑁𝑒𝑃+𝑁𝑒) (1 − √1 + 𝑃+𝑁𝑒𝑄 ). 

Proof. The details of proof are in [19].  

Now, suppose that both the main and the WC are complex AWGN channels, i.e. transmit 

and receive symbols are complex and both zero mean circularly symmetric complex Gaussians. 

We consider complex fading coefficients for both the main channel and the eavesdropper’s 

channel, as detailed in Section II.  

B. Secrecy capacity of the wireless wiretap channel 

 

 In this sub-section, we derive SC of the wireless wiretap channel with SI at the transmitter. 

According to the system model illustrated in section II and results in corollaries 1 and 2 the 

following theorem provide SC for the wireless WC with SI.  

Theorem 1: The SC 𝐶𝑠 of the wireless WC with SI at the transmitter, and fading coefficients 

satisfying the above Corollaries 1 and 2 in section A is given as follows 

                           𝐶𝑠 = { log(1 + 𝛾𝑚) , Corollary 1[log(1 + 𝛾𝑚 + 𝛾𝑠𝑚1 + 𝛾𝑒 + 𝛾𝑠𝑒 )]+ ,          Corollary 2                                             (9) 

where [𝑥]+ = max (0, 𝑥).  



 

  

Proof. See Appendix A. 

C. SCR analyse 

 

The coverage region meaning has been reported for point-to-point channel and has been 

extended to the relay channel in [24] and [25] respectively. By considering fixed distance 

between the transmitter and receiver (and also eavesdropper), the path-loss effect is added to 

the SNRs. Thus, computing the ergodic rates (that depend on the distances) results in 

computing the coverage region. In our proposed system model, for clarity and without loss of 

generality, we suppose that transmitter is located at (0,0). In this sub-section, without loss of 

generality we assumed that ℎ𝑠𝑚 = ℎ𝑠𝑒 = 1. So, we define the SCR for uncorrelated fading WC 

with considering SI at the transmitter as a geographic region at which the secrecy rate of at 

least 𝑅𝑠 > 0, is guaranteed, i.e.,                                           𝒢(𝑑𝑚, 𝑑𝑒) ≝ {𝑑𝑚, 𝑑𝑒: 𝐶𝑠(𝑑𝑚, 𝑑𝑒) > 𝑅𝑠},                                             (10) 

 

where, from theorem 1, with Corollaries 1 and 2 respectively we have 𝐶𝑠(𝑑𝑚, 𝑑𝑒) =
𝐸𝛾𝑚[log(1 + 𝛾𝑚𝑑𝑚𝛼 )] and 𝐶𝑠(𝑑𝑚, 𝑑𝑒) = 𝐸𝛾𝑚,𝛾𝑒,𝛾𝑠𝑚,𝛾𝑠𝑒[log (1+𝛾𝑚𝑑𝑚𝛼 +𝛾𝑠𝑚1+𝛾𝑒𝑑𝑒𝛼+𝛾𝑠𝑒 )]  that denotes the average 

SC when legitimate receiver and eavesdropper are located at 𝑑𝑚  and 𝑑𝑒 , respectively. 

Therefore, the SCR can be derived as the following theorem. 

Theorem 2. The SCR for concerned uncorrelated Rayleigh fading WC where SI is available 

at the transmitter with defined parameters 𝛾𝑚̅̅̅̅  , 𝛾𝑒̅, 𝛾𝑠𝑚̅̅ ̅̅ ̅ , 𝛾𝑠𝑒̅̅ ̅̅ , 𝛼  (𝛼 > 2 is the path loss exponent 

) and 𝑅𝑠, is given by 

For Corollary 1:  

                                                     𝑑𝑚 ≤ ( 𝜋2𝛾𝑚̅̅̅̅𝜋2 − 16 ln (2𝑅𝑠√𝜋 ))1𝛼 .                                                       (11) 



 

  

In this case we don’t have any limitation over 𝑑𝑒 that means there isn’t any minimum distance 

between transmitter and eavesdropper in order to guarantee secure communication.  

For Corollary 2: 

                                                   𝑑𝑚 ≤ ( 𝜋2𝛾𝑚̅̅̅̅𝜋2 − 16 ln (2𝑅𝑠√𝜋 ))1𝛼 ,                                                       (12a) 

Rs ≤ √π2 [( 11 − 𝛾𝑚̅̅ ̅̅𝛾𝑠𝑚̅̅ ̅̅ ̅̅ 𝑑𝑚𝛼 − 11𝛾𝑚̅̅ ̅̅ + 1𝛾𝑒̅̅ ̅ − 1𝛾𝑠𝑚̅̅ ̅̅ ̅̅ 𝑑𝑚𝛼 ) 𝑒(1−16π2𝛾𝑠𝑚̅̅ ̅̅ ̅̅ ̅ ) + 𝑒𝑑𝑚𝛼 (1−16π2𝛾𝑚̅̅ ̅̅ ̅ )1 − 𝛾𝑠𝑚̅̅ ̅̅ ̅̅𝛾𝑚̅̅ ̅̅ 𝑑𝑚𝛼 + ( 11𝛾𝑚̅̅ ̅̅ + 1𝛾𝑒̅̅ ̅ − 1𝛾𝑠𝑚̅̅ ̅̅ ̅̅ 𝑑𝑚𝛼 − 

1𝛾𝑚̅̅ ̅̅𝛾𝑒̅̅ ̅ + 1)𝑒𝑑𝑚𝛼 (1−16π2)( 1𝛾𝑚̅̅ ̅̅ ̅+ 1𝛾𝑒̅̅ ̅̅ ) − 𝑒(1−16π2𝛾𝑠𝑒̅̅ ̅̅ ̅ ) + ( 11 − 𝛾𝑒̅̅ ̅𝛾𝑠𝑒̅̅̅̅̅𝑑𝑒𝛼 − 11 + 𝛾𝑒̅̅ ̅𝛾𝑚̅̅ ̅̅ ) 𝑒𝑑𝑒𝛼(1−16π2)( 1𝛾𝑚̅̅ ̅̅ ̅+ 1𝛾𝑒̅̅ ̅̅ ) − 

      ( 11 − 𝛾𝑒̅̅ ̅𝛾𝑠𝑒̅̅̅̅̅𝑑𝑒𝛼) ( 11 − 𝛾𝑚̅̅ ̅̅𝛾𝑒̅̅ ̅ + 𝛾𝑚̅̅ ̅̅𝛾𝑠𝑒̅̅̅̅̅𝑑𝑒𝛼) 𝑒𝑑𝑒𝛼(1−16π2)( 1𝛾𝑚̅̅ ̅̅ ̅− 1𝛾𝑒̅̅ ̅̅ + 1𝛾𝑠𝑒̅̅ ̅̅ ̅𝑑𝑒𝛼)].                                                   (12b) 

 

Proof. See Appendix B. 

IV. NUMERICAL RESULTS 

 

In this section, the numerical results are presented for the SCR to study how the SI affects 

the coverage region. The results for the WCs satisfying Corollary 1 are omitted for simplicity 

and only, we illustrate the results for wireless WCs satisfying Corollary 2 conditions. The SCR 

for different scenarios is provided in Fig. 2. From analyzing the impact of SI, as it has been 

depicted in Fig. 2, it is clearly seen that existence of this factor increases the possible distance 

between legitimate receiver and legitimate transmitter for a given 𝑑𝑒. Furthermore, it is shown 

that SI has a positive effect over the SCR as seen intuitively. 



 

  

 

Fig. 2. SCR for different scenarios of SI and different values of  𝛾𝑠𝑚̅̅ ̅̅ ̅ when, 

 Rs = 0.1 bits, 𝑑𝑒 = 0.2, 𝛾𝑚̅̅̅̅ = 10𝑑𝐵, 𝛾𝑒̅ = 0𝑑𝐵, 𝛾𝑠𝑒̅̅ ̅̅ = 0𝑑𝐵 and 𝛼 = 3.52. 

 

Also, the trade-off between 𝑑𝑚 and 𝑑𝑒 has been indicated in Fig. 3. It is clearly seen that as 𝛾𝑠𝑚̅̅ ̅̅ ̅ increases, legitimate receiver is getting away from legitimate transmitter for a specified 𝑑𝑒. For example when 𝛾𝑚̅̅̅̅ = 10𝑑𝐵, 𝛾𝑒̅ = 0𝑑𝐵, 𝛾𝑠𝑚̅̅ ̅̅ ̅ = 10𝑑𝐵, 𝛾𝑠𝑒̅̅ ̅̅ = 0𝑑𝐵, 𝛼 = 3.52 and Rs =0.2 bits, 𝑑𝑒 = 0.5, 𝑑𝑚 is equal to 0.86, while when we don’t have any SI, 𝑑𝑚 becomes 0.72.  

 



 

  

Fig. 3. The trade-off between 𝑑𝑚 and 𝑑𝑒 for different scenarios of SI and different values of  𝛾𝑠𝑚̅̅ ̅̅ ̅ when, Rs = 0.2 bits, 𝛾𝑚̅̅̅̅ = 10𝑑𝐵, 𝛾𝑒̅ = 0𝑑𝐵, 𝛾𝑠𝑒̅̅ ̅̅ = 0𝑑𝐵 and 𝛼 = 3.52. 

V. CONCLUSION 

In this work, the coverage region in a Rayleigh fading WC with considering SI non-causally 

available at the transmitter has been analyzed. We demonstrated the impact of SI by deriving 

closed-form expressions on the SCR as a remarkable wireless performance factor. Also, by 

mathematical derivations and numerical results, it has been investigated that SI increases the 

SCR as expected intuitively. 

Appendices 

Appendix A: 

 

Proof of Theorem 1: An informal proof of this theorem is a straightforward algebra 

extension of [5], [19], and [20] with some differences caused by known fading coefficients. 

The coding scheme used to achieve this capacity is similar to the one used in [15], [19], [20]. 

The coding scheme and error probability analysis is straightforward and is not shown here due 

to a lack of space. We use definitions in corollary 1 and 2 to compute the capacity of WC with 

knowing SI at the transmitter and fading coefficients. We have following assumptions:                                𝐸[𝑋2] = 𝑃,   𝐸[𝑆2] = 𝑄,   𝐸[𝜂𝑚2 ] = 𝑁𝑚,   𝐸[𝜂𝑒2] = 𝑁𝑒 ,                                (13) 

and 𝑈𝑚  and 𝑈𝑒  are generated by using generalized dirty paper coding presented in [23]. 

According to [5], [19], [20], [23] and knowing that 𝑌𝑚 = ℎ𝑚𝑋 + ℎ𝑠𝑚𝑆 + 𝜂𝑚 , 𝑌𝑒 = ℎ𝑒𝑋 +ℎ𝑠𝑚𝑆 + 𝜂𝑒  we can write mutual information related to the term 𝐶𝑚 in corollary 1 as follows: 

 𝐼(𝑈𝑚; 𝑌𝑚)  = 𝐻(ℎ𝑚𝑋 + ℎ𝑠𝑚𝑆 + 𝜂𝑚) − 𝐻(ℎ𝑚𝑋 + ℎ𝑠𝑚𝑆 + 𝜂𝑚|𝑋 + 𝛼𝑚𝑆) 



 

  

                     = 𝐻(ℎ𝑚𝑋 + ℎ𝑠𝑚𝑆 + 𝜂𝑚) + 𝐻(𝑋 + 𝛼𝑚𝑆) − 𝐻(ℎ𝑚𝑋 + ℎ𝑠𝑚𝑆 + 𝜂𝑚, 𝑋 + 𝛼𝑚𝑆)                             = log((2𝜋𝑒)2(|ℎ𝑚|2𝑃 + |ℎ𝑠𝑚|2𝑄 + 𝑁𝑚)(𝑃 + 𝛼𝑚2 𝑄)) − log((2𝜋𝑒)2 det(𝑐𝑜𝑣(ℎ𝑚𝑋 + ℎ𝑠𝑚𝑆 + 𝜂𝑚, 𝑋 + 𝛼𝑚𝑆)))                      
                    = log ( (|ℎ𝑚|2𝑃 + |ℎ𝑠𝑚|2𝑄 + 𝑁𝑚)(𝑃 + 𝛼𝑚2 𝑄)𝑃𝑄(|ℎ𝑠𝑚| − 𝛼𝑚|ℎ𝑚|)2 + 𝑁𝑚(𝑃 + 𝛼𝑚2 𝑄)),                                                (14) 

and 

𝐼(𝑈𝑚; 𝑆) = log (𝑃 + 𝛼𝑚2 𝑄𝑃 ).                                                                                                            (15) 

Substituting (14) and (15) in  𝐶𝑚 with corollary 1, we obtain: 

                𝐶𝑚(𝛼𝑚) = log ( 𝑃(|ℎ𝑚|2𝑃 + |ℎ𝑠𝑚|2𝑄 + 𝑁𝑚)𝑃𝑄(|ℎ𝑠𝑚| − 𝛼𝑚|ℎ𝑚|)2 + 𝑁𝑚(𝑃 + 𝛼𝑚2 𝑄)).                                    (16) 

By maximizing 𝐶𝑚(𝛼𝑚) over 𝛼𝑚, for corollary 1, we get 

 

                           𝐶𝑠 = max𝛼𝑚 𝐶𝑚(𝛼𝑚) = log (1 + |ℎ𝑚|2𝑃𝑁𝑚 ) = log(1 + 𝛾𝑚).                               (17) 

So we have (9) for corollary 1. The proof of this theorem for corollary 2 is similar with 

negligible change and is omitted for the lack of space.                                                                      ∎ 

 

Appendix B: 

Proof of Theorem 2: First, we state some integrals that are needed to prove the theorems 

[26]. Therefore, we have 

∫ 𝑒−𝜉𝑡 log(1 + 𝛽𝑡) 𝑑𝑡 = 1𝜉 [𝑒 𝜉𝛽𝐸𝑖 (− (𝜉𝑡 + 𝜉𝛽)) − 𝑒−𝜉𝑡 log(1 + 𝛽𝑡)],                                 (18) 

∫ 𝑒−𝜉𝑡 log(1 + 𝛽𝑡)∞
0 𝑑𝑡 = − 𝑒 𝜉𝛽𝜉 𝐸𝑖 (− 𝜉𝛽),                                                                                      (19) 



 

  

∫ 𝑒−𝜈𝑡𝐸𝑖(−(𝛿 + 𝜅𝑡)) 𝑑𝑡 = 1𝜈 [𝑒𝜈𝛿𝜅 𝐸𝑖 (− (𝜈 + 𝜅)(𝜅𝑡 + 𝛿)𝑘 ) − 𝑒𝑣𝑡𝐸𝑖(−(𝜅𝑡 + 𝛿))],           (20) 

∫ 𝑒−𝜈𝑡𝐸𝑖(−(𝛿 + 𝜅𝑡))∞
0 𝑑𝑡 = 1𝜈 [𝐸𝑖(−𝛿) − 𝑒𝜈𝛿𝜅 𝐸𝑖 (− (𝜈 + 𝜅)𝛿𝑘 )],                                            (21) 

where 𝐸𝑖(𝑥) = − ∫ 𝑡−1𝑒−𝑡𝑑𝑡∞𝑥 . Also, 𝐸𝑖(−𝑥) was approximated in [27] as follows: 

                              𝐸𝑖(−𝑥) = −4√2𝑎𝑁𝑎𝐼 ∑ ∑ √𝑏𝑛𝐼+1
𝑖=1

𝑁+1
𝑛=1 𝑒−4𝑏𝑛𝑏𝑖𝑥,                                                  (22) 

where  𝜃0 = 0 < 𝜃1 < ⋯ < 𝜃𝑁+1 = 𝜋2, 𝑎𝑁 = 𝜃𝑛−𝜃𝑛−1𝜋 , 𝑏𝑛 = cos(𝜃𝑛−1)−cos(𝜃𝑛)2(𝜃𝑛−𝜃𝑛−1) , and for 𝑁 = 𝐼 =
1 we have: 𝑎𝑁 = 𝑎𝐼 = 14, 𝑏1 = ∞ and 𝑏2 = 2𝜋. Thus, 𝐸𝑖(−𝑥) can be approximated as 

 

                                                           𝐸𝑖(−𝑥)~ − √𝜋2 𝑒−(16𝜋2)𝑥.                                                           (23) 

For Corollary 1: First, we compute the distance 𝑑𝑚  between transmitter and legitimate 

receiver to ensure reliable transmission. Due to the secrecy outage probability definition, the 

reliable transmission between transmitter and legitimate receiver happens, when legitimate 

receiver can decode the confidential messages (i.e., 𝐶𝑚 > 𝑅𝑠) or 

                            𝑅𝑠 ≤ 𝐸𝛾𝑚 [log (1 + 𝛾𝑚𝑑𝑚𝛼 )] = ∫ 𝑒−𝛾𝑚𝛾𝑚̅̅ ̅̅ ̅𝛾𝑚̅̅̅̅ log (1 + 𝛾𝑚𝑑𝑚𝛼 ) 𝑑𝛾𝑚,∞
0                             (24) 

where by computing the above integral and substituting (23) into (24), the distance 𝑑𝑚 between 

transmitter and legitimate receiver for reliable transmission is obtained as below: 

                                                      𝑑𝑚 ≤ ( 𝜋2𝛾𝑚̅̅̅̅𝜋2 − 16 ln (2𝑅𝑠√𝜋 ))1𝛼 .                                                      (25) 

In this case we don’t have any limitation over 𝑑𝑒. 



 

  

For Corollary 2: The distance 𝑑𝑚 for reliable transmission is obtained similar to (25). Now, 

using the derived distance 𝑑𝑚 between transmitter and legitimate receiver, we can find the SCR 

for secure transmission from definition (15) as follows 

                  𝑅𝑠 ≤ 𝐶𝑠(𝑑𝑚, 𝑑𝑒) = 𝐸𝛾𝑠,𝛾𝑒,𝛾𝑚 [log (1 + 𝛾𝑚𝑑𝑚𝛼 + 𝛾𝑠𝑚)log (1 + 𝛾𝑒𝑑𝑒𝛼 + 𝛾𝑠𝑒) ] = 𝐷1 − 𝐷2.                             (26) 

We have 

𝐷1 = ∫ ∫ ∫ log(1 + 𝛾𝑚𝑑𝑚𝛼 + 𝛾𝑠𝑚̅̅ ̅̅ ̅)∞
0

𝛾𝑚0
∞

0 1𝛾𝑠𝑚̅̅ ̅̅ ̅ 𝑒−𝛾𝑠𝑚𝛾𝑠𝑚̅̅ ̅̅ ̅̅ ̅ 1𝛾𝑚̅̅̅̅ 𝑒−𝛾𝑚𝛾𝑚̅̅ ̅̅ ̅ 1𝛾𝑒̅ 𝑒−𝛾𝑒𝛾𝑒̅̅ ̅̅ 𝑑𝛾𝑠𝑚𝑑𝛾𝑒𝑑𝛾𝑚,                (27) 

and 

 

𝐷2 = ∫ ∫ ∫ log(1 + 𝛾𝑒𝑑𝑒𝛼 + 𝛾𝑠𝑒)∞
0

𝛾𝑚0
∞

0 1𝛾𝑠𝑒̅̅ ̅̅ 𝑒−𝛾𝑠𝑒𝛾𝑠𝑒̅̅ ̅̅ ̅ 1𝛾𝑚̅̅̅̅ 𝑒−𝛾𝑚𝛾𝑚̅̅ ̅̅ ̅ 1𝛾𝑒̅ 𝑒−𝛾𝑒𝛾𝑒̅̅ ̅̅ 𝑑𝛾𝑠𝑒𝑑𝛾𝑒𝑑𝛾𝑚.                       (28) 

After some simplifications and by  utilizing linear formulas of integration, for 𝐷1, we receive 

to 

                                               𝐷1 = ∫ 𝑒−𝛾𝑚𝛾𝑚̅̅ ̅̅ ̅𝛾𝑠𝑚̅̅ ̅̅ ̅. 𝛾𝑒̅ . 𝛾𝑚̅̅̅̅ (𝐷1′′∞
0 )𝑑𝛾𝑚,                                                          (29) 

where 𝐷1′′ = ∫ 𝑒−𝛾𝑒𝛾𝑒̅̅ ̅̅ 𝐷1′𝛾𝑚0 𝑑𝛾𝑒  and 𝐷1′ = ∫ log(1 + 𝛾𝑚𝑑𝑚𝛼∞0 + 𝛾𝑠𝑚)𝑒−𝛾𝑠𝑚𝛾𝑠𝑚̅̅ ̅̅ ̅̅ ̅𝑑𝛾𝑠𝑚 = 𝛾𝑠𝑚̅̅ ̅̅ ̅(ln (1 +
𝛾𝑚𝑑𝑚𝛼 ) + 𝑒1+𝛾𝑚𝑑𝑚𝛼𝛾𝑠𝑚̅̅ ̅̅ ̅̅ ̅ 𝐸1(1+𝛾𝑚𝑑𝑚𝛼𝛾𝑠𝑚̅̅ ̅̅ ̅̅ )). So, we have 

                                                                 𝐷1′′ = 𝑗1′ + 𝑗2′,                                                                     (30) 

where  

𝑗1′ = ∫ 𝛾𝑠𝑚̅̅ ̅̅ ̅𝑒−𝛾𝑒𝛾𝑒̅̅ ̅̅𝛾𝑚0 ln (1 + 𝛾𝑚𝑑𝑚𝛼 ) 𝑑𝛾𝑒 = 𝛾𝑠𝑚̅̅ ̅̅ ̅𝛾𝑒̅ ln (1 + 𝛾𝑚𝑑𝑚𝛼 ) (1 − 𝑒−𝛾𝑚𝛾𝑒̅̅ ̅̅ ),                                 (31) 

and 



 

  

𝑗2′ = ∫ 𝛾𝑠𝑚̅̅ ̅̅ ̅𝑒−𝛾𝑒𝛾𝑒̅̅ ̅̅𝛾𝑚0 𝑒1+𝛾𝑚𝑑𝑚𝛼𝛾𝑠𝑚̅̅ ̅̅ ̅̅ ̅ 𝐸1 (1 + 𝛾𝑚𝑑𝑚𝛼𝛾𝑠𝑚̅̅ ̅̅ ̅ ) 𝑑𝛾𝑒 = 𝛾𝑠𝑚̅̅ ̅̅ ̅𝛾𝑒̅ (1 − 𝑒−𝛾𝑚𝛾𝑒̅̅ ̅̅ ) 𝑒1+𝛾𝑚𝑑𝑚𝛼𝛾𝑠𝑚̅̅ ̅̅ ̅̅ ̅ 𝐸1 (1 + 𝛾𝑚𝑑𝑚𝛼𝛾𝑠𝑚̅̅ ̅̅ ̅ ).        (32) 

Thus, by replacing (31) and (32) in (30) and then (29), we have                                                               𝐷1 = 𝑘1′ − 𝑘2′ + 𝑘3′ − 𝑘4′ ,                                                      (33) 

where, by exploiting (19) and (21), we have 

𝑘1′ = ∫ 𝑒−𝛾𝑚𝛾𝑚̅̅ ̅̅ ̅𝛾𝑚̅̅̅̅ ln (1 + 𝛾𝑚𝑑𝑚𝛼 ) 𝑑𝛾𝑚∞
0 = −𝑒𝑑𝑚𝛼𝛾𝑚̅̅ ̅̅ ̅𝐸𝑖 (− 𝑑𝑚𝛼𝛾𝑚̅̅̅̅ ) ,                                                                (34) 

𝑘2′ = ∫ 𝑒−𝛾𝑚( 1𝛾𝑚̅̅ ̅̅ ̅+ 1𝛾𝑒̅̅ ̅̅ )𝛾𝑚̅̅̅̅ ln (1 + 𝛾𝑚𝑑𝑚𝛼 ) 𝑑𝛾𝑚 =∞
0 − 𝛾𝑒̅ . 𝑒𝑑𝑚𝛼 ( 1𝛾𝑚̅̅ ̅̅ ̅+ 1𝛾𝑒̅̅ ̅̅ )𝛾𝑚̅̅̅̅ + 𝛾𝑒̅ 𝐸𝑖 (−𝑑𝑚𝛼 ( 1𝛾𝑚̅̅̅̅ + 1𝛾𝑒̅)),         (35) 

𝑘3′ = ∫ 𝑒−𝛾𝑚𝛾𝑚̅̅ ̅̅ ̅𝑒1+𝛾𝑚𝑑𝑚𝛼𝛾𝑠𝑚̅̅ ̅̅ ̅̅ ̅𝛾𝑚̅̅̅̅ 𝐸1 (1 + 𝛾𝑚𝑑𝑚𝛼𝛾𝑠𝑚̅̅ ̅̅ ̅ ) 𝑑𝛾𝑚∞
0 = −𝑒 1𝛾𝑠𝑚̅̅ ̅̅ ̅̅ ̅ (𝐸𝑖 ( −1𝛾𝑠𝑚̅̅ ̅̅ ̅̅ ) − 𝑒𝑑𝑚𝛼𝛾𝑚̅̅ ̅̅ ̅− 1𝛾𝑠𝑚̅̅ ̅̅ ̅̅ ̅𝐸𝑖 (−𝑑𝑚𝛼𝛾𝑚̅̅ ̅̅ ))𝛾𝑚̅̅̅̅ ( 1𝛾𝑚̅̅ ̅̅ − 1𝛾𝑠𝑚̅̅ ̅̅ ̅̅ 𝑑𝑚𝛼 ) ,           (36) 

𝑘4′ = 

∫ 𝑒−𝛾𝑚( 1𝛾𝑚̅̅ ̅̅ ̅+ 1𝛾𝑒̅̅ ̅̅ )𝑒1+𝛾𝑚𝑑𝑚𝛼𝛾𝑠𝑚̅̅ ̅̅ ̅̅ ̅𝛾𝑚̅̅̅̅ 𝐸1 (1 + 𝛾𝑚𝑑𝑚𝛼𝛾𝑠𝑚̅̅ ̅̅ ̅ ) 𝑑𝛾𝑚 =∞
0

𝑒 1𝛾𝑠𝑚̅̅ ̅̅ ̅̅ ̅[𝐸𝑖 ( −1𝛾𝑠𝑚̅̅ ̅̅ ̅̅ ) − 𝑒𝑑𝑚𝛼𝛾𝑚̅̅ ̅̅ ̅+𝑑𝑚𝛼𝛾𝑒̅̅ ̅̅ − 1𝛾𝑠𝑚̅̅ ̅̅ ̅̅ ̅𝐸𝑖(−( 1𝛾𝑚̅̅ ̅̅ + 1𝛾𝑒̅̅ ̅)𝑑𝑚𝛼 )]1𝛾𝑠𝑚̅̅ ̅̅ ̅̅ 𝑑𝑚𝛼 − 1𝛾𝑚̅̅ ̅̅ − 1𝛾𝑒̅̅ ̅  

(37) 

Similarly, for 𝐷2, we have 

                                              𝐷2 = ∫ 𝑒−𝛾𝑚𝛾𝑚̅̅ ̅̅ ̅𝛾𝑠𝑒̅̅ ̅̅ . 𝛾𝑒̅ . 𝛾𝑚̅̅̅̅ (𝐷2′′∞
0 )𝑑𝛾𝑚.                                                            (38) 

where 𝐷2′′ = ∫ 𝑒−𝛾𝑒𝛾𝑒̅̅ ̅̅ (𝐷2′)𝛾𝑚0 𝑑𝛾𝑒  and 𝐷2′ = ∫ log(1 + 𝛾𝑒𝑑𝑒𝛼∞0 + 𝛾𝑠𝑒)𝑒−𝛾𝑠𝑒𝛾𝑠𝑒̅̅ ̅̅ ̅𝑑𝛾𝑠𝑒 = 𝛾𝑠𝑒̅̅ ̅̅ (ln (1 +
𝛾𝑒𝑑𝑒𝛼) + 𝑒1+𝛾𝑒𝑑𝑒𝛼𝛾𝑠𝑒̅̅ ̅̅ ̅ 𝐸1(1+𝛾𝑒𝑑𝑒𝛼𝛾𝑠𝑒̅̅̅̅̅ )). So, we have 

                                                                      𝐷2′′ = 𝑖1′ + 𝑖2′,                                                                (39) 

where, by exploiting (18) and (20), we have  



 

  

𝑖1′ = ∫ 𝛾𝑠𝑒̅̅ ̅̅ 𝑒−𝛾𝑒𝛾𝑒̅̅ ̅̅ ln (1 + 𝛾𝑒𝑑𝑒𝛼)𝛾𝑚0 𝑑𝛾𝑒 

    = 𝛾𝑠𝑒̅̅ ̅̅ 𝛾𝑒̅[𝑒𝑑𝑒𝛼𝛾𝑒̅̅ ̅̅ 𝐸𝑖 (− 𝑑𝑒𝛼 + 𝛾𝑚𝛾𝑒̅ ) − 𝑒−𝛾𝑚𝛾𝑒̅̅ ̅̅ ln (1 + 𝛾𝑒𝑑𝑒𝛼) − 𝑒𝑑𝑒𝛼𝛾𝑒̅̅ ̅̅ 𝐸𝑖(−𝑑𝑒𝛼𝛾𝑒̅ )],                                     (40) 

𝑖2′ = ∫ 𝛾𝑠𝑒̅̅ ̅̅ 𝑒−𝛾𝑒𝛾𝑒̅̅ ̅̅𝛾𝑚0 𝑒1+𝛾𝑒𝑑𝑒𝛼𝛾𝑠𝑒̅̅ ̅̅ ̅ 𝐸1(1 + 𝛾𝑒𝑑𝑒𝛼𝛾𝑠𝑒̅̅ ̅̅ )𝑑𝛾𝑒 = − 𝛾𝑠𝑒̅̅ ̅̅ 𝑒 1𝛾𝑠𝑒̅̅ ̅̅ ̅1𝛾𝑒̅̅ ̅ − 1𝛾𝑠𝑒̅̅ ̅̅̅𝑑𝑒𝛼  . [𝑒𝑑𝑒𝛼𝛾𝑒̅̅ ̅̅ − 1𝛾𝑠𝑒̅̅ ̅̅ ̅𝐸𝑖 (− 𝛾𝑚 + 𝑑𝑒𝛼𝛾𝑒̅ ) − 

    𝑒𝛾𝑚( 1𝛾𝑒̅̅ ̅̅ − 1𝛾𝑠𝑒̅̅ ̅̅ ̅𝑑𝑒𝛼) 𝐸𝑖 (− 1 + 𝛾𝑚𝑑𝑒𝛼𝛾𝑠𝑒̅̅ ̅̅ ) − 𝑒𝑑𝑒𝛼𝛾𝑒̅̅ ̅̅ − 1𝛾𝑠𝑒̅̅ ̅̅ ̅𝐸𝑖 (− 𝑑𝑒𝛼𝛾𝑒̅ ) + 𝐸𝑖(− 1𝛾𝑠𝑒̅̅ ̅̅ )].                                         (41) 

Thus, by replacing (40) and (41) in (39) and then (38), we have                                              𝐷2 = 𝑑1′ − 𝑑2′ − 𝑑3′ − 𝑑4′ + 𝑑5′ + 𝑑6′ − 𝑑7. ′                               (42) 

where, by exploiting (19) and (21), we have 

𝑑1′ = ∫ 𝑒−𝛾𝑚𝛾𝑚̅̅ ̅̅ ̅𝑒𝑑𝑒𝛼𝛾𝑒̅̅ ̅̅𝛾𝑚̅̅̅̅∞
0 𝐸𝑖 (− 𝑑𝑒𝛼 + 𝛾𝑚𝛾𝑒̅ ) 𝑑𝛾𝑚 = 𝑒𝑑𝑒𝛼𝛾𝑒̅̅ ̅̅ [𝐸𝑖 (− 𝑑𝑒𝛼𝛾𝑒̅ ) − 𝑒 𝑑𝑒𝛼𝛾𝑚̅̅ ̅̅ ̅𝐸𝑖 (− ( 1𝛾𝑚̅̅̅̅ + 1𝛾𝑒̅) 𝑑𝑒𝛼)],  

 (43) 

𝑑2′ = ∫ 𝑒−𝛾𝑚𝛾𝑚̅̅ ̅̅ ̅𝑒−𝛾𝑚𝛾𝑒̅̅ ̅̅𝛾𝑚̅̅̅̅ ln (1 + 𝛾𝑒𝑑𝑒𝛼)∞
0 𝑑𝛾𝑚 = − 𝛾𝑒̅𝛾𝑚̅̅̅̅ + 𝛾𝑒̅ 𝑒𝑑𝑒𝛼( 1𝛾𝑚̅̅ ̅̅ ̅+ 1𝛾𝑒̅̅ ̅̅ )𝐸𝑖 (−𝑑𝑒𝛼 ( 1𝛾𝑚̅̅̅̅ + 1𝛾𝑒̅)),      (44) 

𝑑3′ = ∫ 𝑒−𝛾𝑚𝛾𝑚̅̅ ̅̅ ̅𝑒𝑑𝑒𝛼𝛾𝑒̅̅ ̅̅𝛾𝑚̅̅̅̅∞
0 𝐸𝑖 (−𝑑𝑒𝛼𝛾𝑒̅ ) 𝑑𝛾𝑚 = 𝑒𝑑𝑒𝛼𝛾𝑒̅̅ ̅̅ 𝐸𝑖 (−𝑑𝑒𝛼𝛾𝑒̅ ),                                                                   (45) 

𝑑4′ = ∫ 𝑒−𝛾𝑚𝛾𝑚̅̅ ̅̅ ̅𝑒𝑑𝑒𝛼𝛾𝑒̅̅ ̅̅𝛾𝑒̅ . 𝛾𝑚̅̅̅̅∞
0 ( 11𝛾𝑒̅̅ ̅ − 1𝛾𝑠𝑒̅̅̅̅̅𝑑𝑒𝛼) 𝐸𝑖 (− 𝛾𝑚 + 𝑑𝑒𝛼𝛾𝑒̅ ) 𝑑𝛾𝑚 

     = 𝑒𝑑𝑒𝛼𝛾𝑒̅̅ ̅̅ ( 11𝛾𝑒̅̅ ̅ − 1𝛾𝑠𝑒̅̅̅̅̅𝑑𝑒𝛼) (𝐸𝑖 (− 𝑑𝑒𝛼𝛾𝑒̅ ) − 𝑒𝑑𝑒𝛼𝛾𝑒̅̅ ̅̅ 𝐸𝑖 (−𝑑𝑒𝛼 ( 1𝛾𝑚̅̅̅̅ + 1𝛾𝑒̅))),                                          (46) 

𝑑5′ = ∫ 𝑒−𝛾𝑚𝛾𝑚̅̅ ̅̅ ̅𝑒 1𝛾𝑠𝑒̅̅ ̅̅ ̅𝛾𝑒̅ . 𝛾𝑚̅̅̅̅∞
0 ( 11𝛾𝑒̅̅ ̅ − 1𝛾𝑠𝑒̅̅̅̅̅𝑑𝑒𝛼) 𝑒𝛾𝑚( 1𝛾𝑒̅̅ ̅̅ − 1𝛾𝑠𝑒̅̅ ̅̅ ̅𝑑𝑒𝛼)𝐸𝑖(− 1 + 𝛾𝑚𝑑𝑒𝛼𝛾𝑠𝑒̅̅ ̅̅ )𝑑𝛾𝑚 



 

  

= 1𝛾𝑒̅𝛾𝑚̅̅̅̅ ( 11𝛾𝑒̅̅ ̅ − 1𝛾𝑠𝑒̅̅̅̅̅𝑑𝑒𝛼 . 11𝛾𝑚̅̅ ̅̅ − 1𝛾𝑒̅̅ ̅ + 1𝛾𝑠𝑒̅̅̅̅̅𝑑𝑒𝛼) 𝑒 1𝛾𝑠𝑒̅̅ ̅̅ ̅[𝐸𝑖 (− 1𝛾𝑠𝑒̅̅ ̅̅ ) −𝑒(𝑑𝑒𝛼( 1𝛾𝑚̅̅ ̅̅ ̅− 1𝛾𝑒̅̅ ̅̅ + 1𝛾𝑠𝑒̅̅ ̅̅ ̅𝑑𝑒𝛼))𝐸𝑖(−𝑑𝑒𝛼           
     ( 1𝛾𝑚̅̅̅̅ − 1𝛾𝑒̅ + 2𝛾𝑠𝑒̅̅ ̅̅ 𝑑𝑒𝛼))],                                                                                                                     (47) 

𝑑6′ = ∫ 𝑒−𝛾𝑚𝛾𝑚̅̅ ̅̅ ̅𝑒 1𝛾𝑠𝑒̅̅ ̅̅ ̅𝛾𝑒̅ . 𝛾𝑚̅̅̅̅∞
0 ( 11𝛾𝑒̅̅ ̅ − 1𝛾𝑠𝑒̅̅̅̅̅𝑑𝑒𝛼) 𝑒𝑑𝑒𝛼𝛾𝑒̅̅ ̅̅ − 1𝛾𝑠𝑒̅̅ ̅̅ ̅𝐸𝑖 (− 𝑑𝑒𝛼𝛾𝑒̅ ) 𝑑𝛾𝑚 = 1𝛾𝑒̅ ( 11𝛾𝑒̅̅ ̅ − 1𝛾𝑠𝑒̅̅̅̅̅𝑑𝑒𝛼) 𝑒𝑑𝑒𝛼𝛾𝑒̅̅ ̅̅ 𝐸𝑖 (− 𝑑𝑒𝛼𝛾𝑒̅ ),  

(48) 

𝑑7′ = ∫ 𝑒−𝛾𝑚𝛾𝑚̅̅ ̅̅ ̅𝑒𝑁𝑒𝛾𝑠̅̅̅̅𝛾𝑒̅ . 𝛾𝑚̅̅̅̅∞
0 ( 11𝛾𝑒̅̅ ̅ − 1𝛾𝑠𝑒̅̅̅̅̅𝑑𝑒𝛼) 𝐸𝑖 (− 1𝛾𝑠𝑒̅̅ ̅̅ ) 𝑑𝛾𝑚 = 1𝛾𝑒̅ ( 11𝛾𝑒̅̅ ̅ − 1𝛾𝑠𝑒̅̅̅̅̅𝑑𝑒𝛼) 𝑒 1𝛾𝑠𝑒̅̅ ̅̅ ̅𝐸𝑖 (− 1𝛾𝑠𝑒̅̅ ̅̅ ) .           (49) 

 

Therefore, from (26), we have 

 𝑅𝑠 ≤ 𝑘1′ − 𝑘2′ + 𝑘3′ − 𝑘4′ − 𝑑1′ − 𝑑2′ − 𝑑3′ − 𝑑4′ + 𝑑5′ + 𝑑6′ − 𝑑7′  

     = 𝛾𝑚̅̅̅̅ 𝑒𝑑𝑚𝛼𝛾𝑚̅̅ ̅̅ ̅𝛾𝑠𝑚̅̅ ̅̅ ̅𝑑𝑚𝛼 − 𝛾𝑚̅̅̅̅ 𝐸𝑖 (− 𝑑𝑚𝛼𝛾𝑚̅̅̅̅ ) − ( 11 − 𝛾𝑚̅̅ ̅̅𝛾𝑠𝑚̅̅ ̅̅ ̅̅ 𝑑𝑚𝛼 − 11𝛾𝑚̅̅ ̅̅ + 1𝛾𝑒̅̅ ̅ − 1𝛾𝑠𝑚̅̅ ̅̅ ̅̅ 𝑑𝑚𝛼 ) 𝑒 1𝛾𝑠𝑚̅̅ ̅̅ ̅̅ ̅𝐸𝑖 (−1𝛾𝑠𝑚̅̅ ̅̅ ̅) + ( 𝛾𝑒̅𝛾𝑚̅̅̅̅ + 𝛾𝑒̅ − 

     11𝛾𝑚̅̅ ̅̅ + 1𝛾𝑒̅̅ ̅ − 1𝛾𝑠𝑚̅̅ ̅̅ ̅̅ 𝑑𝑚𝛼 )𝑒𝑑𝑚𝛼 ( 1𝛾𝑚̅̅ ̅̅ ̅+ 1𝛾𝑒̅̅ ̅̅ )𝐸𝑖 (−𝑑𝑚𝛼 ( 1𝛾𝑚̅̅̅̅ + 1𝛾𝑒̅)) + ( 11 − 𝛾𝑒̅̅ ̅𝛾𝑠𝑒̅̅̅̅̅𝑑𝑒𝛼)(1 − 11 − 𝛾𝑚̅̅ ̅̅𝛾𝑒̅̅ ̅ + 𝛾𝑚̅̅ ̅̅𝛾𝑠𝑚̅̅ ̅̅ ̅̅ 𝑑𝑒𝛼)𝑒 1𝛾𝑠𝑒̅̅ ̅̅ ̅ 

. 𝐸𝑖 (− 1𝛾𝑠𝑒̅̅ ̅̅ ) + ( 𝛾𝑚̅̅̅̅𝛾𝑚̅̅̅̅ + 𝛾𝑒̅ − 11 − 𝛾𝑒̅̅ ̅𝛾𝑠𝑒̅̅̅̅̅𝑑𝑒𝛼) 𝑒𝑑𝑒𝛼( 1𝛾𝑚̅̅ ̅̅ ̅+ 1𝛾𝑒̅̅ ̅̅ )𝐸𝑖 (−𝑑𝑒𝛼 ( 1𝛾𝑚̅̅̅̅ + 1𝛾𝑒̅)) + ( 11 − 𝛾𝑒̅̅ ̅𝛾𝑠𝑒̅̅̅̅̅𝑑𝑒𝛼)       
  ( 11 − 𝛾𝑚̅̅ ̅̅𝛾𝑒̅̅ ̅ + 𝛾𝑚̅̅ ̅̅𝛾𝑠𝑒̅̅̅̅̅𝑑𝑒𝛼)𝑒𝑑𝑒𝛼( 1𝛾𝑚̅̅ ̅̅ ̅− 1𝛾𝑒̅̅ ̅̅ + 2𝛾𝑠𝑒̅̅ ̅̅ ̅𝑑𝑒𝛼). 𝐸𝑖 (−𝑑𝑒𝛼 ( 1𝛾𝑚̅̅̅̅ − 1𝛾𝑒̅ + 2𝛾𝑠𝑒̅̅ ̅̅ 𝑑𝑒𝛼)).                                        (50) 

 

Now, by considering the obtained approximation in (23), the proof is completed.                       ∎ 
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Figure 1

An uncorrelated Rayleigh fading WC.
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