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Hidden Markov Trust for attenuation of selfish and malicious nodes in the IoT network 

Gamini Joshi1, Vidushi Sharma2* 

Abstract 

 
The exposure of IoT nodes to the internet makes them vulnerable to malicious attacks and failures. These failures 
affect the survivability, integrity, and connectivity of the network. Thus the detection and elimination of attacks in a 
timely manner become an important factor to maintain the network connectivity. Trust-based techniques are used in 
understanding the behavior of nodes in the network. Several researchers have proposed conventional trust models 
that are power-hungry and demand large storage space. Succeeding this Hidden Markov Models have also been 
developed to calculate trust but the survivability of network achieved from them is low. To improve the survivability 
selfish and malicious nodes present in the network are required to be treated separately. Hence, an improved Hidden 
Markov Trust (HMT) Model is developed in this paper which accurately detects the selfish and malicious nodes that 
illegally intercept the network. An algorithm is generalized for learning the behavior of nodes using the HMT model 
with the expected output. The evaluated node’s likelihood functions differentiate the selfish node from the malicious 
node and provide independent timely treatment to both types of nodes. Further, comparative analysis for attacks 
such as black-hole, grey-hole, and sink-hole has been done and performance parameters have been extended to 
survivability-rate, power-consumption, delay, and false-alarm-rate, for different networks sizes and vulnerability. 
Simulation result provides a 10% higher PDR, 29% lower overhead, and 15% higher detection rate when compared 
to FUCEM, FTCSPM, and OADM trust models presented in the literature. 
 
 
Keywords: Internet of Things (IoT), Trust Management, Hidden Markov Model (HMM), Selfish node, malicious 
node, network survivability 

1. Introduction 
The use of the Internet of Things (IoT) in transmitting and sharing data, resources, and services through the internet 
had won popularity, especially in the areas such as tracking/monitoring, health services, military applications, 
agricultural, vehicular communications, etc. The issue of maintaining data integrity and network resilience in IoT is 
considered as the key entity for reliable data communication. But the exposure of IoT nodes to the open-ended side 
of the internet makes them vulnerable to attacks and breaches, which infects their integrity [1]. Moreover, the 
behavioral transition of nodes towards the act of selfishness affects the connectivity of the network [2]. Further, IoT 
devices suffer from random failures due to their distinctive features such as limited memory, limited energy, limited 
computational capabilities, and decentralized infrastructure. Therefore, for the feasibility and stability of the IoT 
network, a collaborative environment is favored that should be free from a selfish and malicious act. Selfish nodes 
deny forwarding the data packets of their neighboring nodes; to conserve their energy and the Malicious nodes (or 

mischievous) manipulate the data to damage the integrity of the IoT network. 
To protect IoT nodes from attacks, while keeping the network connectivity and integrity intact is a difficult task. The 
conventional cryptographic methods are not acceptable to resource constraint IoT nodes owing to their code size, 
processing time, and energy consumption. Therefore, alternate trust-based security primitive mechanisms are 
proposed like Bayesian systems, fuzzy logic, etc. The survey study demonstrates that these trust evaluation methods 
are dependent on external parameters like the opinion of neighboring nodes and their past behaviors. Inculcation of 
these factors calls for large memory and communication overhead. In addition, these approaches present the 
detection of compromised nodes but lack to discriminate the impact of selfish and malicious activity on the IoT 
network.   
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Differentiation of selfish and malicious nodes is needed, since, the objective function of the selfish node is to make 
routing impossible by never participating and always dropping the packets of neighbor nodes while malicious nodes 
though always take part in network function but try to damage the flow of data. To counter the effect of these nodes, 
the immediate impression is to destroy these nodes from the network. Treating both nodes in a similar way though 
improves effective communication among nodes but directly and indirectly impacts the survivability of the resource 
constraint IoT network. Hence there is a need to provide a technique that can handle selfish and malicious nodes 
differently and can mitigate the problems due to it so that the survivability of the network can be improved with 
effective communication.   

In this paper, the dynamic behavior of nodes at any given time is characterized by the probability distribution of the 
possible outcomes like parameter changes, fault frequency, etc. We have used the Hidden Markov-based trust model 
(HMM) for capturing the zestful behavior of nodes and forecast the likelihood of the node to be in one of the hidden 
states (or behavior). The model analyzes the 4-state HMM where states are named as the adaptive, greedy, 
mischievous, and crashed states and the possible outcomes are the analysis of packet transferal information 
associated with each interaction. In the context of trust-based applications, any routing protocol for low power and 
lossy network (LLN) is acceptable like RPL, 6LoWPAN, LOADng, etc. For simplicity of the network, our work is 
focused on IoT applications where communication among devices is generally peer-to-peer and the node intends to 
set a trusted path to a destination. Thus, the trusted route discovery is needed, which is triggered by the source node 
that wants to send the message. Considering this type of scenario, the Lightweight On-demand Ad hoc Distance 
vector routing protocol (LOADng) is found to be the best protocol to design the proposed model. LOADng is an 
enhanced version of the Adhoc On-Demand Distance Vector (AODV) routing protocol, which aims to reduce the 
complexity and the number of computational resources that are required for execution [3].  Therefore, our model 
constitutes LOADng routing protocol with an additional collaborative metric that discovers the most trustworthy 
neighbor and designs a fault-tolerant routing path.     
The proposed mechanism Hidden Markov Trust (HMT) can be directly used in IoT nodes. The mechanism will be 
able to intact the integrity and the survivability of the network. Our work strengthens the survivability of the 
network by the node’s energy and providing a temporal opportunity to the uncooperative nodes before their 
isolation. This is done to increase the performance of the network because generally, the traces of uncooperativeness 
actions persist for a small duration. Uncooperativeness can exist because of the selfish nature of nodes or malicious 
nature or it can be when residual energy of node is minimal and it is at the edge of the crashed state. The proposed 
scheme is different from the conventional scheme in terms of the method used to discriminate against selfish and 
malicious activity. The scheme seeks to build network performance by giving a time-based opportunity to the 
infected nodes. Conventional design substantially focuses on immediate mitigation of compromised nodes without 
analyzing their chances of improvement; thus, drops the survivability rate of the network. The paper contributions 
are listed below:  
1. Development of a structured algorithm: A generalized trust evaluation algorithm has been presented in a 

structured manner for a node to select the trustworthy and reliable path to the destination. We discuss available 
parameters that affect the path trustworthiness like available energy, packets drooped, packets modified. 

2. Mathematical evaluation and analysis: The maximum likelihood of the node’s behavior using the Hidden 
Markov Approach provides a clear mathematical analysis of cooperative node selection that proceeds by 
combining transition and emission metrics. 

3. Simulation Results: Simulation results are provided to evaluate and compare the best suitable trust model for 
different network sizes (scalability) and different vulnerabilities (in presence of maliciousness). In addition, the 
model simulates the sinkhole attack along with the black hole and grey hole attack. Thus, covers all the possible 
attacks.  

4. Performance Evaluations: The potential of the model is estimated for the survivability rate, packet delivery rate 
(PDR), energy consumption, end-to-end delay, routing overhead, detection rate, together with false positive and 
false negative factors.    

5. Critical Analysis: The advantages and challenges of providing Time Based opportunities to the infected nodes 
have been addressed and the effect of changing network size in presence of malicious attacks is presented. 
 

The paper is structured as follows: Section 2 presents the related work in the area of detection and elimination of 
nasty nodes. Section 3, describes the system model for attenuating selfish and malicious activity. Section 4, presents 
the mathematical model along with an evaluation of trusted node and decision making scenario. Analysis of 
simulation results and their impact on different performance parameters is provided in section 5.Finally the 
conclusion and future scope is drawn in section 6. 
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2. Related work 
The security in IoT is conventionally carried out using cryptographic methods, where public key and symmetric key 
techniques are adopted. As for sensor nodes, both key operations are expensive in terms of computations and energy 
consumption. Considering this, the study of trust evaluation mechanisms for IoT security has gained momentum. 
Trust models provide the benefits of lesser resource consumption, peer-to-peer structure, and compromised node 
detection. Thus, trust is considered to be an important factor to ascertain the survivability of the network. 
In recent years, researchers have focused their attention on the stochastic Markov model for providing security from 
attacks in different areas of technology and applications such as communication, defense, monitoring, etc. Zhongqiu 
et al. [4] presented a quantitive measure of survivability for the clustered network in presence of DoS attacks. In 
their work, the authors investigated mechanisms of the Markov chain that categorizes nodes into an active state and 
a dead state. They have incorporated the evaluation of the degree of services to estimate the probability of the node’s 
state. The approach adds failure rate (active to the dead) in connection with energy consumption of node and repair 
rate (dead to active) as a measure of node density. To be specific, the author has resolved the DoS attack by 
increasing the density of the node. Though the model increases the survivability rate the perspective of increasing 
the node’s density effect’s the node’s residual power. 
The applicability of the simple Markov chain model is not always feasible because the transition time from one state 
to another is a random variable while the former applications use time as an exponential distribution. Therefore, the 
semi-markov process is highlighted to characterize the node state transition. Advancing further, Theerthangiri [5] 
recommended a Futuristic cooperation evaluation scheme (FUCEM) for establishing an effective routing path. The 
work adopts a semi-markov process for determining node reliability. The author has included cooperative, partial-
cooperative, and non-cooperative transition states. The reliability of the node depends on the amount of energy 
dissipated while transmitting and receiving packets. In addition to it, the author has also incorporated link stability 
based on the mobility of the node. The scheme determines the effective path based on energy level but the 
involvement of attacks is not contemplated, which results in loss of data packets. Proceeding more, Maragatharajan 
et al. [6] recommend a Position-based opportunistic (POR) and greedy routing scheme for reliable data delivery. The 
work adopts a dual-step process to find the best routing path. In the first step, geographic location service (GLS) [7] 
and Quorum-Based Location Service (QBLS) are incorporated for route discovery; which yields efficient data 
transmission rate. In the second step, the behavior of nodes in the selected route is derived using the semi-markov 
process. The scheme approximates the network survivability but quantitative estimation of transition probability is 
vague and uncertain.  
Further, considering node-state transition time as a random variable, Peng et al.[8] incorporated a discrete-time 
markov chain (DTMC) process for analyzing the behavior of the node. This mechanism addresses the problem of 
SMS/MMS based worms of smartphone applications through social media. The node is categorized into susceptible, 
exposed, infectious, and recovered state. The authors have included real-world data set of cellular networks for 
estimating effective node behavior. The proposed scheme set forth a good detection rate but is specific only to 
smartphone applications. 
Considering the network survivability Sengathin et al. [9] have proposed a futuristic trust coefficient-based semi-
markov prediction model (FTCSPM) for mitigating selfish nodes from the compromised network. The model 
incorporates a non-birth-death process to estimate the trust coefficient. It consists of three state models viz, 
cooperative, selfish, and failed state. The stochastic transition probabilities estimate the selfish behavior of the node. 
The model also frames the lower and upper bound of network survivability. The model incorporates only the selfish 
behavior of the node and lacks to mitigate the malicious activity from the network irrespective of selfishness.   
Sometimes the state of the system is unseen and the observer only has certain shreds of evidence to realize the 
current state. At that instant, the Hidden Markov Model (HMM) comes into play. Liu and Datta [10] proposed an 
HMM-based context-aware trust model to envisage the dynamic behavior of the agent. In this paper, the authors 
incorporated entropy-based information theory and multiple key factors for the selection of useful features that 
defines a complete profile agent. The profile details make for the observation matrix and the quality rating of the 
agent account for the hidden state. The behavioral analysis of the agent is exploited by finite-state HMM. The 
proposed mechanism is better than traditional HMM but is specific to agent-based systems and needs to include the 
effect of malicious attacks. 
Heading towards the attack, Pathak et al.[11] proposed an intrusion detection system where they have applied two 
states' HMM to evaluate the reputation of vehicles. Safe and malicious are considered as a state while send, drop, 
and forward are regarded as observation states. The authors have directly applied the random probabilities value and 
have evaluated the reputation of the vehicle. Extraction of these probabilities and derivation of reputation is not 
discussed.  Progressing, Chen et al. [12] proposed a State-based classification model that recognizes multi-stage 
advanced attacks. The proposed model contains the log of observed activities. Common activities in the log are 
correlated within a given timeframe into a single event with weight and hit count. The authors have incorporated an 
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adaptive sliding window approach to correlate the data set. The correlated log accounts for the node's behavior that 
is examined by the HMM-based model comprising of three stages namely, reconnaissance, attack, and stepping 
stone. The proposed mechanism yields good detection performance but demands heavy storage space and is limited 
to IP-address attacks. 
Further, Wu et al. [13] proposed an opportunistic data forwarding mechanism (OADM) for the analysis of the 
node’s behavior. The attacking probability of the node is judged by four parameters viz, forwarding rate, residual 
energy, degree of maliciousness, and state history of the node. These parameters are employed in HMM to yield the 
current state of the node. For the survivability of the network, an effective relay node is selected to route the packet 
from source to destination. The mechanism is solitary suitable for on-off attacks. 
For multi-stage attacks, Li et al. [14] have proposed a probabilistic intrusion detection system for recognizing 
malicious events. The work adopts a three-step process for the detection of malicious attacks. In the first step, the 
temporal relationship is established using HMM between attack phases and intent states. This step measures the 
deviation of a compromised node from one state to another. Sometimes, the availability of information is incomplete 
and unidentified, therefore in the next step; a rule-based technique is applied to adjust the parameters at runtime. 
Finally, to interpret the result Loopy Belief Propagation (LBP) is modeled to optimize the HMM into a single 
output. The model is acceptable for recognizing the cause-and-effect relationship of known planned attack events. 
But for unknown attacks, the effectiveness of the model is not good. In addition, the cooperation of nodes in the 
network is not justified.  
Further, Ingale et al. [15] proposed a prediction mechanism using the KDDCUP’99 network intrusion data set. The 
authors have incorporated both HMM and Naïve Bayes methods for predicting MSA. Though the hybrid form of 
this model predicts attacks accurately, the redundancy in the KDDCUP’99 dataset results in end-to-end delay. 
Out of the literature survey, we could not found any standard mathematical model that successfully incorporates the 
effect of attacks in a compromised network. Moreover, they demand heavy storage space that affects the residual 
power of the node, which is not suitable for resource constraint IoT networks. In addition, the survivability and 
integrity of the network have not been investigated. The comparative analysis of these states of art for hidden 
markov based trust models are presented in table 1. 
 

Table 1: Comparative analysis of various trust schemes 

 
Trust Model Key Target Methodology used Attacks defended Limitations 

FUCEM [5] To establish 
effective routing 
path 

Semi-markov 
approach 

None Lacks to incorporate 
effect of attacks 

POR[6] Network 
survivability with 
effective routing 
path 

GLS, QBLS, semi-
markov process 

None Quantitative 
estimation of 
transition probability 
is vague and 
uncertain. 

DTMC[8] To analyze the 
behavior of node 

Semi-markov 
approach 

SMS/MMS based 
worms 

Specific to only 
smart phone 
applications 

FTCSPM[9] To mitigate selfish 
node from network 

Non-birth death 
process 

none Lacks to mitigate the 
malicious activity 
from network 
irrespective of 
selfishness 

OADM [13] Analysis of node’s 
behavior 

HMM On-off attack Fixed for on-off 
attack 

[10] To investigate the 
behavior of the 
agent. 

HMM model with 
entropy-based 
information system 

none Lacks to show the 
effect of 
uncooperativeness. 
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[12] To tackle the 
multistage advance 
attacks 

HMM, Adaptive 
sliding window 
approach with log 
maintenance.  

IP address attacks Demands heavy 
storage space 

 [14] To recognize the 
malicious events 

HMM rule-based 
technique , Loopy 
Belief propagation 

Recognize known 
planned attacks 

Not good for 
unknown attacks. 

HMT 
(proposed 
approach) 

To increase the 
survivability of the 
network by 
intelligently 
mitigating selfish 
and malicious nodes 
when it is at the 
edge of trespassing 
the network 

HMM with the 
maximum 
likelihood function 

Sinkhole, Blackhole 
and Grey Hole 
attacks 

Can extend the 
model by including 
more observable 
symbols like degree 
connectivity and 
validity can be 
further improved by 
modeling against 
generalized attacks. 
Besides , other 
routing protocol like 
RPL can be included 
in HMT model for 
further study. 

 
Further, FUCEM [5], FTCSPM [9], and OADM [13] discussed above are considered for comparison since they are 
proven as significant models for efficient and effective evaluation of node’s trust. In addition, these models predict 
the node’s behavior effectively and improve the performance of the network. 

 

3. System Model 
The purpose of the work is to implement the reliable routing path from source to destination along with high 
network lifetime. The section comprises of network structure and the system architecture of the proposed Hidden 
Markov Trust Model. 
 

3.1 Network Structure 

Here we consider a network incorporated by a set of randomly deployed sensor nodes SN, where ‘N’ is the number 
of sensor nodes. Let there be nodes of one of the kinds either adaptive node, mischievous node, or greedy node as 
shown in figure 1.  An optimal trusted path is established between source and destination using LOADng protocol. 
Consistently, after every time ‘T’, the behavior of nodes in the path is self quantified through likelihood function 
(section 4) and are judged as adaptive, malicious, or greedy nodes. The model provides Time-to-Reset (TTR) to the 
mischievous nodes to improve themselves before withdrawing it from the network routing path. Till that duration, 
they are allowed to participate and serve the network. The maximum TTR provided is till the trust value outweighs 
the threshold trust. Thus the involuntary benefit of the malicious nodes taking part in network function can be 
contemplated and we can exploit the node to improve the survivability of the network till the benefits outweigh the 
damage to the network. While on the contrary, the selfish nodes whose objective function is to drop the packets are 
immediately isolated and destroyed from the network as they tend to never participate in the network function. Thus, 
it’s clearly a waste of resources of other nodes to which they attempt to communicate [16]. Eventually, the new 
trusted routing path free from greedy node and mischievous (when TTR expires) node is established between source 
and destination.   
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Fig.1 Network Structure 
 

3.2 System Architecture 

The proposed system is made up of three modules viz. Path formation module, Learning module, and Decision 
module (Figure 2). The path formation module evaluates the secured shortest path ‘P’ to the destination by electing 
the trustworthy nodes present in the network and initiates the flow of packets. After every time ‘T’ we train the 
nodes in the path ‘P’ using the proposed HMT model and then analyze the behavior of each node. Once the behavior 
of nodes is examined, the decision module is activated, which eliminates the unreliable nodes from the network. The 
upcoming section covers the learning and decision module thoroughly while the path formation module is omitted 
since the optimal path is established using LOADng routing protocol with trust value as an additional attribute.  
 

 
 
 

Fig. 2 System Architecture 
 

4. Learning Module: Node Behavior Modeling  
The objective of our model is to recognize the reliable movement of packets from source to destination via 
intermediate nodes. But since the actual state of the node in an IoT network cannot be directly observed, therefore 
the proposed model had made use of the Hidden Markov process. This is done to observe the behavior of nodes and 
their attacking probabilities. The probability distribution of the node’s state is estimated using the input given and 
the emitted product visible to the observer. The section covers the basics of HMM and the approach used in our 
model to estimate the behavior of the node.  
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4.1 Hidden Markov Model: The Basics 

Briefly, HMM [17] is defined as a Quin Tuple   Ħ = (Q, O, π, T, E). Where, 

Q => It defines the set of distinct states in the Markov process. {q1, q2, q3....qn}, where ‘n’ is the number of states.     

O => It is the set of observation symbols. {O1, O2, O3…. Om}, where ‘m’ is the number of observations.  

π => It is defined as the initial state of the node at t = 0. 

T => It is the state transition probability matrix of size |Q| X |Q|. Where Tij is the probability of the system moving 
from state qi at the time‘t’ to state qj at a time‘t+1’ and  ∑ 𝑇𝑖𝑗 = 1𝑛𝑗=1  

E => It is the emission probability matrix of size |Q| X |O|. Where Ejk is the probability of output Ok at time t when 
the system is in state qj at a time ‘t’ and ∑ 𝐸𝑗𝑘 = 1𝑚𝑘=1  

Provided HMM ‘Ħ’ and the observations ‘O’, the likelihood of the system for a given state qj at time ‘t’; is estimated 
by the forward probability algorithm and is expressed as: 

                                         𝛼𝑡(𝑗) =  ∑ 𝛼𝑡−1(𝑖). 𝑇𝑖𝑗𝐸𝑗(𝑂𝑡)𝑛𝑖=1 ,                                                             (1) 

where 𝛼𝑡−1(𝑖)is the previous forward path probability when the system was at state qi at previous time step ‘t-1’,  𝑇𝑖𝑗  

is the transition probability from previous state qi to current state qj, and 𝐸𝑗(𝑂𝑡) is the emission probability of the 

observation O at a time ‘t’ given the current state is qj. 

4.2 Hidden Markov Trust (HMT) Model: the proposed Approach 

Greedy and mischievous nodes in the IoT network do not forward the packets properly from one end to another. 
These nodes drop the packets or tamper the packets, thus are considered as non-cooperative nodes that are not 
adaptable in an IoT environment. 

 

Fig. 3 Transition diagram for the proposed approach 

Based on the properties of HMM (section 4.1), the dynamic trustworthiness of the node is modeled by a 4-state 
HMM model, which predicts the probability distribution of the node’s next state. The proposed model is represented 
as MSI(N) and is defined as quintuple MSI(N) = (S, O, π, P, E) (figure 3), where 

‘S’ is the finite state space that defines the behavior of the node. It consists of four states: adaptive(A), greedy(G), 
mischievous(M), and crashed(C) state. The adaptive state is also known as the cooperative state; here the node is 
reliable to forward packets from one end to another. Nodes in a greedy state are selfish in nature, so instead of 
forwarding the packets of another node, they drop the packets to save their energy. Mischievous (malicious) nodes 
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restrain the integrity of the data by tampering with the data packets of other nodes while in transmission. Nodes in a 
crashed state are said to be failed nodes that do not take part in routing.          

‘O’ is the set of emitted symbols; visible to users while there is the transmission of data from source to destination. 
It consists of two symbols: expected output (EO) and unexpected output (UEO) at each state. 

‘π’ is the initial state probability of the node at time ‘t =0’. When the network is deployed all nodes are assumed to 
be adaptive in nature i.e., π = {1,0,0,0}   

‘P’ is expressed as state transition probability of matrix of size 4 x 4. (section 4.3) 

‘E’ is expressed as the emission probability matrix of size 4 x 2. (Section 4.4) 

Estimation of stochastic probabilities ‘P and ‘E’ are discussed in upcoming sections. 

4.3 Estimation of state transition probabilities (P) 

The state transition probability matrix provides the probability of a node transitioning from one state to another in a 
single time unit. The transition probabilities of the proposed model are derived from the data flow rate of the packet 
and the residual energy of the node. As shown in figure 3, the stochastic transition probabilities are classified as:  𝜆𝐴𝐺=> A cooperative node in an IoT environment begins to enter into the greedy state when the residual energy of 
the node comes down. The average lifetime of the node defines the probability of it; transiting from adaptive to 
greedy state. It is determined as the ratio of energy consumed by the node in receiving and transmitting packets to 
the energy left after interplay.  

                                               𝜆𝐴𝐺 = 𝐸𝑐𝐸𝑟 =  𝐸𝑖−𝐸𝑟𝐸𝑟 ,                                                                                          (2) 

Where,𝐸𝑐 is the energy consumed, 𝐸𝑟  is residual energy, 𝐸𝑖 is initial energy. 

From eq 2, a node is considered to be adaptive when the value of ‘𝜆𝐴𝐺’ is less i.e., residual energy of the node is 
high. 𝜇𝐺𝐴 => A greedy node at times attempts to cooperate and tries to adapt itself in an IoT environment by forwarding 
data packets on behalf of their neighbor nodes. Thus, the probability of a node to transit its state from greedy to 
adaptive is the ratio of the number of packets forwarded to the total number of packets received from neighbor 
nodes.  

                                                  𝜇𝐺𝐴 = 𝑝𝑘𝑡𝑠𝑓𝑝𝑘𝑡𝑠𝑟                                                                                  (3) 

Where,𝑝𝑘𝑡𝑠𝑓 is the number of packets forwarded,𝑝𝑘𝑡𝑠𝑟  is the number of packets received.  𝜆𝐴𝐶 = 𝜆𝐺𝐶 = 𝜆𝑀𝐶 =>A node in any state tends to enter the crashed state if it starts dropping the packets instead 
of transmitting them. So, the transition probability of node from any of the states (adaptive, greedy, and 
mischievous) to crashed state is given as the ratio of the number of packets dropped to the number of packets 
received by the node. 

                                        𝜆𝐴𝐶 = 𝜆𝐺𝐶 = 𝜆𝑀𝐶 = 𝑝𝑘𝑡𝑠𝑑𝑝𝑘𝑡𝑠𝑟                                                                    (4) 

Where, 𝑝𝑘𝑡𝑠𝑑 is the number of packets dropped, 𝑝𝑘𝑡𝑠𝑟  is the number of packets received. 𝜆𝐴𝑀  =>We assume an attack model that interrupts the integrity of the message forwarded from source to 
destination. Therefore, the probability of transition from adaptive to mischievous state can be referred to as the ratio 
of the number of packets modified to the number of packets received by the node (eq 5). Furthermore, to detect 
which node modifies the packet we have implemented the concept of checkpoint after every ‘m’ multiple hop. 
Checkpoint is used to declare the point before which all nodes are in a consistent state and had transmitted 
unmodified packets. Maintenance of this save point is done by an edge node. After every ‘m’ hops edge node 
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verifies the forwarded packets by comparing them with the source data packets. If the packet received is damaged, it 
will backtrack all nodes one by one, till the previous save point. We rely on the fact that nodes store their data till the 
next checkpoint is administered. Thereby, the number of packets modified by each node is discovered and the 
transition probability of node from adaptive state to modified state is evaluated.       

                                        𝜆𝐴𝑀 = 𝑝𝑘𝑡𝑠𝑚𝑝𝑘𝑡𝑠𝑟                                                                                           (5) 

Where, 𝑝𝑘𝑡𝑠𝑚 is the number of packets modified (tempered), 𝑝𝑘𝑡𝑠𝑟  is the number of packets received. 𝜇𝑀𝐴 => It is possible that the mischievous node can be released from the impact of an intruder. So instead of 
immediately isolating a node, few opportunities can be given to it; to correct itself and get removed from malicious 
activity. Thus, the rehabilitation probability of the node is given as  

                                        𝜇𝑀𝐴 = 1𝑇𝑇𝑅                                                                                            (6) 

Where Time-to-Reset (TTR) is the time required to realign itself into an adaptive state. 

Summarizing, the above transition probabilities, the complete state transition probability matrix is given as in eq 7 

 

𝑃 =  [  
  𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒(𝐴) 𝐺𝑟𝑒𝑒𝑑𝑦(𝐺) 𝑀𝑖𝑠𝑐ℎ𝑖𝑒𝑣𝑜𝑢𝑠(𝑀) 𝐶𝑟𝑎𝑠ℎ𝑒𝑑(𝐶)𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒(𝐴) (1 − (𝜆𝐴𝐺 + 𝜆𝐴𝑀 + 𝜆𝐴𝐶)) 𝜆𝐴𝐺 𝜆𝐴𝑀 𝜆𝐴𝐶𝐺𝑟𝑒𝑒𝑑𝑦(𝐺) 𝜇𝐺𝐴 (1 − (𝜇𝐺𝐴 + 𝜆𝐺𝐶)) 0 𝜆𝐺𝐶𝑀𝑖𝑠𝑐ℎ𝑖𝑒𝑣𝑜𝑢𝑠(𝑀) 𝜇𝑀𝐴 0 (1 − (𝜇𝑀𝐴 + 𝜆𝑀𝐶)) 𝜆𝑀𝐶𝐶𝑟𝑎𝑠ℎ𝑒𝑑(𝐶) 0 0 0 1 ]  

  
                                   (7)  

 

4.4 Estimation of Emission Probability Matrix (E) 

Emission probability also termed as observation output probability is defined as the probability of a node to yield 
each output (observation) symbol from every single state in a single time unit. Given as in eq 8     

                               𝐸𝑗𝑘 ∶= 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑂𝑘𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡|𝑆𝑗 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 )                                                    (8) 

As discussed in section 4.2, the proposed model assumes two observation symbols, which are expected output and 
unexpected output. So, the emission probability matrix from eq 8 is presented in eq 9: 

𝐸 ∶=
[  
   
 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡(𝐸𝑂) 𝑈𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡(𝑈𝐸𝑂)𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒(𝐴) 𝑁𝑜.𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑘𝑡𝑠 𝑓𝑤𝑑𝑁𝑜.𝑜𝑓 𝑝𝑘𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 1 − 𝑁𝑜.𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑘𝑡𝑠 𝑓𝑤𝑑𝑁𝑜.𝑜𝑓 𝑝𝑘𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝐺𝑟𝑒𝑒𝑑𝑦(𝐺) 𝑁𝑜.𝑜𝑓 𝑝𝑘𝑡𝑠 𝑑𝑟𝑜𝑝𝑝𝑒𝑑𝑁𝑜.𝑜𝑓 𝑝𝑘𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 1 − 𝑁𝑜.𝑜𝑓 𝑝𝑘𝑡𝑠 𝑑𝑟𝑜𝑝𝑝𝑒𝑑𝑁𝑜.𝑜𝑓 𝑝𝑘𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑀𝑖𝑠𝑐ℎ𝑖𝑒𝑣𝑜𝑢𝑠(𝑀) 𝑁𝑜.𝑜𝑓 𝑡𝑒𝑚𝑝𝑒𝑟𝑒𝑑 𝑝𝑘𝑡𝑠 𝑁𝑜.𝑜𝑓 𝑝𝑘𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 1 − 𝑁𝑜.𝑜𝑓 𝑡𝑒𝑚𝑝𝑒𝑟𝑒𝑑 𝑝𝑘𝑡𝑠 𝑁𝑜.𝑜𝑓 𝑝𝑘𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝐶𝑟𝑎𝑠ℎ𝑒𝑑(𝐶) 0 1 ]  

   
 
                                                 (9)  

4.5 Evaluation of Trusted Node based on Hidden Markov Model (MSI(N)) 

Provided the model MSI(N) (Section 4), the likelihood of the node with the expected output, to be trusted in the 
routing process, is estimated using the forward probability algorithm. Utilizing equation 1 we have:  

 The probability of a node to be in adaptive state at the time ‘t’ with expected output is given as: 𝛼𝑡(𝐴) =  𝛼𝑡−1(𝐴). 𝑃𝐴𝐴. 𝐸𝐴(𝐸𝑂𝑡) + 𝛼𝑡−1(𝐺). 𝑃𝐺𝐴. 𝐸𝐴(𝐸𝑂𝑡) + 𝛼𝑡−1(𝑀). 𝑃𝑀𝐴. 𝐸𝐴(𝐸𝑂𝑡) + 𝛼𝑡−1(𝐶). 𝑃𝐶𝐴. 𝐸𝐴(𝐸𝑂𝑡)                   (10) 

 Similarly, the probability of a node to be in a Greedy state with expected output is given as: 𝛼𝑡(𝐺) =  𝛼𝑡−1(𝐴). 𝑃𝐴𝐺 . 𝐸𝐺(𝐸𝑂𝑡) + 𝛼𝑡−1(𝐺). 𝑃𝐺𝐺 . 𝐸𝐺(𝐸𝑂𝑡) + 𝛼𝑡−1(𝑀). 𝑃𝑀𝐺 . 𝐸𝐺(𝐸𝑂𝑡) + 𝛼𝑡−1(𝐶). 𝑃𝐶𝐺 . 𝐸𝐺(𝐸𝑂𝑡)                 (11) 
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 The probability of a node to be in a Mischievous state with expected output is given as: 𝛼𝑡(𝑀) =  𝛼𝑡−1(𝐴). 𝑃𝐴𝑀. 𝐸𝑀(𝐸𝑂𝑡) + 𝛼𝑡−1(𝐺). 𝑃𝐺𝑀. 𝐸𝑀(𝐸𝑂𝑡) + 𝛼𝑡−1(𝑀). 𝑃𝑀𝑀. 𝐸𝑀(𝐸𝑂𝑡) + 𝛼𝑡−1(𝐶). 𝑃𝐶𝑀 . 𝐸𝑀(𝐸𝑂𝑡)            (12) 

 

4.6 Decision Making Module 

The maximum likelihood of the node’s behavior determines the isolation of the node and the integrity is maintained 
by utilizing the likelihood of expected valid output that is regulated at different states. Maximum of  𝛼𝑡(𝐴) , 𝛼𝑡(𝐺), 
and 𝛼𝑡(𝑀) stimulate the state of the node. If the maximum value out of three is 𝛼𝑡(𝑀), then the node is mischievous 
in nature. It is not immediately isolated but is given TTR time to reset and detach itself from the malicious effect. 
TTR is selected to such an extent, that benefits to the network always overpower the damage caused. As from eq. 
10, it is evident that TTR is inversely proportional to trust. Thus the value of TTR is so forth selected, that the 
probability of trust is always above its threshold value.  This is done to increase the survivability of the network. 
Secondly, if the maximum value is 𝛼𝑡(𝐺), then the node is said to be greedy in nature. The greediness of the nodes 
can be due to certain reasons. First, a node can have minimum energy and can be at the edge of the crashed state. In 
this situation, the node is only isolated from the routing function and is provided Time-to-Live (TTL) to restore its 
energy. If the node recovers before TTL expires, it is carried back to the network else crashed. Second, a node can 
be selfish in nature where despite having adequate energy, it intends to never participate in the network function. In 
such a case, the node is immediately isolated and destroyed from the network. The line of greediness is evaluated by 
measuring the energy of the greedy node. Finally, if the maximum value is 𝛼𝑡(𝐴), then it determines that the node is 
trustworthy but besides trustworthiness, if the trust value is more than the trust threshold then the node is adaptive in 
a network environment with valid output else it yields invalid output because of mischievous activity along the path. 
Figure 4 illustrates the decision module of the proposed solution. 

 

 

Fig. 4: Decision module of the proposed solution 
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5. Simulation results and analysis 
Till now, we have obtained the probability of node behavior in different states. This section presents the simulation 
environment and the network survivability of IoT networks. 

5.1 Simulation Environment  

In this work, we use MATLAB-R2018 to perform the simulations. All simulations are performed in a 500 X 500 m2 
approximately; over 50 nodes with a transmission range of 150 m are distributed randomly since it generates a 
realistic node pattern. The traffic of the simulated model is represented in terms of a constant bit rate with                 
40 pkts/sec. Further, modified LOADng is used as a routing protocol and the simulation time is set to 400 sec. 
Table2 presents the simulation parameters for analyzing network performance. 

TABLE 2: Simulation Configuration 

Simulation Parameters Values 

Maximum Number of nodes 50 

Protocol LOADng 

Initial energy 10 J 

Energy threshold 4 J 

TTL & TTR 2sec 

Percentage of unauthenticated nodes 5% 

Maximum number of compromised nodes 5 

Area Size 500 m2 x 500 m2 

Packet Size 500 bytes 

CBR 40 

Range 150 m  

Time interval for path selection(T) 15 sec 

Time for simulation 400 sec  
 

Initially, all nodes in the network are adaptive in nature and the modified LOADng routing path is selected for 
traffic movement from the source to the gateway. Once the trusted path is selected, traffic continues to move from 
source to gateway for ‘T’ sec. After every ‘T’ sec, the path is analyzed again, mistrusted nodes are isolated and a 
new reliable trusted path is selected for traffic movement. This continues until the end of the simulation. We tested 
our proposed solution on a varied number of nodes and attack percentages and classified this into different cases.   
Case I deals with the simulation of a Blackhole attack with different network sizes and vulnerabilities. Case II hands 
out a simulation of a Greyhole attack with varying network size and vulnerability and Case III presents the sinkhole 
attack in a scalable and vulnerable environment.  
In addition, the survivability of the network depends on the behavior of the node towards the establishment of a 
reliable routing path [18], [19]. However, the presence of selfish and malicious behavior drastically influences the 
survivability, integrity, and throughput of the network. Hence the performance of the model; is evaluated based on 
the following parameters such as survivability rate, packet delivery ratio, average energy consumption, average end-
to-end delay, routing overhead, detection rate, average trust value , false-positive, and false-negative rates. 
 
 Survivability rate– It is defined as the capability of the system to fulfill its objective in a timely manner, in the 

presence of attacks, failures, or accidents. It is the ratio between the number of active nodes and a total number 
of nodes present in the network at a particular instant. 

                                                       𝑆𝑢𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑟𝑎𝑡𝑒 =  𝑁𝑎𝑐𝑡𝑖𝑣𝑒𝑁 ,                                                                        (13) 

where 𝑁𝑎𝑐𝑡𝑖𝑣𝑒 is the number of active nodes in the network and N is the total number of nodes.  
 Packet Delivery Ratio (PDR) – It is the ratio of the number of packets received by the destination node to the 

number of packets sent to the destination node. 

                                               𝑃𝐷𝑅 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑒𝑛𝑡                                                                          (14) 

 Routing Overhead–It is considered as the frequency of discovering routing paths.  
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         𝑅𝑜𝑢𝑡𝑖𝑛𝑔 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑓𝑜𝑟 𝑟𝑜𝑢𝑡𝑒 𝑑𝑖𝑐𝑜𝑣𝑒𝑟𝑦 𝑎𝑛𝑑 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠                                    (15) 

 Detection Rate–It is the amount of malicious or selfish nodes detected from the pool of nodes in a network.  

                      𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑡𝑎𝑐𝑘𝑖𝑛𝑔 𝑛𝑜𝑑𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑡𝑎𝑐𝑘𝑖𝑛𝑔 𝑛𝑜𝑑𝑒𝑠                                                                    (16) 

 False positive rate –It is the ratio of number of false positive to the total number of negative events.  

                                                    𝐹𝑃𝑅 = 𝐹𝑃𝐹𝑃+𝑇𝑁                                                                                                          (17) 

where FP is number of negative events wrongly categorized as positive, TN is is the number of true negative 
events.  

 False negative rate – It is the ratio of false negative to the total number of positive events 

                                          𝐹𝑁𝑅 = 𝐹𝑁𝐹𝑁+𝑇𝑃                                                                                                                   (18) 

where FN is number of false negatives, TP is is the number of true positive events.  

 Avg Energy Consumption – It is the total energy consumed by the node during the packet transmission and 
reception. 

 Avg End-to-end Delay – It is the average time taken by the data packets to reach their destination along with 
connection establishment and delays. 

 Average Trust value – Trust is defined as an association between two nodes. Average trust is the degree of node 
to be collaborative in nature.  
 

5.2 Impact of TTR on the survivability of the network 

The section analyses the effect of TTR on the survivability and overall trust of the network. Figure 5(a) compares 
the survivability rate against time for TTR = 0, 1, 2 and 3 sec. We observe that the survivability rate of the network 
decreases abruptly with lower values of TTR. The model estimates on an average 93.2% of survivability for       
TTR = 3sec, which is then dropped to 91.6 % for TTR = 2sec followed by 89.6% and 73.6 % for TTR = 1sec and 
TTR = 0 respectively. On contrary, Figure 5(b) compares overall trust against time for the same values of TTR. We 
observe that the trust value decreases gradually with an increase in TTR. The model estimates the probability of trust 
to be 0.95 when no time-based opportunity is given (i.e. TTR = 0) to nodes. Trust value reduces by 4%, 1% and 0.5 
% for TTR = 1, 2 and 3sec respectively. Comparative study of figure 5(a) and figure 5(b) states though time-based 
opportunity (TTR) decreases the overall trust; but when benefits (survivability) are analyzed, the model outperforms 
and gives a better result. Therefore, the value of TTR has to be opted to an extent that trust value does not drop 
below threshold trust. Thus we can infer that providing a time-based opportunity to nodes in the network plays an 
important role in the welfare of IoT network communication. In addition, both figure 5(a) and 5(b) presents the 
decrease in survivability rate and trust value as time proceeds. This is because with time residual energy of the nodes 
becomes less. 
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(a) 

 

(b) 

 
Fig. 5 Impact of TTR on survivability rate and overall trust of the network 

 

5.3 Performance of the model in presence of various attacks 

In this section, the impact of Blackhole (BH), Greyhole(GH), and Sinkhole(SH) attacks in IoT networks is been 
examined for different performance parameters as discussed in section 5.1. A blackhole (BH) attack is an attack 
where the attacker claims that it has the shortest route to the destination node, even if it does not have any route to it. 
Consequently, all packets pass through it and this enables the attacker node (BH node) to forward or discard packets 
during the data transmission. Further, a Greyhole attack is a variant of a BH attack, where GH nodes drop the 
packets with a certain probability. These nodes discard packets for some particular time duration and then switch 
back to normal behavior, resulting in on-off vulnerability. And Sinkhole attack is the type of attack where 
compromised nodes launch other types of attacks like GH and modification attacks. During the course of action, it 
aims to drop or modify the data information, thereby making its detection even more difficult. Different test 
scenarios for the proposed solutions are:  

 

Case I: Simulation of Blackhole attack with different network size and adversary 

Simulation is carried out in presence of various BH nodes from sparse (10 nodes) to dense (50 nodes) sensor 
network. The comparisons were made for a different number of blackhole nodes (BH=0, BH=2, BH=4, BH=6). The 
performance of the network is depicted in Figure 6(a – e) and the following observations are drawn: 

1) As shown in figure 6(a), the result of PDR in the absence of BH node (BH=0) is highest irrespective of the 
number of sensor nodes in the network. The plot depicts a decrease in PDR by 18%, 45%, and 75% for BH=2, 
BH=4, and BH= 6 respectively, when the network is neither sparse nor dense (30 nodes). This is because the 
BH node in the network aims to cut the connection between two communicating nodes and absorb all 
intercepting packets. Looking at the results, when the network progresses from sparse to dense, PDR decreases 
due to the collision of packets during data transmission.   

2) Figure 6(b), depicts the average energy consumption of the nodes in presence of BH nodes. The model reveals 
the highest energy consumption in absence of BH nodes, but as the BH nodes increase energy consumed by 
nodes is decreased by 8%, 20%, and 40 % for BH= 2, BH= 4, and BH= 6 respectively because packets are 
dropped by attacking nodes. Therefore, normal nodes tend to remain ideal as they have no forwarding packets. 
In addition, our proposed solution serves to distribute energy among mobile nodes. Consequently, an increase in 
mobile nodes decreases the energy consumption which is evident from the graph.    
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3) Figure 6(c) illustrates the routing overhead of the model in presence of BH nodes. Isolating BH (selfish) nodes 
from the network initiate the selection of a new routing path from source to destination. Routing overhead is 
high for a large number of BH nodes and low in absence of it, as the transmission of all packets takes place in a 
single run. The overhead is increased by 86% for BH=6 when compared to the network without BH nodes. 
Moreover, the number of mobile nodes also increases the routing overhead because more control packets are 
required to discover the routes.  

4) Figure 6(d) presents the result of end-to-end delay with varying network sizes and BH nodes. Initially, in a 
sparse network, the result of delivering packets from source to destination is low, but as the network size 
increases, the transmission speed from source to destination becomes less resulting in a 47% increase in end-to-
end delay. Since the packets have to hop through an extra number of nodes. Likewise, the increase in BH nodes 
also increases the delay, as the compromised nodes restrict the data transmission resulting in the resending of 
the packets.   

5) Figure 6(e) depicts the detection rate of the compromised nodes. It is inferred, the quantity of nodes in the 
network helps in increasing the detection rate on an average by 60%. Besides this, on the contrary, attackers try 
to reduce the rate of detection within a specified network size. It is observed, when BH=6, then approximately 
60% of the BH nodes are detected while when BH=4, 75% of the BH nodes are discovered. In addition, the 
position of BH nodes plays an important role, if the location is close to the network traffic then compromised 
nodes can be easily detected compared to a node located at a distance.    
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(e)  
Fig. 6 Performance metrics of the proposed approach for IoT network in presence of Blackhole attack 

 

Case II: Simulation of Greyhole attack with different network size and adversary 

The section discusses the impact of GH attacks on IoT networks. We have analyzed and demonstrated the discussed 
performance metrics. The following observations are drawn: 

1. Figure 7(a) demonstrates that the effectiveness of GH nodes on sensor networks is similar to existing BH 
effects. Observation states that PDR decreases with an increase in the number of mobile nodes due to collision 
and with the increase in GH nodes, which aims to absorb all the forwarding packets. The average decrease in 
PDR is 37% when the number of GH nodes is six with respect to the network without any GH nodes. However, 
the impact of GH nodes in PDR is approximately 5% higher than BH nodes. This is because; GH nodes switch 
their behavior after every specified time. This allows the partial flow of packets.  

2. Figure 7(b), illustrates the decrease in average energy consumption of the nodes with the increase in the number 
of mobile and GH nodes. On average, energy consumption is reduced to 67%, when GH= 6 with respect to 
network free from GH attack. Energy consumed by GH attackers is 10% more than BH attackers in sparse 
networks followed by a 12% increase in the dense network since the switching nature of GH nodes manages to 
forward some packets. 

3. Figure 7(c); represent the routing overhead in the presence of GH nodes. Initially routing overhead is low for 
GH = 0, and GH = 2 but as the network becomes dense routing overhead increases and becomes stable because 
the selection probability of trusted path is more than un-trusted path. While on the contrary rise in GH nodes, 
escalates the routing overhead of the network because every time the selection of a new routing path is initiated. 
The graph depicts 0.6 % and 0.8 % of overhead when GH=2 and GH=4, which instantly increase to 6.8 % when 
GH= 6, because each time the new path is initiated which increases the flow of control packets.  

4. Delay in delivering packets from source to destination is highlighted in figure 7(d). On average packet is 
delayed by 1sec in absence of GH nodes and then as the attacking likelihood increases delay to 1.3 sec. The 
graph shows small variations because the on-off nature of GH nodes models them to be equivalent to normal 
nodes. Besides, due to the same reason, the overall delay in presence of GH nodes is less when compared to BH 
nodes. In addition, the delay is increased with increasing mobile nodes because packets now have to cover more 
hops. 

5. Attack detection analysis in figure 7(e) depicts the unstable rate of detection because the position and on-off 
nature of the GH node play a key role in the detection mechanism. Moreover, the average detection rate of BH 
nodes is 2% higher than that of GH nodes because the unpredicted nature of GH nodes helps them to cover up 
themselves in the normal nodes, thereby making detection difficult.    
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Fig. 7 Performance metrics of the proposed approach for IoT network in presence of Greyhole attack 

 

Case III: Simulation of Sinkhole attack with different network size and adversary 

A sinkhole attack is a generalized attack that includes the previously discussed attacks along with a modification 
attack. This attack is investigated by various researchers; therefore a comparative analysis with other models like 
FTCSPM [9], FUCEM [5], and OADM [13] is presented in this section.     

a) Performance metrics versus varying number of mobile nodes 

We present the performance of the proposed approach by differing the number of mobile nodes in the environment. 
The number of nodes is varied from 10 to 50 with 10% nodes as misbehaving nodes. Fig 8a – d depicts the plots of 
average energy consumptions, packet delivery ratio, average delay, and routing overhead for our approach along 
with comparative models. 

1) The plot depicted in figure 8(a) shows the node’s average energy consumption of the proposed approach with 
the three discussed benchmark systems. It can be illustrated that in general, energy consumption considerably 
increases when the number of mobile nodes in the network increases; this is due to the increase in the data flow. 
But the proposed approach consumes less energy as compared to others when mobile nodes in the environment 
are multiplied. This is due to the effectiveness of our approach which despite the huge data flow distributes the 
energy among the varying mobile nodes during the period of transmission. Since energy consumption depends 
on the distance between the two nodes. Though the proposed approach initially shows an increase of 0.1J, 0.09J, 
and 0.121 J when compared with FTCSPM, FUCEM, and OADM respectively. But as the mobile nodes 
increases, the proposed approach shows a considerable decrease in energy consumption with 0.03 J, 0.88 J, and 
0.32 J with 50 nodes when compared with FTCSPM, FUCEM and OADM respectively. 

2) The plot in figure 8(b) presents the PDR of the proposed approach with three benchmark mechanisms. The 
figure concludes an increase in PDR from 17% to 30% with respect to FTCSPM, from 3% to 12% with respect 
to FUCEM, and 0.5% to 1.5% with respect to OADM. All in all, the proposed approach shows a significant 
improvement in PDR by 10.5%. 

3) Further, figure 8(c) plots the average end-to-end delay for the given number of mobile nodes. The graph depicts, 
a significant decrease in average delay because only the reliable routing path is selected which prevents 
unnecessary delay. On average the proposed approach presents 90%,62%, and 13% decrease in delay when 
compared to FTCSPM, FUCEM, and OADM respectively. 

4) Finally, figure 8(d) depicts the plot of routing overhead derived for a different number of mobile nodes. The 
figure presents the increase in overhead with the increment of nodes. It can be concluded that our model shows 
a significant increase in performance by an average decrement of 88%, 92%, and 56.6% of overhead for 
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FTCSPM, FUCEM, and OADM respectively. This is due to the adopted strategy which selects the routing path 
with the minimal number of control packets. 
 

  
(a) (b) 

 

  
(c ) (d) 

 

 

Fig. 8 Comparison of the proposed approach on (a) energy consumption (b) PDR (c) Average delay (d) Routing 
Overhead 

 

b) Performance metrics versus varying number of attacking nodes 

Here the performance of the proposed approach by varying the number of attackers in an IoT environment is 
explored. The percentage of attackers is varied from 10% to 50% with a total of 50 IoT nodes. Fig. 9(a) – 9(c) 
depicts the plot of PDR, routing overhead, and detection rate in presence of floating attackers. The plots are 
compared with FUCEM [5] and OADM [13]. Here we have not used FTCSPM [9] for comparative measurement 
because the model deals only with selfish activity, the effect of maliciousness is not included.  
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1) The plot depicted in figure 9(a) shows that there is a decrease in PDR with an increase in the percentage of 
attackers for all the included benchmarks. However, the proposed approach shows considerable improvement in 
PDR when compared to other mechanisms. The proposed model on average shows an 8% increase when 
compared to OADM and a 0.7% increase when compared to FUCEM. All in all, the proposed approach presents 
a significant improvement because the most reliable and shortest path is selected that allows the significant flow 
of packets. 

2) Further, the plots depicted in figure 9(b) shows routing overhead with varying amount of attackers. Plot infers 
that injection of attackers escalates the routing overhead. However, our approach presents a lesser increment in 
routing overhead. On average, our approach is 76% better than OADM and 29% better than FUCEM. On the 
whole, our approach is superior because the most trusted routing path is selected whereas in other cases some 
misbehaving nodes are misjudged as collaborating nodes. This results in frequent discovery of paths, ending up 
with overhead augmentation.   

3) Finally, the plot in figure 9(c) depicts the detection rate of misbehaving nodes. It can be inferred that attackers 
decrease the detection rate. According to the plots, our approach is stronger than other benchmarks. Relatively, 
our approach recognizes attackers 5.4% more than OADM and 1.5% more than FUCEM. This is because the 
observable symbols in the HMM model immediately identify the state of the node. 
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Fig. 9 Comparison of the proposed approach on (a) PDR (b) Routing Overhead (c) Detection rate 
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5.4 False alarm probabilities and the accuracy of the model 

This section states the rate of false-positive and false-negative along with the accuracy of the proposed solution in 
presence of 50 nodes with 5 compromised nodes. Figure 10(a) represents the false-positive and false-negative rates 
as a function of time. The false-positive is the misidentification of normal nodes as bad nodes. The effect of which is 
normally observed when time is large during which the energy of normal nodes is low, which is likely to reduce the 
trust value of nodes. However, the false-negative occurs when bad nodes are considered as normal nodes, the effect 
of it takes place when time is small (initial) at which all nodes in the network are considered to be trustworthy. The 
graph in figure 10(a) heads towards the discussed outline. The false-negative rate is initially high as all nodes are 
regarded to be trusted nodes, thus the model is likely to miss the bad nodes. As time progresses, the false-negative 
rate drop because the proposed solution tends to detect the compromised nodes in the network. But on contrary, the 
false-positive rate increases slowly since the trust value of normal nodes starts decreasing with time and the system 
misdiagnoses a normal node as the compromised node.  Additionally, the figure illustrates, on average, the model is 
95% accurate which increases to 99.99 % at time = 400sec, as false-positive and false-negative rates are lowest at 
this instant, and then as the time advances the accuracy reduces. 
Figure 10(b), shows the sensitivity of the false alarm rate with respect to the trust threshold, below which the node is 
considered as a compromised node. It can be inferred that as the trust threshold increases, the false-negative rate 
decreases while the false-positive rate increases. There exists an optimal threshold at which both false-positive and 
false-negative are minimized. Here for time = 400sec, the optimal trust threshold is 0.5 at which both false-negative 
and false-positive are zero and the accuracy is maximum, higher than 99.99%.      
 

  
(a) (b) 

 
Fig. 10 Accuracy and false alarm rate of the proposed solution 

 

6. Conclusion and future scope 
In this paper, we focused on the modeling and analysis of the impact of the node’s behavior on network survivability 
and integrity, which has been rarely studied. Firstly, the node’s behavior is classified into four types: adaptive, 
greedy, mischievous, and crashed state, each with two observable symbols. Then the behavioral model is proposed 
by employing Hidden Markov Process. The mobile nodes with expected output change their behavior according to 
the transition probability matrix and emission probability matrix. Once the likelihood of the node being in each 
behavior state is obtained, the isolation problem is analyzed. The misbehaving nodes whose objective function is to 
harm the packets are provided with a time-based opportunity (TTR) to reset itself before its permanent isolation. 
And the selfish nodes whose aim is to drop packets are immediately removed from the network but prior to its 
removal; nodes are verified to see if they are literally selfish or are at the edge of the crashed state. If nodes drop 
packets due to minimum residual energy then they are not destroyed but are only removed from the routing function 
and are given TTL time to regain their lost energy. The scheme adopted helps to increase the survivability of the 
network. Finally, analytical results were explained by simulation experiments. Besides, our work provides a deeper 
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understanding of the network performance evaluation in presence of misbehaving nodes like blackhole nodes, 
greyhole nodes, and sinkhole nodes. Depending upon the application under consideration, it has been realized that 
for multipoint-to-point traffic; IPV6 Routing Protocol for Low-Power and Lossy network (RPL) is advisable. In that 
direction, our future work is to include 6LoWPAN and RPL protocols in our proposed HMT models, which can 
offer customized solution to a wide range of IoT applications. The proposed model considers only two output states 
as observable states. In future, the behavioral model can further be extended by including more observable symbols 
like residual resource level and degree of connectivity. The criticality of the model can further be improved by 
validating it against other attacks like good-mouthing attacks, bad-mouthing attacks, and ballot stuffing attacks. 
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