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Abstract This paper proposes using a WiFi-based identification system, Wi-
ID, to identify users from their unique hand gestures. Hand gestures from
the popular game rock-paper-scissors are utilized for the system’s user au-
thentication commands. The whole feature of three hand gestures is extracted
instead of the single gesture feature extracted by the existing methods. Dy-
namic time warping (DTW) is utilized to analyze the amplitude information
in the time domain based on linear discriminant analysis (LDA), while extract
amplitude kurtosis (AP-KU) and shape skewness (SP-SK) are utilized to an-
alyze the Wi-Fi signals energy distribution in the frequency domain. Based
on the contributions of the extracted features, the random forests algorithm is
utilized for weight inputs in the LSTM model. The experiment is conducted on
a computer installed with an Intel 5300 wireless networking card to evaluate
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Fig. 1 Wi-ID system scenarios

the effectiveness and robustness of the Wi-ID system. The experiment results
showed the accuracy of the proposed Wi-ID system has a personal differentia-
tion accuracy rate over 92%, and with an average accuracy of 96%. Authorized
persons who performed incomplete hand gestures are identified with an accu-
racy of 92% and hostile intruders can be identified with a probability of 90%.
Such performance demonstrates that the Wi-ID system achieved the aim of
user authentication.

Keywords rock-paper-scissors · authentication · WiFi-based · LSTM

1 Introduction

The development of the Internet of Things (IoT) in recent years has resulted in
the rapidly growing usage of mobile devices that has led to rising demands for
reliable and convenient user authentication processes more and more impor-
tant. IoT devices include, but are not limited to, smartphones, smartwatches,
and wearable devices. User authentication is becoming one of the most com-
mon application scenarios on the Internet of Things, attracting a large number
of researchers [1–3,16,36–39]. WiFi signals have several advantages [4] over
cameras[5] and wearable devices[6], such as it is unaffected by lighting condi-
tions, provides better identification range, as WiFi signal can penetrate phys-
ical barriers [7–10]. It’s possible to use wifi signals to identify and authorize
employees’s access to smart office buildings, as shown in Fig. 1. When a person
makes a hand gesture in the appropriate position of the entrance, the WiFi
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device can identify the user based on their actions. Existing smart office appli-
cations utilize cameras to verify users’ identity, however, vision-based methods
are often limited by lighting conditions. In addition, these systems can easily
invade or reveal the personal information of users. In contrast, WiFi signals
are hardly affected by the environment such as light and not invasive to the
users’ privacy, which makes it possible to be utilized for user authentication.

There are a few works on WiFi-based identification systems. Lu et al.
[4] proposed a continuous user authentication system to capture the unique
physiological characteristics of human respiratory movements by WiFi signal.
However, the range of breathing movement is very limited, which is relatively
easy to be disturbed. Thus, the action with a large range of motion can be
designed to reduce the interference caused by other objects in the environment.

In this paper, we propose the creation of a Wi-ID system, a WiFi-based
identification system using gesture actions and utilizes Commercial-Off-The-
Shelf (COTS) WiFi devices to verify user identity. The advantages of the
proposed Wi-ID system over existing user authentication methods primarily
include easily performing specific gestures and a secure identification process.
However, there are two major challenges: how to design simple gestures to
identify individuals easily? And how to extract features with high accuracy
to isolate individuals from tiny WiFi signal variations? To solve the first chal-
lenge, the three gestures from the traditional rock-paper-scissors game are
utilized for user authentication. This simple children’s game, which originated
from Han Dynasty in China, has been widely known in the world. In addi-
tion, these gestures reflect dynamic changes of structure and space when the
hand performs a series of movements. These changes affect the transmission
of WiFi signals to varying degrees, and these changes can be used to realize
user authentication.

We then extract the whole feature of three hand gestures from both the
time and frequency domains instead of the single gesture feature extracted.
And we utilize LDA to convert coordinates in the time domain and extract
DTW features to analyze the amplitude information. In the frequency domain,
features AP-KU and SP-SK are extracted to analyze the Wi-Fi signal energy
distribution information. The identification model is based on the extracted
DTW, AP-KU, SP-SK, and other features. Random forest (RF) is utilized for
applying weight to the model, and identify users through the LSTM cyclic
neural network to realize user authentication.

The main contributions of this paper are summarized in the following:

– Hand gestures from the traditional rock-paper-scissors game are selected to
verify the users’ identity. These gestures include an open hand, a clenched
fist, and a partially opened fist with two fingers extended. These gestures
reflect the structural and spatial changes of these hand movements. Three
other gestures are selected for comparison effective authenticators.

– The whole of features of three hand gestures instead of the single gesture
feature extracted by the existing methods. We select DTW time-domain
features based on linear discriminant analysis to analyze the amplitude in-
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formation of gestures. Energy distribution information is analyzed by using
frequency domain characteristics of WiFi signals, including AP-KU and
SP-SK. In addition, radio frequency is applied to the data to distinguish
the contribution of extracted features to the whole user authentication
system.

– The effectiveness and robustness of the Wi-ID system are evaluated on a
computer installed with an Intel Link 5300 wireless networking card. The
experiment results show the accuracy of individual Wi-ID system differ-
entiation is over 92% with an average accuracy rate of 96%. The Wi-ID
system could also authenticate users based on incomplete hand gestures
and identify hostile intruders from imitating hand gestures.

The rest of this paper is organized as follows: Section 2 of this paper il-
lustrates related research, the CSI signals are reviewed in detail in Section 3,
and the system design is described in Section 4. Section 5 describes the results
and comprehensive evaluation of the user authentication experiment, and the
paper is summarized in Section 6.

2 Related Work

Gesture recognition is the foundation of user authentication, which can be
categorized into sensor-based, vision-based, and radio frequency-based human
motion recognition systems.

2.1 Sensor-Based Motion Recognition

Sensor-based gesture recognition methods utilize wearable sensors to acquire
features of individual activities that can be utilized to identify human mo-
tion [1–3,6,14,15]. Duan et al. [14] proposed a new gesture recognition system
under the premise of limiting the number of EMG signal sensors. The three
signal channels in the system can classify nine different gestures. He et al. [6]
compared the performance of a single-channel ultrasound system using sur-
face EMG signals, indicating the possibility of combining two signal patterns
to perform gesture recognition. Mantyjarvi et al. [15] studied the utilization
of gait signals acquired by the three-dimensional accelerometer carried by the
user to identify the action. Correlation, frequency domain, and data distribu-
tion statistics are all utilized in this system. Using this new gait recognition
method proves that it is feasible to identify motion. However, these methods
require the sensor to be worn in a specific manner to ensure accurate oper-
ation. It is also important to note that not everyone is willing to wear the
sensor.
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2.2 Vision-Based Motion Recognition

The vision-based motion recognition methods utilize images and videos to
recognize human activities [40]. Zimmermann et al. [5] proposed a method for
estimating the three-dimensional position of a hand using conventional RGB
images. These methods utilize a deep network-implicit three-dimensional con-
nection combined with the key points detected in the image to estimate a clear
three-dimensional profile. Chen [17] proposed a fusion approach for improving
human action recognition based on two differing modality sensors consisting
of a depth camera and an inertial body sensor. In [18], the researchers utilized
body language to study automatic emotion recognition and define a complete
framework for automatic emotional body gesture recognition. Shotton et al.
[19] proposed a new method for quickly and accurately predicting the 3D po-
sition of humans using a single depth image, and designed an intermediate
model of the human body to transform the difficult statistical problem of an-
alyzing human postures into a simplified pixel classification. Moddrop [20] is
based on multi-scale and multi-modal deep learning for gesture detection and
localization. Photo Sleuth [48] is a web-based platform for user authentica-
tion, which can help users successfully identify unknown portraits. Song[49]
utilized a single stereo camera to track the body and hands and adopt model-
based methods and particle filters to reconstruct body posture in 3D space to
achieve human-computer interaction. Each visual form captures spatial infor-
mation at a specific spatial scale (such as half-length or at the hand movement
level), and the entire system operates on three-time scales. Although the above
vision-based methods have strong identification accuracy to a certain extent,
from a privacy perspective, these methods are invasive in both office and smart
home applications.

2.3 Radio Frequency-Based Motion Recognition

RF-based sensor technology has received widespread attention from many
researchers due to the increasing popularity of wireless devices [21–35]. In
[41], a dedicated hardware sensor that utilizes human body features to sense
body movements serves as an antenna to sense the posture of the entire body.
WiTrack [42] utilizes FMCW (Frequency Modulated Continuous Wave) tech-
nology to calculate the Time of Flight (TOF) to track the target as well as the
user’s three-dimensional motion. Li et al. [33] proposed an efficient method
based on the seam carving algorithm, which can extract features of different
gestures and users effectively to realize gesture recognition. Pu et al. [43] pro-
posed the WiSee system, based on the USRP-N210 experimental platform,
which utilized the Doppler effect of radio waves to realize gesture recognition.
Kellogg et al. [44] designed a special low-overhead system, called AllSee, ex-
tracting gesture information from the TV and RFID signal with minimal power
drain. Widar [11] is a Wi-Fi-based zero-effort cross-domain gesture recogni-
tion system. Widar is a one-fits-all model that requires only one-time training
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but can adapt to different data domains. Gu et al. [12] proposed a device-
free real-time behavior analysis system based on WiFi signals, which utilized
signal distortions caused by gestures to interpret different gesture combina-
tions. Chen et al. [13] extracted human gestures from Channel State Informa-
tion (CSI) signals and trained features using an attention-based bidirectional
Long Short-Term Memory (LSTM) network, to recognize the movements. In
the above wireless radio-based systems, the high costs of hardware and reg-
ulations limit their practicality. Therefore, researchers have been focused on
designing human motion tracing systems based on CSI signals that have been
collected by low-cost and popular WiFi chipset. WiGest [45] utilized WiFi
signal strength changes to recognize a series of gestures. Wang et al.[46] ana-
lyzed the radio propagation model and proposed a fall detection system called
WiFall. CARM [47] is a CSI-based human activity recognition system that
establishes the correlation between CSI value dynamics, then CARM matches
the given activities to the most suitable profile to recognize human activities.
All the above studies focus on recognizing human motion and action based
on CSI signals using commercial network cards, but none of these studies can
identify people, since this requires a high degree of user authentication ac-
curacy. Liu et al. [4] proposed a continuous user authentication system that
extracts unique human respiratory biometrics from existing WiFi signals. This
study takes advantage of WiFi-based signals the rock-paper-scissors hand ges-
tures from traditional Chinese games to user authentication, which is robust
to the interference caused by other objects for the gestures with a larger range
of motion.

3 Channel State Information

CSI is a kind of data format for indicating the channel frequency response
(CFR) of a sub-carrier granularity obtained by commercial IEEE 802.11a/g/n
wireless network cards based on OFDM technology. Even with the same ges-
tures, different users may exhibit subtle differences on their wireless channel
due to their unique physiological characteristics (such as hand size and thick-
ness) and behavioral characteristics (such as hand movements). Specifically,
each group of CSI signals represents the amplitude and phase of an orthogonal
frequency division multiplexing subcarrier, as follows

H(k) = ||H(k)||ej
6 H(k), (1)

where H(k) is the CSI measurement of subcarrier k, ||H(k)|| and 6 H(k) is the
amplitude and phase of CSI measurement in subcarrier k, respectively.

Let Nt and Nr be the number of transmitting and receiving antennas. And,
the MIMO system consists of Nt ×Nr antenna pairs. The received signal can
be expressed as

Y
p
k = H

p
k ×X

p
k +Nk ∈ [1, C], p ∈ [1, Nt ×Nr], (2)
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Fig. 2 Wi-ID system overview

where H
p
k represents channel frequency response (CFR) of antenna pair k on

subcarrier p at any time. In this paper, we only focus on the amplitude of
CSI measurement due to the imperfect phase of CSI measurement. The time
stream of CSI measurement Hp

k is called the CSI stream. Xp
k denotes a signal

vector of subcarrier p of antenna pair k. N is a noise vector, Gaussian White
Noise. There are thirty 802.11n OFDM subcarrier settings in our experiment,
therefore, we can obtain C = 30, and the total dimension of the CSI time
series is 30×Nt ×Nr.

4 System Design

The Wi-ID system consists of three modules: a data preprocessing module,
feature extraction and selection module, and a human identity authentication
module as shown in Fig. 2. Detailed descriptions about each module as follows:
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4.1 System Overview

The proposed Wi-ID system is a WiFi-based identification system using ges-
ture actions, shown in Figure 2. The basic system concept is to identify indi-
viduals by using WiFi signals to capture individuals’ unique signatures in a
specified set of physical gestures. The data preprocessing module is illustrated
in Fig. 2. Due to changes in the environment and ambient radio interfer-
ence, the CSI measurement values collected from the environment are often
noisy. To reduce environmental noise and interference, Principal Component
Analysis (PCA) is utilized to process raw CSI measurements. In the feature
extraction and selection module as shown in Fig. 2, we set the threshold of
CSI measurement variance to determine the starting and ending point of the
rock-paper-scissors gestures. In each feature extraction window, we extract
gesture features in the time and frequency domains respectively. In the time
domain, DTW is proposed to analyze amplitude information based on the
LDA method. In the frequency domain, AP-KU and SP-SK are utilized to an-
alyze energy distribution. In the human identity authentication module shown
in Fig. 2, RF is utilized for applying weights to the feature extraction data.
Different weights are assigned to corresponding features extracted from the
feature extraction and selection module to train the LSTM model. The Wi-ID
system identifies the user based on the training model.

4.2 Data Preprocessing

CSI measurement will be interfered with by non-testers behaviors and hard-
ware errors. Thus, the Butterworth filter is utilized to denoise the original CSI
stream. Given that the background noise frequency is much higher than any
given gesture frequency, we utilize a Butterworth low-pass filter to remove the
high-frequency environmental noise from the collected signals [14]. The fre-
quency response of the Butterworth filter is the flattest filter in the passband
and becomes zero in the stopband. Normalized Butterworth filters are defined
in the frequency domain as follows:

|Hn(jw)| =
1

√
1 + w2n

, (3)

where n denotes the order of Butterworth filter, j represents an imaginary unit,
and w is the angular frequency of signals in radians per second. wc is utilized
to denote the cut-off frequency of the Butterworth filter. The sampling rate Fs

in the experiment is set at 1000 samples per second. Normally, the frequency
of human gesture movement ranges from 0 to 15 Hz, with a median frequency
of 5.125 GHz. Therefore, the cut-off frequency of the Butterworth low-pass
filter is calculated as follows:

wc =
2πf

Fs

=
2π15

1000
= 9.42. (4)
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After applying the Butterworth filter, the high-frequency environmental
noise is removed from the received signals. However, the simple low-pass But-
terworth filter could not effectively filter interference from other actions, hence
PCA is applied to further process the filtered data to obtain fine-granularity
gesture information. CSI streams have multiple subcarriers, including 30 sub-
carriers in IEEE 802.11n, and there is a correlative relationship between the
background noise among multiple subcarriers. From the research, it can be ob-
served that human gestures are continuous, and different changes take place on
different subcarriers with the increase of time. PCA is a dimension reduction
technique, which transforms linearly related variables into almost linearly in-
dependent variables by orthogonal transformation and generates new features
based on the original features to realize feature extraction. Based on these
facts, PCA is utilized to filter Gauss white noise and interference from other
actions to reduce the dimension of the CSI stream. Therefore, the available
part of the signals is obtained and used as the main dimension and showed
a relatively large energy level. And the white noise and interference signals
are considered as other dimensions. Then, redundant signal dimensions are re-
moved and only leave the signal’s most usable portion. After performing data
processing, background noise and interference from other actions are removed,
and the fine-granularity CSI information is obtained to reflect changes in the
users’ rock-paper-scissors gestures.

Fig. 3 is the CSI signal of the 30th subcarriers before data preprocessing.
Fig. 4 is the post-data preprocessing result of the CSI signal of the eighth
volunteer’s rock-paper-scissors gestures over for three seconds. Following data
preprocessing shown in Fig. 4, gesture changes more clearly, and the fluctuation
in noise and interference on the CSI stream is minimized.

Fig. 5 and Fig. 6 show variations in CSI amplitude extracted over time
for the 30th subcarriers when two users make rock-paper-scissors gestures on
an 802.11n WiFi device. The CSI amplitude showed different trends between
two users, which proved that CSI can capture individuals’ unique physiological
and behavioral characteristics.

Fig. 7 and Fig. 8 show the results of PCA dimensionality reduction of
data on the 30th subcarrier of user 7 and user 8 respectively, where the X-
axis represents the time point of spectrum diagram calculation, the Y-axis
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represents the signal frequency, and the Z-axis represents the PSD of this point.
It can be observed the individuals’ features are distributed across different
locations after PCA dimension reduction.

4.3 Feature Extraction

In this section, we extract the features of the whole of gestures from the time
domain and the frequency domains to realize user authentication. To provide
finer granularity features for each activity, the CSI stream is first segmented
to containing gesture movements into windows. Since there is a significant
difference between the moving part and the stationary part of the CSI stream,
the variance of CSI streams is utilized to segment continuous CSI signals.
The characteristics of CSI signals in time domain and frequency domain are
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Fig. 7 PCA feature distribution for user 7

studied, and the amplitude information and energy distribution information
of the CSI signals are analyzed respectively.

4.3.1 Feature Extraction at Time Domain

The Wi-ID system extracts the features of the whole three gestures in two
steps in the time domain. In the first step, we utilized LDA to acquire new
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Fig. 8 PCA feature distribution for user 8

coordinates for the CSI stream. In the second step, DTW features are ex-
tracted based on the new coordinate system which is described in detail in the
following.

Linear Discrimination Analysis (LDA) Technology: LDA is initially
a dimensionality reduction technique for supervised learning to select the best
projection for performance classification. In the proposed Wi-ID system, the
CSI stream has a sequence of {(xi, yi)}

m
i=1, where m represents the CSI se-

quence length of CSI sequence. The LDA conversion process for the CSI se-
quence is described as follows. The CSI sequence is first projected into the line
y = ω

Tx, where x = [{xi}
m
i=1]

T denotes a signal sequence’s abscissa vector,
and ω is a feature vector (column vector). Secondly, the covariance matrix
of the same sample corresponding to the CSI signal sequence of a volunteer’s
gestures after projection is as follows:

Σ(ωTx− ω
Tui)

2 = ω
T
Σ[(x− ui)(x− ui)

T ]w, (5)

where ui represents the mean of the CSI sequence, and Σ[(x− ui)(x− ui) de-
notes the covariance matrix before the projection of CSI sequence of the same
volunteer. Let Σ0 and Σ1 represent the covariance matrix before the projection
of a pair of volunteer CSI sequences. The covariance matrices are obtained and
projected to the above straight lines as ωT

Σ0ω and ω
T
Σ1ω, respectively. Fi-

nally, we minimize the covariance matrix of CSI sequences to make projection
points fit more closely with the same volunteer. This is formulated as follows:

min(ωT
Σ0 + ω

T
Σ1ω). (6)

Additionally, to differentiate volunteer projection points, the distance between
different volunteer data centers must be as large as possible. This is formulated
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as follows:

max ||ωTu0 − ω
Tu1||. (7)

By combining Equation (6) and Equation (7), the following optimization
objectives are obtained:

max J =
||ωTu0 − ω

Tu1||

ωTΣ0 + ωTΣ1ω
=

ω
T (u0 − u1)(u0 − u1)

T
ω

ωT (Σ0 +Σ1)ω
. (8)

Dynamic Time Warping (DTW) Technology: The Wi-ID system ob-
tained DTW features in the view of a new coordinate. The DTW feature
method consists of two steps. Some notion for further analysis is first defined.
Let the CSI sequences on channel k of two volunteers be Ak and Bk, respec-
tively. Let the two volunteers CSI lengths bem and n, respectively. The specific
expression is as follows:

Ak = ak1, · · · , aki, · · · , akm, (9)

Bk = bk1, · · · , bkj , · · · , akn, (10)

where aki = (xki, yki) represent the coordinates. The new coordinates for Ak

and Bk using LDA can be represented as:

A
0

k = a
0

k1, · · · , a
0

ki, · · · , a
0

km, (11)

B
0

k = b
0

k1, · · · , b
0

kj , · · · , a
0

kn. (12)

Secondly, by letting DTWk denote the DTW value of channel k between a
0

ki

and b
0

kj , the obtained results as follows:

DTWk(i, j) = d(a
0

ki, b
0

kj)+min{DTWk(i−1, j−1), DTWk(i−1, j), DTWk(i, j−1)},
(13)

where d(a
0

ki, b
0

kj) is the distance between a
0

ki and b
0

kj in the new coordinate
system. In this paper, 30 channels are utilized. Therefore, the obtained DTW
eigenvalue is DTW = 1

30

P30
i=1 DTWk.

4.3.2 Feature Extraction at Frequency Domain

Considering the noise may disturb the features at the time domain, the fea-
tures at the frequency domain for the whole of three gestures can be adopted
for a better analysis. Therefore, the Wi-ID system also extracts features at the
frequency domain. The Wi-ID system extracts two features at the frequency
domain, that is, the PSD’s AP-KU and SP-SK according to the different in-
tensity of each user’s gestures. AP-KU is calculated as follows:

AP −KU =
1

N

N
X

i=1

[
C(i)− µamp

σamp

]4 − 3, (14)
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where

µamp =
1

N

N
X

i=1

C(i), (15)

and

σamp =

v

u

u

t

1

N

N
X

i=1

[C(i)− µamp]2, (16)

where C(i) is the frequency amplitude value of the window n, and N denotes
the total number of windows. Considering the different positions and ampli-
tude of each user’s hand gesture motions, the SP-SK of the shape statistics is
chosen as the primary feature. SP-SK can be formulated as follows:

SP − SK =
1

S

N
X

i=1

[
i− µamp

σshape

]3C(i), (17)

where

µshape =
1

S

N
X

i=1

iC(i), (18)

and

σamp =

v

u

u

t

1

S

N
X

i=1

[i− µshape]2C(i). (19)

4.4 Classification and Identification

User authentication is fundamentally related to user security issues. Thus, Wi-
ID system must have high recognition accuracy. We design an LSTM-based
network to identify individuals. The DTW feature is extracted from the time
domain, and features are also extracted from the maximum, minimum, and
mean values of the second component after PCA. Thus, AP-KU and SP-SK
values at the frequency domain are obtained. The Wi-ID system utilizes RF
to assign different weights to different features to improve user authentication
accuracy. Let x1, · · · , x6 denote the six features extracted from the Wi-ID
system. In each tree of the RF system, a tree is built to randomly extract
autonomous training samples and calculated the out-of-bag (OOB) error rate.
A very important feature would have a change that greatly impacts the test
error, while an insignificant feature would have little impact on the test error.
We utilize OOB samples to obtain error e1, and randomly changed column j in
OOB, but kept everything else the same. To realize the error, random vertical
permutations are performed on column j to obtain error e2. We characterize
the importance of feature j as e1−e2, normalized it, and averaged it to obtain
the permutation importance index V IMOOB

j of xj . We can then obtain

V IMOOB
i,j =

Pni

0

p=1 I(Yp = Y i
p )

ni
0

−
Pni

0

p=1 I(Yp = Y i
p,πi

)

ni
0

, (20)
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where ni
0 is the observation number outside the tree bag i, I(.) is the indicator

function, Yp ∈ {0, 1} is the observation result before the random permutations,
changing column j data in OOB is denoted as πj , and Y i

p,πi
is prediction

result of the i-th tree on the p-th observation of OOB data after random
permutations. V IMOOB

j of xj (1 ≤ j ≤ 6) is obtained by taking the average
value

V IMOOB
j =

Pn

j=1 V IMOOB
i,j

n
. (21)

Fig. 9 shows the feature weights of a data set from volunteers. The x-axis
represents the selected feature class, and the y-axis represents the weight. It
can be observed that the feature of the selected DTW has a higher weight
than other features. In addition, the weight of the time domain features is
often higher than frequency-domain features. The training design is based
on the LSTM neural network. Specifically, the input vector of the LSTM is
features extracted in the time domain and frequency domain of CSI data with
30 subcarriers and weighted by random forests, such as features obtained by
LDA algorithm, AP-KU, SP-SK, and maximum and minimum of each CSI
subcarrier.

5 Implementation and Evaluation

In this section, we conduct experiments to evaluate the performance of our
proposed Wi-ID system.



16 Zhiwen Zheng et al.

5.1 Experimental Setup

Existing commercial hardware devices are utilized for implementing the Wi-
ID system. Two PCs are utilized as transceivers, and the network card is an
Intel 5300 wireless network card. Using Ubuntu version 14.04, the two com-
puters are equipped with an Intel Core i9 processor and 8 GB RAM. They are
equipped with one transmitting antenna and three receiving antennas. These
antennas are placed horizontally above the ground. The distance between the
transmitting antenna and the receiving antenna is 1.5 meters. The volunteer
making gestures stands in the line between the transmitting antenna and the
receiving antenna and is 0.2 meters from the transmitting antenna, which is
shown as location 1 in Fig. 13. The transmission frequency of the transmis-
sion equipment is 1000 Hz. The experiment data sets1 were collected from 30
volunteers (also referred to as users in this paper), including 15 males and 15
females. The volunteers are in the age range of 20 to 36 years old. To ensure
the effectiveness and robustness of data acquisition, we collect the rock-paper-
scissors gestures in the morning, noon, and night of a week. During one data
collection session, the volunteers made a continuous rock-paper-scissors ges-
ture for 5 seconds and repeated it for 10 minutes. We obtained a total of 37800
(30× 7× 3× 60) gesture data samples from 30 volunteers, which were labeled
according to user names. Among them, 80% of the samples were selected as
the training set for model training, and the rest of them were selected as the
validation set for model parameter adjustment.

5.2 Wi-ID system Accuracy

The system design aimed to identify volunteers from their rock-paper-scissors
gestures. And to verify the validity of our model, we conducted the following
experiments.

5.2.1 User Identification Accuracy

To verify our model on a test data set that is coming from the same setup
of the training data set, we selected 20 volunteers randomly and asked them
to do rock-paper-scissors gestures in 10 minutes as the test data set in turn
under the same configuration environment. Fig. 10 shows the confusion matrix
identified by these volunteers. The experimental results show that the identifi-
cation accuracy is over 92% for these 20 volunteers, with an average accuracy
of 96.86%. For user 6, user 11, and user 20, the identification accuracy is 100%
because of their highly consistent gestures. Several volunteers’ identification
accuracy is reduced because of the errors they made while making gestures.
Fig. 11 shows the accuracy rate, recall rate, and F1-score value of the Wi-ID

1 Z. Zheng, J. Zhang, and Q. S. Wang, ”Three gesture signals in WiFi environment,”
2020, [Online] https://ieee-dataport.org/documents/three-gesture-signals-wifi-environment.
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system for selected 20 volunteers. Here, we can see that our proposed system
can effectively identify volunteers in the general environment.
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Fig. 12 Influence of distance between router and PC on identification effect

Table 1 Results of different distrubtion of people and transceivers

Experimental Setting Average Precision

Position 1 94.98%
Position 2 92.53%

5.2.2 Accuracy in Different Experimental Setups

We conducted experiments on test data sets collected from different experi-
mental setups with the training data sets to test the performance of the Wi-ID
system.

Different Distances between Router and PC. To verify the impact
of different distances between router and PC on the performance of the Wi-ID
system, 5 volunteers are selected randomly to perform tests (three men and
two women). In the experiment, the distance between the router and the PC
was set at 1.5 m, 2 m, and 3 m, respectively. The identification effect at these
distances is shown in Fig. 12, and these 5 volunteers all performed highly in
all types of discriminant scenarios.

Different locations of volunteers To verify the impact of the different
locations of volunteers on the Wi-ID system’s performance, we changed the
locations of volunteers on the experiment. We randomly selected 10 volunteers
to perform the gestures on location 1 and location 2 in Fig. 13. As Fig. 13
shown, the distance between location 1 and location 2 is 1 m. Table 1 shows
the Wi-ID system’s average precision for location 1 and location 2 with these
10 volunteers, which proves that the Wi-ID system has a good performance
for the test data sets collected from different locations.
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Fig. 13 The locations of volunteers
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Fig. 15 Recognition result of “OK”-“number eight”-“pointing” gestures
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Table 2 Incomplete gesture experimental results of user 2

User No. Precision User No. Precision

User 1 0.00% User 11 0.56%
User 2 92.08% User 12 0.00%
User 3 0.08% User 13 0.25%
User 4 2.25% User 14 0.00%
User 5 1.04% User 15 0.00%
User 6 0.00% User 16 0.12%
User 7 1.46% User 17 0.00%
User 8 0.00% User 18 0.00%
User 9 0.00% User 19 0.24%
User 10 1.92% User 20 0.00%

5.2.3 Accuracy for Different Gesture Sets

To verify the gesture set impact on the performance of the Wi-ID, we experi-
mented on two different gesture sets for the Wi-ID. One is the chosen gesture
set of rock, paper, and scissors by this paper. The other gesture set consists
of the hand gestures for ”OK”, ”number eight”, and ”pointing” gestures that
are randomly selected from the nine gestures that are stated as classifiable in
[14] through the three channels of the surface EMG signal. Two volunteers are
selected to perform these two sets of gestures for 10 minutes, and the data is
processed and sent to the Wi-ID system. Fig. 14 and Fig. 15 show the exper-
imental results. It can be observed that the individual discrimination of the
rock-paper-scissors gestures is greater than the other gesture set. Therefore,
the rock-paper-scissors gestures can uniquely identify individuals to realize the
goal of accurate user authentication.

5.2.4 Accuracy of Incomplete Gestures

Considering that users might only make partial gestures due to habits or other
reasons, we also carried out an incomplete gesture recognition experiment
where the user deliberately completes only two-thirds of the entire rock-paper-
and scissor gestures instead of the complete gesture. One out of the 20 volun-
teers is randomly chosen to perform incomplete rock-paper-scissors gestures
for 3 minutes to obtain a test data set, that then ran in the proposed Wi-ID
system. Table 2 shows the experimental results of the proposed Wi-ID system.
The randomly chosen person in the experiment is user 2, and Table 2 clearly
shows that our Wi-ID system could still identify user 2 based on the person’s
incomplete gestures. Thus our system can still verify user identity in case of
incomplete gestures.



Title Suppressed Due to Excessive Length 21

Table 3 Results of robustness for preventing intruders

User No. Precision User No. Precision

User 1 0.00% User 11 0.00%
User 2 90.05% User 12 0.32%
User 3 0.00% User 13 0.28%
User 4 0.45% User 14 0.00%
User 5 7.95% User 15 0.00%
User 6 0.00% User 16 0.12%
User 7 0.08% User 17 0.00%
User 8 0.00% User 18 0.22%
User 9 0.00% User 19 0.08%
User 10 0.45% User 20 0.00%

Table 4 Experimental results of robustness for multiple interference sources

Experimental Setting Average Precision

Without Multiple Interference Sources 94.98%
Multiple Interference Sources 83.21%

5.3 Robustness of Wi-ID

5.3.1 Robustness in preventing Intruders

The proposed WI-ID system must take into account the possibility of ma-
licious intruders trying to force their way into environments, such as smart
homes or smart offices by imitating hand gestures. Therefore, a simulated in-
trusion experiment is conducted to verify whether the system can accurately
identify simulated intrusion attempts by non-authorized users. Out of the 20
volunteers, two volunteers with the most similar physical characteristics (such
as hand size and thickness) are selected. User 2 and User 5 are selected. User
5 is chosen as the main subject while user 2 simulated an intrusion attempt.
The collected signals are run through the Wi-ID system, and the identifica-
tion results are obtained. Table 3 shows the results of the simulated intrusion
experiment. From Table 3 it can be seen that the frequency where the Wi-ID
system misidentified user 2 as user 5 is low, which proves that the Wi-ID sys-
tem can still accurately identify individuals for user authentication purposes
under hostile intrusion conditions.

5.3.2 Robustness against Multiple Interference Sources

To verify the Wi-ID system identification effect from other people’s interfer-
ence, we added a few bystanders to pace back and forth a meter away from a
user undergoing the user authentication process. Table 4 shows the identifica-
tion result of this experiment. From the results it can be observed even with
the presence of human interference, the Wi-ID system is still reliable and still
has high identification accuracy.
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6 Conclusion

In this paper, we have proposed the creation of a Wi-ID system, a WiFi-
based device-free personal identification system. Rock-paper-scissors gestures
are selected as input commands for the Wi-ID system for this study, as the
gestures involve individualized spatial changes between fingers, palms, and the
backs of the hands. For data processing, Butterworth low-pass filtering and
PCA are applied to reduce noise in the CSI data. For feature extraction, the
whole feature of three gestures is extracted from the time domain and the
frequency domain respectively. In particular, a new feature DTW is utilized in
the time domain after coordinate transformation is performed with LDA, and
AP-KU and SP-SK features are extracted from the frequency domain. Based
on the contribution of the extracted features to the whole model, this paper
utilizes random forests to assign different weights to the feature value, and the
LSTM model is designed to identify individuals. Experimental results show
that the identification accuracy of the Wi-ID system is more than 92% for dif-
ferent users. In terms of robustness, the Wi-ID system can accurately identify
malicious imitation behaviors of illegal users and achieve high identification
accuracy at different distances between the router and PC human interference
conditions.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Yavuz, A. A., & Ozmen, M. O. (2019). Ultra lightweight multiple-time dig-
ital signature for the Internet of things devices. IEEE Trans. Serv. Comput..
https://doi.org/10.1109/TSC.2019.2928303

2. Jain, A. K., & Arora, S. S. (2017). Fingerprint recognition of young children. IEEE Trans.
inf. Forensics Security, 12(7), 1501-1514.

3. He, R., Wu, X., Sun, Z. N., & Tan, T. N. (2019). Wasserstein cnn: learning invariant
features for nir-vis face recognition. IEEE Trans. Pattern Anal. Mach. Intell., 41(7),
1761-1773.

4. Liu, J., Dong, Y. D., & Chen, Y. Y. (2018). Leveraging breathing for continuous user
authentication. In 24th Annual International Conference on Mobile Computing & Net-
working (MobiCom). ACM.

5. Zimmermann, C., & Brox, T. (2017). Learning to estimate 3d hand pose from single rgb
images. In IEEE International Conference on Computer Vision (ICCV) (pp. 4903-4911).
IEEE.

6. He, J. Y., & Luo, H. (2019). Wrist and finger gesture recognition with single-element
ultrasound signals: a comparison with single-channel surface electromyogram. IEEE Trans.
Biomed. Eng., 66(5), 1277-1284.

7. Zeng, Y. W., Wu, D, Xiong, J. Yi, E. & Gao, R. Y. (2019). Farsense: pushing the
range limit of wifi-based respiration sensing with csi ratio of two antennas. In ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT) (pp. 1-26). ACM.

8. Sheng, B. Y, Fang, Y. R, & Xiao, F. (2020). An accurate device-free action recognition
system using two-stream network. IEEE Trans. Veh. Technol., 69(7), 7930-7939.



Title Suppressed Due to Excessive Length 23

9. Xiao, L., Wan, X. Y, & Han, Z. (2018). PHY-layer authentication with multiple land-
marks with reduced overhead. IEEE Trans. Wireless Commun., 17(3), 1676-1687.

10. Hua, J., Sun, H., Shen, Z., Qian, Z., & Zhong, S. (2018). Accurate and efficient wire-
less device fingerprinting using channel state information. In International Conference on
Computer Communications (INFOCOM) (pp. 1700-1708). IEEE.

11. Zheng, Y., Zhang, Y., & Qian, K. (2019). Zero-effort cross-domain gesture recognition
with Wi-Fi. In 17th Annual International Conference on Mobile Systems, Applications,
and Services (MobiSys) (pp. 313-325). ACM.

12. Gu, Y., & Zhang, X. (2018). Your WiFi knows how you behave: leveraging WiFi channel
data for behavior analysis. In IEEE Global Communications Conference (GLOBECOM)
(pp. 1-6). IEEE.

13. Chen, Z. H., Zhang, L., & Jiang, C. Y. (2019). WiFi CSI based passive human activity
recognition using attention based BLSTM. IEEE Trans. Mobile Comput., 18(11), 2714-
2724.

14. Duan, F., Ren, X., & Yang, Y. K. (2021). A gesture recognition system based on time
domain features and linear discriminant analysis. IEEE Trans. Cognitive and Develop-
mental Systems (TCDS)., 13(1), 200-208. https://doi.org/10.1109/TCDS.2018.2884942

15. Mantyjarvi, J., Lindholm, M., & Vildjiounaite, E. (2005). Identifying users of portable
devices from gait pattern with accelerometers. In IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP) (pp. 973-976). IEEE.

16. Teh, T. Y., Lee, Y. S., Cheah, Z. Y. (2017). IBI-Mobile Authentication: A Prototype
to Facilitate Access Control Using Identity-Based Identification on Mobile Smart Devices.
Wireless Pers. Commun., 94, 127–144.

17. Chen, C., Jafari, R., & Kehtarnavaz, N. (2015). Improving human action recognition
using fusion of depth camera and inertial sensors. IEEE Trans. Human-Mach. Syst., 45(1),
51-61. https://doi.org/10.1109/THMS.2014.2362520

18. Noroozi, F., Kaminska, D., & Corneanu, C. (2018). Survey on emotional
body gesture recognition. IEEE Trans. Affect. Comput., 12(2), 505-523.
https://doi.org/10.1109/TAFFC.2018.2874986

19. Shotton, J., Fitzgibbon, A., & Cook, M. (2011). Real-time human pose recognition in
parts from single depth images. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (pp. 1297-1304). IEEE.

20. Neverova, N., Wolf, C., Taylor, G., & Nebout, F. (2016). Moddrop: adaptive multi-
modal gesture recognition. IEEE Trans. Pattern Anal. Mach. Intell., 38(8), 1692-1706.
https://doi.org/10.1109/TPAMI.2015.2461544

21. Liu, H., Wang, Y., Liu, J., Yang, J., Chen, Y., & Poor, H. V. (2017). Authenticating
users through fine-grained channel information. IEEE Trans. Mobile Comput., 17(2), 251-
264.

22. Chen, Y., Wang, W., & Zhang, Q. (2014). Privacy-preserving location authentication
in WiFi with fine-grained physical layer information. In IEEE Global Communications
Conference (GLOBECOM) (pp. 4827-4832). IEEE.

23. Bao, Y., Dong, L., Zheng, Y., & Liu, Y. (2019). WiSafe: a real-time system for intru-
sion detection based on wifi signals. In the ACM Turing Celebration Conference-China
(TURC) (pp. 1-5). ACM.

24. Wang, F. X., & Gong, W. (2018). On spatial diversity in WiFi-based human activity
recognition: A deep learning-based approach. IEEE Internet of Things Journal., 6(2),
2035-2047.

25. Kong, H., Lu, L., Yu, J., Chen, Y., & Tang, F. (2020). Continuous authentication
through finger gesture interaction for smart homes using WiFi. IEEE Trans. Mobile Com-
put.. Advance online publication. https://doi.org/10.1109/TMC.2020.2994955

26. Yan, H., & Zhang, Y. (2020). WiAct: a passive WiFi-based hu-
man activity recognition system. IEEE Sensors Journal., 20(1), 296-305.
https://doi.org/10.1109/JSEN.2019.2938245

27. AliKhan, D., & Razak, S. (2019). Human behaviour recognition using Wifi channel state
information. In 2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (pp. 7625-7629). IEEE.

28. Fei, H., Xiao, F., Han, J. S., Huang, H. P., & Sun, L. J. (2020). Multi-variations activity
based gaits recognition using commodity WiFi. IEEE Trans. Veh. Technol., 69(2), 2263-
2273.



24 Zhiwen Zheng et al.

29. Wang, W., Alex, X., & Shahzad, M. (2016). Gait recognition using wifi signals. In 2016
ACM International Joint Conference on Pervasive and Ubiquitous Computing (IJCPUC)
(pp. 363-373). ACM.

30. Yu, N., Wang, W., Alex, X., & Kong, L. T. (2018). Qgesture: quantifying gesture dis-
tance and direction with wifi signals. In the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies (IMWUT) (pp. 1-23). ACM.

31. Qian, K., Wu, C. S., & Yang, Z. (2018). Enabling contactless detection of moving humans
with dynamic speeds using CSI. ACM Trans. Embed. Comput. Syst., 17(2), 1-18.

32. Abdelnasser, H., Harras, K., & Youssef, M. (2019). A ubiquitous WiFi-based fine-grained
gesture recognition system. IEEE Trans. Mobile Comput., 18(11), 2474-2487.

33. Li, C., Liu, M., & Cao, Z. (2020). WiHF: enable User Identified Gesture Recognition
with WiFi. In IEEE Conf. Comput. Commun. (INFOCOM). IEEE.

34. Zeng, Y., Wu, D., & Xiong, J. (2020). Boosting WiFi Sensing Performance via CSI Ratio.
IEEE Pervasive Comput., 20(1), 62-70. https://doi.org/10.1109/MPRV.2020.3041024

35. Wu, D., Gao, R., & Zeng, Y. (2020). Fingerdraw: Sub-wavelength level finger motion
tracking with WiFi signals. In ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies (pp. 1-27). ACM.

36. Anandhi, S., Anitha, R., & Sureshkumar, V. (2019). IoT Enabled RFID Authentication
and Secure Object Tracking System for Smart Logistics. Wireless Pers. Commun., 104,
543–560. https://doi.org/10.1007/s11277-018-6033-6

37. Lo, N. W., Yohan, A. (2020). BLE-Based Authentication Protocol for Mi-
cropayment Using Wearable Device. Wireless Pers. Commun., 112, 2351–2372.
https://doi.org/10.1007/s11277-020-07153-0

38. Ahn, J., Lee, I. G., & Kim, M. (2020). Design and Implementation of Hardware-
Based Remote Attestation for a Secure Internet of Things. Wireless Pers. Commun.,
114, 295–327. https://doi.org/10.1007/s11277-020-07364-5

39. Li, X., Wen, Q., & Li, W. (2016). A Three-Factor Based Remote User Authentication
Scheme: Strengthening Systematic Security and Personal Privacy for Wireless Commu-
nications. Wireless Pers. Commun., 86, 1593–1610. https://doi.org/10.1007/s11277-015-
3008-8

40. Muhammad, I. K., Mian, A. J., Yar, M., Dinh, T. D., Ateeq, R., Constandinos, X. M.,
& Evangelos, P. (2021). Tracking vital signs of a patient using channel state information
and machine learning for a smart healthcare system. Neural Comput. & Applic.. Advance
online publication. https://doi.org/10.1007/s00521-020-05631-x

41. Cohn, G., Morris, D., & Patel, S. (2012). Humantenna: using the body as an antenna
for real-time whole-body interaction. In the SIGCHI Conference on Human Factors in
Computing Systems (CHI) (pp. 1901-1910). ACM.

42. Zimmermann, C., & Brox, T. (2014). 3D tracking via body radio reflections. In 14th
Networked Systems Design and Implementation (NSDI) (pp. 317-329). ACM.

43. Pu, Q. F., Gupta, S., Gollakota, S., & Patel, S. (2013). Whole-home gesture recognition
using wireless signals. In 19th Annual International Conference on Mobile Computing &
Networking (MobiCom) (pp. 27-38). ACM.

44. Kellogg, B., Talla, V., & Gollakota, S. (2014). Bringing gesture recognition to all devices.
In 14th Networked Systems Design and Implementation (NSDI) (pp. 303-316). ACM.

45. Abdelnasser, H., Youssef, M., & Harras, K. A. (2015). WiGest: a ubiquitous WiFi-based
gesture recognition system. In International Conference on Computer Communications
(INFOCOM) (pp. 1472-1480). IEEE.

46. Wang, Y. X., Wu, K. S., & Ni, L. M. (2016). Wifall: device-free fall detection by wireless
networks. IEEE Trans. Mobile Comput., 16(2), 581-594.

47. Wang, W., Liu, A. X., Shahzad, M., & Ling, K. (2015). Understanding and modeling
of wifi signal based human activity recognition. In 21st Annual International Conference
on Mobile Computing & Networking (MobiCom) (pp. 65-76). ACM.

48. Mohanty, V., Thames, D., & Mehta, S. (2020). Photo Sleuth: Identifying Historical
Portraits with Face Recognition and Crowdsourced Human Expertise. ACM Trans. In-
teractive Intelligent Syst., 10(4), 1–36. https://doi.org/10.1145/3365842

49. Song, Y., Demirdjian, D., & Davis, R. (2012). Continuous body and hand gesture recog-
nition for natural human-computer interaction. ACM Trans. Interactive Intelligent Syst.,
2(1), 1-28. https://doi.org/10.1145/2133366.2133371


