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Abstract 

 
Beamforming design is a crucial stage in millimeter-wave systems with massive antenna arrays. We 
propose a deep learning network for the design of the precoder and combiner in hybrid architectures. The 
proposed network employs a parametric rectified linear unit (PReLU) activation function which improves 
model accuracy with almost no complexity cost compared to other functions. The proposed network accepts 
practical channel estimation input and can be trained to enhance spectral efficiency considering the 
hardware limitation of the hybrid design. Simulation shows that the proposed network achieves small 
performance improvement when compared to the same network with the ReLU activation function. 
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5G wireless systems operate in mm-Wave bands to utilize their wider bandwidth. Large-scale antenna 
arrays are used to counterfeit propagation loss associated with mm-Wave bands. This configuration enables 
higher data rates and system capacity which both have growing demands in every aspect of our life. Mm-
Waves have a short wavelength, which enables implementing more antennas into an array without 
increasing its dimension (enable massive MIMO) which increases the number of data streams in a cell. 
However, it is also expensive and power-consuming to implement a dedicated RF chain for each antenna. 
Recently, hybrid architecture has been receiving growing interest and consideration as a practical cost-
effective solution to this problem. By splitting the beamforming process into analog and digital, hybrid 
beamforming enables the RF chain number to be less than the antenna number and solves the power and 
cost problem [1]. 

However, hybrid beamforming is also a complex design problem that has prominent hardware limitations 
and challenges. The analog beamformer architecture using phase shifters is limited by the constant modulus 
constraint [2,3,4]. The imperfect CSI requires a channel estimation technique and joint optimization of 
multiple variables that yield a non-convex problem. In this paper, we propose a using PReLU (Parametric 
Rectified Linear Unit) activation function in a deep learning technique to produce the optimal analog 
beamforming parameters while taking SNR and channel estimations as input. Our results show some 
enhancement over the same technique when non or other activation functions are used. In section 2, we will 
discuss existing approaches and their limitation in the proposed scenario followed by the problem statement and 
system model in section 3. Section 4 describes the proposed technique and algorithm and its simulation results 
are discussed in section 5. Section 6 concludes the paper.  
 

2. Related Studies 

 
Several studies attempted to overcome hybrid beamforming design challenges [ 2,3,4,5, and 6]. An 
orthogonal matching pursuit (OMP) and greedy-based method were proposed in [5], where a dictionary 
containing the array responses is constructed and used to select the precoders and combiners. However, to 
construct the dictionary, departure and arrival angles must be identified which limits the analog beamformer 
to a limited pre-defined codebook. The manifold optimization technique was proposed for the analog 
beamformer optimization in [2], [3]. The alternating minimization and phase extraction methods are applied 
to determine the analog beamformers. In [4], the authors considered a hybrid beamforming architecture in 
which digital (baseband) beamformer is concatenated to an RF (analog) beamformer that is implemented 
using phase shifters. The preceding studies implemented greedy or optimization-based techniques which 
raises the computation complexity and time. Besides, perfect CSI is considered in all of these algorithms. 
 
Deep learning (DL) is extensively studied in massive MIMO and mm-Wave systems due to its ability to 
learn different models and solve optimization problems with less complexity and time. Deep learning is an 
effective approach to solve intractable problems [7]. Recently, deep-learning proved its capability to learn 
wireless channel's complex features [8]. Deep-learning is more robust to the practical imperfect CSI when 
compared to the methods assuming perfect CSI as in [2,3,4,5]. Most of the conventional beamforming 
algorithms require time-consuming, iterative, and high-complexity computations as in [3], [4]. On the other 
hand, deep neural networks (DNN) offer less complexity when solving the same optimization problems, 
and low computation time when deployed online after offline training [9]. 

DL-based techniques received a great deal of attention in communications society as a solution to several 
popular challenges such as coordinated beamforming for highly mobile mm-wave systems, estimating the 
channel parameters and direction of arrival (DOA), antenna selection, analog beam selection [10], [11], 
[12], [13], and [14]. DL-based techniques have also been considered for the hybrid beamforming design 
problem in [15], [16], [17], and [18].  



The work in [15], introduced a convolutional neural network (CNN) for the hybrid joint design problem in 
mm-Wave and massive MIMO systems considering precoding and combining stages. The channel 
parameters are the input to the network and the optimal analog and digital beamformers are the output. The 
network was developed only for the single-user scenario. In [16], the authors proposed a DL-based 
beamforming technique, they introduced a beamforming neural network (BFNN) which after training, 
learns how to maximize the spectral efficiency considering practical CSI, the proposed network is deployed 
for a single-user setting and considered the precoder design only and strongly relies on the channel matrix 
perfectness. In [17], the authors also attempted a DL-enabled technique for the hybrid beamforming design 
problem, in which the hybrid precoder is selected through training based on the neural network for 
optimizing the precoding process of the mm-Wave massive MIMO system, such dense multiple fully 
connected layers can increase the complexity and time, also the study only optimizes the precoder with 
fixed combiners. In [18], a deep learning framework was provided for hybrid precoding showing 
enhancement in spectrum efficiency and bit error rates, but the design of the combiner was not considered 
and perfect CSI was assumed and the constant modulus constraint was not met.  Moreover, some of these 
works also adopted the separation of channel estimation and precoding which doesn’t suit the practical 
settings. 

 

3. Problem Definition and System Model 

 
 

Figure 1 The architecture of the proposed communication link 

In this paper, we examine a single user downlink in a mm-Wave communication system with multiple 
antennas. We investigate the analog beamformer design with one RF chain.  The optimal baseband 
beamformer has a closed-form solution and can easily be obtained [2], [4].  The output dimension can be 
increased from NT to NRFNT for the NT × NRF analog beamformer matrix to investigate the hybrid 
beamforming problem with multiple RF chains.   
 
Let s be the transmitted symbol vector from the base station (BS) equipped with NT antennas to a mobile 
station (MS) equipped with one receive antenna, and let 𝔼{|s|2} = 1. Because only one RF chain is 
considered, the baseband precoder fBB is a scalar. At the transmitter, the symbol vector is multiplied by 
baseband precoder fBB and then by an Nt  ×  1 analog precoder FRF. The final transmitted signal can be 
written as 
 𝑥 =  FRF𝑓BB𝑠,  (1) 
 
At the receiver, the received signal is given by 



  𝑦 =  h𝐻FRF 𝑓BB𝑠 + 𝑛, (2) 
 
where n denotes the additive white Gaussian noise (AWGS) and h𝐻 ∈  ℂ1×𝑁𝑇  is the channel vector between 
the base station and the user with 𝔼{‖ℎ𝐻‖𝐹}  = 1 × 𝑁𝑇 . The widely used Saleh-Valenzuela mm-Wave 
model is considered in this architecture where Nc clusters of Nray paths are assumed in the channel model 
[19] [20] [21]. For hH with one LoS path and (L−1) NLoS paths, which is given by 
 h𝐻  =  √𝑁𝑡𝐿  ∑ 𝛼𝑙𝐿𝑙=1 a𝑡𝐻 (𝜙𝑡𝑙), (3) 

 
Where 𝛼𝑙  denotes the complex channel gain of the lth path, and the NT x 1 response vector of the antenna 

array at the BS is denoted by at (𝜙𝑡𝑙). The departure angle of the the lth path is 𝜙𝑡𝑙 ., The optimization 
objective is the spectral efficiency, for the proposed system, spectral efficiency is 
 𝑅 =  log2 (1 +  1𝜎2  ‖h𝐻FRF𝑓BB‖2), (4) 

 
When the constant modulus constraint, |[FRF]𝑖|2  = 1, for i = 1, . . . , Nt, is considered, in addition to the 

power constraint ‖FRF𝑓BB‖2  ≤ 𝑃 , the optimum fBB for maximizing R is given by √𝑃 𝑁t⁄ . Then, the 
beamforming optimization problem for FRF is given by 
 

                   minimize FRF.                    log2 (1 +  𝛾𝑁𝑡  ‖h𝐻FRF‖2) 

                     subject to                |[FRF]𝑖|2 = 1,        𝑓𝑜𝑟 𝑖 = 1, … , 𝑁t,  (5) 
 

where 𝛾 =  𝑃𝜎2  expresses the signal-to-noise ratio (SNR). It is assumed that 𝛾𝑒𝑠𝑡 =  𝛾, where 𝛾𝑒𝑠𝑡 expresses 

the estimated SNR since the SNR can be accurately estimated compared to the CSI. 
 

4. Deep Learning-Based Beamforming with Parametric ReLU 

 
The conventional method of replacing the analog beamformer with a multi-layer neural network is not 
suitable when considering the analog phase shifters architecture [11], [22], and [23]. As specified in Eq (2), 
the acquired signal is correlated to the analog precoder, thus it can't be used as the input as some existing 
studies did [11], [22], and [10]. Moreover, since most of the deep learning frameworks don't support 
complex output, it is difficult to guarantee that the output (FRF) meets the constant modulus constraint. To 
this end, we introduce a deep learning-based network that takes the above-mentioned issues into 
consideration. The proposed network takes the SNR estimation  𝛾𝑒𝑠𝑡  and the channel estimation hest as 
inputs and outputs the optimum analog beamforming FRF. A Lambda layer is implemented to guarantee that 
the output (FRF) is satisfying the constant modulus constraint. A loss function that is correlated to the 
objective in Eq (5) is used to train the proposed network. The loss functions can be given by 
 𝐿𝑜𝑠𝑠 =  − 1𝑁  ∑ log2 (1 +  𝛾𝑛𝑁𝑡 ‖h𝑛𝐻FRF,n‖2) ,𝑁𝑛=1  (6) 

 
Where N expresses the training samples, and h𝑛 , 𝛾𝑛 , and FRF,n  expresses the CSI, SNR, and analog 
beamformer output correlated to the nth sample. Minimizing the loss resembles an increase in spectral 
efficiency. 
 



In the training stage and based on the system model, channel samples and noise in addition to the transmit 
pilot symbols are simulated. The channel estimation method in [6] is then applied to estimate CSI. 
Ultimately, the channel estimation hest and the SNR estimation 𝛾𝑒𝑠𝑡 are fed to the network as the input. 
 
It is assumed 𝛾𝑒𝑠𝑡 = 𝛾 as mentioned in Section 2. Then, the proposed network attempts to minimize the 
loss function defined in Eq (6) to generate the analog beamforming FRF,n. The channel parameters and SNR 
values (perfect CSI) are simulation-generated, they are used in the computation of the loss function, as 
shown in Fig. 2. Using the perfect CSI in the computation of the loss function and using the channel 
estimation as the input of the proposed network enforces it to learn how to achieve the optimum spectral 
efficiency with perfect CSI and stability against the estimation errors. 
 
The channel estimation is applied again in the deployment stage then fed to the proposed network to 
generate the optimized beamformer. The perfect CSI is not required in the deployment stage and is only 
used during the offline stage to calculate the loss function. In the deployment stage, the proposed network 
parameters are updated and fixed after training. 
 
Since the channel estimation (the input) is complex-valued while the proposed network is a real-value, the 
imaginary and real domains of the channel estimation are concatenated together and further with 𝛾𝑒𝑠𝑡 to 
generate a (2NT + 1) × 1 real-value input vector followed by three hidden layers with 256, 128, 64 neurons 
in each. Algorithm 1 explains the proposed network workflow. 
 

 
Figure 2 The proposed network stages 

Activation functions have a significant role in deep learning networks, it affects its ability to converge and 
the convergence speed. The neural network's computational efficiency, accuracy, and final output are also 
determined by the activation function. The activation function is assigned to every neuron and the 
function decides whether the neuron is activated or not. It is crucial to have computationally efficient 
activation functions since they are processed for each neuron in the network for every data sample. 
Furthermore, backpropagation is the most used method for model training which puts more computational 
effort on the activation function. 
 
The linear activation function derivative is constant and irrelevant to the input which prevents the use of 
backpropagation to train the model. Furthermore, if linear activation functions are used, the last layer will 
always be a linear function of the first layer regardless of how many layers are implemented, therefore, 
when linear activation functions are used, the neural network operates as one layer. 
 



Recent deep learning networks employ non-linear activation functions, which enable the model to create 
the desired mapping between the inputs and outputs of the network, which are essential for the model to 
learn complex data. Non-linear functions have a derivative that is relevant to the inputs and therefore allows 
backpropagation. They allow multiple layers to be stacked to create a deep neural network. 
 
In this paper we used the parametric rectified linear unit (PReLU) function [24], this function overcomes 
several disadvantages in previous functions. Sigmoid and TanH functions suffered from the vanishing 
gradient problem where input's very high and low values yield no change to the prediction, outputs not zero 
centered, and computationally expensive. Rectified linear unit (ReLU) function suffered from the dying 
ReLU problem, the backpropagation cannot be performed and the network stops learning when its inputs 
are negative or reach zero. The dying ReLU problem is tackled by the Leaky ReLU function but, still, 
cannot give consistent predictions for negative inputs. 
 
PReLU doesn't suffer from the dying ReLU problem and can perform well with negative inputs 
and allow backpropagation, it also presents the negative part as an argument to provide consistent 
predictions for negative inputs as in Eq (7). 
 𝑓(𝑥𝑖) =  { x𝑖 ,        if x𝑖  >  0α𝑖𝑥𝑖,     otherwise, Eq (7) 

 
Notice that 𝑥𝑖 is only one entry from the vector 𝐱 and the subscript i in 𝛼𝑖 allow the nonlinear activation to 
change on different channels which is known as channel-wise PReLU, if we decide to learn the same 𝛼 for 
all features, channel-shared PReLU is used. Accordingly, 𝛼 defines how the function will perform. We 
tested different activation functions and found that PReLU achieves the best results. PReLU improves 
model fitting with no extra complexity as well. The results from [24] show that PReLU enhances the 
performance of small and large models without adding computational cost. 
 
Considering the online stage only, the proposed network complexity can be calculated as the number of 
floating-point operations (FLOPs) in all layers given by (2NI − 1) NO [25], where NI and NO refers to the 
input and output dimensions respectively. The FLOPs number of the proposed network is about 0.14 million 
when NT = 64. For comparison, the complexity of conventional HBF algorithms in [3][4] and [5] is about 
0.26 million considering the same number of NT and the complexity of the same network with traditional 
ReLU is also 0.14 million. 
 
The PReLU activation function is associated with an initializer, regularizer, a constraint, and shared axes 
option. The initializer allows us to determine how the 𝛼 weights are initialized, we tested with the default 𝛼 = 0 and 𝛼 = 0.25, the value that authors in [24] recommended. We found that output is better with the 
default value and considered this value in this study. the regularizer controls weight fluctuations by applying 
penalties to outliers, authors in [24] suggested that some regulators may force 𝛼 to certain values and sways 
PReLU towards ReLU or Leaky ReLU, we didn't use a regularizer. Also, network parameters can be 
constrained to a fixed limit during training, we didn't use any constraints so the activation function doesn't 
be monotonic. Shared axes enable sharing axes over space and set to none in the proposed network. 
 
Algorithm 1 DL-based hybrid precoding algorithm using PReLU for massive mm-Wave system 
Input: Estimated SNR 𝛾𝑒𝑠𝑡 and Channel estimation hest 

 

Output: 
The optimum analog beamforming FRF 

 



1. Initialization: NT=64 (number of transmit antennas), P=1(normalized transmit power), a 
function to transferer the phase to complex-valued analog beamformer, and Lambda layer to 
compute the rate. 

2. Simulate channel samples, noise, and transmit pilot symbols. 
3. Produce a series of training sequences. 
4. Construct the DL network layers with PReLU activation function. 
5. Estimated CSI is used as input and SNRs associated with different samples are generated. 
6. Use perfect CSI to calculate the Loss according to Eq (6) to achieve the objective in Eq (5). 
7. Train the network to minimize the loss to achieve FRF,n as in Eq (6) (corresponds to the 

highest SE). 
8. Update the weights 
9. Return The optimum analog beamforming FRF 

 
 
 

1. Simulation and Results 

 
In our simulation, a uniform array of 64 transmit antennas NT are deployed at the BS spaced with half-
wave. The channel model in [5] is used and the same parameters as those in [18] are applied. The channel 
estimation algorithm in [6] is employed for obtaining hest. The Adam optimizer and PReLU activation 
function are used. The network layers, the output shape (dimension), the number of trainable parameters in 
every layer, and the activation function are listed in Table 1. A batch normalization layer is implemented 
before every layer to enhance the convergence. Eventually, the Lambda layer ensures that the constant 
modulus constraint is met at the output. The number of layers and neurons in each layer and the samples 
used in the offline training stage are set as in [16]. 
 
Table 1 The proposed network architecture and hyperparameters 

Layer (type) 
Output 

Shap 
Activation 

# 

Parameters 
Connected to 

imerfect_CSI (Input 

Layer) 

[(None, 
1, 2, 
64)] 

N/A 0  

batch_normalization_1 

(None, 
1, 2, 
64) 

PReLU 256 imerfect_CSI 

flatten_1 
(None, 
128) 

N/A 0 batch_normalization_1 

batch_normalization_2 
(None, 
128) 

PReLU 512 flatten_1 

dense_1 
(None, 
256) 

N/A 33280 batch_normalization_2 

batch_normalization_3 
(None, 
256) 

N/A 1024 dense_1 

dense_2 
(None, 
128) 

N/A 33024 batch_normalization_3 

dense_3 
(None, 
64) 

N/A 8256 dense_2 

perfect_CSI (Input 

Layer) 

[(None, 
64)] 

N/A 0  



lambda_1 
(None, 
64) 

N/A 0 dense_3 

SNR_input (Input 

Layer) 

[(None, 
1)] 

N/A 0  

Lambda_2 
(None, 
1) 

N/A 0 
perfect_CSI, 
lambda_1, SNR_input 

 
Assuming the number of estimated paths is correct (Lest=3), Fig. 3, 4, and 5 show the spectral efficiency 
(SE) versus signal-to-noise ratio (SNR) with three different estimation levels, defined by three pilot-to-
noise power ratios (PNRs), i.e., −20 dB, 0 dB, and 20 dB. The simulation results show that the proposed 
network utilizing PReLU slightly outperforms the same network using the ReLU activation function. Fig. 
6 illustrates the enhancement represented by the value of the difference in spectral efficiency values for 
both functions with different PNRs. 

 
Figure 3 SE vs SNR for PReLU and ReLU when PNR = -20 dB 
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Figure 4 SE vs SNR for PReLU and ReLU when PNR = 0 dB 

 
Figure 5 SE vs SNR for PReLU and ReLU when PNR = 20 dB 
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Figure 6 SE enhancement of PReLU over ReLU with different PNRs 

 

2. Conclusion  

 
In this paper, it has been shown that the PReLU activation function can enhance spectral efficiency with 
small margins over the traditional ReLU function. The same hyperparameters, datasets, and architecture 
were used in both scenarios and only the activation function changed with 𝛼 = 0 and 0.25 and opted for 
zero value as it showed better results. PReLU seems to be more significant for large datasets than small 
datasets where the effects of the vanishing gradient and dying ReLU problems can be significant. Therefore, 
PReLU can be considered for large and deep networks to gain marginal performance improvements over 
traditional ReLU at no additional complexity. 
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