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Abstract

Maintaining prolonged service lifetime and adequate quality of sensing coverage are the key chal-

lenges in constructing Wireless Sensor Network (WSN) based applications. As such networks usually

operate in inhospitable and hostile environment, failures are ineludible and providing resilience is a ne-

cessity. However, it is challenging to satisfy the conflicting problems of enhancing energy efficiency and

fault tolerance simultaneously. Fault-tolerance is a significant requirement while designing WSN. It is

crucial to detect the failures in advance and take necessary measures to maintain durable and efficient

functioning of the network. Generally, in the existing face structured WSNs, node faults and failures can

induce the formation of coverage holes, disrupt the face structure and consequently curtail the applica-

tion performance. The coverage quality will affect the monitoring effectiveness of tracking applications,

e.g., a moving target tracking. Moreover, node failures can cause the network to be partitioned, further

reducing the accuracy in tracking. In this paper, we propose a robust fault-tolerance scheme with cov-

erage preservation using a face structured WSN topology (FCAFT ). The key objective of the proposed

FCAFT scheme is to sustain the performance of the network by timely healing the faults in the network,

to enhance the durability and reliability of the WSN. The results of simulation and comparison with

existing methods reveal that FCAFT is efficacious in sustaining the coverage and enhancing the service

lifetime of WSN, which is a necessity for critical monitoring and tracking applications of WSNs.

Keywords: Wireless Sensor Network (WSN), Face Structure, Planar, Internet of Things (IoT), Coverage,

Resilience, Target Tracking, Fault Tolerance, Robustness.

1 Introduction

Wireless Sensor Network (WSN) is a keystone of the Internet of Things (IoT) technology with diverse ap-

plications to accomplish precise real-time monitoring of events [1, 2]. Object detection, monitoring and

tracking are the crucial tasks in most of the applications of IoT/WSNs, and improved service life of such

applications through energy conservation, effective resource management and resilience to failures is chal-

lenging and is of great significance [3–5]. As the network evolves as a revolution in various aspects of

our life such as wildlife monitoring, health monitoring, habitat tracking, military, search and rescue, it is

worthwhile to have a reliable and resilient network to deal with the demanding issues of improving energy

efficiency and service life with sufficient coverage and fault-tolerance simultaneously [6, 7].

On one hand, the future potential of WSNs enabling useful applications to the real world is practically

limitless; but on the other hand, the design is affected by several constraints [2–4, 6–8]. One of the main

objectives to satify while designing a WSN is to maintain the WSN alive and operational by enhancing the

robustness and reliability of the network [9, 10]. A key aspect in this context is the way the WSN is formed

and sustained. In fact, the network structure is mostly defined according to the application context and envi-

ronment. The nodes in the WSN must self-organize to deliver the service as long as possible. Unfortunately,
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WSNs due to their inherent characteristics and deployment in hostile environment, are vulnerable to frequent

failures that include various reasons like energy depletion, link failure, and so on [6–8, 10, 11]. Hence, fault

tolerance is a critical requirement while designing WSN based applications. Consider an event detection

application, when a detecting node fails, or the monitoring report is not received due to severalreasons, e.g.,

node/ link failure, the performance and detection accuracy can be greatly affected [12]. Moreover, node fail-

ure is a possible cause of sensing coverage loss as it creates coverage holes and can affect the connectivity

between nodes in the WSN, which in turn can reduce the monitoring effectiveness of the WSN [13]. In the

worst case, it can cause partitioning of the network, distorting the network structure as well as the infor-

mation flow, which may put an end to the service life of the WSNs. Therefore, sustaining the performance

of the network by timely detection and healing of the failures in the network is of great importance for the

efficient functioning of applications, for instance: critical surveillance, monitoring and tracking applications

of WSNs [10–14].

Although fault tolerance in WSN has been investigated extensively in various aspects by the research

community, not much work has been done in planar/ face structured WSN. A fault tolerance mechanism

basically follows the stages including fault detection and diagnosis, and restoration/ repair. In some of

the existing approaches, fault tolerance is managed and accomplished using add-on modules, other eval-

uation tools, and require additional hardware [15]. Moreover, many approaches for achieving fault toler-

ance in WSNs are generally implemented and controlled centrally, also called centralized or sink based

approaches [16–18]. These approaches require the nodes to send messages to the sink periodically and re-

quire a high count of active nodes for monitoring the health of nodes and the monitoring task is performed

separately. Such schemes are not practically feasible for a resource-constrained, large-scale event-driven

WSNs, because event-driven WSN pose special challenges to the stated concern [10, 19]. Critical monitor-

ing and tracking applications of IoT based WSNs are usually delay and security sensitive applications and

have real-time requirements for delivering the sensed data [19,20]. Failure to satisfy these requirements can

have serious consequences. Hence, the fault monitoring task should go hand in hand with the normal func-

tioning of the application through effective network configuration and management of resources, as many

of such applications demand fast detection and real time monitoring of events using the underlying WSN.

In general, the existing planar topology based WSN built by generating planarized graph, such as Rela-

tive Neighborhood Graph (RNG), Voronoi diagram, Delaunay triangulation, Gabriel Graph (GG) and some

cross edge removal approaches do not provide any fault tolerance support on its own. Node failures can cause

network partitioning and reduce the application performance [21–23]. Also, some restoration schemes do

exist, but they didn’t effectively consider the network coverage, connectivity and topology quality, which

are also crucial to a WSN [6, 10, 24–26]. In real-time and sensitive applications, this can cause target loss

and consequently, a significant amount of energy is consumed for recovering the missed target. The condi-

tion becomes awful as time progresses. Node/link failures and faults create coverage holes, distort the face

structure, eventually cause the WSN to be split into disconnected partitions, and have negative affect on the

service life and application performance. Most of the researches related to face structured WSNs are car-

ried out using existing planar topologies and they try to recuperate from such failures through maintenance

performed locally by means of merging the adjacent faces [10, 24–26]. If unfortunately the target enters

and stays in a coverage hole area, it will remain untraced, and hence it is not possible to get any informa-

tion about the target unless it leaves the hole region and is sensed by a node. Rapid recovery from failures

and restoration of coverage and connectivity is important so as to prevent partitioning of the network and

maintain the WSN to perform the activity efficiently. Deploying additional nodes instead of failing nodes

is a slow process that is energy consuming and requires human interference, and therefore is not practically

well-suited for WSNs in harsh and hostile environment areas [11, 12]. Therefore, the network should be

self-healing using the existing alive nodes in the network. Moreover, considering the resource constraints

and real-time requirements in WSNs, distributed and energy-efficient methods have become more attractive.

By keeping this in mind, as part of this paper, we propose a robust fault-tolerance scheme with coverage
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preservation using a face structured WSN topology (FCAFT ). We consider a computational geometry based

planar/ face structured WSN, which provides effectual coverage using a minimized set of working nodes

for saving the energy consumed and extending the service life of the WSN [19]. The face topology creation

is performed in distributed manner. A set of selected working nodes are arranged into faces (AniT nodes)

while the remaining nodes are retained in sleep state (non-ANiT nodes), so as to minimize the redundancies

that may lead to increased energy utilization and cost. However, when a node fails, its edges will break

and it is possible that a hole is created. The main objective of the proposed FCAFT scheme is to sustain

the performance of the network by timely healing the faults in the network using the non-ANiT nodes to

ensure robustness and resilience of the WSN. The use of non-ANiT nodes to replace a failed node permits

the WSN to self-heal and keep functioning as long as possible. This helps to sustain the quality of cov-

erage by preventing the hole creation and preserve the network structure by restoring the connectivity in

a distributed and energy efficient way, which are essential requirements regarding applications like critical

target tracking, for e.g., an enemy can stay in hole region without being traced by the nodes in the WSN.

The working of FCAFT includes four main phases, namely initialization, diagnosis, healing and restoration

phase, which correspond respectively to face structure construction, node/link failure detection, selection of

most appropriate non-ANiT node as substitute, and recovery by repairing and restoring the face structure of

the network. The main contributions of this paper are as given below:

• We investigate the fault tolerance capability of face based WSN and evaluate the robustness of the

network.

• We propose a new algorithm for fault tolerance with coverage preservation in face based WSN through

the selection of a suitable substitute node to replace the failing node.

• We present a distributed algorithm for failure recovery by repairing and restoring the face structure of

the network.

• We evaluate the performance of FCAFT through simulations. The comparison results with the existing

techniques [10,11] show the effectiveness of FCAFT in handling the failures by restoring the coverage

and connectivity of the face structured WSN.

We organize the remainder of this paper as follows: Section 2 discusses the related research. The pro-

posed FCAFT scheme is provided in Section 3. Next, the Section 4 discusses the simulation results and

performance evaluation of FCAFT . Lastly, Section 5 concludes the paper.

2 Related Research

In this section, we provide a brief background information on the CAFT paper [19] and then present the

related research on fault tolerance in face structured WSN. The background information is included in

section 2.1 and related research on the fault tolerance aspects is given in section 2.2.

2.1 Background Information: CAFT

The topology of the network which defines the organization of nodes in the WSN has considerable impact

on the performance and efficacy of the system. Therefore, it is crucial to have energy efficient and robust

schemes that allow proper resource management to guarantee the performance of the applications that in-

volve real time monitoring and detection of events using the underlying WSN [27]. CAFT incorporate the

concepts of graph theory and computational geometry to construct a new planar topology for WSN in a

distributed manner. The key focus is to meet the connectivity and coverage requirements utilizing a mini-

mized set of nodes organized as faces in contrast to existing face structured WSN where the entire nodes in
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WSN engage in topology construction and expend more cost in terms of energy, storage, communication,

computation, and time. Originally, the entire nodes of the WSN are in active state to prepare and collaborate

for the topology creation procedure and some nodes are made to sleep to result in a planar topology which

includes only a reduced count of nodes. The edge creation process depends on the distance and connectivity

measures between a node and its neighbors which are supposed to be the vertices of the adjacent faces (or

polygons), to satisfy the coverage and connectivity needs. Ultimately, only a subset of nodes follow duty

cycle mode, while the rest of the nodes stay in sleep mode, leading to the creation of active/sleep nodes

in face topology (ANiT/non-ANiT nodes). Those nodes that constitute the generation of face topology are

called ANiT nodes and the retained sleeping nodes are regarded as non-ANiT nodes. An ANiT node will

not be made to sleep during the execution of topology creation process, while a non-ANiT node continue

in sleep state and will not engage in any tasks, unless it receive a request to wake up. However, node/link

failures can impair the network structure and coverage. We exploit the existing sleep (non-ANiT) nodes

in the current work (FCAFT ) and use them as substitute nodes to replace the failing nodes, to contribute

towards a substantial improvement in network performance and service life.

2.2 Existing works on fault tolerance

Despite the potential and limitless future applications of IoT and WSNs, such networks have some inherent

restrictions imposed because of the constrained resources, such as limited power source, reduced bandwidth,

low computational ability etc. The major consequences of node or link failures are of great impact as they

affect the monitoring efficiency and communication between nodes. The reliability of WSN can be affected

by faults that may happen due to numerous reasons such as depletion of energy, environmental hazards

or defective hardware [28, 29]. An early detection of such faults is crucial for the effective functioning

of the WSN. Hence, fault-tolerance of a WSN is a general matter of interest in various application fields,

and requires increased attention from researchers. The strategies in these researches may vary significantly,

but essentially within the scope of constructing fault-tolerant WSN structure, resilience and recovery from

failures [28–31]. In recent years, numerous researches have explored various aspects of fault tolerance and

management in WSNs, but there still remain concerns to be addressed as not much work has been dedicated

to deal with face structured WSNs.

Fault management techniques are classified in various ways. One such classification is centralized and

distributed approaches [29,31]. In the former approach, the fault management task is performed by a sink or

base station, while the latter allows local detection and recovery from failures. In [31], a local self-healing

scheme of fault tolerance is proposed. When the node’s battery level goes lower than a threshold, node is

declared as sleeping and is removed, and topology is updated. In [6], the fault tolerance issue is addressed to

provide robustness against node failures caused by battery depletion of nodes using redundant sleeping node

as replacement node. The works in [32, 33] contributed approaches of achieving failure recovery through

the use of backup node for replacement of the faulty node. The works presented in [10,24–26] suggest local

maintenance by means of merging two or more adjacent faces into a single face. The work in [11] deals with

the faults by allowing the nodes to be turned off arbitrarily and maintains the tracking form on the surviving

nodes. It also permits insertion of extra nodes into the network and then locally refines the planar graph

and the tracking form to accommodate the inserted node. However, deploying extra nodes instead of failing

nodes requires human interference and is a time and energy consuming process, which is infeasible in harsh

and challenging environments.

Based on the reviewed literature, the proposed paper is found to vary from the previous papers in dif-

ferent aspects. Generally, the faces constructed initially using existing WSN planarization schemes may

not be preserved during tracking and the network performance may degrade over time because of faulty

nodes present in the network. Node/link failures and faults create coverage holes, impair the face structure,

eventually cause the WSN to be partitioned, and adversely degrade the application performance. When the
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occurrence of a node or link fault is detected in the network, it is of high significance to restore the coverage

as well as connectivity of the WSN topology. E.g., in critical target tracking applications, if the network

coverage and connectivity is not successfully restored, it can have serious consequences such as target miss

and loss of tracking. A significant amount of energy gets wasted in recovering a lost target. Usually, a

target recover mechanism aims to recover the target by gradually incrementing the number of active nodes

associated with the adjacent faces surrounding the target lost location [26, 34–36]. If the target detection is

still unsuccessful, the search space is enlarged by activating more surrounding faces. If the target is still not

relocated, the WSN returns to the initial state where all the nodes in the WSN are activated for relocating the

target [35]. Past researches on fault tolerance in face structured WSNs are mostly carried out using existing

planar topologies where they recover and restore the affected faces using the remaining active nodes. How-

ever, when more nodes start to fail, the face structure gets destroyed and quality of sensing coverage gets

deteriorated, resulting in degraded performance of the WSN and reduced network lifetime [10, 11, 24–26].

In the worst case, it can cause partitioning of the network, distorting the network structure and data commu-

nication, which may put an end to the service life of the WSNs. Therefore, it is necessary that a fault tolerant

face based WSN should sustain coverage and connectivity among nodes in an energy efficient manner to

preserve the network structure and prolong the service durability of the WSN. While fault tolerance in face

based WSN has been investigated by researchers to some extent, much work remains to be done to address

the aforementioned concerns.

The above observations motivated us to develop a robust fault-tolerance scheme that self-heal to enhance

the durability and reliability of face based WSN. The coverage is preserved and the connectivity is restored

in an energy efficient distributed manner, which is essential especially for critical tracking applications

of WSN. The sleep (non-ANiT) nodes are used for ensuring failure resilience for better performance and

prolonged functioning of the WSN.

3 Proposed Fault Tolerance Scheme with Coverage: FCAFT

In this section, we initially provide an overview of the proposed FCAFT scheme for fault tolerance in a

planar topology based WSN, and then explain the working of FCAFT in detail. The notations used in this

work are summarized in Table 1.

Overview: To start with, the deployed nodes are arranged to form a planar WSN topology following the

topology construction process of CAFT [19]. The generated planarized graph contains a reduced count of

nodes called ANiT nodes, at the same time ensures coverage as a result of the selection of appropriate nodes.

The retained sleep (non-ANiT) nodes are used by FCAFT for healing the faults in the network, which in

turn ensure robustness and durability in the functioning of WSN by restoring the coverage and connectivity

as long as possible. Figure 1 gives an overview of the responsibilities and goals achieved by blending

CAFT and FCAFT together. CAFT constructs a new planar topology for WSN in a distributed and energy

efficient manner. The connectivity and coverage requirements are satisfied by utilizing a minimized set of

nodes organized as faces in contrast to existing face structured WSN where the entire nodes in WSN engage

in topology construction and expend more cost in terms of energy, storage, communication, computation,

and time. FCAFT exploits the existing sleep (non-ANiT) nodes to provide fault tolerance with coverage

preservation, with the aim to improve the performance and service life of WSN. The scheme provides

distributed failure resilience through selection of suitable substitution node. The failing node is replaced by

the selected non-ANiT substitution node and the face structure is then restored. This ensures the quality of

coverage by preventing the hole creation and preserves the network structure by restoring the connectivity

in a distributed and energy efficient way.

Robustness to faults and failures: FCAFT addresses the conflicting concerns of enhancing energy

efficiency and fault-tolerance simultaneously and offers an approach to deliver robustness in face based
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Table 1: Notations Description

Notation Description

ANiT Node that is a part of the face structure

Fn Failing node

Sn Substituting node

non-ANiT Node made to sleep during face construction

ON The opted neighbors within do

δ Connectivity measure

Dnbr Direct neighbor

Fnbr Face neighbor

Fc Current face

Frep Substitution function

Scand candidate non-ANiT nodes for substitution

Iex Exclusively covered intersection points

distf distance to Fn

WSN

CAFT FCAFT

        to extend network l i fetime

energy eff iciency

- use of ANiT/non-ANiT nodes.
- new  topology constr uction  procedure for  

creating face based WSN.
- construction of face str ucture using a 

r educed count of nodes and retains the 
r emaining nodes in sleep state.

- bui lds a coverage aware face based WSN.

- distr ibuted fai lure r esi l ience.
- selection of sui table substi tution node 

among the nearby non-ANiT nodes.
- r eplacement of fai l ing node using the 

selected non-ANiT node.
- r estore coverage and connectivi ty.
- r estoration of  face str ucture.

robustness

Figure 1: Overview: blending FCAFT with CAFT
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WSN by maintaining adequate quality of sensing coverage and prolonged service lifetime. Node/ link

failure diagnosis and repair functions are analyzed in terms of a target tracking application. Figure 2 gives

the workflow of FCAFT . There are four main phases in the working of FCAFT , as follows. (i) Initialization

phase: Node deployment and construction of face structured WSN is applied in this phase, (ii) Diagnosis

phase: This phase corresponds to node/link failure detection, (iii) Healing phase: The suitable substitute

node selection is performed to heal the failure where the most appropriate non-ANiT node is selected as

substitute using a selection function, (iv) Restoration phase: This phase performs the recovery by repairing

and restoring the face structure of the WSN.

Figure 2: Workflow diagram of FCAFT

3.1 Initialization phase

We consider a WSN with homogeneous set of nodes deployed in the 2D area of interest, which is then

converted into a planar face structured WSN using CAFT [?] to prepare for an intended application, e.g., a

mobile target tracking. The working set of nodes, called ANiT nodes, which are part of the face structure

will perform the activities according to the application scenario (refer Fig. 3 for illustration). An ANiT node

follow a state of duty cycle to conserve energy: active, when it engage in associated tasks; awakening, when

it awakes for a short span of time; inactive or sleep, when its involvement is not needed. The nodes, called

non-ANiT nodes, which are put to sleep during the formation of face structure will not perform any activity

unless a wake-up request is received. When the process has completed, the WSN with non-overlapping

polygons (or faces) is ready to run tasks of the designed application, which we consider here is a target

monitoring or tracking application.

A target, assumed to be present in any of the faces, is surrounded by the edges of the face within which it

currently resides. When the target comes within the sensing range of a node, it can detect the target. Among

the nodes that initially detect the target within the face (called current face), the nearest node is called a

beacon node, which acts as a coordinator and takes the monitoring responsibilities within that face. When

the target crosses an edge towards another face, the nearest node to the target takes the role of beacon for that

face. All the links (edges) and nodes of the faces associated to the target need to be checked and monitored,

meaning that the monitoring is performed in conjunction with the mobility of the target. Please refer Fig.

3 for example. We can see a set of faces, F= {F1, F2, F3, F4, F5, F6}, out of which F4 is the current face

formed by the nodes {n5, n7, n9, n10}. The target entered from F2 to F4 by crossing the edge (n5, n7) that
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is common to both F2 and F4. The node n5 is the current beacon node. As the mobile target is currently in

F4, it is surrounded and trapped by the edges (n5, n7), (n7, n9), (n9, n10), (n10, n5) of the face nodes with

respect to F4. Therefore, it is necessary to have all the face nodes and face edges with respect to the target to

be intact for robust operation and the fault tolerance process should go hand in hand with the mobile target

tracking process.

Figure 3: Illustration: Initialization phase

3.2 Diagnosis phase

Next comes the diagnosis phase. Failures may occur over time during the operation of the WSN. A node

can fail due to several reasons such as faults in hardware, faults in software, and degradation with time.

Energy depletion is one among the main reasons for node failure. A node failure can also be caused due to

faults in its components, such as memory, processor etc. and its capabilities may get affected. For the reason

that a node’s service lifetime depends on its battery state, a node will have a weak function if its energy

level drops below a threshold value. A link may fail due to several reasons such as harsh environmental

conditions and the affected nodes may face inability to communicate. Fault or failure detection process can

be done through node self diagnosis and collaborative diagnosis. Some of the faults can be identified by a

node through self examination based detection, e.g., faults due to depletion of battery can be identified by a

node through self-diagnosis. The residual energy of a node can be estimated by monitoring the current level

of its battery. Hence, a fault tolerance mechanism can be triggered before the complete death of the node.

For detecting the failure of links, a node checks its links to its direct neighbor (Dnbr) nodes. A node

can detect that a faulty link to one of its Dnbr’s if it does not receive any message from that Dnbr within

a certain interval. If a node fails, all of its associated links will break, and the beacon node of the current

face will not receive any status or monitoring report. A link (or edge) is considered as failed for any of the

reasons such as if an edge to or from a node fails, or the node itself is failing, or the node is out of reach as

the beacon node didn’t receive any status message within a specific period of time. For the fault detection

process, we consider the Markov chain model of [10]. Node self-diagnosis enables each node to examine its

residual energy and any fault or fault-to-be which includes transmission of abnormal values, for identifying

any anomalies/faults in its own behaviors, and Link monitoring enables each node to probe for its Dnbr’s and

check the behavior of the links to identify the anomalies. Figure 4 depicts a failure scenario where n4 is the

failing node. It has n3, n7 and n10 as its Dnbr’s, and F2, F3 and F4 are the associated faces that get affected.

The links that will fail include (n4, n3), (n4, n7) and (n4, n10). If a node detects its own faulty behavior, it
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can understand that it may fail at a later time, so begins the fault tolerance process. Moreover, when a failing

node is identified, it has to be substituted using a suitable non-ANiT node so that the tasks of the failing

node can be reallocated to the selected substitute node for improving the service life and performance.

Based on the evaluation of the existing related works on the fault tolerance aspect of face based WSNs,

the newly proposed recovery scheme focus to satisfy the following requirements that were raised in the

literature, to enhance the network performance and lifetime:

Verification of coverage and connectivity: It is quite significant to verify the coverage as well as con-

nectivity functions during the fault recovery process to ensure robust functioning of the WSN as failures

may cause link breakages, coverage holes and even split the network into disjoint components leading to

loss of communication. If a node is about to fail, it is necessary to determine and restore its coverage and

connectivity as these functions might be altered after it becomes defective. Coverage verification: aims

to restore the lost coverage due to failure. Connectivity or communication verification: aims to verify the

communication links. This is discussed in detail in the subsequent sections.

Figure 4: Failure scenario

3.3 Healing phase

Upon failure detection, failure maintenance is performed to heal the failure and to reduce the consequences.

Node failure: Firstly, in the context of a node failure, the loss of coverage and connectivity induced

due to node failure is quite significant as the failure of nodes may result in disconnection from one or

more other nodes and disrupt the face based WSN structure (refer Fig. 4 for example). So, a failing node

needs to be replaced with a suitable substitute node and a local recovery scheme is necessary to sustain the

network topology. The proposed scheme for fault-tolerance invokes two actions: At first, the selection of

best substitute node among the sleeping non-ANiT nodes in its neighborhood is performed for offloading the

failing node’s tasks and responsibilities. Then, restoration of the edges (or links) is performed to recover the

face structure. This helps to provide coverage area maintenance and restore the network structure. Moreover,

if a beacon perceives that one of its Fnbr node is about to fail, it can select a non-ANiT node nearest to the

Fn to replace Fn and the selected non-ANiT node heals the coverage and restores the face structure.

Selection of suitable substitute node (Sn): The key issue in providing robustness to WSN is how to

determine the best node from the candidate non-ANiT nodes from the neighborhood of failed node and how

to recover the face structure of the network proactively. It is necessary to determine the most appropriate

non-ANiT node to replace the failing ANiT node, in terms of lowest loss of coverage and connectivity to its
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associated faces. In order to measure the destroyed coverage of a failing ANiT node say Fn, we first define

its relevance using the coverage loss caused by Fn. Let ON be the set that contains the opted neighbors of

Fn. The associated non-ANiT nodes act as candidates (Scand) for substituting the Fn. More details about

ON and ANiT/ non-ANiT nodes can be found in [19].

Figure 5: Selection process: substitute node, Sn

The procedure for selecting Sn is explained as follows. Arrange ON ’s of Fn in counter clockwise

direction. Let the set Ip contains the intersection points between i = Fn and its arranged ON ’s, denoted as

ON (i), and also between any two ON ’s of i, That is, Ip= {p : p is an intersection point of nodes i and j &

([i, j] ∈ {ON (i) ∪ i})}. From the set Ip, select the intersection points which exclusively belongs inside or

on the sensing circle Cs of i, where i= Fn. Let the formed set be Iex(i). That is, Iex(i) = {p : p ∈ Ip(i) & (

[p is covered by i] or [p lies on Cs]) & (p is not covered by j : j ∈ ON (i))}. This means that the region Rex

formed by these Iex(i) points is under exclusive coverage of Fn with Iex(i) as the boundary points. The

non-ANiT node that could cover more coverage points (with reference to Rex) of Fn can contribute to high

coverage gain when Fn fails. Each candidate node (sc ∈ Scand) for substituting Fn is marked in accordance

with its average coverage with respect to Iex(i). Hence, a feasible solution is to be determined from the

Scand set for satisfying the coverage of Rex. And this means that the best node from Scand set needs to be

selected as substitute node (Sn) and then activated to replace Fn. This can contribute to more efficiency in

terms of coverage and connectivity towards the ON ’s of the Fn. Such a node should satisfy the coverage

of the points that belong to Iex(i). Thus, the objective function to be satisfied when a Fn is replaced by a

suitable Scand node j is that both the differences between C(f) and C(f ∪ j \ i), and E(f) and E(f ∪ j \ i)
should be minimum, where i and j denotes Fn and Sn, C(f) and C(f ∪ j \ i) denote the coverage rate

with respect to the associated faces before the node fail and after replacement, and E(f) and E(f ∪ j \ i)
denote the communication energy cost before node fail and after replacement, respectively. Hence, we have

formulated the following function (Frep) for selecting the Sn to replace Fn (given by Equation 1). The

higher the value of Frep, the more appropriate a candidate node (sc ∈ Scand) is for substitution.

Frep = β × (
ni∑n
1
Iex

) + (1− β)× (dist−1

f ) (1)

where Iex represents an exclusively covered intersection point of Fn, ni denotes the number of points

from Iex covered by sc, distf denotes the distance from sc to Fn and 0< β < 1 denotes the balancing factor

respectively. Consider Fig. 5 for example. Here, the node n5 is the Fn with nodes {n4, n9, n3, n6, n8} as
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its ON ’s and the corresponding non-ANiT nodes are also represented. Among the Scand nodes (denoted by

green dots), the best node is selected as Sn according to the function given in Equation 1. The algorithm for

’Fault Tolerance: selection of suitable substitute node’ is provided in Algorithm (1).

Algorithm 1 : Fault Tolerance: substitute node selection

INPUT : i = Fn and ON ’s of the Fn
OUTPUT : Sn

1: Sort ON ’s of i in counter clockwise order.

2: Create a list Scand that contains candidate substitute nodes with respect to the ON ’s.

3: Sort Scand based on distance to i.

4: for consecutive ON ’s taken in order do

5: if Ip is true then

6: Determine the exclusively covered points, Iex(i)’s.

7: end if

8: end for

9: if Frep is largest for sc = Scand using Equation (1) then

10: Select sc as the best substitute node for replacing i.

11: end if

12: if sc is true then

13: Assign Sn= sc.

14: end if

15: Send wake up request to the selected Sn.

16: End

Link failure: For healing link failure, the proposed method makes decision based on the affected node’s

connectivity measure(δ). The details on connectivity measure can be found in [19]. If a node’s δ parameter

is greater than threshold (t), it checks for the nearest ON connection or checks for possible links between

adjacent ON ’s, and restore it to heal the failure; or a possible link between the nearest Fnbr node is restored

as each node already has the information of all its Fnbr’s. Otherwise, the affected two faces are combined

to form a single face. If more than one edges of a node fail, the node is then substituted using the process

explained earlier (Algorithm 1). An illustration of link failure scenario is depicted in Fig 6. Let the link (n6,

n8) is a faulty link. So, the node n6 (based on δ, δ > t ) restores the link between itself and its adjacent ON

node i.e., n7, to heal the failure. The algorithm for healing link failure is given in Algorithm (2).

Figure 6: Link failure scenario
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Algorithm 2 : Fault Tolerance: link failure

INPUT : (ni, nj)- the failing link.
OUTPUT : the restored link

1: if δ > threshold then

2: if a link to an adjacent ON node (nk) is possible then

3: restore (ni, nk)
4: else if a link between nearest Fnbr nodes is possible then

5: restore the link.

6: else

7: goto step 10.

8: end if

9: else

10: combine the two affected faces based on target’s path.

11: end if

12: if more than one links of a node fail then

13: substitute the node with Sn

14: end if

15: Update the faces.

16: End

Figure 7: Illustration: Restoration process

3.4 Restoration phase

While healing a failure, it is necessary that the face structure should be restored. Here, we explain how

the faces are repaired and restored during recovery from failure. After successful selection of Sn, the Fn

needs to be replaced with Sn. For this, a message Mnbr that contains the details of Dnbr’s is sent to the

Sn for link formation and restoration of face structure. So, next comes the link formation process. It is a

two step process which performs link validity check and link correction functions. For this, as the first step,

the Sn tries to check validity of the link with each of the nodes in the Mnbr list. The link validity checking

is performed according to the edge formation process in initial face structure construction phase [19]. The

second step is necessary due to the following reason. Earlier, Sn was a non-ANiT node, but now it is

an ANiT node. So, there exist chances that an existing link can become invalid when Sn became active

(ANiT). So some edge corrections may be required while restoring the face structure. We have illustrated

this scenario using an example in Fig. 7. From the figure, we can see that the Dnbr’s of failing node Fn are

{n1, n4, n10}. On receiving the Mnbr message, the Sn node communicate with the Dnbr’s of Fn to verify
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the validity of the respective links. so, the Dnbr’s i.e., the nodes n1, n4 and n10 check the possibility for

connecting with Sn. The nodes n1 and n10 can successfully verify the validity and can connect directly to

Sn. However, for node n4, its link with node n6 i.e., (n4, n6) becomes invalid as it violates the conditions

of topology construction process. So, the link (n4, n6) is removed and the nodes n4 and n6 join Sn by

individually connecting to Sn. Therefore, the new Dnbr’s of Sn = {n1, n4, n6, n10}. After identifying

the Dnbr’s, the faces are updated according to the face exploration process of CAFT. The algorithm for

restoration phase is given in Algorithm 3.

Algorithm 3 : Fault Tolerance: Restoration of faces

INPUT : Sn, Dnbr’s of Fn
OUTPUT : the restored face structure

1: Begin link formation process.

2: while Dnbr is true do

3: if link validity check is true then

4: if any existing link of Dnbr is invalid then

5: do link correction.

6: do connecting the respective nodes to Sn

7: end if

8: Form connection to Sn

9: end if

10: end while

11: Update the faces

12: End

4 Simulation results and Evaluation

In this section, we provide the simulation results and evaluate the advantages of FCAFT over existing

schemes in face based WSN. The experiments are performed in Matlab. We consider node deployment

in an area of 100m × 100m, following random uniform distribution. The communication range (Rc) of a

node is set greater than or equal to twice its sensing range (Rs), i.e, (Rc ≥ 2Rs). In the simulations, Rc is

considered to be 20m and Rs as 10m. All nodes in the WSN synchronize with the sink in first 1-10ms. The

count of nodes is varied from 100 to 350 so that it may provide an insight into the performance of FCAFT

in different scenarios and the performance under different node densities is then evaluated. The nodes are

time synchronized to coordinate the tasks among themselves. After the topology construction has completed

(100s), the WSN is ready for target tracking. For modeling the energy consumption, we have adopted the

CC2420 radio parameters [19, 37]. The performance is compared with the two existing schemes namely

LoMoM [10] and Forms [11]. For evaluating the performance, we consider faults in the WSN at varying

rates. Failure rate (fR) represents the failure in a random fashion after the construction of face structured

WSN, and is calculated in terms of the rate of the count of nodes failed to the total nodes count. As the

target moves in the monitoring area, one or more nodes (of some faces) in the WSN may appear failing. The

results are averaged over 100 simulation runs for reliable results.

Performance metrics used: The following are the metrics used for performance evaluation and compar-

ison:

• Coverage versus different failure rates: measures the variation in coverage according to varying fault

occurrences.

• Average involved faces: This metric is measured in terms of faces involved and updated for recovering

from failures during tracking.
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• Average data delivery rate: When failures occur, the ability to sustain the operation by avoiding any

interruption of WSN serviceability assures more reliable transmission of information. This metric

that measures the average data delivery indicates the performance of the schemes in reducing the data

loss caused by the failures.

• Quality of service: This metric is measured in terms of tracking accuracy, which is estimated with

regard to the rate of successful target tracking steps over a total count of events.

• Service Lifetime: This metric estimates the service lifetime of the network.

4.1 Simulation Results

Next, we provide the results of evaluating the performance of FCAFT and its comparison through extensive

simulations. The results of simulation are as discussed below.

4.1.1 Coverage versus failure rate

We initially analyze FCAFT in terms of its performance in providing network coverage rate under various

node densities, for different failure rates. Figure 8 provides an insight into the average coverage rate of the

network with various number of nodes by varying fR. The count of deployed nodes is varied from 100

to 350. As a result of random deployment, when the count of nodes in the WSN is not dense enough, the

number of eligible nodes for substituting the failed node is less and therefore a slight deviation in coverage

with increase in failure rate is observed. With the increase in the count of deployed nodes, the coverage is

sustained even with occurrences of failures. From Figure 8, we can see that the quality of coverage is suc-

cessfully maintained with the increase in the count of nodes under different failure rates. To further analyze

the performance of FCAFT , we have varied the sensing range value and the same behavior is observed.

Figure 8: Average network coverage for different failure rates.

Coverage rate comparison: We have further evaluated FCAFT in terms of the coverage rate for different

node failure rates with respect to existing face based scheme and a comparison of coverage is depicted in

Fig. 9. The results reveal that the proposed FCAFT scheme is successful in providing good quality coverage

than the existing face based method. This behavior can be explained by the fact that FCAFT accomplishes
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healing using the non-ANiT nodes through efficient selection of appropriate substitute nodes while the

existing method doesn’t apply a node substitution during failure recovery. From the figure, we can notice

that the coverage rate of existing face based structure decrease with the increase in the rate of failure. As time

progresses, the increase in node failures may cause disconnection between nodes and lead to disruption of

the network structure, which in turn affect the application performance. In contrast to this, FCAFT ensures

durable and robust functioning of the network by preserving the coverage as well as the face structure of the

network.

Figure 9: Comparison: coverage rate versus node failures.

4.1.2 Average Involved Faces

Next, we illustrate the performance of the schemes in terms of average count of faces involved and updated

while recovering from failures during tracking. The initial topology construction process makes the faces

to be better structured using a reduced count of nodes and are comparatively larger than that of the existing

face structured WSN which contains the entire deployed nodes as a part of the planar structure. If a node

fails, the existing schemes try to recover from the failure by performing maintenance through merging of

faces [10] or by updating the differential form [11], and require more faces to be involved. Moreover, due

to the smaller sized faces of the existing schemes, the failures can lead to loss of tracking as the target may

escape the face quickly without being detected by any of the nodes in the face and requires participation of

more faces for updating the tracking information. In addition, coverage hole gets created due to node failures

in existing schemes and if unfortunately the target resides in a coverage hole region, it cannot be detected. In

such occurrences, the relocation of the target is possible only when a node detects its presence after it exits

the hole area. Even though Forms states about insertion of extra nodes to replace the failing nodes, we

believe it is time and energy consuming task and is also infeasible in harsh and challenging environments.

A comparison on average number of involved faces for FCAFT , Forms and LoMoM under various node

densities when fR is 0.1 is given in Fig. 10. From the figure it is clear that the average involved faces for

FCAFT is lower than that of the others. This is because FCAFT efficiently recovers from failure by restoring

the coverage and connectivity of the faces using the non-ANiT nodes and provides better robustness to

failures.
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Figure 10: Average involved faces.

4.1.3 Average data delivery rate

We have evaluated the performance of the network with reference to average data delivery rate. The results

as depicted in Fig. 11 shows that FCAFT provides better performance when compared to LoMoM and

Forms. During the occurrence of failures, the efficiency in sustaining the performance by eliminating any

interruption in functionality of the WSN assures more reliable transmission of data. The performance of

FCAFT is better then others indicating that FCAFT reduces the data loss caused by the failures through the

replacement of failing nodes with non-ANiT nodes. However, in the existing methods, the performance

reduce because there will be significant reduction in coverage as well as connectivity due to failures, which

will result in the disruption of the network structure with the increase in failure rate. In contrast to this,

FCAFT preserves the network structure and maintains the performance effectively through better healing of

failures that ensures coverage and durable functioning of the network.

4.1.4 Quality of Service

To further evaluate the effectiveness of FCAFT scheme, we observed the performance of FCAFT in terms

of quality of service, considering the previously mentioned underlying challenges. We analyzed the re-

sults based on the overall simulation results under various node densities and compared the performance

of FCAFT with that of the other schemes. The results are illustrated in Fig. 12. It is evident that FCAFT

gives better performance than the other schemes. With the new topological organization of nodes to con-

struct faces which are larger in size when compared to that of existing face based WSN, and the appropriate

recovery process of FCAFT by using non-ANiT nodes in minimizing the formation of coverage holes and

in preventing face structure disruption during failure situations, helped in continuous tracking of the target

with less count of nodes and faces as well. Therefore, the chances of target miss situations are significantly

reduced when compared to existing approaches which involve and require more faces during tracking and to

recover the missed target, which consequently affects the network performance in maintaining accuracy and

quality of the application. Figure 13 provides the results of target miss rate for the schemes under different

node failure scenarios.
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Figure 11: Average data delivery rate.

Figure 12: Quality of Service: Tracking accuracy.

4.1.5 Service Lifetime

Next, we examine the service lifetime of the network with and without FCAFT , as shown in Fig. 14. We can

see that the lifetime of the network is considerably improved using FCAFT . Moreover, we have evaluated

the face based schemes in terms of their lifetimes and the results are provided in Fig. 15. The results reveal

that FCAFT provides better service lifetime when compared to others. This is because, FCAFT prevents the

loss of coverage and connectivity due to failures and improve the durability of the network. However, in

the existing schemes, the loss of coverage and connectivity become more serious with the increase in failure

rate, and the performance and service life of the network get reduced significantly. We can see that FCAFT

greatly improves the robustness, durability and application performance of the network.
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Figure 13: Quality of Service: Target miss rate.

Figure 14: Service lifetime: With and without FCAFT.

5 Conclusion

Here, we have presented a robust fault tolerance scheme that preserves the coverage and connectivity in a

face based WSN. In the existing face structured WSNs, node faults and failures result in connectivity and

coverage loss, and can have critical consequences, e.g., target loss, which in turn reduces the accuracy of

application. However, the use of non-ANiT nodes for substituting the failing nodes helps in sustaining the

quality of sensing coverage and ensures the connectivity of the network so that the lifetime and application

performance is improved. This is quite significant for applications, such as critical tracking, where an

intruder can hide in hole region without being detected by the nodes. The results of simulation reveal the

efficiency of the proposed FCAFT scheme in comparison with existing face structured WSN schemes. The
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Figure 15: Service lifetime comparison.

performance of the network is sustained by timely healing the failures in the network to ensure robustness

and resilience of the WSN. The use of non-ANiT nodes in replacing failing nodes and preservation of

the network structure by restoring the connectivity in a distributed and energy efficient way permits the

FCAFT to self-heal and keep functioning as long as possible. We can see that FCAFT greatly improves the

robustness, durability and application performance of the network.
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Overview: blending FCAFT with CAFT
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Work�ow diagram of FCAFT
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Illustration: Initialization phase



Figure 4

Failure scenario
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Selection process: substitute node, Sn
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Link failure scenario
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Average network coverage for different failure rates.
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Comparison: coverage rate versus node failures.
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Quality of Service: Tracking accuracy.
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Quality of Service: Target miss rate.
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Service lifetime: With and without FCAFT.
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Service lifetime comparison.


