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Abstract Modulation recognition is an important research area in wireless communication. It is commonly used in

both military and civilian domains, such as spectrum detection and interference identification. Most existing mod-

ulation recognition algorithms have a better recognition performance at high signal noise ratio (SNR). However,

when SNR decreases to -10 dB or even lower, such as the battlefield and disaster areas and other harsh environment,

the recognition rate may decrease dramatically. In order to solve this problem, a modulation recognition algorithm

based on denoising bidirectional recurrent neural network (DBRNN) is proposed. Firstly, the state memory ability

of the signal reconstruction layer in the network is utilized to learn the temporal correlation of the modulated signal,

the reconstruction of the received signal is completed and the noise in the modulated signal is suppressed. Then,

the reconstructed signal is encoded and decoded by the feature reconstruction layer, in which the feature of recon-

structed signal is compressed and reconstructed, thereby the influence of noise can be further reduced. Finally, the

reconstructed features are identified and classified by the fully connected layer. Simulation results demonstrate that

the proposed network can effectively suppress the noise in the signal. Compared with other existing algorithms, the

proposed method has higher recognition accuracy in the low SNR environment.

Keywords Modulation recognition · Denoising bidirectional recurrent neural network · Deep learning · Dilated

convolution

1 Introduction

Modulation recognition, as an important technology of wireless communication, is commonly used in military

and civilian domains. In military applications, it can be employed for signal confirmation, spectrum detection, emitter

interception and so on. In the civilian domains, its applications include signal verification, cognitive radio, interference

identification, etc. There are different modulation types of signals, and their features are also different. The modulation

recognition problems can be resolved by recognizing the signal features, and feature-based classification methods are

popular.

In [5], several algorithms based on signal phase, frequency and amplitude feature are used for modulation recog-

nition. Although the computational complexity of these algorithms are very low, the recognition rate is significantly

influenced by noise. It may decrease dramatically in the low SNR environment. High-order statistical-based algo-

rithms [6], [7], [10], [15], such as instantaneous features and high-order cumulants, have excellent anti-noise per-

formance and the computational complexity is relatively low. However, these methods require manually extracted

features and the performance of the algorithms are unsatisfied in the low SNR environment.

Deep learning is an effective technique to extract various complex features from the original data automatically. It

has been widely used in modulation recognition because of its excellent self-learning ability and nonlinear mapping

ability. It can be combined with the simple features to discover more complex features automatically by multiple

nonlinear transformations. Because the neural network has the ability of nonlinear mapping, it can solve the difficult

classification problem, such as modulation recognition in the low SNR environment. In [12], O’Shea applies deep

learning to modulation recognition for the first time and discusses the critical importance of good datasets for model

learning, testing, and evaluation. In [13], a modulation recognition algorithm based on deep neural network is pro-

posed. The algorithm uses particle swarm optimization algorithm to optimize the number of neural network nodes,
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and adaptively selects the optimal number of hidden nodes in the network, which improves the recognition accuracy

of modulation recognition in multipath interference environment. In [14], a deep belief network (DBN) to classify

the signal modulation mode is proposed. Compared with spectral correlation function, a modulation recognition al-

gorithm based on high order cumulant neural network is proposed in [15], which extracts the sixth order cumulant

of the signal to construct a new feature parameter as a feature input of the neural network. The simulation results

demonstrate that the algorithm has good recognition performance and robustness in frequency offset and multipath

effect environments. In [16], a deep neural network (DNN) based on high order cumulants is employed to improve

the recognition rate, and the overall success rate of the method is over 99% at the -2dB SNR. A convolutional neural

networks (CNN) based on constellation diagrams is designed to recognize modulation mode that is difficult to dis-

tinguish such as 16 quadratic-amplitude modulation (QAM) and 64 QAM [17]. A modulation recognition algorithm

based on convolutional neural network is proposed in [18]. The algorithm uses the constellation diagram of modula-

tion signal and convolutional neural network to get better recognition performance. A genetic backpropagation neural

network (BPNN) is investigated in [18], genetic algorithm (GA) is used to design the architecture of BPNN to find

the best value for the number of hidden layers and the number of neurons in each layer. This approach eliminates the

human factor and improves the efficiency and accuracy of network. However, the recognition rate of the existing deep

learning methods such as [12]− [18] in the low SNR environment is lower. When SNR is less than -10 dB, the recog-

nition rate is less than 30% and some even less than 10%. With the increasing complexity of modern communication

environment, the signal is subject to more and more interference during transmission [19]. In the actual channel, the

signal power will gradually fade with the transmission distance, resulting in SNR reduce to -10dB or even lower [20].

In the electronic detection, the signal received by the detector may be sent by the sidelobe of the transmitter, resulting

in the received signal with a low SNR [21]. In modern electronic warfare, the communication signal has low power for

communication security, and multiple types of noise are often superimposed during wireless propagation, resulting in

SNR decreased significantly [22].

In order to improve the recognition rate of modulation recognition technology in the low SNR environment. A

denoising bidirectional recurrent neural network is proposed in this paper. The rest of the paper is organized as follows.

The data set is described in Section 2. Section 3 introduces the proposed method. Section 4 gives some simulation

results. Finally, the conclusion is summarized in Section 5.

2 Data Model

Assuming that the received signal is given by

x(n) = s(n)+g(n) (1)

where x(n) represents the received signal, g(n) denotes additive white Gaussian noise having zero mean and variance

σ
(2)
g , and s(n) is given by:

s(n)=aei(ω0nT+θn)
j=∞

∑
j=−∞

s(l)ρ(nT+ jτ + εT ) (2)

where s(l) represents the input sequence, a denotes the signal amplitude, ω0 stands for angular frequency offset

constant, ρ(.) is channel effect, τ represents symbol spacing, εT stands for timing jitter and θn denotes phase jitter.

3 Algorithm Formulation

In this section, a new network structure called DBRNN is proposed. Figure 1 shows DBRNN network structure.

The network consists of signal reconstruction layer, feature reconstruction layer and fully connected layer. Firstly,

the signal reconstruction layer receives the input signal, which is processed by the signal reconstruction layer to

obtain the reconstructed signal. The signal reconstruction layer can suppress the noise in the signal, thus reducing

the influence of noise features on feature extraction, facilitating the feature reconstruction layer to extract the signal

features accurately. Then, the feature reconstruction layer processes the reconstructed signal and generates the feature

reconstruction signal. It can compress and reconstruct the features of the reconstructed signal to make the signal

purer. Finally, the feature reconstruction signal is identified and classified by the fully connected layer. The specific

functions of each layer will be described as follows.
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Figure 1. DBRNN network structure

3.1 Signal reconstruction layer

Firstly, the signal reconstruction layer is used to preprocess the received signal so as to reduce the interference

of noise. The signal reconstruction layer is composed of a series of bidirectional cyclic neurons. Bidirectional cyclic

neurons can not only receive information from other circulating neurons, but also receive their own information,

thereby forming a circular network structure, which has the short-term memory function and is suitable for processing

time series. The modulated signal can be thought as a time series, moreover the before and the after signal have strong

temporal correlation. The temporal correlation of the received signal is learned by the signal reconstruction layer,

which captures the effective information of time series and removes the invalid information, therefore the denoising

of the received signal is completed. The neurons of the signal reconstruction layer are shown in Figure 2.

Figure 2. The neurons of the signal reconstruction layer

It can be seen from Figure 2 that the structure of the neurons in the signal reconstruction layer is different from the

traditional neuron structure. On the basis of the traditional neuron structure, a delay memory unit is added, it records

the state of the next neuron.

The amplitude of the received signal is used as the input of the network. Since the amplitude of the received signal

varies widely in the low SNR environment, and it has a relatively discrete characteristic, the input of the network is

transformed by one hot encoding, and the encoded vector xxx is used as the input to the network. The process of the

input layer to the hidden layer can be expressed as

Ai = f (UUUxxx+WWWAi−1) (3)
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where UUU represents the weight matrix from the input layer to the hidden layer, xxx denotes the encoded vector, and WWW

stands for the weight matrix between the previous state Ai−1 and the current state Ai , which is the weight matrix of

its own recursion. f (·) is sigmoid activation function. After the current state Ai is obtained, the output of the network

is calculated, and the result is given by

yyy = g(VVV Ai) (4)

where VVV denotes the weight matrix from the hidden layer to the output layer, and g(·) stands for tanh activation

function, which can be expressed as:

g(x) =
ex − e−x

ex + e−x
(5)

In the signal reconstruction layer, because of the temporal correlation of signal, signal is propagated not only from

the input layer to the hidden layer, but also from the hidden layer to the input layer. The reverse process of network

from the input layer to the hidden layer can be expressed as follow:

Ai
′ = f

(

UUU ′xxx+WWW ′Ai+1

)

(6)

where UUU ′ represents the weight matrix from the hidden layer to the input layer, and WWW ′ stands for the weight matrix

between the future state Ai+1 and the current state A′
i.

According to (2) and (5), the output vector of the signal reconstruction layer can be expressed as

yi = g
(

VVV Ai +VVV A′
i

)

= g
(

VVV f (UUUxi +WWWAi−1)+VVV ′ f
(

UUU ′xi +WWW ′A′
i+1

))

= g

(

VVV f (UUUxi +WWW ( f (UUUxi−1 +WWWAi−2)))+ . . .

+VVV ′ f
(

UUU ′xi +WWW ′
(

f
(

UUU ′xi+1 +WWW ′A′
i+2

)))

)
(7)

where xi represents the network input at ith time and yi stands for the network output at ith time.

In the back propagation process of signal reconstruction layer, the partial derivative of parameter (UUU ,,,VVV ,,,WWW ) is

calculated respectively.

Assume that the derivative of hidden state is δ (t) at time t, the partial derivative of the function L regard as the

parameter V can be expressed as

∂L

∂V
=

τ

∑
t=1

(

ŷ(t)− y(t)
)(

A(t)
)T

(8)

where L represents the mean square error loss function, ŷ(t) indicates the expected output of the network, and y(t)

stands for the real output of the network.

The partial derivative of the function L regard as the parameter U can be expressed as

∂L

∂U
=

τ

∑
t=1

diag

(

1−
(

A(t)
)2

)

δ (t)
(

x(t)
)T

(9)

where x(t) represents the input data of the network at t time and A(t) represents the state Ai at t time.

The partial derivative of the function L regard as the parameter W can be expressed as

∂L

∂W
=

τ

∑
t=1

diag

(

1−
(

A(t)
)2

)

δ (t)
(

A(t−1)
)T

(10)

where A(t−1) represents the state Ai−1 at t time.

The noise of the received signal is reduced by the signal reconstruction layer, this process provides the basis for

the subsequent network layer processing.
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Figure 3. The structure of the feature reconstruction layer

3.2 Feature reconstruction layer

After the signal reconstruction layer, the received signal has been reconstructed. And the amplitude, frequency,

phase and other effective information of the signal have emerged from the noise. However, the noise in the received

signal has not been completely removed. The residual noise affects the internal feature representation of the signal,

resulting in poor representativeness of the signal feature and low recognition accuracy. In order to obtain the more

effective features from the reconstructed signal, the feature reconstruction layer is used to reconstruct the signal

feature in this section. The structure of the feature reconstruction layer is shown in Figure 3.

First, the reconstructed signal r(t) is mapped to the corrupted signal r̃ (t) by the random damage process qD ,which

can be expressed as

r̃ (t) = qD (r (t)) (11)

The random damage process qD randomly sets the sampling points of r(t) to zero, and this process randomly

removes some sampling points that may have large noise, thereby the signal r̃ (t) whose a part of amplitude value is 0.

Then, r̃ (t) and r(t) are combined to form the training sample pair (r(t), r̃ (t)) as an input to the feature reconstruction

layer.

As shown in Figure 1, the feature reconstruction layer encodes the reconstructed signal, so as to the features of the

reconstructed signal is learned and compressed to a set of smaller feature vectors. Then through the decoding process,

the feature vector is reconstructed into more representative signal features. The encoding and decoding process of the

feature reconstruction layer will be described as follow.

In the process of encoding, one hot encoding is applied to (r (t) , r̃ (t)) , so that it can be transformed into xxx =
(x1,x2,x3, . . .xn) that the value of one position is 1 and the value of the other positions value is 0. xxx is processed by

the first nonlinear layer, and the process can be expressed as

hhh
(1)
kkk

= f (WWW 111xxx+bbb111) (12)

where k represents the length of feature vector. WWW 1 represents the weight matrix, and b1 denotes the bias vector. f (·)
represents sigmoid activation function. The next layer feature is a compressed representation of the previous layer

feature.

After the input signal encoding, the signal feature coding hhh
(1)
k is further compressed. The process can be expressed

as

hhh
(2)
lll

= f
(

WWWhhh
(1)
kkk

+bbb
)

(13)

where l represents the length of the feature vector, in order to compress the signal feature to a smaller length, let l < k.

According to (12) and (13), the input signal (r (t) , r̃ (t)) is compressed into the feature vector yyy. The vector yyy

retains the original features of the input signal as much as possible, and randomly removes the noise in the signal.

Then the feature vector yyy is decoded, and the decoding process of yyy is the reconstruction process of signal feature.

By reconstructing the feature vector yyy multiple times, a more representative signal feature is obtained. The first

reconstruction process in the decoding phase can be expressed as

ĥhh
(1)
kkk = f

(

WWW ′yyy+bbb′
′′
)

(14)

where WWW ′ represents the weight matrix corresponding to the first decoding. bbb′
′′ is the bias to the first decoding. ĥhh

(1)
kkk is

the first reconstructed feature vector. The process of decoding and reconstructing features after the second layer can

be expressed as
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ĥhh
(1)
lll = f

(

WWW ′ĥhh
(1)
kkk +bbb′

′′
)

(15)

In the process of feature reconstruction, a few original features are used to recover the noiseless features, feature

vector maps from the lower dimensional space to the higher dimensional space.

Finally, the vector x̂xx is obtained by the reconstruction process multiple times, which can be expressed as

x̂xx = f
(

WWW ′ĥhh
(1)
lll +bbb′

′′
)

(16)

where x̂xx represents the reconstructed feature vector obtained by the reconstructed signal encoding and decoding

process.

The error function of backpropagation can be expressed as

LH (xxx, x̂xx) =
N

∑
n=1

||xxx− x̂xx||2 +ηρ
(

hhh(n)
)

(17)

where the error function adopts the mean square error loss function, η represents the penalty factor, ρ(·) denotes the

sparse metric function, and the sparse metric function can be specifically expressed as

ρ
(

h(n)
)

=
p

∑
j=1

KL(ρ∗||ρ̂ j)

ρ̂ j =
1

N

N

∑
n=1

hhh(n)

(18)

where ρ∗ represents a constant, ρ̂ j is the average activity value of the jth neuron in the middle layer, and KL(ρ∗||ρ̂ j)
denotes the KL distance between ρ∗ and ρ̂ j, which is used to measure the difference between ρ∗ and ρ̂ j.

3.3 Fully connected layer

After reconstructing the signal feature, each input signal has a new feature representation, and the reconstructed

feature are identified and classified by the classifier. In this section, the 14-layer neural network will be used to identify

and classify the reconstructed signal feature. The network structure is shown in Figure 4.

Figure 4. 14-layer neural network

The 14-layer neural network is a fully connected BP neural network. The input vector of the fully connected layer

is the output vector of the feature reconstruction layer. After the feature is input to the fully connected network, the

process of the fully connected network can be expressed as
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n j =
n

∑
i=1

w jixi +θ j

b j = f (n j)

(19)

where i is input neuron serial number, j is output neuron serial number, xi represents the reconstructed feature, w ji

denotes the weight of the hidden layer, θ j is the bias of the the hidden layer, b j represents the output feature of the

hidden layer, and f (·) stands for the relu activation function.

In the last layer of the network, the output of the network needs to be identified, so the last layer of the network

uses the softmax function. The error between the actual output and the expected output is calculated. The process can

be expressed as

E =
1

2

q

∑
k=1

(Ok − yk)
2 +Ω (ω) (20)

where OOOk represents the expected output of the kth neuron, yyyk represents the actual output of the kth neuron, and

Ω (ω) denotes the regularization term.

According to the back propagation of the network, continuously optimize the network weights until the network

training is completed. The received signals through the signal preprocessing, feature reconstruction and signal recog-

nition, the classification results are obtained.

Summary of the Proposed Method

The procedure of the proposed DBRNN can be summarized as follows.

Step.1 According to (2)∼(9), the signal reconstruction layer is used to mine the temporal correlation information

of the signal, the received signal is reconstructed and the noise in the signal is suppressed;

Step.2 According to (10)∼(12), the reconstructed signal feature is encoded, and the feature is mapped into a set

of extremely small feature vector yyy, which retain the noiseless feature;

Step.3 According to (13)∼(17), the reconstructed feature vector yyy is decoded, yyy maps from the low dimensional

space to the high dimensional space, and the signal feature x̂xx is obtained, thereby the signal reconstruction process is

completed;

Step.4 According to (18)∼(19), the back propagation algorithm is used to train the neural network, the recon-

structed signal feature x̂xx is reconstructed and modulation recognition of the received signal is completed.

4 Simulation Results

In this section, the proposed algorithm is verified by simulation. This section shows the processing effect of the

signal reconstruction layer, compares the performances of BRNN-DAE with the performances of DAE and BPNN

respectively in the different SNR environments, shows the confusion matrix of DBRNN algorithm in the different

SNR environments, and shows the recognition rate curve between the proposed method and the existing modulation

recognition algorithms in the different SNR environments. The modulated signal data set used in this paper is gen-

erated by matlab software. The data set contains 11 modulation types: 2ASK, 2PSK, 2FSK, 4PSK, AM, SSB, DSB,

VSB, FM, 16QAM, 64QAM. The signal symbol is generated randomly by matlab, and the noise of signal is Gaussian

White Noise. The range of signal to noise ratio(SNR) is -20 dB to 6 dB, and the interval is 1 dB. Each modulated

signal generates 40 sampling points at different SNR, a total of 15400 samples. Among them, 12320 samples are used

to train the network model and 3080 samples are used to test the model. Each sample carries a label, which is a vector

that length is 11, the value of one position is 1 and the value of the other positions value is 0. For example, if the

modulation type of a sample is 2ASK, the sample label is (1,0,0,0,0,0,0,0,0,0,0). The Euclidean distance of the

same sample label is 0. The Euclidean distance of the different sample label is 1. This makes it more convenient to

calculate the loss function or the accuracy. The software environment used in the training model is Python 3.6 and

Tensorflow-gpu 1.3.0. The hardware environment is CPU Intel® Xeon® E5-2560, GPU NVIDIA Tesla K80, RAM

64GB.

Figure 5 shows the relationship between the received signal and the reconstructed signal. The solid line indicates

the original signal with SNR= -10 dB. The dotted line represents the modulated signal is processed by the signal

reconstruction layer. It is obvious from the Figure 5 that the received signal has no obvious signal feature in the low

SNR environment. The amplitude, frequency, phase and other features of the modulated signal have been submerged

in the noise and cannot be directly observed. If the original received signal is used as an input to the neural network,

the recognition accuracy of the modulation recognition will be greatly reduced. Compared with the original received

signal, the signal is processed by the signal reconstruction layer has relatively obvious signal feature. Because the
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Figure 5. Received and reconstructed signal Figure 6. Reconstructed and original signal

noise in the reconstructed signal is reduced, thereby the amplitude, frequency and phase information of the signal are

clearly displayed.

Figure 6 shows the modulated signal processed by the signal reconstruction layer. The reconstructed signal has

obvious signal feature. It has two different carrier frequencies and the signal amplitude is basically constant within

0.05 second, so the modulation type of the signal shown in Figure 6 is FSK.

Figure 7. Test accuracy versus iterations

Figure 7 shows the relationship between iteration times and test accuracy in -14 dB, -6 dB, and 2 dB SNR

environments. It can be seen from the figure 7 that with the increase of the iterations, the test accuracy of the algorithm

gradually increases, and when the iterations reaches a certain number, the accuracy of the algorithm always fluctuates

within a small range. Figure also shows the curve of test accuracy in three different SNR environments. When the

iterations is the same, the test accuracy increases as the SNR increases. When the SNR = -14dB, the test accuracy of

the proposed algorithm is close to 70%. When the SNR = -6dB, the test accuracy of the proposed algorithm exceeds

80%. This proves that compared with other algorithms, the proposed algorithm has better recognition accuracy in the

low SNR environment.

Figure 8 shows the relationship between iteration times and network loss in -14 dB, -6 dB, and 2 dB SNR en-

vironments. It can be seen from the figure that with the increase of the iterations, the loss of the network gradually
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Figure 8. The test error of network versus iterations

decreases and tends to be stable. When the SNR = 2dB and - 6dB, the loss of the network is stable when the iteration

exceed 300. When the SNR = - 14dB, the loss of the network is stable when the iteration exceed 600. With the in-

crease of SNR, the loss of network decreases gradually. When the iterations of the network is constant, the higher the

SNR, the smaller the network loss. When the SNR = - 14dB and the network loss is stable, the network loss value is

about 0.25. It can be seen that the proposed algorithm has low network loss in the low SNR environment.

Figure 9. Confusion matrix with SNR= -14dB

Figure 9, Figure 10 and Figure 11 show the confusion matrix of DBRNN algorithm in different SNR environments.

It can be seen from the figure that when SNR is - 14dB, according to the data distribution of the confusion matrix, the

data located in the diagonal is more than the data outside the diagonal, and the sum of the numbers off the diagonal is
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Figure 10. Confusion matrix with SNR= -6dB

Figure 11. Confusion matrix with SNR= 2dB

smaller, and the recognition error of each modulation signal is about 1 2. From the data distribution, the recognition

accuracy is more than 65%. Compared with the obfuscation matrix with the SNR = - 14dB, when the SNR = - 6dB, as

the amount of data on the diagonal of the obfuscation matrix increases, the amount of data off the diagonal decreases,

and the amount of recognition errors of each modulation type also decreases, which proves that with the increase of

SNR, the recognition accuracy of the proposed algorithm increases, and the recognition accuracy is above 80%. When

the SNR = 2dB, except for a few data distributed outside the diagonal, the rest of the data are all correctly distributed
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on the diagonal. It can be concluded that the recognition accuracy of the proposed algorithm is close to 95%, which

further proves that the proposed algorithm has a high recognition rate in the low SNR environment.

Figure 12. Recognition accuracy versus SNR

Figure 12 shows the recognition rate curve between the proposed method and the existing modulation recogni-

tion algorithms in the different SNR environments. In addition to the curves of DBRNN algorithm, the figure also

includes the curves of generalized likelihood ratio test (GLRT) [23], high-order cumulants (HOC) [24], k -nearest

neighbors (KNN) [10], linear support vector machine (LSVM) and backpropagation neural network (BPNN) classi-

fiers [25]. In GLRT, assume that the prior probabilities of the eleven modulated signals are the same, the threshold

of the classified classification is set to zero, and the probability of correct classification is the average of 1000 inde-

pendent experiments. In HOC, the mean and variance of the modulating signal statistic are calculated in each Monte

Carlo experiment. The fourth-order cumulants and the optimal threshold of the signal are calculated by mean and

variance, which are compared and identified. In KNN, the genetic operator crossover has a probability of 90% and the

probability of mutation is 10%. 10,000 sampling points are generated for different SNR values. The 10,000 sampling

points are tested using the optimal tree and the results are summarized. In LSVM, the amplitude, phase, real part,

and imaginary part of the signal are respectively calculated to identify the modulated signal. In BPNN, the two layers

neural network is adopted and 50 nodes are used in the hidden layer. Compared with other algorithms, the proposed

algorithm has higher recognition accuracy in the low SNR environment. When the SNR exceeds - 18dB, the recog-

nition accuracy of the proposed algorithm is more than 60%. Compared with the existing modulation recognition

algorithm based on BPNN, the recognition rate is improved by about 20%. Compared with other existing algorithms

in the low SNR environment, when the SNR is greater than - 10dB, the recognition rate of the proposed algorithm

has reached more than 70%, which proves that the proposed algorithm has better recognition performance in the low

SNR environment.

5 Conclusions

Most existing modulation recognition algorithms have low recognition rate in the low SNR environment. In order

to solve this problem, a modulation recognition algorithm based on DBRNN is proposed in this paper. Firstly, the

state memory ability of the signal reconstruction layer in the network is used to learn the temporal correlation of

the modulated signal, the reconstruction of the received signal is completed and the noise in the modulated signal is

suppressed. Then, the reconstructed signal is encoded and decoded by the feature reconstruction layer, in which the

feature of reconstructed signal is compressed and reconstructed, thereby the influence of noise can be further reduced.
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Finally, the reconstructed features are identified and classified by the fully connected layer. Simulation results show

that the proposed network can effectively suppress the noise in the signal. Compared with other existing algorithms,

the proposed method has higher recognition accuracy in the low SNR environment.
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DBRNN network structure
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The neurons of the signal reconstruction layer
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The structure of the feature reconstruction layer

Figure 4

14-layer neural network
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Received and reconstructed signal
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Reconstructed and original signal
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Test accuracy versus iterations
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The test error of network versus iterations
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Confusion matrix with SNR= -14dB
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Confusion matrix with SNR= -6dB
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Confusion matrix with SNR= 2dB
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Recognition accuracy versus SNR
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