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Abstract

Channel estimation (CE) in Internet of Things (IoT) systems faces challenges of
low spectral efficiency, high energy consumption, and blocked propagation paths.
To address these issues, this paper proposes a superimposed pilot-based CE
scheme with reconfigurable intelligent surface (RIS) assistance. The pilot signal
is superimposed on the uplink user data to improve spectral efficiency and reduce
user equipment (UE) energy consumption. RIS is introduced to enhance commu-
nication robustness in the complex propagation environments. At the base station
(BS), dedicated lightweight neural networks (NNs) are developed for CE and sym-
bol detection (SD) to alleviate computational complexity and processing delay.
The limited learning ability of these lightweight NNs is addressed by employing
conventional CE and SD methods for initial feature extraction. This enables the
NNs to learn along with the extracted features, reducing the required training
set size. The proposed scheme improves spectral efficiency, reduces energy con-
sumption, computational complexity, and processing delay, while enhancing the
performance of both normalized mean square error (NMSE) of CE and the bit
error rate (BER) of SD. Simulation results demonstrate the robustness of the
proposed method against various parameter settings.

Keywords: Channel estimation, Internet of Things, superimposed pilot,
reconfigurable intelligent surface, lightweight neural networks.
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1 Introduction

As the cornerstone of the future Internet of Things (IoT) connectivity, the evolution
of fifth-generation (5G) and sixth-generation (6G) networks has attracted consis-
tent attention in the application of IoT systems. For example, intelligent buildings
connected with the internet to manage different devices [1], smart health care and intel-
ligent driving proposed in [2], and home automation put forward by [3], etc. In these
IoT systems, channel estimation (CE) plays critical roles, such as to overcome channel
time variation [4] and adjust to an affordable transmission power using appropriate
modulation and coding methods [5].

Owing to the importance of CE for the IoT systems, numerous studies have inves-
tigated the CE [4], [6]–[9]. However, there is still room for improvement in terms of
spectral efficiency and energy consumption reduction in existing CE schemes [4] and
[6]–[9]. Conventional pilot-based CE approaches used in IoT systems, such as those in
[4] and [6]–[9], require additional transmission resources for pilot signals, resulting in
low spectral efficiency. Moreover, energy consumption is a critical concern in IoT sys-
tems. For instance, [10] aims to extend the battery lifetime of user equipment (UE)
up to ten years. The time-division mode for transmitting pilots and data separately
significantly increases energy consumption and makes it challenging to achieve the
desired system targets. To address this issue, the authors in [11] employed the super-
imposed transmission to improve the efficiencies of spectrum and energy. Inspired by
the superimposed pilot strategy, we propose a CE solution for IoT systems based on
superimposed pilots. This approach allows for improved spectral efficiency and reduced
energy consumption.

In addition to the challenges posed by low spectral efficiency and high energy
consumption, IoT communication usually faces the issue of blocked propagation in
complex environments, such as in industrial IoT (IIoT) scenarios [4]. Enhancing the
robustness of the communication link is crucial for IoT systems. Reconfigurable intel-
ligent surface (RIS) offers a promising solution to address the problem of blocked
propagation [12]. The RIS is an artificial panel comprising a large array of low-cost
passive scattering elements that can manipulate wireless signals by adjusting their
amplitude and phase shift [12]. Unlike conventional amplify-and-forward relays, RIS
elements consume minimal energy [13]. Integrating RIS into IoT systems has been
recognized as a transformative approach to convert passive wireless environments into
active and reconfigurable ones, providing environmental intelligence for various com-
munication objectives [14]. Furthermore, RIS can enhance system throughput by at
least 40 percent and system coverage by one-third [15, 16]. Leveraging RIS in the con-
text of superimposed pilot-based CE for IoT systems is a highly desirable approach to
address the challenges of blocked propagation. To our best knowledge, this approach
has not been explored in existing literature, highlighting the novelty of our proposed
work.

Recently, deep learning (DL) has made a significant breakthrough in advanced
information processing and computer vision [17]. In [18], DL is characterized by its
ability to learn the mapping between input and output through training data samples,
which enables the development of a model structure for predicting system output.
Potential applications of DL in the physical layer have been increasingly recognized due
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to the new features of future communications, such as complex scenarios of unknown
channel models and precise processing requirements [17]. Specially, DL-based CE in
RIS-assisted communication systems has also aroused extensive research interest. In
[19], two convolutional neural networks (CNN)-based CEs are developed for approx-
imating the minimum mean square error (MMSE)-based CE solution. An enhanced
extreme learning machine (ELM)-based CE is proposed in [20] to facilitate the esti-
mation accuracy. In [21], to improve the pilot-based least-squares (LS) estimation, an
untrained deep neural network (NN) based on the deep image prior network is devel-
oped for CE. However, DL-based superimposed CE in RIS-assisted communication
systems has not been investigated, which is particularly important for an IoT system
to reduce the energy consumption with high spectral efficiency. In addition, the size
of training set for DL-based superimposed CE is usually large, otherwise NNs cannot
get enough information to explore the underlying relationship of wireless channels.

To address the challenges of energy consumption, blocked propagation, and CE
accuracy in IoT systems, we propose the superimposed pilot-based CE for RIS-assisted
IoT systems with lightweight networks. The main contributions of our work are
summarized as follows:

1. We integrate the superimposed pilot-based and RIS-assisted modes into the CE of
IoT systems to alleviate the issues of spectral efficiency and energy-consuming. On
the one hand, by employing the superimposed pilot-based mode, the UE energy
consumption is reduced and the system spectral efficiency is improved. On the other
hand, the robustness of the communication link is enhanced with the assistance
of RIS. Especially, the combinations of superimposed pilot-based mode and RIS
assistance further reduce the energy consumption, and thus prolong the battery
life of UE. Besides, superimposed pilot-based method can effectively alleviate the
problem of channel changes frequently and refine the estimation performance. As
far as we know, with prolonged battery life of UE and enhanced spectral efficiency
of the IoT system, the issue of improving the accuracy of the CE has not been
well addressed in [10, 22]. Therefore, it is beneficial to study the superimposed
pilot-based CE for RIS-assisted systems.

2. We develop two dedicated lightweight NNs to reduce the computational complexity
and processing delay for the CE and symbol detection (SD) at the base station (BS).
To remedy the limited learning capacity of lightweight NNs, the initial features are
highlighted by employing conventional CE and SD methods (non-NN solutions)
to perform feature extraction, and the lightweight networks are oriented to learn
along with the highlighted initial features. From the perspective of feature fusion
(by fusing the non-NN and NN-based solutions), the performance of CE and SD
can be improved. Due to the assistance of non-NN solutions, both the CE and SD
networks can be lightweight, which allows their training set to be reduced as well.
The computational complexity of lightweight NN is reduced, saving computational
resources and processing delays.

3. With the reduced computational complexity and processing delay, we further
improve the normalized mean square error (NMSE) and bit error rate (BER) per-
formances at the BS. For CE, we exploit the learning ability of the developed CE
network according to de-noising (suppress the superimposed interference and noise)

3





RIS control link
RIS controller

Dh

Q,h
g

B,h
g

RIS sub-surface Reflecting element

Receiver

Transmitter

Fig. 1An illustration of RIS-assisted OFDM communication in the uplink.

and feature extraction, which alleviates the influence of superimposed interference.
The improved CE refines NMSE performance, and thus improves the accuracy of
subsequent SD. Besides, the developed fusion network captures additional features
for SD so that improves the BER performance effectively at the BS.

The remainder of this paper is structured as follows: In Section 2, we present the
system model. The proposed method is elaborated in Section 3. The computational
complexity and running time is analyzed in Section 4, and followed by numerical
results in Section 5. Finally, Section 6 concludes our work.

Notations : Bold face lower case and upper case letters represent vector and matrix,
respectively. (·)T is the transpose. ⊙ stands for the Hadamard product. diag {·} is the
diagonal matrix. Re(·) and Im(·) represent the real and imaginary parts of complex
numbers, respectively.

2 System Model

As shown in Fig. 1, we consider a frequency-selective Rician fading RIS-assisted
IoT system with orthogonal frequency division multiplexing (OFDM) modulation. In
Fig. 1, supposing that the propagation path is blocked by buildings, the RIS is installed
on the surface of the building to alleviate this issue. The composite channel frequency
response (CFR) of the transmitter-receiver link is denoted as hD. Additionally, the
aggregated CFRs of the RIS-receiver link and the transmitter-RIS link related to the
g-th sub-surface are represented by hB,g and hQ,g, respectively. The RIS comprises
numerous passive reflecting elements, and to reduce the complexity and training over-
head of CE, adjacent elements form sub-surfaces with shared reflection coefficients in
the RIS configuration [23]. Besides, the RIS control link is used to adjust the phase
shift. This system considers N sub-carriers and assumes the length of channel impulse
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response (CIR) L is shorter than the length of cyclic prefix (CP) LCP, i.e., L < LCP

[6], [23], to mitigate inter-symbol interference (ISI). The received frequency-domain
signal at the BS is denoted as

y =
√
λPh⊙ xp +

√
(1− λ)Ph⊙ xd +w, (1)

where λ ∈ [0, 1] is the coefficient of power proportional, P stands for the total trans-

mitting power. h = [h1, h2, · · · , hN ]
T
represents the wireless CFR between the receiver

and transmitter. xp ∈ CN×1 and xd ∈ CN×1 denote the superimposed pilot and the
modulated signal, respectively. w ∈ CN×1 follows a circularly symmetric complex
Gaussian (CSCG) distribution with zero mean and a specific variance σ2

w.
The composite CFR linking the receiver and transmitter is expressed as [23]

h = hD +HQBφ, (2)

where hD ∈ C
N×1 denotes the CFR of the transmitter-receiver link, and HQB ∈

C
N×M represents the cascaded CFR of the transmitter-RIS-receiver link. φ =

[ϕ1, ϕ2, · · · , ϕG]
T
stands for the vector of RIS phase-shift, which is given by

ϕg = αge
jθg , g = 1, · · · , G, (3)

where θg ∈ [0, 2π] represents the phase shift associated with the g-th sub-surface,
and G is the number of sub-surfaces. To streamline hardware design and optimize
RIS reflection power, according to [20], we fix αg = 1, ∀g = 1, · · · , G, while only
manipulating the phase shift θg.

By denoting HQB = [hQB,1,hQB,2, · · · ,hQB,G], hQB,g is expressed as

hQB,g = hQ,g ⊙ hB,g, (4)

where hQ,g ∈ C
N×1 represents the aggregated CFR of the transmitter-RIS link, while

hB,g ∈ C
N×1 denotes the aggregated CFR of the RIS-receiver link, both in relation

to the g-th sub-surface.
According to (1), (2) and (4), the received frequency-domain signal at the receiver

is rewritten as

y =

(
hD +

G∑
g=1

hQ,gϕg ⊙ hB,g

)
⊙
(√

λPxp +
√

(1− λ)Pxd

)
+w . (5)

The received signal y is processed by LS estimation and zero-forcing (ZF) equal-
ization at the receiver, aiming to improve the accuracy of initial estimation features
and alleviate the learning burden on the network.

In this paper, to save bandwidth resources and energy-consuming [24], we adopt the
method of superimposed pilot for CE and SD. Specifically, we propose two dedicated
lightweight networks, namely LwCE-Net and FuSD-Net, which are designed to enhance
the performance of CE and SD, respectively. Different from the conventional methods,
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e.g., the MMSE CE and MMSE SD, non-NN and lightweight NN-based approaches
are integrated into our work, in which the LwCE-Net and FuSD-Net are embedded
into conventional methods to obtain network lightweight and cooperatively improve
the performance of CE and SD.

3 Superimposed Pilot-based Channel Estimation

This paper presents a three-step process for signal transmission. Firstly, the pilot
signal xp and modulated signal xd are superimposed at the UE. Secondly, an inverse
fast Fourier transform (IFFT) is performed, followed by the addition of CP opera-
tions. Thirdly, the signal propagates through the wireless channel. At the receiver,
the received signal y is obtained by removing the CP and applying fast Fourier trans-
form (FFT) operations. Subsequently, the lightweight NN utilizes LS estimation to
emphasize the initial CE features. Since a lightweight NN possesses very limited learn-
ing ability, the highlighted initial features orient the learning of LwCE-Net and thus
improve the effectiveness of CE. Similarly, the developed FuSD-Net is also a lightweight
network and thus needs to extract the initial equalization features. In this paper, the
ZF equalization is utilized as a feature extractor for initial equalization features ŝZF.
Using initial equalization feature ŝZF, the coarse data ŝd is obtained by cancelling the
superimposed pilot. Then, the coarse data ŝd and the received signal y are fed into
the FuSD-Net to produce the detected symbol s̃FuSD.

Section 3.1 focuses on the initial feature extraction process for LwCE-Net, which
is presented in Section 3.2 as a dedicated lightweight NN designed to enhance CE.
The subsequent Section 3.3 discusses the initial feature extraction approach for FuSD-
Net. In Section 3.4, we introduce FuSD-Net, a fusion learning-based lightweight NN
specifically developed for SD. Lastly, Section 3.5 provides a comprehensive explanation
of the online deployment process.

3.1 Initial CE Feature Extraction

With the received signal y, the initial features of CE are extracted by LS estimation
and used as the input of the LwCE-Net. By using the LS estimation, the initial CFR
ĥLS ∈ C

N×1 is given by

ĥLS =

[
y (1)

xp (1)
,
y (2)

xp (2)
, · · · , y (N)

xp (N)

]T
, (6)

where y(n) and xp (n), n = 1, 2, · · · , N , are the received signal and transmitted pilots,

respectively. The extracted feature, i.e., ĥLS, is employed for subsequent enhancement
of CE.

3.2 LwCE-Net based CE method

In order to obtain refined CE features that go beyond conventional estimation
perspectives, we propose LwCE-Net, a lightweight and effective neural network. Then,
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a certain estimation feature, called refined estimation feature h̃CE, is captured through
LwCE-Net to complement the initial estimation feature ĥLS.

3.2.1 LwCE-Net Architecture

According to [25], the parameter settings of LwCE-Net, e.g., layer depth, layer
width, and activation function, are still a challenge in the NN. Through extensive
experimental simulations and careful performance tradeoffs, we determine that the
LwCE-Net consists of L layers. Table 1 summarizes the LwCE-Net’s architecture,
which is described in detail below.

To mitigate overfitting and enhance convergence speed in LwCE-Net [26], we
apply batch normalization (BN) to the input layer. To address the issue of gra-
dient vanishing [27], we utilize the rectified linear unit (ReLU) activation function
(fa (x) = max (0, x)) in the hidden layers. These parameter choices in LwCE-Net
contribute to the refinement of estimation performance.

Table 1

Architecture of LwCE-Net and FuSD-Net.

Layer Input Hidden 1 Hidden 2 Output

LwCE FuSD LwCE FuSD LwCE FuSD LwCE FuSD

Batch normalization
√ √

× × × - × ×

Neuron number 2N 4N 6N 8N 4N - 2N 2N

Activation function - - ReLU ReLU ReLU - Linear Linear

To enable the real-valued LwCE-Net, the complex variable ĥLS ∈ C
N×1 is trans-

formed into a real-valued value h̃LS ∈ R
2N×1 through the utilization of Eq. (7), which

is expressed as,

h̃LS =
[
Re
(
ĥT
LS

)
, Im

(
ĥT
LS

)]T
. (7)

Next, the entries of h̃LS form the inputs of LwCE-Net. Via the LwCE-Net, the
refined estimation feature, denoted as h̃CE ∈ R

2N×1, is given by

h̃CE = fCE

(
h̃LS,ΛCE

)
, (8)

where fCE (·) and ΛCE are the LwCE-Net operation and its network parameters,
respectively. By referring to Eq. (8), we enhance the performance of CE without relying
on second-order channel statistics.

3.2.2 Training and Deployment

A comprehensive dataset is collected to train the LwCE-Net. Specifically, the
generation of these data samples is shown below.

The training set is represented by
{
h̃LS, h̃Label

}
. In this paper, the channel which

is characterized by frequency-selective fading, denoted as hLabel, is obtained through
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Algorithm 1 Fusion learning-based CE and SD

Input: Initial estimation h̃LS, training learning rate of LwCE-Net: γ1.
Training learning rate of FuSD-Net: γ2.
Batch size: ν, number of gradsteps for LwCE-Net: GCE.
Number of gradsteps for FuSD-Net: GFuSD.

Output: Refined detection s̃FuSD.
Training phase:

1: Randomly initialize the network parameters ΘCE and ΘFuSD.

2: Generate the training set
{
h̃LS, h̃Label

}
and {s̃in, x̃d}.

3: for t = 1, ..., GCE do

4: Randomly select ν training samples from
{
h̃LS, h̃Label

}
as the training batch.

5: Update ΘCE by using the Adam algorithm (learning rate γ1) to minimize
LossLwCE−Net

6: end for

7: for t = 1, ..., GFuSD do

8: Randomly select ν training samples from {s̃in, x̃d} as the training batch.
9: Update ΘFUS by using the Adam algorithm (learning rate γ2) to minimize

LossFuSD−Net.
10: end for

Testing phase:

11: Load the trained parameters ΘCE and ΘFuSD.
12: Perform LS estimation to obtain ĥLS using Eq. (6).

13: Reshape the complex-valued ĥLS to real-valued h̃LS using Eq. (7).

14: Predict h̃CE based on ΘCE and ĥLS using Eq. (8).
15: Perform ZF equalization to obtain ŝZF using Eq. (10).
16: Cancel the superimposed interference from pilot to obtain the coarse data ŝd.
17: Splice ŝd and y to real-values using Eq. (13).
18: Predict s̃FuSD based on ΘFuSD and s̃in using Eq. (14).

the derivation process from the widely adopted COST2100 channel model [28]. The
superimposed pilot xp is implemented using the Zadoff-Chu sequence, while the mod-
ulated signal xd is generated using a quadrature-phase-shift-keying (QPSK) symbol
set [29]. According to (1)–(4), the set of received signal is formed as {y}. Utilizing

Eq. (6), we obtain the set
{
ĥLS

}
. Subsequently, the complex-valued sets

{
ĥLabel

}
and{

ĥLS

}
are converted into the corresponding real-valued sets

{
h̃Label

}
and

{
h̃LS

}
,

respectively. The training process of LwCE-Net involves utilizing the training sets{
h̃LS, h̃Label

}
. Algorithm 1 provides detailed insights into the methodology, outlining

a comprehensive process. Moreover, during the training phase, a validation set is gen-
erated using the same method as the training set [29] to assess the performance of the
trained network parameters.
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The training criterion of the LwCE-Net is to minimize the mean squared error
(MSE), and the corresponding loss function is expressed as follows

LossLwCE−Net =
1

S1

∥∥∥h̃Label − h̃CE

∥∥∥
2

2
+ βCE

4∑

ℓ=2

∥∥∥W(ℓ)
CE

∥∥∥
2

2
, (9)

where S1 signifies the quantity of training samples, βCE denotes the regularization
coefficient employed to mitigate overfitting, and ℓ is the LwCE-Net layer index.

The training set,
{
h̃LS, h̃Label

}
, consists of 20, 000 samples (while 100, 000 samples

are employed for the offline training in [19], [29]–[31]), with a batch size configured
as 80 samples. This indicates that our lightweight NN can effectively reduce the size
of the training set. The validation set for LwCE-Net contains 20, 000 samples. We set
the number of epochs for LwCE-Net to 40. For optimization, we employ the Adam
optimizer based on [32] with the parameters β1 = 0.99 and β2 = 0.999 [33]. The
learning rate is initially set to 0.001, and the L2 regularization [34] is applied to the
LwCE-Net.

The training phase involves a single execution of the training operation for LwCE-
Net, after which the trained network is ready for online deployment.

3.3 Equalization Feature Extraction

To avoid relying on second-order noise statistics, initial equalization values derived
from ZF equalization are incorporated as the input of FuSD-Net.

From Eq. (1), the pilot xp is superimposed onto the modulated signal xd. The
received signal y undergoes initial ZF equalization to emphasize the features relevant
to SD. Leveraging the improved performance of LwCE-Net (i.e., ĥCE) and the received
signal y, the ZF equalization is expressed as follows

ŝZF = GZFy, (10)

where ŝZF represents the initial symbol equalization, GZF ∈ C
N×N denotes the ZF

equalization matrix, which is given by

GZF = diag

{
1

ĥCE (1)
,

1

ĥCE (2)
, · · · , 1

ĥCE (N)

}
, (11)

where ĥCE (n), n = 1, 2, · · · , N , is the n-th entry of ĥCE.
According to (10), we obtain the superimposed data and pilot ŝZF. Subsequently,

we remove the superimposed interference from the pilot signal, obtaining the coarse
data ŝd, which is expressed as

ŝd = ŝZF −
√
λPxp. (12)

Then, the feature of the coarse data is extracted by referring to the obtained coarse
data ŝd, which will be used for subsequent recovery purposes.
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3.4 Fusion Learning-based SD method

To enhance the accuracy of the coarse data ŝd, we developed a lightweight
FuSD-Net inspired by the concept of multimodal feature-level fusion. This network
integrates the features extracted from the coarse data, obtained through the simplified
equalization method using Eq. (12) with the received signal.

3.4.1 FuSD-Net Architecture

After the simplified ZF equalization, the lightweight FuSD-Net is utilized to
enhance the detection performance. Similar to LwCE-Net, the architecture of FuSD-
Net is presented in Table 1, based on extensive experimental investigations. FuSD-Net
employs the same activation function as LwCE-Net [26]. Furthermore, BN is applied
to normalize the input sets of FuSD-Net, ensuring a zero mean and unit variance of
the network input. Table 1 provides a comprehensive overview of the architecture of
the FuSD-Net, which is described as follows.

The input of the FuSD-Net, denoted as s̃in ∈ R4N×1, is formed by concatenating
ŝd and y, i.e.,

s̃in =
[
Re
(
ŝTd
)
, Im

(
ŝTd
)
, Re

(
yT
)
, Im

(
yT
)]T

. (13)

Next, the output s̃FuSD is obtained through the utilization of the FuSD-Net by

s̃FuSD = fFuSD (s̃in,ΛFuSD) , (14)

where fFuSD (·) represents the fusion network operation, andΛFuSD denotes its network
parameters.

3.4.2 Training and Deployment

Similar to the training process of LwCE-Net, a collection of data samples is gath-
ered to train the FuSD-Net. The details of the training process are elaborated as
follows.

According to Eq. (13), the input of FuSD-Net, denoted as s̃in, is utilized to con-
struct the real-valued fusion set, represented as {s̃in}. Subsequently, the real-valued
sets {s̃in, x̃d} are formed by combining the training sets of {s̃in} and {x̃d} for train-
ing the FuSD-Net. The specific details of this process are elaborated in Algorithm 1.
In addition, a validation set is also required. The loss function of FuSD-Net can be
expressed as

LossFuSD−Net =
1

S2
∥x̃d − s̃in∥22 + βFuSD

3∑

r=2

∥∥∥W(r)
FuSD

∥∥∥
2

2
, (15)

where S2 denotes the number of training sets utilized for FuSD-Net, βFuSD represents
the regularization coefficient of FuSD-Net, and r indicates the network layer index.

The training sets, {s̃in, x̃d}, consist of 20, 000 samples, wherein 100, 000 samples are
employed for the offline training in [19], [29]–[31]. The proposed lightweight NN reduces
the size of the training dataset. The batch size is set to 80, and the validation sets for
FuSD-Net contain 20, 000 samples. Training is conducted for a total of 100 epochs.
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The FuSD-Net adopts the same network parameter settings as LwCE-Net. During
the training process of FuSD-Net, the training samples are generated by randomly
selecting SNRs from 0 dB to 18 dB.

3.5 Online Deployment

Algorithm 1 outlines the procedure for online deployment, utilizing the trained
network parameters obtained from offline training for LwCE-Net and FuSD-Net. The
following provides a detailed explanation of Algorithm 1.

During the online running, the received signal y and the known pilot xp are utilized

to perform the LS estimation using Eq. (6). The initial estimation ĥLS is used as input

for LwCE-Net, which generates h̃LS by using Eq. (7). The LwCE-Net further refines

h̃LS to obtain the real-valued refined estimation feature h̃CE (Eq. (8)). The complex-

valued estimation feature ĥCE is obtained by extracting the real and imaginary parts
from h̃CE, i.e.,





Re
(
ĥCE

)
= h̃CE (1 : N)

Im
(
ĥCE

)
= h̃CE (N + 1 : 2N)

, (16)

The real part of ĥCE is formed by extracting the first N entries of h̃CE, while
the imaginary part is composed of the last N entries. Using the estimated ĥCE, ZF
equalization is applied using Eq. (10) to obtain ŝZF. Subsequently, the superimposed
interference is canceled, yielding the coarse data ŝd with Eq. (12). By combining the
complex-valued ŝd and y using Eq. (13), the real-valued s̃in is formed. The FuSD-Net
then utilizes s̃in as the network input, combining the coarse data feature and received
signal y through feature fusion. Finally, the FuSD-Net employs Eq. (14) to output the
detected symbol s̃FuSD.

Based on the algorithm outlined in our work (Algorithm 1), the refined detection
output, s̃FuSD, can be obtained by utilizing the proposed architectures of LwCE-Net
and FuSD-Net. The integration of FuSD-Net allows for high-precision detection of
s̃FuSD. In comparison to conventional estimation methods like MMSE CE and MMSE
SD, the proposed approach demonstrates superior detection performance, as evidenced
by its lower BER performance. It is noteworthy that the performance of the proposed
method is refined without any second-order statistic of wireless noise and channel.

Remark1: Battery Life and Spectral Efficiency

In comparison to IoT systems that do not employ superimposed pilot and RIS, the
proposed method in this paper offers significant enhancements in the battery life of
UE and the spectral efficiency of the IoT system. The adoption of the superimposition
mode leads to a substantial reduction in energy consumption for IoT UEs, even under
the same transmitted power. Additionally, the inclusion of RIS improves communica-
tion reliability, resulting in enhanced energy efficiency while maintaining comparable
communication quality when compared to IoT systems without RIS. In the context
of an IoT system operating with limited bandwidth, the utilization of superimposed
pilots, as proposed in this paper, effectively boosts spectral efficiency. Consequently,
the proposed method of superimposed pilot-based CE with RIS assistance offers
notable advantages over IoT systems that do not employ superimposed pilot and RIS.

11



Specifically, it effectively extends the battery life of UEs and enhances the spectral
efficiency of IoT systems, leading to substantial improvements in performance.

The proposed method employs the superimposed pilot mode, which eliminates
the need for additional resources for pilot transmission by the UE. As a result, the
proposed method achieves enhanced spectral efficiency compared to CE methods that
do not employ superimposed pilot techniques [6], [7]. Furthermore, by eliminating the
need for additional energy for pilot transmission, the proposed method reduces energy
consumption at the UE. Table 2 presents a comparison of the bandwidth resource
utilization and energy consumption between the non-superimposed pilot-based CE
method [6], [7] and the proposed method outlined in this paper.

The energy consumption of the non-superimposed pilot-based CE method can be
denoted as

ENonSup = (Ndata +NPilot)T0P, (17)

where Ndata represents the total number of data symbols, NPilot signifies the count
of pilot symbols, T0 indicates the duration of each symbol, and P is the transmission
power.

Table 2

Bandwidth resource occupation and energy consumption.

Bandwidth resource usage Total energy consumption

Method Expression Example Expression Example

Non-superimposed pilot (Ndata +NPilot)T0 64T0 (Ndata +NPilot)T0P 64T0P0

Superimposed pilot (Ndata)T0 32T0 NdataT0 ((1−λ)P ) +NPilotT0 (λP ) 32T0P0

Compared with the CE method based on non-superimposed pilots [6], [7], the
adoption of the superimposed pilot mode in the proposed method reduces energy
consumption at the UE, as it eliminates the need for additional energy expenditure
in pilot transmission. In this paper, the energy consumption of the proposed scheme
is denoted as EProp, which is expressed as

EProp = NdataT0 ((1−λ)P ) +NPilotT0 (λP ) , (18)

where λ denotes the proportional coefficient of power. Compared with the non-
superimposed pilot-based CE, the energy saving by using the proposed method could
be calculated as

ENonSup − EProp = NdataT0 (λP ) +NPilotT0 ((1−λ)P ) . (19)

In terms of bandwidth resource occupation, the proposed method utilizes a
superimposed pilot transmission approach, resulting in a time duration of NdataT0.
In contrast, the non-superimposed pilot-based CE method occupies a bandwidth
resource for a duration of (Ndata +NPilot)T0. Therefore, the proposed method
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reduces the bandwidth resource occupation compared to the non-superimposed pilot-
based CE, leading to a reduction in the bandwidth resource occupation denoted as
(Ndata +NPilot)T0 − NdataT0 = NPilotT0. By considering the case where Ndata = 32
and NPilot = 32, as shown in Table 2, it is evident that the proposed method sig-
nificantly reduces both the bandwidth resource occupation and energy consumption
compared to the CE method based on non-superimposed pilot. In summary, the pro-
posed method enhances the spectral and energy efficiency of RIS-assisted IoT systems
when compared to non-superimposed pilot-based CE methods.

In addition to the advantages mentioned in Remark 1, the proposed superimposed
pilot-based CE with RIS assistance also reduces the computational complexity and
processing delay at the BS, compared to IoT systems that do not employ superim-
posed pilot and RIS. The comprehensive analysis and comparison of the computational
complexity and processing delay at the BS are presented in Section 4.

4 Complexity and Running Time Analyses

For convenience, the simplified expression is as follows.

• “LS-CE”, “MMSE-CE” and “LwCE-Net” are used to represent the “LS channel
estimation”, “MMSE channel estimation”, and “proposed LwCE-Net”, respectively.

• “MMSE-CE + MMSE-SD”, “LwCE-Net + ZF” and “proposed” are utilized to
stand the “MMSE channel estimation followed by MMSE equalization”, “proposed
LwCE-Net followed by ZF equalization”, and “proposed LwCE-Net followed by
FuSD-Net”, respectively.

4.1 Computational complexity

The computational complexity of NNs is commonly assessed based on the number
of weights and floating-point operations (FLOPs) [31], which serve as widely used
criteria. In this paper, we evaluate the computational complexity using these criteria
and present a detailed analysis in Table 3. The specifics are outlined as follows.

According to the computation method described in [31], the proposed LwCE-Net
and FuSD-Net have a total of 28N2+8N weights and require 56N2−8N FLOPs. Con-
sequently, the proposed method, including both LwCE-Net and FuSD-Net, achieves
a reduced computational complexity, i.e., 28N2 + 8N + 56N2 − 8N = 84N2. This is
significantly lower than the computational complexity of the “MMSE-CE + MMSE-
SD” method. Table 3 provides a clear comparison of the computational complexities,
highlighting the advantages of the proposed method. For the case where N = 32, i.e.,
case 1 in Table 3, the computational complexity of the “MMSE-CE + MMSE-SD”
is 200,768, whereas the computational complexity of the “proposed” is 86,016. When
N = 64 (i.e., case 2 in Table 3), the computational complexity of the “MMSE-CE
+ MMSE-SD” is 1,589,376, while the computational complexity of the “proposed” is
344,064. On the whole, compared with the “MMSE-CE + MMSE-SD”, the proposed
method reduces the complexity of computation and thus obtains the corresponding
improvement for energy consumption.
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Table 3

the Analysis of computational complexity.

Method proposed MMSE-CE + MMSE-SD

Complexity 84N2 6N3 + 4N2 + 2N

Case 1 (N = 32) 86, 016 200, 768

Case 2 (N = 64) 344, 064 1, 589, 376

4.2 Running Time

Fig. 2Running time comparison of “proposed”, and “MMSE-CE+MMSE-SD” for 3 × 104

experiments, where G = 12, G = 24, and G = 48 are discussed.

The proposed method was trained on a server with an Intel Xeon(R) E5-2620 CPU
(2.1GHz×16). MATLAB simulations were conducted on the server CPU to obtain
the results since a GPU-based solution for the “MMSE-CE + MMSE-SD” was not
available. The running time details are discussed in Fig. 2. In the case where G = 12,
the proposed method takes approximately 60 seconds for both LwCE-Net and FuSD-
Net. In contrast, the “MMSE-CE + MMSE-SD” method requires about 91 seconds.
These findings demonstrate that the proposed method has a shorter online running
time and contributes to prolonging the battery life of the UE.

Thus, compared with the “MMSE-CE + MMSE-SD”, the “proposed” significantly
reduces their computational complexity and running time.

5 Simulation Results and Analysis

In this section, we present numerical results for the proposed method. Section
5.1 introduces the simulation parameters and definitions. Section 5.2 presents the
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simulation results to validate the proposed method. Lastly, Section 5.3 analyzes the
robustness of the parameters.

5.1 Parameters and Definitions

In all conducted experiments, unless explicitly stated, the following fundamental
parameters are employed. The pilot is Zadoff-Chu sequence [23], L = 5, N = 32,
λ = 0.15, and G = 12. The channel is based on the COST2100 model [28], and the
transmitted data symbol is modulated with QPSK1. The signal-to-noise ratio (SNR)
is expressed in decibel (dB) [35]

SNR = 10log10

(
P

σ2
w

)
, (20)

where P represents the aggregate transmitted power comprising both the data power
Pd and pilot power Pp. In these simulations, Pd = 0.85P and Pp = 0.15P.

The NMSE is utilized to evaluate the CE performance, defined as [35]

NMSE = E





∥∥∥ĥCE − h

∥∥∥
2

2

∥h∥22





. (21)

5.2 NMSE Analysis

As shown in Fig. 3, we demonstrate the effectiveness of the proposed LwCE-Net
through the NMSE curves, that the values of NMSE of “LS-CE” and “MMSE-CE”
are much higher than that of the “LwCE-Net” for all given SNRs. For example, the
NMSE of the “LwCE-Net” is less than 1 × 10−2 for the case of SNR = 18 dB, while
the NMSE of the “MMSE-CE” is 2× 10−1 and “LS-CE” is higher than 1× 100 at the
same SNR. The reason of the poor performance of the “LS-CE” is that the LS esti-
mation is sensitive to the noise and interference. The superimposed pilot is equivalent
to introducing the superimposed interference, which results in an unsatisfactory LS
estimation. However, the NMSE of “MMSE-CE” is still unsatisfying due to the influ-
ence of superimposed interference. In contrast, the developed LwCE-Net effectively
alleviates the impact of superimposed interference by exploiting its learning ability of
de-noising (suppressing the superimposed interference and noise) and feature extrac-
tion (learning the feature of wireless channels). Thus, compared with the linear solution
estimated by LS and MMSE-based CE, the developed LwCE-Net learns a nonlinear
solution orienting the LS solution, which enhances the NMSE performance of the CE.

1The modulation with a higher modulation order is also suitable for the proposed method.
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Fig. 3NMSE comparison of “LS-CE”, “MMSE-CE”, “LwCE-Net”, where SNR varies from
0 to 18 dB.

5.3 BER Analysis

To evaluate the impact of the superimposed interference caused by the pilot xp on
the detection performance of the modulated symbol xd, we utilize the bit error rate
(BER) as a metric. The BER results are presented in Fig. 4. We compare the proposed
method with the baseline methods “MMSE-CE+MMSE-SD” and “LwCE-Net+ZF”
to evaluate their BER. As shown in Fig. 4, the BER of the “proposed” is much smaller
than that of the “MMSE-CE+MMSE-SD”. For example, for the case where SNR =
14dB, the BER of the “proposed” is less than 1×10−2 while the BER of the “MMSE-
CE+MMSE-SD” is about 6.5× 10−2. Furthermore, the BER of the “LwCE-Net+ZF”
is smaller than that of the “MMSE-CE+MMSE-SD”. One of the main reasons is that
the poor NMSE performance of the “MMSE-CE+MMSE-SD” affects the subsequent
detection performance. The error of CE is propagated to the detection stage and thus
degrades the detection performance of the “MMSE-CE+MMSE-SD”.

With the superior learning ability of the LwCE-Net, the NMSE performance of the
“proposed” is improved by the LwCE-Net, to improve its BER performance. At the
same time, we can see that the “proposed” achieves a smaller value of BER than the
“LwCE-Net+ZF”. For example, when SNR = 18 dB, the BER of the “proposed” is
1.2× 10−3 while the BER of the “LwCE-Net+ZF” reaches 5× 10−3. Because there is
an additional data fusion network FuSD-Net in the “proposed”, it is more powerful to
capture additional features for SD and thus effectively improve its BER performance.
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Fig. 4BER comparison of “proposed”, “MMSE-CE+MMSE-SD”, “LwCE-Net+ZF”, where
SNR varies from 0 to 18 dB.

5.4 Robustness Analysis

This subsection examines the robustness of the proposed method to parameter
variations, specifically the power proportional coefficient λ and the number of multi-
paths L. For ease of analysis, we vary one parameter at a time while keeping other
fundamental parameters unchanged, as outlined in Section 5.1.

5.4.1 Robustness against λ

In general, different power proportional coefficient λ will result in different perfor-
mance of CE and SD for the superimposed signals. Fig. 5 illustrates the NMSE of CE
and the BER of SD to demonstrate the robustness of the ”proposed” method against
variations in λ.

From Fig. 5, as the increase of λ (increase from 0.1 to 0.2), the CE’s NMSEs of
“LS-CE” and “MMSE-CE” decrease. Although the decline of NMSE is not obvious,
the decreasing trend is still observed. For example, when SNR = 12dB and λ changes
from 0.1 to 0.2, the “MMSE-CE” changes from 3×10−1 to 1.2×10−1. The likely reason
is that the CE performance is improved due to the increased pilot power. Meanwhile
the NMSE performance of the “proposed” remains stable and is smaller than “LS-
CE” and “MMSE-CE” with the increase of λ. For example, for the case where SNR
= 12dB and λ = 0.15, the values of NMSE are higher than 1 × 100 and 2 × 10−1 for
“LS-CE” and “MMSE-CE”, respectively. By contrast, the NMSE of the “proposed”
is about 1× 10−2.
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Fig. 5NMSE and BER performance against the impact of λ, where λ = 0.1, λ = 0.15, and
λ = 0.2 are considered, respectively.

With the increase of λ, the BER performance of the “LwCE-Net+ZF” and “pro-
posed” deteriorate slightly. For example, for the case where SNR = 18 dB and λ = 0.1,
the values of BER are about 2.2 × 10−3 and 1 × 10−3, respectively. While for the
case where SNR = 18 dB and λ = 0.2, the values of BER are about 8 × 10−3 and
2 × 10−3, respectively. However, the BER of the “proposed” remains much smaller
than those of “LwCE-Net+ZF” and “MMSE-CE+MMSE-SD” for each given SNR
and λ. Thus, against the impact of λ, the “proposed” improves the BER performance
when compared with the “LwCE-Net+ZF” and “MMSE-CE+MMSE-SD”.

On the whole, when compared with the “LwCE-Net+ZF” and “MMSE-
CE+MMSE-SD”, the “proposed” enhances the NMSE and BER performance against
the variation of λ.

5.4.2 Robustness against L

As shown in Fig. 6, it demonstrates the robustness of the “proposed” method
against variations in the number of multi-path, i.e., L, by comparing its performance.
The varying of NMSE is not regular with the enlargement of L. The reason is that
the performance of NMSE is not so directly related to the values of L. Even so, we
can see that no matter how the values of L change, using the “LwCE-Net” achieves
the minimum value of NMSE, presenting the best NMSE performance. For example,
when SNR = 12dB and L = 5, the NMSE values of “LS-CE” and “MMSE-CE” are
respectively higher than 1 × 100 and 2 × 10−1, while the NMSE of “LwCE-Net” is
about 1.2× 10−2. This reflects that the LwCE-Net improves the NMSE performance
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Fig. 6NMSE and BER performance against the impact of L, where L = 3, L = 5, and L = 7
are considered, respectively.

compared with the conventional methods of “LS-CE” and “MMSE-CE” against the
variations of L.

Besides, from Fig. 6, compared with the “MMSE-CE+MMSE-SD” and “CE-
Net+ZF”, the “proposed” achieves smaller BER for each given L. For example, for
the cases of SNR = 18 dB and L = 5, BERs of the “MMSE-CE+MMSE-SD” and
“LwCE-Net+ZF” are about 5.5 × 10−2 and 4.5 × 10−3 respectively, while the BER
of “proposed” is smaller than 2 × 10−3. This reflects that the “proposed” improves
the BER compared with the “MMSE-CE+MMSE-SD” and “LwCE-Net+ZF” against
the variation of L. Besides, it is worth noting that for the case of L = 5, each of the
CE methods achieves the smallest NMSE, yet they cannot achieve the best detection
performance. This is because in the case of superimposed pilots, although the estima-
tion performance is improved, the detection performance is not necessarily improved
proportionally due to the influence of superimposed interference. Thus, an effective
option is to make a tradeoff between NMSE performance and BER performance for
the superimposed pilot-based method.

Therefore, against the impact of L, Fig. 6 shows that both of the NMSE and BER
performance are improved by “proposed” when compared with the “LwCE-Net+ZF”
and “MMSE-CE+MMSE-SD”.

6 Conclusion

This paper proposes a superimposed pilot-based CE technique in RIS-assisted mode
for IoT systems. By employing superimposed pilot, we enhance spectral efficiency and
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reduce energy consumption, while the deployment of RIS mitigates blocked propa-
gation paths. Additionally, we integrate both non-NN and NN based modes at the
BS, resulting in lightweight networks that effectively reduce computational complex-
ity and processing delays. The proposed solution demonstrates significant and robust
improvements in NMSE and BER performance compared to conventional methods. In
our forthcoming research endeavors, we will undertake an in-depth investigation into
the influence of RIS materials on CE.
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