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Abstract
This paper introduces a comparative study on the effect of using different feeding struc-
tures on the radiation characteristics of graphene strips leaky wave antenna (GS-LWA) 
at 2 THz. The effect of different plane wave launchers on the radiation characteristics of 
GS-LWA is investigated. A planar substrate integrated waveguide (SIW) horn antenna is 
investigated. It provides a peak gain of 18.2 dBi with a bandwidth of 21.95% and a SLL 
of 10.6 dB. End-fire radiation from parabolic reflector is employed to launch plane-wave 
in the GS-LWA. A matching BW of 0.82 THz is achieved with peak gain of 18 dBi. A 
coplanar fed Yagi-Uda like structure element is studied using a single element and two 
elements array. The two elements provided the highest matching of -40 dB over BW of 6% 
and gain of 16.5 dBi. Finally, tapered microstrip line is investigated, it introduces the low-
est SLL − 16.1 dB with a gain of 17.5 dBi and BW of 39.57% (1.5–2.24 THz). The selec-
tion of proper feeding structure depends on the matching BW, peak radiated gain, and the 
lowest SLL. A full analysis of the GS-LWA from different feeding methods is presented.

Keywords  Leaky-wave antenna · Frequency scanning · Graphene · Feeding mechanism

1  Introduction

Modern communication systems require creative antenna solutions to compete with low-
profile circuit configurations for efficient performance [1]. A good antenna structure with an 
appropriate feeding mechanism plays a major part in the overall efficiency of communica-
tion systems. Antenna radiation characteristics are affected by the feeding structure which 
should be compact, low cost, and introduce good impedance matching bandwidth. Con-
ventional feeding techniques for planar structures have induced undesirable surface wave 
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excitation (SW) which results in high power loss [2]. Leaky-wave antennas (LWAs) are 
planar antenna with low-profile and ease of fabrication. It is suitable for a variety of appli-
cations including satellite systems, future 5G communication devices and wireless power 
transmission systems [3]. LWAs are travelling-wave antennas that characterized by a beam-
scanning ability, narrow bandwidth, low price, high gain and high efficiency by using simple 
feeding mechanisms [4]. It provides a solution for most wireless communication systems 
that operate in a pre-defined frequency band with a specified beam scan [5]. The LWA have 
different structures, such as periodic slots, periodic metal bands, dielectric array at the top of 
the guide and sinusoidal modulated surface impedances [6–8]. LWA’s applications require 
a wide range of frequency sweep to get a desired range of beam scanning directions. The 
complex propagation constant of LWAs is modified to produce the required scanning beam 
and hence reconfigurable LWAs operation [9]. Reconfigurable LWAs are designed using dif-
ferent electronic techniques such as PIN diodes, photosensitive switches, varactor diodes, or 
varying the surface impedance [10, 11]. Reconfigurable LWAs using the graphene material 
are designed and investigated for THz applications [12, 13]. Different feeding structures 
are investigated such as, coplanar waveguide (CPW) -fed slot launcher, metallic grating 
lenses were investigated to lunch plane waves. A probe-fed dual-offset Gregorian reflector 
system is designed to excite quasi-TEM wave inside a parallel-plate waveguide [14–16]. 
Slot Yagi-Uda antenna launcher is one of the suitable sources for TM0 mode surface wave. 
Rectangular waveguides and flare horns are widely used [17], and for wide bandwidth appli-
cation ridged structures are used [16]. Flared slot antenna produced a stable radiation beam 
near the end-fire direction has been introduced in [18]. Linear (1D) and planar (2D) LWAs 
based on reconfigurable materials such as graphene and plasma have been investigated and 
analyzed for beam-scanning applications as discussed in [19–21].

In this paper, a graphene band leakage wave antenna design is designed and tested in the 
1.56 THz to 2.2 THz frequency band. Different feeding techniques and their effect on the 
GS-LWA radiation characteristics are studied. A comparison between employing SIW horn, 
parabolic reflector, Yagi-Uda launchers, and tapered microstrip line is introduced. The finite 
integral technique (FIT) is used to design and analyze the radiation characteristics of the 
proposed LWAs configurations.

2  Design of a GS-LWA

Figure 1 illustrates the configuration of the GS-LWA designed to support 2 THz wireless 
communications. It consists of graphene strips with periodicity, P = 8, printed on h = 35 µm 
thick SiO2 dielectric substrate with εr =3.9. The graphene strips have width, S = 7.36µm  
and are separated by a gap of widthG = 2µm . The surface conductivity of graphene strips 
is modeled using Durde model given by [22]:

	
Zs (ω, µc, Γ, T ) =

1

(σinter (ω, µc, Γ, T ) + σintra (ω, µc, Γ, T ))
� (1)

where:

1 3

2030



Study on the Effect of Different Feeding Structures on the Performance…

	
σintra (ω, µc, Γ, T ) = −j

e2kBT

π�2 (ω − j2Γ)

(
µc

kBT
+ 2ln

(
e
− µc

kBT + 1
))

� (2)

	
σinter (ω, µc, Γ, T ) = −j

e2

4π�
ln
(
2 |µc| − (ω − j2Γ)�
2 |µc| + (ω − j2Γ)�

)
� (3)

ω  is the operating angular frequency, Γ  is the scattering rate, T  is the temperature, kB
is the Boltzmann’s constant and �  is the reduced Planck’s constant. The graphene sur-
face impedance is controlled by the chemical potential, µc,which depends on the free car-
rier density. It is electrically controlled via the application of DC voltage. The GS-LWA 
unit includes five-biased graphene strips (ON-state withµc = 1eV ) and three-unbiased 
graphene strips (OFF-state withµc = 0) constructing code of µc =11,111,000. An ideal 
wave port is used to launch a plane-wave excitation of the GS-LWA with total dimensions 
Lt ×Ws × h = 1350× 300× 35 µm3. The frequency responses of S11 and peak gain are 
plotted in Fig. 2a. The GS-LWA introduces impedance bandwidth (BW) of 34% extended 
from 1.56 THz to at f =2.2 THz with peak gain of 18.5 dBi. The gain pattern versus angle 
at 2 THz is shown in Fig. 2b. The GS-LWA radiates a directed beam at θ=-16o direction 

Fig. 2  (a) The S11 and peak gain versus frequency, (b) The gain pattern versus angle at 2 THz for the 
GS-LWA fed by ideal wave port in y-z plane

 

Fig. 1  The geometry of GS-LWA fed by ideal wave port. (a) 3D view (b) Top view
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with half-power beamwidth (HPBW) of 6.4 o and side lobe level (SLL) of -11.6 dB. The 
E-field distribution on the GS-LWA at 1.9 THz, 2 THz, and 2.1 THz are plotted in Fig. 3. It is 
noticed that the plane wave is propagating along the GS-LWA structure at different frequen-
cies. In the following sections different feeding structure is studied to launch plane waves 
excitation signal to the GS-LWA.

2.1  GS-LWA Fed by SIW H-Plane Planar (SIWH) Horn Antenna

The substrate integrated waveguide (SIW) technology is an efficient technique to produce 
planar, low profile and low price antennas. This technology enables an antenna to be more 
easily integrated with other system components on the same chip [23]. SIW-horn antenna 
consists of dielectric substrate coated from the top, and the bottom by metallic ground 
planes connected through two flared rows of metallic pins. The radius and separation of 
metallic pins are adjusted for negligible leakage energy. Different SIW-horn antennas are 
investigated and introduced in [24]. A planar H-plane horn antenna based on SIW technol-
ogy is constructed to radiate end-fire waves at 2 THz. The geometry of the SIWH antenna 
loaded with the GS-LWA is plotted in Fig. 4. The SIWH-horn antenna consists of two metal-
lic plates sandwiched by SiO2 substrateεr = 3.9. Two flared rows of metallic pins with 
radius Rp =5.8 μm and separation by Sp=14.5 μm are inserted to connect the upper and 
lower sheets of the horn antenna. A 50 Ω coaxial probe is located at Lf =21.75 μm from the 
shorted end to feed the horn. The optimized antenna dimensions at 2 THz are given by: L1

=107.3 μm, L2= 290.8 μm, Lf =27.55 μm, w1=84 μm, and w2=322 μm. A dielectric lens 
of εr = 3.9with Lm = 70  µm is placed between the SIWH and GS-LWA to improve the 
impedance matching. Figure 5a shows the S11 and peak gain against frequency for the GS-
LWA fed by SIWH antenna. Good impedance matching of 21.9% from 1.72 THz to 2.15 
THz with peak gain of 18.2 dBi. The gain pattern versus angle at 2 THz is shown in Fig. 5b. 
The GS-LWA radiates a directive beam at θ=-16 o with HPBW=6.4 o.

Fig. 3  The E- field distributions at different frequencies for the GS-LWA fed by an ideal wave port. (a) 
f = 1.9 THz (b) f = 2.0 THz (c) f = 2.1 THz
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2.2  GS-LWA Fed by Parabolic Reflector

A unidirectional plane wave launcher reflecting parabolic structures with a compact profile 
is investigated. It should provide a broad bandwidth, minimized the phase differences and 
get a uniform electric field distribution at the waveguide aperture, to improve the launch-
ing efficiency. A quasi-plane wave is obtained at the aperture by modifying the parabolic 
reflecting wall, and probe-fed location. The parabolic reflecting structure introduces stable 
radiation pattern, improved gain, and high radiation efficiency [25–26]. The GS-LWA is fed 
using a unidirectional plane wave launcher with reflecting parabolic reflecting wall (follow-
ing the equationy2 = 4cx , where c = 35µm  is the focal length) as shown in Fig. 6. A50 
Ω coaxial probe is extended through the substrate with height hf = 20µm  at the focus of 
the parabolic reflector and C1 = 185µm  to achieve wide matching impedance bandwidth. 
The coaxial probe excites cylindrical EMWs, where the backward wave is reflected by the 
parabolic reflector to produce plane wave. The S11 and peak gain against frequency of the 
GS-LWA fed by parabolic reflector are plotted in Fig. 7a. Wide impedance BW of 39.8% is 
achieved with peak gain of 18 dBi. A directive gain pattern at θ=-16o direction with HPBW 
of 6.4o and SLL of -11.6 dB is achieved at 2 THz as shown in Fig. 7b.

Fig. 5  (a) The S11 and peak gain versus frequency, (b) The gain pattern versus angle at 2 THz for the GS-
LWA fed by the SIWH horn antenna at y-z plane

 

Fig. 4  The proposed structure of the SIWH - horn antenna loaded with GS-LWA. (a) The 3D array con-
struction, (b) The SIW feeding horn antenna
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2.3  GS-LWA Fed by Yagi-Uda Like Antenna

Coplanar waveguide fed Yagi-Uda is a surface wave launcher that provides very narrow 
high-matched bandwidth. An array of two Yagi-Uda like elements is used to generate SW 
field pattern with high gain, wide matching bandwidth and efficient performance [27]. A 
coplanar waveguide fed Yagi-Uda like launcher is introduced to feed the GS-LWA as shown 
in Fig. 8. Single and double Yagi-Uda like launcher are investigated. Each launcher consists 
of two main parts as shown in Fig. 8c. The dipole part has widthx = 41.75µm . The reflec-
tor part reduces the wasted power in the back lobe has dimensions 2t = 1.7μm, Ly4 = 10.8μm, 
Ly5 =  12.8μm, and Ly3 =  7.5μm, Ly1 =  13.14μm, and Ly2 =  10.24μm, h nally a matching 
element a. The S11 and peak gain against frequency for single and double Yagi-Uda like 
launchers are plotted in Fig. 9a. The matching BWs are 9.62% and 6.0% for single and 
double Yagi-Uda Like elements feeders. The peak gain is 15.1 dBi for the single Yagi-Uda 
like element and increased to 16.5 dBi for double Yagi-Uda like elements. Figure 8b shows 
the gain pattern versus angle at 2 THz. The SLL is -12.2 dB and − 10.9 dB for single and 
double Yagi-Uda like elements, respectively.

Fig. 7  (a) The S11 and peak gain versus frequency, (b) The gain pattern versus angle at 2 THz for the 
GS-LWA fed by parabolic reflector antenna at y-z plane

 

Fig. 6  Proposed structure of parabolic reflector antenna loaded with GS-LWA. (a) The 3D array structure, 
(b) The parabolic feeder
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2.4  GS-LWA Fed by Tapered Microstrip Line

In this part, a conventional tapered microstrip line increases the antenna bandwidth with 
improved impedance matching. The impedance of the tapered microstrip line depends 
on the width, substrate thickness and dielectric constant with line lengths of λ/4 [28]. A 
tapered microstrip line is used to feed the GS-LWA as shown in Fig. 10a. The character-
istic impedance is designed to be 50Ω. Transmission line with dimensions,ws1 = 74µm

, Ltap = 76µm, Ls1 = 19µm, andws2 = 200µm  is used. It lunches a plane wave to the 
GS-LWA that introduces BW 39.57% from 1.5 THz to 2.24 THz and peak gain of 17.5 dBi 
as shown in Fig. 10b.

The 3D gain patterns of the GS-LWA excited with different feeding mechanisms at 2 THz 
are plotted in Fig. 11. The beams are directed in θ=-16o direction with different values of the 
side lobes and back-lobes. Tapered microstrip line introduces the optimum feeder in terms 
of low side-lobes and minimized back-lobe. Both single and double Yagi-Uda elements 
introduce high side-lobes and back-lobes compared with other feeders. The E- field distri-

Fig. 9  (a) The S11 and peak gain versus frequency, (b) The gain pattern versus angle at 2 THz for the GS-
LWA fed by single and double Yagi-Uda like elements at y-z plane

 

Fig. 8  The geometry of GS-LWA fed by, (a) Single, (b) Two Yagi-Uda like elements
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Table 1  Comparison between the radiation characteristics of GS-LWA with different feeding methods
Feeding 
Structure

Ideal wave 
port

SIWH-horn 
antenna

Parabolic 
reflector

Yagi-Uda 
Like port

Yagi-Uda Like 
Array port

Tapered 
Microstrip 
line

Main beam angle 
(degree)

-16 -16 -16 -16 -16 -16

Peak gain (dBi) 18.5 18.2 18.0 15.1 16.5 17.5
HPBW (degree) 6.4 6.4 6.4 6.5 6.7 6.5
SLL (dB) -11.6 -10.6 -10.6 -12.2 -10.9 -16.1
BW% 34%

(1.56–2.2) 
THz

21.95%
(1.72–2.15) 
THz

39.8%
(1.65–
2.47) THz

9.62%
(1.88–2.07) 
THz

6.0%
(1.94–2.06) 
THz

39.57%
(1.5–2.24) 
THz

Fig. 11  3D gain patterns of the GS-LWA fed by different techniques at f = 2.0THz. . (a) Ideal wave 
port (b) SIWH horn (c) Parabolic reflector (d) Single Yagi element (e) Two Yagi elements (f) Tapered 
Microstrip line

 

Fig. 10  Proposed structure of tapered Microstrip line for both cases of unloaded and loaded with GLWA. 
(a) The 3D array structure, (b) The S11 and gain versus frequency
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butions on the GS-LWA with different feeders at 2 THz are shown in Fig. 12. Plane wave 
distributions are noticed to be launched from different feeders. Table 1 lists a comparison 
between the radiation characteristics of the GS-LWA with different feeding methods.

3  Conclusion

This paper investigates the radiation characteristics of GS-LWA fed using different feeding 
structures. The radiation characteristics of GS-LWA fed by the ideal wave - port is studied 
as a reference for other feeding structures. The radiated beam at θ =-16o direction with 
HPBW = 6.4o and SLL=-11.6 dB is obtained. The impedance matching bandwidth (BW) is 
34% with peak gain of 18.5 dBi. Different feeding structures are investigated such as SIWH 
planar horn, planar parabolic reflector, Yagi-Uda like dipole, and tapered microstrip antenna. 
All the feeding structures lunches plane wave to the GS-LWA at different frequencies. The 
impedance matching BW is affected by the feeding mechanism type. The parabolic reflector 
introduces the widest BW of 39.8%, while Yagi-Uda like dipole array element has the nar-
rowest BW of 6%. The peak gain varies from 15.1 dBi to 18.5 dBi according to the feeder. 
At 2 THz the antenna radiates the beam toward − 16o direction and unaffected by the feeding 
type. The parabolic reflector and the tapered microstrip line introduce the optimum feeder 
for GS-LWA in terms of BW, peak gain, SLL, and reduced back radiation.
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