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Abstract

Many daily activities present information in the form of a stream of text, and often people can benefit from
additional information on the topic discussed. TV broadcast news can be treated as one such stream of text; in
this paper we discuss finding news articles on the web that are relevant to news currently being broadcast.

We evaluated a variety of algorithms for this problem, looking at the impact of inverse document frequency,
stemming, compounds, history, and query length on the relevance and coverage of news articles returned in real
time during a broadcast. We also evaluated several postprocessing techniques for improving the precision, in-
cluding reranking using additional terms, reranking by document similarity, and filtering on document similarity.
For the best algorithm, 84–91% of the articles found were relevant, with at least 64% of the articles being on the
exact topic of the broadcast. In addition, a relevant article was found for at least 70% of the topics.

Keywords: query-free search, web information retrieval

1. Introduction

Many daily activities present information using a written or spoken stream of words: televi-
sion, radio, telephone calls, meetings, face-to-face conversations with others. Often people
can benefit from additional information about the topics that are being discussed. Supple-
menting television broadcasts is particularly attractive because of the passive nature of TV
watching. Interaction is severely constrained, usually limited to just changing the channel;
there is no way to more finely direct what kind of information will be presented.

Indeed, several companies have explored suggesting web pages to viewers as they watch
TV. For example, the Intercast system, developed by Intel, allows entire HTML pages to be
broadcast in unused portions of the TV signal. A user watching TV on a computer with a
compatible TV tuner card can then view these pages, even without an Internet connection.
NBC transmitted pages via Intercast during their coverage of the 1996 Summer Olympics.
The Interactive TV Links system, developed by VITAC (a closed captioning company) and
WebTV (now a division of Microsoft), broadcasts URLs in an alternative data channel
interleaved with closed caption data [6,18]. When a WebTV box detects one of these
URLs, it displays an icon on the screen; if the user chooses to view the page, the WebTV
box fetches it over the Internet.

For both of these systems the producer of a program (or commercial) chooses relevant
documents by hand. In fact, the producer often creates new documents specifically to be
accessed by TV viewers.
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In this paper we study the problem of automatically finding news articles on the web
relevant to the ongoing stream of TV broadcast news. We restrict our attention to broad-
cast news since it is very popular and information-oriented (as supposed to entertainment-
oriented).

Our approach is to extract queries from the ongoing stream of closed captions, issue
the queries in real time to a news search engine on the web, and postprocess the top re-
sults to determine the news articles that we show to the user. We evaluated a variety of
algorithms for this problem, looking at the impact of inverse document frequency, stem-
ming, compounds, history, and query length on the relevance and coverage of news articles
returned in real time during a broadcast. We also evaluated several postprocessing tech-
niques for improving the precision, including reranking using additional terms, reranking
by document similarity, and filtering on document similarity. The best algorithm achieves
a precision of 91% on one data set and 84% on a second data set and finds a relevant article
for at least 70% of the topics in the data sets.

In general, we find that it is more important to concentrate on a good postprocessing step
than on a good query generation step. The difference in precision between the best and the
worst query generation algorithm is at most 10 percentage points, while our best post-
processing step improves precision by 20 percentage points or more. To offset the impact
of postprocessing on the total number of relevant articles retrieved, we simply increased
the number of queries.

To be precise, the best algorithm uses a combination of techniques. Our evaluation
indicates that the most important features for its success are a “history feature” and a post-
processing step that filters out irrelevant articles. Many of the other features that we added
to improve the query generation do not have a clearly beneficial impact on precision. The
“history feature” enables the algorithm to consider all terms since the start of the current
topic when generating a query. It tries to detect when a topic changes and maintains a
data structure that represents all terms in the current topic, weighted by age. The filtering
step discards articles that seem too dissimilar to each other or too dissimilar to the current
topic. We also experimented with other postprocessing techniques but they had only a
slight impact on precision.

Our algorithms are basically trying to extract keywords from a stream of text so that the
keywords represent the “current” piece of the text. Using existing terminology this can be
called time-based keyword extraction. There is a large body of research on topic detection
and text summarization. Recently, time-based summarization has also been studied [1],
but to the best of our knowledge there is no prior work on time-based keyword extraction.

The remainder of this paper is organized as follows. Section 2 describes the different
query generation algorithms and the different postprocessing steps. Section 3 presents the
evaluation. Section 4 discusses related work. We conclude in Section 5.

2. Our approach

Our approach to finding articles that are related to a stream of text is to create queries based
on the text and to issue the queries to a search engine. Then we postprocess the answers
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returned to find the most relevant ones. In our case the text consists of closed captioning
of TV news, and we are looking for relevant news articles on the web. Thus we issue the
queries to a news search engine.

We first describe the algorithms we use to create queries and then the techniques we use
for postprocessing the answers.

2.1. Query generation

It is an interesting question how best to present the articles found by the system to the
users. However, in this article we concentrate on the algorithms for finding relevant articles
and do not address user interface issues. Thus, we simply assume that we are interested
in showing relevant articles at a regular rate during the news broadcast. As a result the
query generation algorithm needs to issue a query periodically, i.e., every s seconds. It
cannot wait for the end of a topic. We chose s = 15 for two reasons. (1) Empirically we
determined that showing an article every 10–15 seconds allows the user to read the title
and scan the first paragraph. The actual user interface may allow the user to pause and
read the current article more thoroughly. (2) A caption text of 15 seconds corresponds to
roughly three sentences or roughly 50 words. This should be enough text to generate a
well-specified query.

Because postprocessing may eliminate some of the candidate articles, we return two
articles for each query. We also tested at s = 7, thus allowing up to half of the candidate
articles to be discarded while maintaining the same or better coverage as s = 15.

The query generation algorithm is given the text segment T since the last query genera-
tion. It also keeps information about the previous stream of text. We consider seven differ-
ent query generation algorithms, described in the following sections. All but the last query
generation algorithm issue 2-term queries. A term is either a word or a 2-word compound
like New York. Two-term queries are used because experiments on a test set (different from
the evaluation set used in this paper) showed that 1-term queries are too vague and return
many irrelevant results. On the other hand, roughly half of the time 3-term queries are too
specific and do not return any results (because we are requiring all terms to appear in the
search results). The last query generation algorithm uses a combination of 3- and 2-term
queries to explore whether the 2-term limit hurts performance.

As is common in the information retrieval (IR) literature [19] the inverse document fre-
quency idf of a term is a function of the frequency f of the term in the collection (i.e., the
number of documents in the collection containing the term) and the number N of docu-
ments in the collection. Specifically, we use the function log(N/(f + 1)). Since we do not
have a large amount of closed caption data available, we used Google’s web collection to
compute the idf of the terms. This means N was over 2 billion, and f was the frequency
of a term in this collection. Unfortunately, there is a difference in word use in written web
pages and spoken TV broadcasts. As a result we built a small set of words that are common
in captions but rare in the web data. Examples of such words are reporter and analyst. All
of the algorithms below ignore the terms on this stopword list.

The query generation algorithms as well as the postprocessing algorithms that we de-
scribe below can process the text in real-time.
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2.1.1. The baseline algorithm A1-BASE Our baseline algorithm is a simple tf · idf
based algorithm. It uses only single-word terms, not two-word compound terms. Each
term is weighted by tf · idf , where tf is the frequency of the term in the text segment T .
This results in larger weights for terms that appear more frequently in T , and larger weights
for more unusual terms. This is useful since doing a search with the more distinctive terms
of the news story is more likely to find articles related to the story. The baseline algorithm
returns the two terms with largest weight as the query.

2.1.2. The tf · idf 2 algorithm A2-IDF2 This is the same algorithm as the baseline al-
gorithm, but a term is weighted by tf · idf 2. The motivation is that rare words, like named
entities, are particularly important for issuing focussed queries. Thus, the idf component
is more important than tf .

2.1.3. The simple stemming algorithm A3-STEM In the previous two algorithms each
term is assigned a weight. Algorithm A3-STEM assigns instead a weight to each stem.
The stem of a word is approximated by taking the first 5 letters of the word. For exam-
ple, congress and congressional would share the same stem, congr. The intention is to
aggregate the weight of terms that describe the same entity. We use this simple method
of determining stems instead of a more precise method because our algorithm must be
real-time.

For each stem we store all the terms that generated the stem and their weight. The weight
of a term is c · tf · idf 2, where c = 1 if the term was a noun and c = 0.5, otherwise. (Nouns
are determined using the publicly available Brill tagger [2].) We use this weighting scheme
since nouns are often more useful in queries than other parts of speech. The weight of a
stem is the sum of the weights of its terms.

To issue a query the algorithm determines the two top-weighted stems and finds the
top-weighted term for each of these stems. These two terms form the query.

2.1.4. The stemming algorithm with compounds, algorithm A4-COMP Algorithm
A4-COMP consists of algorithm A3-STEM extended by two-word compounds. Specif-
ically, we build stems not only for one-word terms, but also for two-word compounds.
For this we use a list of allowed compounds compiled from Google’s corpus of web data.
Stems are computed by stemming both words in the compound, i.e., the stem for the com-
pound veterans administration is veter-admin. Compounds are considered to be terms and
are weighted as before. Queries are issued as for algorithm A3-STEM, i.e., it finds the
top-weighted term for the two top-weighted stems. Since a term can now consists of a
two-word compound, a query can now, in fact, consist of two, three, or four words.

2.1.5. The history algorithm A5-HIST Algorithm A5-HIST is algorithm A4-COMP
with a “history feature.” All previous algorithms generated the query terms solely on
the basis of the text segment T that was read since the last query generation. Algorithm
A5-HIST uses terms from previous text segments to aid in generating a query for the cur-
rent text segment, the notion being that the context leading up to the current text may
contain terms that are still valuable in generating the query.



QUERY-FREE NEWS SEARCH 105

It does this by keeping a data structure, called the stem vector, which represents the
previously seen text, i.e., the history. It combines this information with the information
produced by algorithm A4-COMP for the current text segment T and finds the top weighted
stems.

To be precise, for each stem the stem vector keeps a weight and a list of terms that
generated the stem, each with its individual weight. The stem vector keeps the stems of all
words that were seen between the last reset and the current text segment. A reset simply
sets the stem vector to be the empty vector; it occurs when the topic in a text segment
changes substantially from the previous text segment (see below).

When algorithm A5-HIST receives text segment T it builds a second stem vector for it
using algorithm A4-COMP. Then it checks how similar T is to the text represented in the
old stem vector by computing a similarity score sim. To do this we keep a stem vector
for each of the last three text segments. (Each text segment consists of the text between
two query generations, i.e., it consists of the text of the last s seconds.) We add these
vectors and compute the dot-product of this sum with the vector for T , only considering
the weights of the terms and ignoring the weights of the stems. If the similarity score is
above a threshold a1, then T is similar to the earlier text. If the similarity score is above
a2 but below a1, then T is somewhat similar to the earlier text. Otherwise T is dissimilar
from the earlier text.

If text segment T is similar to the earlier text, the old stem vector is aged by multiplying
every weight by 0.9 and then the two vectors are added. To add the two vectors, both
vectors are expanded to have the same stems by suitably adding stems of weight 0. Also
the set of terms stored for each stem is expanded to consist of the same set by adding terms
of weight 0. Then the two vectors are added by adding the corresponding weights of the
stems and of the terms.

If text segment T is very dissimilar from the earlier text, then the old stem vector is reset
and is replaced by the new stem vector. To put it another way, when the current text is very
different than the previous text, it means that the topic has changed, so previous history
should be discarded in deciding what query to issue.

If text segment T is somewhat similar to the earlier text, then the stem vector is not reset,
but the weights in the old stem vector are decreased by multiplying them with a weight that
decreases with the similarity score sim. Afterwards the old stem vector and the new stem
vector are added. So even though the topic has not completely changed, previous terms are
given less weight to allow for topic drift.

We used a test data set (different from the evaluation data sets) to choose values for a1
and a2 in the sim calculation. In our implementation, a1 = 0.001 and a2 = 0.0003. When
T is somewhat similar, we use the weight multiplier a = 0.92−1000·sim, which was chosen
so that a � 0.9, i.e., the weights are more decreased than in the case that T is similar to
the early text.

In the resulting stem vector the top two terms are found in the same way as in algorithm
A4-COMP.

2.1.6. The query shortening algorithm A6-3W To verify our choice of query length 2
we experimented with a query shortening algorithm, which issues a multiple term query,
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and shortens the query until results are returned from the news search engine. Earlier
experiments showed that reducing the query to one term hurt precision. Therefore we
kept two terms as the minimum query length. The query shortening algorithm A6-3W is
identical to A5-HIST, but begins with three-term queries, reissuing the query with the two
top-weighted terms if there are no results.

2.1.7. Algorithm A7-IDF Algorithm A7-IDF is identical to algorithm A5-HIST with
idf 2 replaced by idf . (Note that each increasing algorithm A1–A6 adds one additional
feature to the previous. A7-IDF does not fit this pattern; we created it in order to test the
specific contribution of idf 2 to A5-HIST’s performance.)

2.2. Postprocessing

After generating the search queries we issue them to a news search engine and retrieve the
top at most 15 results. Note that each result contains exactly one news article. Because we
want to retrieve articles that are about the current news item, we restricted the search to
articles published on the day of the broadcast or the day before.

We applied several ways of improving upon these search results, described in the sec-
tions below, and then selected the top two results to show to the user as news articles related
to the broadcast news story.

Since several queries will be issued on the same topic, they may yield similar result sets
and many identical or near identical articles may end up being shown to the user. In fact,
in the data sets used for the evaluation (see Section 3.1), queried at both s = 7 and s = 15,
an average of 40% of articles returned would be near-duplicates. Such a large number of
duplicates would lead to a poor user experience, so we employed a near-duplicate backoff
strategy across all the algorithms. If an article is deemed a near-duplicate of one that has
already been presented, the next article in the ranking is selected. If all articles in the result
set are exhausted in this manner, the first article in the result set is returned (even though it
was deemed a near-duplicate). This reduces the number of repeated highly similar articles
to an average of 14% in the evaluation data sets.

To detect near-duplicates without spending time fetching each article, we look at the
titles and summaries of the articles returned by the search engine. We compare these titles
and summaries to a cache of article titles and summaries that have already been displayed
during the broadcast. A similarity metric of more than 20% word overlap in the title, or
more than 30% word overlap in the summary, was successful in identifying exact matches
(e.g., the same article returned in the results for a different query) and slight variants of the
same article, which are commonly issued by news wires as the story develops over time.

The postprocessing steps we used were boosting, similarity reranking, and filtering.

2.2.1. Boosting The news search engine gets a two-term query and does not know any-
thing else about the stream of text. The idea behind boosting is to use additional high-
weighted terms to select from the search results the most relevant articles. To implement
this idea the query generation algorithm returns along with the query associated boost terms
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and boost values. The boost terms are simply the top five terms found in the same way as
the query terms. The boost values are the IDF values of these terms.

The boosting algorithm then reranks the results returned from the search by computing
a weight for each result using the boost terms. For a boost term which has IDF idf and
occurs tf times in the text summary returned with the result, the weight is incremented by
the value idf · 4tf /(tf + 3), which is a tf · idf -like formula that limits the influence of the tf
part to 4. For boost terms in the title, the weight is increased by twice that value. Finally,
to favor more recent articles, the weight is divided by d + 1, where d is the number of days
since the article was published. Since we restrict articles to the current date and the day
before, the weight is divided by either 1 or 2. The results are then reordered according to
their weight; non-boosted results or ties are kept in their original order.

2.2.2. Similarity reranking A second way of reranking is to compute for each of the
results returned by the search engine its similarity to the text segment T and to rerank the
search results according to the similarity score. To implement this idea we build a tf · idf -
weighted term vector for both the text segment T and the text of the article and compute
the normalized cosine similarity score. (The first 500 characters of the article are used.)
This filtering step requires first fetching the articles, which can be time-expensive.

2.2.3. Filtering The idea behind filtering is to discard articles that are very dissimilar to
the closed caption text. Additionally, when the issued query is too vague, then the top two
search results often are very dissimilar. (Indeed, all the results returned by vague queries
are often very different from one another.) So whenever we find two candidate articles and
they are dissimilar, we suspect a vague query and irrelevant results. So we discard each of
the articles unless it is itself highly similar to the caption.

We again used the tf · idf -weighted term vector for the text segment T and the text of the
article and computed the normalized cosine similarity score as in the similarity reranking,
above. Whenever the page-T similarity score is below a threshold b the article is discarded
(Rule F1). If there are two search results we compute their similarity score and discard
the articles if the score is below a threshold p (Rule F2)—but allowing each article to be
retained if its page-T similarity score is above a threshold g (Rule F3).

We analyzed a test data set (different from the evaluation data sets) to determine appro-
priate thresholds. In our implementation, b = 0.1, g = 0.3, and p = 0.35.

3. Evaluation

To evaluate different algorithms on the same data set the evaluators worked off-line to give
them ample time for their decisions. They were supplied with two browser windows. One
browser window contained the article to be evaluated. The article was annotated with an
input box so that the score for the article could simply be input into the box. The other
browser window contained the part of the closed caption text for which the article was
generated. The evaluators were instructed as follows:
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You will be reading a transcript of a television news broadcast. What you will be
evaluating will be the relevance of articles that we provide periodically during the
broadcast. For each displayed article consider whether the article is relevant to
at least one of the topics being discussed in the newscast for this article. Use the
following scoring system to decide when an article is relevant to a topic:

• 0, if the article is not on the topic;
• 1, if the article is about the topic in general, but not the exact story;
• 2, if the article is about the exact news story that is being discussed.

For example, if the news story is about the results of the presidential election, then an
article about a tax bill in congress would score a 0; an article about the candidates’
stands on the environment would score a 1; an article about the winner’s victory
speech would score a 2.

Do not worry if two articles seem very similar, or if you’ve seen the article pre-
viously. Just score them normally. The “current topic” of the newscast can be any
topic discussed since the last article was seen. So if the article is relevant to any of
those topics, score it as relevant. If the article is not relevant to those recent topics,
but is relevant to a previous segment of the transcript, it is considered not relevant;
give it a 0.

We count an article as “relevant” (R) if it was given a score of 1 or 2 by the human
evaluator. We count it as “very relevant” (R+) if it was given a score of 2.

To compare the algorithms we use precision, i.e., the percentage of relevant articles out
of all returned articles. Recall is usually defined as the percentage of returned relevant
articles out of all relevant articles that exist. However, this is very hard to measure on the
web, since it is very difficult to determine all articles on a given topic. In addition, our
algorithms are not designed to return all relevant documents, but instead a steady stream of
relevant documents. Thus, we define the pooled recall to be the percentage of returned rel-
evant articles out of all relevant articles pooled from all of the query generation algorithms
with all postprocessing variants. We use pooled recall instead of the number of relevant
documents to enable comparison over different data sets. To aid in the comparison we also
give the number of returned documents that are relevant.

There are various problems with using pooled recall. (1) The pooled recall numbers
are appropriate for comparing performance among the different algorithms, but not useful
as an absolute measure of an algorithm’s recall performance, since no algorithm would
be able to achieve 100% pooled recall. This is because when a query is issued at a text
segment, an algorithm is limited to returning a maximum of two articles. Since each topic
lasts only a fixed duraction of time, only a limited number of articles can be shown. (2) The
pooled recall numbers cannot be used to compare an algorithm that issues a search every 7
seconds with and algorithm that issues a search every 15 seconds as the earlier algorithm
shows about twice as many articles.

Since pooled recall is a problematic metric for measuring “coverage” we also measure
topic coverage, which is the percentage of topics (defined below) that have at least one
relevant article. The experiments showed a strong correlation between topic coverage and
pooled recall, indicating that pooled recall is still a usefull metric.
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To understand the relationship of the different algorithms we compute their overlap,
both in terms of issued queries and in terms of articles returned. Since filtering is such a
powerful technique we study its effectiveness in more detail.

3.1. Data sets

We evaluated all these approaches using the following two data sets:

(1) HN: three 30-minute sessions of CNN Headline News, each taken from a different
day, and

(2) CNN: one hour of Wolf Blitzer Reports on CNN from one day and 30 minutes from
another day.

The Headline News sessions (“HN”) consists of many, relatively short, news stories.
The Wolf Blitzer Reports (“CNN”) consists of fewer news stories discussed for a longer
time and in greater depth.

Both data sets contain news stories and meta-text. Meta-text consists of the text between
news stories, like “and now to you Tom” or “thank you very much for this report.” For
evaluating the performance of our algorithms we manually decomposed the news stories
into topics, ignoring all the meta-text. (This manual segmentation is not an input to the
algorithms; it was used strictly for evaluation purposes.) Each topic consists of at least 3
sentences on the same theme; we do not count 1–2 sentence long “teasers” for upcoming
stories as topics. The shortest topic in our data sets is 10 seconds long, the longest is
426 seconds long. The average length of a topic in the HN data set is 51 seconds and
the median is 27 seconds. The topics comprise a total of 4181 seconds (70 minutes) out
of the 90-minute-long caption stream. In the CNN data set the average topic length is
107 seconds and the median is 49 seconds. The topics comprise a total of 3854 seconds
(64 minutes).

3.2. Evaluation of the query generation algorithms

3.2.1. Evaluation of the algorithms We first evaluated all the baseline algorithms with
two different ways of postprocessing, namely no postprocessing and postprocessing by
both boosting and filtering. The CNN data set consists of 3854 seconds, and thus an
algorithm that issues a query every 15 seconds issues 257 queries. We return the top two
articles for each query so that a maximum of 514 relevant articles could be returned for
this data set when s = 15. For the HN data set the corresponding number is 557.

The pool of all relevant documents found by any of the algorithms for the HN data set
is 846, and for the CNN data set is 816. Thus the pooled recall for each algorithm is
calculated by dividing the number of relevant documents it found by these numbers. Note
that for s = 15 no algorithm can return more than 557 (for HN) or 514 (for CNN) relevant
articles, so in those cases the maximum possible pooled recall would be 557/846 = 66%
(HN) or 514/816 = 63% (CNN).
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Table 1. HN data set: precision p, pooled recall r , and number n of returned
documents that are relevant.

Postprocessing
None Boost + filter

Technique s p r n p r n

A1-BASE 7 58% 37% 315 86% 31% 264
A2-IDF2 7 58% 37% 316 87% 31% 266
A3-STEM 7 64% 32% 273 88% 29% 246
A4-COMP 7 64% 32% 271 88% 28% 239
A5-HIST 7 64% 36% 303 91% 30% 257
A6-3W 7 72% 33% 279 89% 28% 234
A7-IDF 7 61% 38% 322 89% 31% 262

A1-BASE 15 63% 20% 165 91% 17% 147
A2-IDF2 15 62% 20% 165 91% 18% 152
A3-STEM 15 69% 25% 210 88% 24% 200
A4-COMP 15 70% 26% 221 90% 25% 210
A5-HIST 15 67% 26% 219 89% 24% 201
A6-3W 15 75% 24% 201 91% 22% 187
A7-IDF 15 59% 26% 223 91% 24% 207

Table 2. CNN data set: precision p, pooled recall r , and number n of returned
documents that are relevant.

Postprocessing
None Boost + filter

Technique s p r n p r n

A1-BASE 7 43% 27% 221 77% 21% 171
A2-IDF2 7 46% 27% 220 75% 18% 150
A3-STEM 7 43% 23% 185 76% 18% 143
A4-COMP 7 44% 23% 186 76% 17% 140
A5-HIST 7 55% 32% 259 84% 23% 190
A6-3W 7 60% 30% 246 86% 23% 190
A7-IDF 7 52% 25% 206 82% 23% 186

A1-BASE 15 48% 17% 140 83% 14% 116
A2-IDF2 15 60% 16% 134 85% 13% 108
A3-STEM 15 54% 17% 139 76% 14% 113
A4-COMP 15 59% 18% 144 82% 15% 120
A5-HIST 15 61% 25% 200 88% 20% 164
A6-3W 15 71% 23% 189 83% 21% 164
A7-IDF 15 56% 25% 202 82% 21% 172

Table 1 presents the precision and pooled recall for all the different query generation
algorithms for the HN data set. Table 2 shows the corresponding numbers for the CNN
data set. These tables lead to a few observations:

(1) All algorithms perform statistically significantly1 better with a p-value of < 0.003
when postprocessed with boosting and filtering than without postprocessing. Depend-
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ing on the algorithm the postprocessing seems to increase the precision by 20–35 per-
centage points.

(2) For both data sets the highest precision numbers are achieved with postprocessing
and s = 15. However, the largest pooled recall is achieved without postprocessing
and with s = 7. This is no surprise: filtering reduces not only the number of non-
relevant articles that are returned, but also the number of relevant ones. The impact
of postprocessing on the number of relevant articles that are returned varies greatly
between algorithms. The maximum change is 71 articles (A1-BASE with s = 7 on
HN), and the minimum change is 10 articles (A3-STEM with s = 7 on HN). Also,
reducing s increases the number of queries issued and thus one expects the number of
returned articles to increase, both the relevant ones as well as the non-relevant ones.
Thus pooled recall increases as well.

(3) Precision on the CNN data set is lower than precision on the HN data set. This is
somewhat surprising as longer topics might be expected to lead to higher precision.
The reason is that since we issue more queries on the same topic, we reach further down
in the result sets to avoid duplicates and end up returning less appropriate articles.

(4) Algorithm A5-HIST with s = 7 and with postprocessing performs well in both preci-
sion and pooled recall. For the HN data set, it achieves a precision of 91% with 257
relevant articles returned, for the CNN data set it achieves a precision of 84% with
190 relevant articles returned. This means it returns a relevant article every 16 seconds
and every 20 seconds, respectively, on the average. The performance of algorithm
A6-3W is very similar to algorithm A5-HIST. None of the other algorithms achieves
precision of at least 90% and pooled recall of at least 30%. For example, algorithms
A1-BASE and A2-IDF2 with s = 15 have precision 91% on the HN data set but they
return roughly 100 articles fewer that A5-HIST with s = 7, which corresponds to a
drop of pooled recall by 13 percentage points (A1-BASE) and 12 percentage points
(A2-IDF2).
Without postprocessing the difference in precision between A5-HIST and algorithms
A1-BASE, A2-IDF2, A3-STEM, and A4-COMP is statistically significant on the CNN
data set for s = 7. For s = 15 the difference between A5-HIST and A1-BASE is
significant with a p-value of < 0.004.

(5) Without postprocessing the precision of the baseline algorithm A1-BASE is statisti-
cally significantly worse than most of the other algorithms on the CNN data set. Also
algorithm A6-3W is statistically significantly better than most of the other algorithms.
However, these differences disappear or are no longer statistically significant when
filtering and boosting is applied.

3.2.2. Evaluation of the individual techniques We also discuss the contribution of dif-
ferent query generation techniques.

(1) idf versus idf 2. The baseline algorithm A1-BASE and algorithm A2-IDF2 differ only
in the use of idf 2 versus idf . For s = 15 and no postprocessing, A2-IDF2 gives a
statistically significant improvement over A1-BASE on the CNN data set. In all the
other cases their performance is very similar.
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Algorithms A5-HIST and A7-IDF also differ only in the use of idf 2 versus idf . With-
out postprocessing A5-HIST outperforms A7-IDF in precision on both data sets. The
differences are statistically significant for s = 7 on the CNN data set and for s = 15
on the HN data set. With postprocessing their performance is either very similar or the
difference is not statistically significant. Altogether, idf 2 seems to work slightly better
than idf .

(2) Stemming. Adding stemming to algorithm A2-IDF2 gives algorithm A3-STEM. On
the HN data set stemming gives an improvement without postprocessing but with post-
processing and s = 15 stemming gives slightly worse performance. On the CNN data
set stemming hurts precision. This is not so surprising as stemming is mostly used to
improve recall. It does increase pooled recall over A3-STEM for s = 15, but it has
no positive impact or even a negative impact on pooled recall for s = 7. Overall, our
experiments do not show any benefit that suggests using stemming.

(3) Compounds. Algorithm A4-COMP consists of algorithm A3-STEM with 2-word com-
pounding added, i.e., we only evaluated compounding for algorithms that use stem-
ming. Their performance is very similar. The precision of A4-COMP is greater than
the precision of A3-STEM for s = 15 on the CNN data set but it is not statistically
significant. However, for s = 15 and no postprocessing, A4-COMP gives a statisti-
cally significant improvement (p-value < 0.02) over A1-BASE on the CNN data set.
Overall, adding compounds does not seem to significantly improve precision. It has
basically no impact on pooled recall.

(4) History. Adding a “history feature” to algorithm A4-COMP gives algorithm A5-HIST.
The history gives a small improvement in precision for s = 7 on the HN data set, while
it seems to slightly hurt for s = 15. On the CNN data set, A5-HIST clearly outper-
forms A4-COMP, both in precision and in pooled recall; the difference is statistically
significant with p-value < 0.004 for s = 7 and no postprocessing. It also noticeably
increases pooled recall.
This is not surprising. For longer topics (as the CNN data set has) it becomes valuable
to have a history feature, especially if queries are issued every 7 seconds. Each text
segment may not on its own contain highly relevant text that can be used as a query
in finding similar stories. Shorter text segments suffer even more from this problem.
The history rectifies this by effectively extending the length of the text segment in a
time-aged manner.
For example, for one of the data sets three shootings were in the news: one in Ari-
zona, one in Oklahoma, and one in Jordan. The algorithms without history sometimes
returned non-relevant articles about shootings different than the one being discussed
in the broadcast because the current text segment did not mention the location. Algo-
rithm A5-HIST never made this mistake. Altogether, we recommend adding a history
feature to a query generation algorithm.

(5) Query shortening. Algorithm A6-3W first issues a three-word query and “backs off”
to a two-word query if no results were found. This happens for about 60% of the
queries. Without postprocessing, its precision is statistically significantly better than
all of the other algorithms with s = 15 on the CNN data set and for most of the other
algorithms for s = 7 and also for the HN data set. With boosting and filtering A6-3W
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is very similar to algorithm A5-HIST. Pooled recall decreases slightly when compared
to A5-HIST. The reason is that three-word queries might return only one result where
two-word query would return at least two results. Altogether, trying out three-word
queries is helpful without postprocessing, but with postprocessing it does not lead to
an improvement.

In conclusion, postprocessing and the “history feature” give the largest improvement in
search precision, namely 20–35 percentage points for postprocessing and about 5 percent-
age points for history. Postprocessing reduces pooled recall by about 6 percentage points,
while the history feature has negligible effect on pooled recall. Thus, a query generation
algorithm should have both a way to include the history and a postprocessing step that
filters out irrelevant documents. None of the other features seem clearly beneficial.

3.2.3. R+ relevance Tables 3 and 4 give the “R+ precision,” i.e., percentage of articles
exactly on topic (R+: given a score of 2 by the evaluator). They also present the “R+
pooled recall,” i.e., the percentage of articles with score R+ out of all articles with score
R+ together with the actual number of such articles found by each algorithm. They confirm
the above observations. On the HN data set across all algorithms about 80% of the articles
rated relevant are rated R+. This number is pretty constant with a low of 73% for A4-
COMP, s = 15, and no postprocessing and a high of 89% for A1-BASE, s = 15, and
boosting and filtering on the HN-data set. On the CNN data set about 70% of the articles
rated relevant are rated R+.

3.2.4. Precision versus recall As the data above shows postprocessing with boosting
and filtering clearly improves precision. It also decreases pooled recall somewhat. Figure 1

Table 3. HN data set: percentage p of articles with score R+ out of all returned
articles, percentage r of articles with score R+ out of all articles with score R+,
and the number of such returned articles.

Postprocessing
None Boost + filter

Technique s p r n p r n

A1-BASE 7 44% 28% 240 69% 25% 211
A2-IDF2 7 45% 29% 245 70% 25% 214
A3-STEM 7 49% 25% 209 73% 24% 204
A4-COMP 7 50% 25% 209 72% 23% 196
A5-HIST 7 47% 26% 222 76% 25% 214
A6-3W 7 56% 26% 216 75% 23% 197
A7-IDF 7 46% 29% 244 74% 26% 219

A1-BASE 15 53% 16% 139 81% 15% 131
A2-IDF2 15 51% 16% 136 78% 15% 131
A3-STEM 15 54% 20% 165 75% 20% 169
A4-COMP 15 51% 19% 162 72% 20% 169
A5-HIST 15 52% 20% 168 71% 19% 159
A6-3W 15 59% 19% 158 75% 18% 155
A7-IDF 15 46% 20% 173 75% 20% 171
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Table 4. CNN data set: percentage p of articles with score R+ out of all re-
turned articles, percentage r of articles with score R+ out of all articles with
score R+, and the number of such returned articles.

Postprocessing
None Boost + filter

Technique s p r n p r n

A1-BASE 7 30% 19% 155 61% 16% 134
A2-IDF2 7 31% 18% 148 59% 14% 117
A3-STEM 7 31% 16% 133 59% 14% 112
A4-COMP 7 31% 16% 130 59% 13% 109
A5-HIST 7 36% 21% 169 64% 18% 145
A6-3W 7 40% 20% 161 61% 17% 136
A7-IDF 7 37% 18% 146 65% 18% 148

A1-BASE 15 35% 12% 101 66% 11% 92
A2-IDF2 15 43% 12% 96 67% 10% 85
A3-STEM 15 37% 12% 95 51% 9% 76
A4-COMP 15 39% 12% 95 58% 10% 85
A5-HIST 15 40% 16% 129 60% 14% 112
A6-3W 15 49% 16% 130 59% 15% 120
A7-IDF 15 36% 16% 129 56% 14% 118

Figure 1. HN data set: precision versus pooled recall for the A1-BASE and the A5-HIST algorithm. Smaller
points show the performance of the algorithm without postprocessing, larger points show it with boosting and
filtering.

shows the corresponding precision recall graph for A1-BASE for the HN data set. The
two entries with solid color both issue queries every 7 seconds, the smaller one has no
postprocessing and the larger one uses both boosting and filtering. The entries with shaded
color show the corresponding data points when a query is issued every 15 seconds. In both
cases the decrease in pooled recall is small while the increase in precision is large. It is
also quite obvious that the version with s = 7 dominates the version with s = 15.
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Figure 1 also shows the data for A5-HIST. Smaller points show the performance of the
algorithm without postprocessing, larger points show it with boosting and filtering. The
clear separation between the lower four entries, which are small, and the higher four en-
tries, which are large, shows the positive impact on precision by the boosting and filtering.
The two circles with solid color correspond to algorithm A5-HIST, while the two triangles
with solid color belong to algorithm A1-BASE. This shows that for s = 15, A5-HIST gives
a clear improvement over A1-BASE. The corresponding points with solid color (s = 7)
are most closer together, indicating that the difference is much smaller for s = 7.

3.3. Postprocessing

As we saw in the previous section postprocessing using boosting and filtering gives a big
improvement in precision without decreasing pooled recall much. The obvious question
is what contributed most to the improvement, boosting or filtering. A second question
is whether postprocessing by similarity reranking performs better than postprocessing by
boosting.

Since the improvement was unanimous among algorithms and data sets, we evaluated
only the HN data set for the full set of combinations of algorithms. Table 5 shows the
details for relevance and Table 6 gives the details for the score R+.

For the CNN data set we only evaluated the 3 “most promising” postprocessing tech-
niques, namely boosting together with filtering, similarity reranking, and similiarity
reranking together with filtering. The results for relevance are in Table 7, the results for
the score R+ are in Table 8.

On the HN data set the improvement is clearly achieved by the filtering step, the boosting
step is only giving a small improvement. All of the differences between boosting alone
and filtering and boosting are statistically significant. Also, all of the differences between

Table 5. HN data set: precision and pooled recall in parenthesis.

Postprocessing

Boost Sim. Sim. rerank
Technique s None Boost Filter + filter rerank + filter

A2-IDF2 7 58% 58% 88% 87% 60% 84%
(37%) (37%) (32%) (31%) (38%) (34%)

A4-COMP 7 64% 66% 86% 88% 68% 86%
(32%) (33%) (27%) (28%) (34%) (32%)

A5-HIST 7 64% 64% 91% 91% 64% 88%
(36%) (36%) (29%) (30%) (36%) (31%)

A2-IDF2 15 62% 64% 89% 91% 66% 92%
(20%) (20%) (17%) (18%) (21%) (20%)

A4-COMP 15 70% 72% 93% 90% 74% 91%
(26%) (27%) (23%) (25%) (27%) (25%)

A5-HIST 15 67% 69% 92% 89% 71% 92%
(26%) (26%) (22%) (24%) (26%) (25%)
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Table 6. HN data set: percentage of returned articles with score R+ out of all returned docu-
ments, and percentage of returned articles with score R+ out of all articles with score R+.

Postprocessing

Boost Sim. Sim. rerank
Technique s None Boost Filter + filter rerank + filter

A2-IDF2 7 45% 46% 73% 70% 49% 70%
(29%) (29%) (27%) (25%) (31%) (29%)

A4-COMP 7 50% 52% 70% 72% 56% 72%
(25%) (26%) (22%) (23%) (28%) (27%)

A5-HIST 7 47% 49% 71% 76% 50% 72%
(26%) (28%) (23%) (25%) (28%) (25%)

A2-IDF2 15 51% 54% 76% 78% 57% 81%
(16%) (17%) (14%) (15%) (18%) (17%)

A4-COMP 15 51% 55% 74% 72% 58% 74%
(19%) (21%) (18%) (20%) (21%) (20%)

A5-HIST 15 52% 52% 75% 71% 57% 76%
(20%) (20%) (18%) (19%) (21%) (20%)

Table 7. CNN data set: precision, pooled recall in parenthesis, and the number
of returned articles that are relevant.

Postprocessing

Boost Sim. Sim. rerank
Technique s None + filter rerank + filter

A2-IDF2 7 46% 75% 48% 75%
(27%) (18%) (29%) (23%)

A4-COMP 7 44% 76% 47% 77%
(23%) (17%) (25%) (20%)

A5-HIST 7 55% 84% 56% 85%
(32%) (23%) (31%) (20%)

A2-IDF2 15 60% 85% 59% 78%
(16%) (13%) (17%) (14%)

A4-COMP 15 59% 82% 59% 78%
(18%) (15%) (18%) (15%)

A5-HIST 15 61% 88% 65% 81%
(25%) (20%) (23%) (20%)

boosting alone and filtering alone are statistically significant. In some cases filtering alone
gives even higher precision than filtering and boosting together.

Similarity reranking seems to give a slightly higher gain in precision than boosting.
However, combined with filtering it does not yield better precision than boosting and fil-
tering combined. None of the differences between boosting alone and similarity reranking
alone and between boosting with filtering and similarity reranking with filtering are statis-
tically significant.

Note, however, that similarity reranking and filtering together always has better pooled
recall than boosting and filtering, which in turn has better pooled recall than filtering alone.
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Table 8. CNN data set: percentage of returned articles with score R+ out of all
returned documents, and percentage of returned articles with score R+ out of all
articles with score R+.

Postprocessing

Boost Sim. Sim. rerank
Technique s None + filter rerank + filter

A2-IDF2 7 31% 59% 34% 56%
(18%) (14%) (20%) (17%)

A4-COMP 7 31% 59% 33% 58%
(16%) (13%) (17%) (15%)

A5-HIST 7 36% 64% 38% 64%
(21%) (18%) (21%) (15%)

A2-IDF2 15 43% 67% 45% 65%
(12%) (10%) (13%) (12%)

A4-COMP 15 39% 58% 39% 54%
(12%) (10%) (12%) (11%)

A5-HIST 15 40% 60% 44% 60%
(16%) (14%) (16%) (15%)

Table 9. HN data set with s = 7: percentage of queries that are identical when sorted lexicographi-
cally.

A1-BASE A2-IDF2 A3-STEM A4-COMP A5-HIST A6-3W A7-IDF

A1-BASE 94% 27% 25% 10% 6% 10%
A2-IDF2 94% 30% 27% 12% 7% 10%
A3-STEM 27% 30% 87% 31% 19% 28%
A4-COMP 25% 27% 87% 38% 19% 34%
A5-HIST 10% 12% 31% 38% 40% 63%
A6-3W 6% 7% 19% 19% 40% 30%
A7-IDF 10% 10% 28% 34% 63% 30%

To summarize, filtering gives a large precision improvement: about 20–30 percentage
points with a decrease of 6 percentage points in pooled recall. Filtering and similarity
reranking together achieve the same precision but return roughly 10% more relevant arti-
cles than filtering alone.

3.4. Query overlap and URL overlap

Given a postprocessing step the performance of the different query selection algorithms is
very similar. An obvious question to ask is whether the reason for this similarity is that the
algorithms issue very similar queries. To answer this question we compute the similarity
between the queries issued by the different query selection algorithms, i.e., we compare the
ith query issued by one algorithm with the ith query issued by another algorithm. Table 9
gives the percentage of queries that have identical terms (though not necessarily ordered
identically) for s = 7 and the HN data set. Note that we are looking at all generated
queries, i.e., the queries before the postprocessing step.
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Table 10. HN data set with s = 7: percentage of URLs of algorithm A that are also returned by
algorithm B, where the choice of A determines the row and the choice of B determines the column.
Since different algorithms return a different number of URLs the table is not symmetric.

A1-BASE A2-IDF2 A3-STEM A4-COMP A5-HIST A6-3W A7-IDF

A1-BASE 93% 36% 33% 15% 11% 13%
A2-IDF2 96% 37% 36% 17% 13% 15%
A3-STEM 41% 41% 83% 36% 23% 21%
A4-COMP 36% 38% 80% 42% 24% 28%
A5-HIST 16% 18% 35% 42% 39% 40%
A6-3W 13% 15% 23% 26% 43% 38%
A7-IDF 15% 17% 22% 30% 43% 38%

Table 11. HN data set: percentage of topics with at least one relevant
article and percentage of topics with at least one article rated R+.

Score R Score R+

Boost Boost
Technique s None + filter None + filter

A1-BASE 7 78% 73% 76% 70%
A2-IDF2 7 79% 76% 76% 72%
A3-STEM 7 74% 70% 70% 67%
A4-COMP 7 76% 72% 70% 68%
A5-HIST 7 77% 70% 73% 67%
A6-3W 7 73% 70% 70% 68%
A7-IDF 7 73% 73% 72% 70%

A1-BASE 15 63% 59% 60% 56%
A2-IDF2 15 63% 61% 60% 60%
A3-STEM 15 72% 67% 70% 67%
A4-COMP 15 76% 72% 73% 71%
A5-HIST 15 72% 65% 68% 65%
A6-3W 15 71% 66% 66% 63%
A7-IDF 15 71% 69% 70% 63%

The table shows that nearly all queries are identical for related algorithms like A1-BASE
and A2-IDF2. However, for algorithms A1-BASE and A5-HIST, for example, only 10%
of the queries are identical.

Even if the queries are quite different, there could still be a large overlap in the URLs
returned at a given point in the stream of text. However, that is also not the case as Table 10
shows for the HN data set and s = 7. The results for s = 15 are similar.

To summarize, the overlap both in queries and in articles is high between A1-BASE and
A2-IDF2 and is high between A3-STEM and A4-COMP but is low otherwise. Thus, even
though the algorithms have similar performance when used with postprocessing, it is in
general not due to the same queries being issued or the same URLs being returned. It might,
hence, be possible to improve precision by combining the algorithms in the right way.

3.5. Topic coverage

Another question to ask is how many of the topics receive at least one relevant article.
In the HN data set there were a total of 82 topics. In Table 11 we show the percentage
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Table 12. CNN data set: percentage of topics with at least one relevant
article and percentage of topics with at least one article rated R+.

Score R Score R+

Boost Boost
Technique s None + filter None + filter

A1-BASE 7 86% 81% 83% 81%
A2-IDF2 7 83% 81% 81% 75%
A3-STEM 7 83% 72% 72% 69%
A4-COMP 7 83% 75% 78% 69%
A5-HIST 7 89% 72% 81% 72%
A7-IDF 7 92% 69% 78% 67%

A1-BASE 15 81% 78% 72% 72%
A2-IDF2 15 75% 72% 67% 61%
A3-STEM 15 69% 64% 64% 61%
A4-COMP 15 72% 67% 64% 64%
A5-HIST 15 78% 75% 69% 67%
A7-IDF 15 78% 75% 64% 69%

of topics with at least one relevant article for the HN data set and also the percentage
of topics with at least one article rated R+ for the HN data set. Not surprisingly, these
percentages are strongly correlated with pooled recall. They are the highest for s = 7
with no postprocessing and the lowest for s = 15 with postprocessing. It is interesting to
note that the numbers are not much lower for the percentage of topics with score R+ than
for score R. Said differently, if a topic has a relevant article it most likely also has a topic
rated R+.

Table 12 gives the corresponding percentages for the CNN data set. The values are
higher as we would expect since the topics are longer. However, there is also more variation
in these numbers as there are only 36 topics in the CNN data set.

Figure 2 plots precision versus topic coverage for the HN data sets and algorithms A1-
BASE and A5-HIST. The smaller four points correspond to the algorithms without post-
processing, the larger four points to the algorithms with boosting and filtering. As the
figure shows all the smaller points are lower than the larger points, i.e., boosting and fil-
tering gives a clear precision improvement with a slight decrease in topic coverage. The
data points with shaded color correspond to the algorithms where a query is issued every
15 seconds, the data points with solid color to every 7 seconds. The entries with solid color
lie to the right of the corresponding shaded entries, meaning that they achieve higher topic
coverage, in some cases with slightly lower precision. As in the precision–recall graphs,
both algorithm A1-BASE and algorithm A5-HIST with s = 7 and boosting and filtering
seem to be good design choices.

We also analyzed longer and shorter topics. Both are equally well covered, i.e., the
length is not the distinguishing factor for whether a topic is covered or not. Instead there
seem to be topics for which it is “hard” to find relevant articles and others for which it
easy. For example, it is easy to find articles for Winona Ryder’s shoplifting trial: her
name is rare and thus had high idf , and she is not mentioned in other news for that day.
For other topics it is hard to find related news stories, mostly because they fall into the
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Figure 2. HN data set: precision versus topic coverage for the A1-BASE and the A5-HIST algorithms. Smaller
points show the performance of the algorithm without postprocessing, larger points show it with boosting and
filtering.

category of “unusual” news. Examples include a story about a beauty pageant for women
in Lithuania’s prisons, a story about a new invention that uses recycled water from showers
and baths to flush toilets, and a story about garbage trucks giving English lessons over
loudspeakers in Singapore.

In summary, roughly 70% of the topics have at least one article rated relevant, and almost
as many have at least one article rated very relevant (R+). The length of the topic does not
seem to be a factor in determining whether a relevant article can be found for it.

3.6. Filtering effectiveness

Filtering is very powerful in improving precision. It consists of three rules:

Rule F1. Whenever the page-T similarity score is below a threshold b the article is
discarded.
Rule F2. If there are two search results we compute their similarity score and discard
the articles if the score is below a threshold p.
Rule F3. If Rule F2 triggers we check each of the two articles. If its page-T similarity
score is above a threshold g it is retained, where g > b.

Note that it is possible for multiple rules to apply.
When evaluated alone, similarity reranking achieved higher precision than boosting,

while similarity reranking with filtering performed about the same as the other combina-
tions with filtering. Thus, filtering in combination with similarity reranking led to the least
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Table 13. HN data set: for each filtering rule the percentage of filtered articles
that are filtered by the technique. The percentages for a given algorithm can add
up to over 100% since both filtering rules can apply.

# returned # filtered % filtered % filtered
Technique s articles articles by F1 by F2

A2-IDF2 7 534 172 22% 91%
A4-COMP 7 424 107 9% 93%
A5-HIST 7 468 157 32% 92%

A2-IDF2 15 264 81 16% 89%
A4-COMP 15 311 75 19% 85%
A5-HIST 15 316 83 19% 88%

Table 14. CNN data set: for each filtering rule the percentage of filtered articles
that are filtered by the technique. The percentages for a given algorithm can add
up to over 100% since both filtering rules can apply.

# returned # filtered % filtered % filtered
Technique s articles articles by F1 by F2

A2-IDF2 7 483 204 19% 92%
A4-COMP 7 427 197 15% 95%
A5-HIST 7 446 179 23% 91%

A2-IDF2 15 232 80 17% 95%
A4-COMP 15 247 78 12% 92%
A5-HIST 15 295 83 14% 94%

precision improvements, i.e., performed worst. Since we expect filtering to perform bet-
ter with no other postprocessing or with boosting, we decided to evaluate in this section
filtering with similarity reranking.

Rules F1 and F2 both filter out articles and we analyzed which of the two rules filters
out more articles. Tables 13 and 14 show the percentage of articles that each filtering rule
filtered. The percentage can add up to over 100% since both rules can apply. It clearly
shows that F2 filters out most of the articles.

We also wanted to evaluate for each filtering rule how often it makes the wrong decision.
For F1 and F2 this means that they discard a relevant article. Rule F3 makes the wrong
decision if it keeps an irrelevant article that F2 would have discarded. Tables 15 and 16
gives the error rate ρ for each filtering rule and also the number f of articles that were
filtered (for F1 and F2) or retained (for F3) by the rule. For F1 and F2, the error rate is
the percentage of relevant articles out of all articles filtered by the rule. For F3, it is the
percentage of irrelevant articles out of all articles whose similarity with text T is above the
threshold g and which F2 would have discarded.

Rules F1 and F2 usually have error rates around 20%. Only for algorithm A5-HIST
on the CNN data set does F1 have an error rate of 50%, but in this case F1 filtered only
12 articles. Rule F3 kicks in very infrequently, but is usually wrong. However, since the
number of articles retained by F3 is so small its impact on the overall precision is small.
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Table 15. HN data set: for each filtering rule the error rate ρ and the number
of articles that were filtered (for F1 and F2) or retained (for F3) by the rule.

F1 F2 F3

Technique s ρ f ρ f ρ f

A2-IDF2 7 14% 37 17% 156 50% 10
A4-COMP 7 10% 10 17% 100 56% 9
A5-HIST 7 18% 50 19% 145 33% 4

A2-IDF2 15 0% 13 13% 72 91% 11
A4-COMP 15 0% 14 27% 64 78% 2
A5-HIST 15 6% 16 16% 73 78% 9

Table 16. CNN data set: for each filtering rule the error rate ρ and the number
of articles that were filtered (for F1 and F2) or retained (for F3) by the rule.

F1 F2 F3

Technique s ρ f ρ f ρ f

A2-IDF2 7 18% 38 17% 188 80% 5
A4-COMP 7 7% 30 16% 188 100% 5
A5-HIST 7 23% 40 19% 162 100% 4

A2-IDF2 15 17% 6 26% 76 100% 2
A4-COMP 15 22% 9 22% 72 50% 2
A5-HIST 15 50% 12 27% 78 0% 1

The conclusion that can be drawn in this section is that Rule F2 filters out almost all
articles and has an error rate of roughly 20%. Rule F1 is not needed as it only adds a small
number of additional filtered articles and Rule F3 should be avoided as it has a high error
rate.

4. Related work

4.1. Query-free search

To our knowledge, there has been little work on automatically selecting documents that
a user might want to see while watching a TV program. However, there is a significant
literature on the broader problem of query-free information retrieval: finding documents
that are relevant to a user’s current activity, without requiring an explicit query. The various
systems differ in what stream of text they consider as input and what genre of related
documents they return. We will use the “Input–Output” notation below.

Broadcast news–web pages. The Cronkite system [11], developed around the same time
as our system, has a goal similar to ours: present relevant information culled from data-
bases and the web during a television news broadcast. Cronkite segments the news stream
into stories using topic markers found in the closed captioning as well as cue phrases spo-
ken by the newscasters. It can classify the story into one of four topics (e.g., Middle East,
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medical) and then prepares queries based on the story text and on named entities men-
tioned in the story. Topic- and entity-specific information, such as maps of a country in
the Middle East or stock price graphs for companies, is retrieved and organized into linked
web pages along with results from web news search engines.

Web pages–web pages. The Letizia system [10] observes a user browsing the web, and
suggests other web pages the user may find interesting. Rather than searching an index
of web pages, it “surfs ahead” of the user, following hyperlinks from the page the user is
currently viewing. Similarly, commercial browser assistants such as Autonomy Kenjin and
PurpleYogi (both no longer available) suggest related web pages based on the content of
web pages the user has been viewing.

Problem report–repair manual. Another early query-free IR system is FIXIT [8], which
helps technicians as they use an expert system to diagnose and repair copiers. FIXIT
identifies the currently reported symptoms and the faults it considers likely, then maps
these symptoms and faults to keywords, and retrieves sections of the copier documentation
that match these words.

User behavior–personal files. The just-in-time IR project at MIT [15,16] has focused on
retrieving personal files—such as notes and archived email messages—that a user would
currently find useful. This project first produced the Remembrance Agent, which looks at
a document the user is editing in Emacs and matches fragments of this document (such as
the last 50 words) against a corpus of personal files. The follow-up Margin Notes system
performs a similar task, but observes the web pages that a user views in a web browser.
Finally, the Jimminy system runs on a wearable computer. Jimminy bases its suggestions
on what the user is reading or writing on the heads-up display, as well as on Global Po-
sitioning System data and active badge data indicating what other people are nearby. All
these systems use a common information retrieval backend based on the Okapi similarity
metric [17].

The XLibris pen-based document reader [14] allows users to mark up documents as
they are reading. The system derives queries from the passages of text that are marked,
and searches over a local corpus for relevant documents to present to the user.

User behavior–news and stock quotes. The SUITOR system [12] tracks user behavior
like what applications are running and what text the user is currently writing to build a
model of the user’s current interest. It uses this model to find information that is interesting
to the user, such as news headlines and stock quotes.

Open documents in editor or browser–web pages. Another system similar in purpose
to our own is Watson [4], which suggests web pages to a computer user based on the
documents currently open in a word processor or web browser. Watson uses a variety of
heuristics to construct queries from the text of the documents, then sends these queries to
the AltaVista search engine.
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Email–web pages. Our work is also related to a small prototype system that constructed
queries from email messages and sent them to an early version of the Google search en-
gine [3].

4.2. Text summarization and keyword extraction

In the Information Retrieval literature there has been a plethora of work on topic detection
and text summarization. Recently, the problem of time-based summarization has been
studied. See [1] for an excellent overview of the area. Our work is different in two ways:

(1) It does not need to identify topics; it only needs to detect whether the current topic is
different from the previous topic. If a later topic is very similar to a topic discussed
much earlier, the system does not need to recognize this.

(2) The system does not need to construct a summary; it extracts keyphrases that can be
used to formulate a search query.

The research on keyphrase extraction, see, e.g., [7,9,13,20], and specifically the algo-
rithm by Turney [21], is the most related to our work. The main difference to our work
is that we study the time-based variant of the problem, which also includes topic change
detection.

5. Conclusion

This paper evaluated seven algorithms and three postprocessing techniques for finding
news articles on the web relevant to news broadcasts. For this genre of television show, the
best algorithm (A5-HIST with s = 7, boosting, and filtering) finds a relevant page every
16–20 seconds on average, achieves a precision of 84–91%, and finds a relevant article for
about 70% of the topics. Our experiments clearly show that filtering articles by similarity
to the caption text and similarity with each other gives a large improvement in precision.
It would be interesting future work to refine and improve upon the filtering technique pre-
sented in this paper. Without postprocessing algorithm A2-IDF2 together with history and
query shortening looks very promissing. It would be interesting to evaluate this combina-
tion. It would also be interesting to experiment with different ways of using the history for
query generation.

The news search engine we used restricted us to using Boolean retrieval. It is an inter-
esting open question whether a weighted term-vector retrieval would have improved the
search quality sufficiently to make post-filtering redundant.

The framework of the system is not limited to news, however; we have considered sim-
ple methods of detecting other genres (such as sports, weather, and “general” topics) and
sending such queries to appropriate web information sources. The genres could be identi-
fied by using machine learning on a labelled corpus of television captions; an even simpler
way would be to use television schedules and their associated metadata to categorize the
current show into a genre.
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Finally, as voice recognition systems improve, the same kind of topic finding and query
generation algorithms described in this paper could be applied to conversations, providing
relevant information immediately upon demand.
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Note

1. To determine statistical significance we used the rank-sum test and the t-test. If a p-value is given, it is the
p-value of the rank-sum test, as it is more conservative. If statistical significance is claimed but no p-value is
given, the p-value of the rank-sum test is less than 0.05.
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