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Abstract

XML provides flexibility in publishing and exchanging heterogeneous data
on the Web. However, the language is by nature verbose and thus XML doc-
uments are usually larger in size than other specifications containing the same
data content. It is natural to expect that the data size will continue to grow
as XML data proliferates on the Web. The size problem of XML documents
hinders the applications of XML, since it substantially increases the costs of
storing, processing and exchanging the data. The hindrance is more apparent
in bandwidth- and memory-limited settings such as those applications related
to mobile communication.

In this paper, we survey a range of recently proposed XML specific compres-
sion technologies and study their efforts and capabilities to overcome the size
problem. First, by categorizing XML compression technologies into queriable
and unqueriable compressors, we explain the efforts in the representative tech-
nologies that aim at utilizing the exposed structure information from the input
XML documents. Second, we discuss the importance of queriable XML com-
pressors and assess whether the compressed XML documents generated from
these technologies are able to support direct querying on XML data. Finally, we
present a comparative analysis of the state-of-the-art XML conscious compres-
sion technologies in terms of compression ratio, compression and decompression
times, memory consumption, and query performance.

1 Introduction

Extensible Markup Language (XML) [19] is proposed as a standardized data format
designed for specifying and exchanging data on the Web. With the proliferation of
mobile devices, such as palmtop computers, as a means of communication in recent
years, it is reasonable to expect that in the foreseeable future, a massive amount
of XML data will be generated and exchanged between applications in order to
perform dynamic computations over the Web. However, XML is by nature verbose,
since terseness in XML markup is not considered a pressing issue from the design
perspective [19]. In practice, XML documents are usually large in size as they often



contain much redundant data, such as repeated tags (c.f. DBLP documents in [17]).
The size problem hinders the adoption of XML, since it substantially increases the
costs of data processing, data storage, and data exchanges over the Web.

As the common generic text compressors, such as Gzip [20], Bzip2 [44], WinZip
[52], PKZIP [37], or MPEG-7(BiM) [34], are not able to produce usable XML com-
pressed data, many XML specific compression technologies have been recently pro-
posed. The essential idea of these technologies is that, by utilizing the exposed
structure information in the input XML document during the compression process,
they pursue two important goals at the same time. First, they aim at achieving a
good compression ratio and time compared to the generic text compressors men-
tioned above. Second, they aim at generating a compressed XML document that is
able to support efficient evaluation of queries over the data.

In our survey of XML-conscious compressors we find that the existing technolo-
gies indeed trade between these two goals. For example, XMill [30] needs to perform
a full decompression prior to processing queries over compressed documents, result-
ing in a heavy burden on system resources such as CPU processing time and memory
consumption. At the other extreme, some technologies can avoid XML data decom-
pression in some cases, but unfortunately only at the expense of the compression
performance. For example, XGrind [46] adopts a homomorphic transformation strat-
egy to transform XML data into a specialized compressed format and support direct
querying on compressed data, but only at the expense of the compression ratio; thus
the XML size problem is not satisfactorily resolved.

In regard to the importance of achieving a good level of performance in both
compression and querying, we find that the current research work on XML com-
pression does not adequately analyze the related features. We classify the existing
XML-conscious XML compression into the categories of unqueriable compression
and queriable compression. We present a qualitative analysis of eight representative
XMUL-conscious compression technologies as follows. The unqueriable compression
includes XMill [30], XMLPPM, [12] SCA [29], and Millau [42]. The queriable com-
pression includes XGrind [46], XMLZip [53], XPress [35] and XML Skeleton Com-
pression [7]. All of these compression technologies are known to the community,
which contains interesting features and important contributions related to XML
compression. We present a critical comparison of these technologies.

Specifically, we make the following contributions:

e We present a comprehensive survey of the state-of-the-art XML compressors
and analyze their important features, relative strengths, and limitations.

e We evaluate the performance of the compression technologies on a range of
important XML benchmark data. The performance indicators include com-
pression ratio, compression time, memory usage, and query support issues.

e We propose a set of desirable qualities for XML compressors and discuss some
further research areas, that we believe are important for the further develop-
ment of XML conscious compression.



The paper is organized as follows. In Section 2, we introduce four unqueriable
compression technologies that are optimized for achieving better compression. Then,
in Section 3, we introduce another four queriable XML-conscious compression tech-
nologies that are able to support querying over compressed XML documents. Some
recently proposed compressors during the time of writing are also discussed. In Sec-
tion 4, we present a comprehensive comparison of six XML conscious compression
technologies and evaluate them in terms of compression ratio, compression and de-
compression times, memory usage, and query support. In Section 5, we propose a set
of desirable features of an XML compressor and discuss the challenges. In Section
6, we discuss some considerations when deploying the compression techniques. Fi-
nally, we make concluding remarks and highlight possible areas for further research
in Section 7.

2 Unqueriable XML Compression

We now review four compressors that show good compression performance but do
not support querying over the compressed data. We assume that the readers have
basic knowledge of XML and its languages [19, 18, 14, 5]. Throughout this paper,
we use the XML publication catalog snippet shown in Figures 1(a) and 1(b) as a
running example for illustrating the features in various compression technologies.

<paper>
<entry year="2003">
<journal>
<title>Secret Sharing</title> <!ELEMENT paper (entry*)>
< /journal> <!ELEMENT entry (journal|conference)>
</entry> <!ATTLIST entry year CDATA >
<entry year="2003" > <!ELEMENT journal (title)>
<conference> <!ELEMENT conference (title)>
<title>XML Water Mark< /title> <!ELEMENT title (#PCDATA)>
< /conference>
</entry> (b) A Publication Catalog DTD
</paper>

(a) A Publication Catalog XML Snippet

Figure 1: A Running Example of an XML Publication Snippet and Its Correspond-
ing DTD

2.1 XMill

XMill [30] is the first proposed XML-conscious compression architecture in the lit-
erature, that separates the structural information from data of the input document
during the compression process. The structural items include element tag names,
attribute names, and the document skeleton generated in a compact form. The data
items include PCDATA and attribute values. Prior to the main compression pro-
cess, a pre-compression phase is introduced in XMill before the data is compressed



by Gzip. There are two specific objectives in the pre-compression phase in order to
optimize XML compression:

1. to separate the document structural information from data, and

2. to group data items with related semantics in the same “container”.

First, in order to extract the structural item from the documents, XMill adopts a
dictionary encoding approach [4] to store the tag and attribute names in a dictionary.
A corresponding compact document skeleton is then generated by replacing element
tags and attribute names with dictionary indexes. This compact skeleton is then
stored in a structure container, as shown in Figure 2, where T;, A; and and “/” are
the code for a start tag, an attribute and a closed tag, respectively. Second, in order
to group data items for efficient compression, XMill uses an approzimation match-
ing on the Reversed DataGuide [23, 30] for determining which containers the data
values belong to. In its default mode, data items having the same tag or attribute
name are grouped into the same container. On the other hand, in its intervention
mode, it allows users to determine the method of data grouping. In this mode,
container expressions can be specified as command line parameters to instruct the
XMill compressor how to group data items, and then specific semantic compressors
can be employed in the path processor to perform semantic compression over the
corresponding data container. This further helps to achieve a compression ratio that
is up to 50% better than when running data grouping in a default mode. However,
in the intervention mode user expertise and effort are required to manually intervene
in the compression process in order to achieve highly specialized compression such
as DNA sequences.

Structure Container

Ty Ag Co
T>
T3 C1 /
Ty Ag Co

T3 C1 /

Data Container

Co Cl

2003 Secret Sharing
2003 XML Water Mark

Figure 2: A Conceptual View of the XMill Compressed Publication Snippet

Figure 2 depicts a conceptual view of the XMill compressed document of the
XML publication snippet shown in Figure 1(a). XMill does not use the DTD of an
XML document in its compression. Each data container in XMill is then compressed



individually in the main compression phase by using Gzip, whose output is concate-
nated in a single file. Overall, XMill is an efficient XML compressor due to the fact
that it is optimized for achieving a good compression ratio for XML documents.
However, it needs to perform decompression of the whole of the XML documents
before the evaluation of the imposed queries over the compressed documents. The
intervention mode also adds some burden to the users.

2.2 XMLPPM

XMLPPM [12] proposes a technique called Multiplexed Hierarchical Modeling (MHM),
which is based on SAX encoding [38] and Prediction by Partial Match (PPM) en-
coding [16]. In XMLPPM, an input XML document is modelled as a stream of SAX
events. The tokens in the SAX event stream are then processed by a set of four
PPM coding models corresponding to different syntactic contexts as follows:

1. the element and attribute name model (Syms),
2. the element structure model (Elts),
3. the attribute values model (Atts), and

4. the string value model (Chars).

Depending on the syntactic contexts, the SAX tokens are sent to their corre-
sponding PPM models for running predictions and encodings. Figure 3 shows the
status of the four PPM models when the XML publication catalog snippet is com-
pressed by XMLPPM. First, the XML document is converted into a corresponding
stream of SAX events. The tokens in the SAX event stream are then sent to their
corresponding PPM models for encoding based on the syntactic contexts of the to-
kens. For example, when the paper start element token is encountered, the string
value paper is sent to the Syms model, since this element name was not encoded
before. Moreover, a byte value 01 is assigned to this string value, which is used to
represent the string when it is encountered again. This tokenization process is only
applied to the element tag names and attribute names. Then the token 01 is sent
to the Elts model, which represents that a paper start element token is encountered.

Attribute values are sent to the Atts model for encoding. For example, when
the attribute value “2003” is encountered, its corresponding attribute name token
is 0A, and the values are sent to the Atts model. When a data value, such as “Secret
Sharing”, is encountered, a token FF is sent to the Elts model and the data value is
sent to the Chars model for encoding. Note that all the end tags are replaced by the
token FF. As an element tag can be strongly correlated with its enclosed elements
and data, XMLPPM also injects the enclosing token index (i.e. the token indexes
of the format (nn)) into the corresponding Elts, Atts, or Chars model immediately
before an element, an attribute, or a data value is encoded in order to retain such
cross-model dependencies among the tokens in different contexts. However, these
injected token indexes indicate to the models that a particular token has been seen,
but these token indexes are not explicitly encoded in the models.



The enclosing token index injection has two benefits. First, it prevents that the
separation of event tokens breaks the cross-model dependencies among the tokens.
The happening of cross-model dependencies is due to the fact that neighboring sym-
bols from different syntactic classes may not be drawn from distinct independent
sources. For example, the cross-model dependency occurs when the enclosing ele-
ment tag is strongly correlated with enclosed data. This phenomenon is common in
most XML data and thus XMill introduces the data container to group data items
under the same tag element (recall Figure 2 in Section 2.1). As the symbols in
different syntactic classes are likely to have a strong correlation, multiplexing the
four mentioned models may break existing cross-class sequential dependencies and
thus XMLPPM is not able to make an accurate estimation of probability range that
are used to transmit symbols using arithmetic coding. An injected symbol gives
the information to the model and helps the PPM models to retain and utilize the
cross-model dependencies without sacrificing storage space. Second, the token in-
dex can also be utilized for improving the compression efficiency, since tokens from
different syntactic contexts in the neighborhood can be strongly correlated to each
other. For example, the enclosing token indexes (02) and (04), which represent the
enclosing tags entry and title, respectively, are injected into the Atts and Chars
models immediately before an element, an attribute, or a data value is encoded.

(1) (paper) (entry year= “2003” ) (journal) (title) Secret Sharing
Syms: paper 00 | entry 00 | year 00 journal 00 | title 00

Elts: 01 02 03 04 FE

Atts: (02)0A 2003 00 | (02)FF

Chars: (04)Secret Sharing 00
(2) (/title) | (/journal) | (/entry) | (entry | year= “2003” ) (conference)
Syms: conference 00
Elts: FF FF FF 02 05

Atts: (02) 0A | 2003 00 | (02) FF

Chars:

(3) (title) | XML Water Mark (/title) | (/conference) | (/entry) | (/paper)

Syms:

Elts: 04 FE FF FF FF FF

Atts:

Chars: (04)XML Water Mark 00

Figure 3: Multiplexed Hierarchical Modeling in XMLPPM

Compared to XMill, XMLPPM has the benefit of supporting the on-line pro-
cessing of compressed documents (Encoded SAX). Importantly, XMLPPM does not
rely on user intervention but is still able to achieve a better compression ratio than
that of XMill (default mode). The underlying reason is that PPM is a finite context
statistical modelling technique, which can be viewed as blending together several
fixed-order context models to predict the next character in an incoming SAX token
sequence. Prediction probabilities for each context in the model are calculated from
frequency counts that are updated adaptively. The symbol that actually occurs
is encoded relative to its predicted distribution using arithmetic coding. However,
XMLPPM requires a longer compression time than others, since PPM is known to
be a relatively slow compression technology (c.f. see Table 2 in [16]).



2.3 Millau

Millau [42] is a system designed for efficient encoding and streaming of XML doc-
uments. This system comprises a set of compression and encoding techniques that
are dedicated for XML compression. The principle technique used in Millau is called
the Differential DTD Tree Compression (DDT), which is an XML-conscious com-
pression technique that makes use of the information from DTDs to facilitate better
compression. The main idea behind DDT is that it encodes only the document infor-
mation that cannot be inferred from the document associated DTD, which includes
data values and structural information of the XML document. The data values here
refer to the PCDATAs and attribute values. The structural information here refers
to the values of the operators in the DTD, such as optional operators “?”, deci-
sion operators “|”, and repetition operators “«” and “4”. The experimental results

reported in [42] show that this compression strategy yields a good compression ratio.

A DTD Tree
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Figure 4: The DDT Compression Approach

DDT compression only handles valid XML documents that conform to a given
DTD. Figure 4 depicts the underlying ideas used in this approach. Both the input
DTD and the XML document are represented as trees in the compression process.
A special tree parsing algorithm is used to parse the DTD tree and the DOM tree
simultaneously where the processing nodes in the trees possess the same semantics.
This parsing process is used to explore the structural information of the input XML
document, which is outputted to a structure stream. Data values of the input
XML document are also extracted and outputted to a content stream, which is then
compressed in the main compression phase.

Structure Stream: 2 0b 1b
Data Stream: 2003|Secret Sharing|2003|XML Water Mark

Figure 5: A Conceptual View of the Millau Compressed Publication Snippet

We show in Figure 5 the Millau streams for the XML document shown in Figure
1(a). In the structure stream of this figure, the integer “2” is assigned to the first
occurrence of the repetition operator “x”. The assignment represents the fact that
there are two “entry” nodes in the DOM tree. The byte “Ob” is assigned to the

first occurrence of the decision operator “|” in the DTD tree. The assignment



represents the fact that the child node of the first “entry” node is a “journal” node.
Similarly, the assignment of the byte “1b” represents the fact that the child node
of the first “entry” node is a “conference” node. The data stream is extracted from
the document and the values of the stream are trivial.

It is worth mentioning that an interesting contribution of XML compression from
Millau is on the interoperablility side. The work in [42] presents two applications
on top of the Millau APIs related to e-Business transaction on the Internet. The
first one is a compression-decompression proxy server which takes advantage of the
compact representation of XML that Millau provides to save Internet network band-
width and of the ease of processing. The second one uses the methods which return
token instead of strings for faster processing of parameters marshaled in XML.

Although DDT is able to achieve a good compression ratio, we find that it
suffers from the problem of huge memory consumption when compressing large XML
documents. This means that in this approach, when parsing an XML document, in
order to create a corresponding tree structure, a large portion of memory is required
for storing the generated DOM tree. The vigorous use of virtual memory, in practice,
results in extremely frequent thrashing of disk I/O [41], which seriously degrades
the efficiency of the compression process.

2.4 Structure Compression Algorithm (SCA)

Structure Compression Algorithm (SCA) [29] is an XML-conscious compression al-
gorithm that aims at compressing the structure (skeleton) of an XML document.
SCA only handles valid XML documents that conform to DTDs. Similar to Millau
DDT described in Section 2.3, when compressing an XML document, SCA utilizes
information in the associated DTD as hints in the compression process, and only
encodes the document structure information that cannot be inferred from the given
DTD, which also includes data values and structural information of the XML doc-
ument. The difference between SCA and DDT is that SCA uses different data
structures and parsing approaches to process the input DTD and XML document.
It is also formally shown in [29] that, with the assumption that all operator nodes
are encoded independently, this compression strategy achieves optimal encoding of
the skeleton of an XML document.

In SCA, a special tree structure is generated for the input DTD and the XML
document collectively. This created tree is called a Parse Tree (PaTree). Figure 6
depicts the PaTree created based on the publication catalog XML snippet and its
DTD. We can see that this created PaTree is very similar to the well-known DOM
tree representation of the XML document. However, an essential difference between
them is that there are operator nodes, such as repetition nodes “x” and decision
nodes “|”, inserted into the PaTree. The non-leaf nodes of the PaTree describe the
structure of the XML document, whereas the leaf nodes describe the textual data
of the document. This PaTree is then processed by using a pruning process, which
collapses the tree to form a Pruned Tree (PuTree).

Figure 7 depicts the PuTree that corresponds to the PaTree shown in Figure
6. This PuTree maintains only the document structure nodes that are not able to



conference

Figure 7: The Pruned Parse Tree for the XML Publication Snippet

be inferred from the given DTD, which are needed to be encoded during the struc-
ture encoding process. Data values of the input XML document are extracted and
outputted to a content stream, which is then compressed by a generic compressor,
such as Gzip, in the main compression phase. After the PuTree is created, the
SCA coder starts the document structure encoding process by using a breadth-first
traversal [50] to navigate the PuTree in order to explore the required structural
information for generating the output encoding. However, we find that SCA also
suffers from a similar problem of huge memory consumption with the DDT tech-
nology when compressing a large XML document, since a large portion of memory
is required for storing the corresponding generated PaTree and PuTree during the
compression process.

3 Queriable XML Compression

In this section, we review four XML compressors that are able to generate queriable
compressed XML documents. We also discuss the very recent proposals (up to the
year 2004) that all support querying over compressed XML data.



3.1 XGrind

XGrind [46] adopts a homomorphic transformation [24] strategy to transform an
XML document into an XGrind compressed form. The main advantage of using the
transformation is that the generated compressed document preserves the syntactic
structure and semantics information of the original XML document. This implies
that the compressed document can be parsed in the same way as with any other XML
document using the same SAX or DOM parser, without performing decompression.

To
Ty Ao H(2003)
Ts
T3 H(Secret Sharing) /
/

/
Ty Ao H(2003)
Ty
T3 H(XML Water Mark) /
/
/
/

Figure 8: The Conceptual View of the XGrind Compressed Publication Snippet

Figure 8 depicts the conceptual view of the XGrind compressed XML publication
snippet. The notations are similar to the convention used in Section 2 as follows:
T,, encodes a start tag, “/” encodes a closed tag, A, encodes an attribute, and H(a)
represents the Huffman code [25] of a data value a. XGrind relies on the DTD
of a given document to populate a symbol table for attributes having enumerated-
type values such that they can be encoded differently from other text values, and
employed to validate the compressed document. The DTD is also used to initialize
the frequency tables for the elements and non-enumerated attributes.

An XGrind compressed document is generated as follows. First, XGrind creates
a dictionary for storing all the element and attribute names appearing in the DTD,
which will be used for dictionary encoding of the element tags and attribute names
of the input document in the compression phase. The compressor then parses the
input XML document once (first parse) in order to collect the statistics for the
PCDATASs and non-enumerated attribute values. These statistics are used to create
coding models for a set of non-adaptive context-free Huffman coders for compressing
the PCDATAs and non-enumerated attribute values.

After the Huffman coders are created, the compressor initiates a compression
process that requires to parsing the XML document again (second parse). The com-
pressor then tokenizes all the tag and attribute names in the XML document by
using indexes that point to their corresponding entries in the created dictionary.
Enumerated attribute values are binary encoded based on their corresponding sym-
bol tables. PCDATAs and general attribute values are compressed individually by
using their corresponding Huffman coders. After completing the compression pro-
cess, the compressed document and all the meta-tables (i.e. the dictionary, the
symbol tables of the enumerated-type attributes, and the statistic tables that are
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used in the Huffman coders) are packed as outputs.

As the output compressed documents in XGrind are homomorphic transforma-
tions of their corresponding input documents, all operations that can be executed
over the original documents, such as querying, are preserved. These operations
can be executed using existing techniques and tools with some modifications. In
addition, queries requiring an exact match on data values can be executed without
decompressing the document. This is because the query processor can transform the
data values in the query to their corresponding Huffman encoded values for compar-
ing during query processing. However, the compression ratio delivered by XGrind is
in fact much worse than that of XMill. In our experiment, it is found that XGrind
compresses an 89 MB Weblog XML document into a 38 MB compressed document,
while XMill is able to compress the same document to only 2.3 MB. Also, XGrind
compression is much longer than that of XMill, since it requires parsing the input
XML document twice during the compression process.

3.2 XML Skeleton Compression

Buneman et al. propose a framework that allows path queries to be evaluated
directly on compressed XML documents [7]. The focus of the paper is different
from XGrind, in that the skeleton compression aims at reducing the complexity
and redundancy of the document structure, rather than the textual data items in
the document. In their framework, an XML document is modeled as a tree-like
structure. The compressor first separates the document’s structural information,
which they refer to the skeleton of the document, from textual data, as shown in
Figure 9(a). It then compresses the extracted skeleton by using a technique based on
the idea of sharing common subtrees, which transforms the skeleton into a directed
acyclic graph (DAG) [50], as shown in Figure 9(b).

The DAG in Figure 9(b) can be further compressed by replacing any consecutive
sequence of outgoing edges to the same vertex using a single edge marked with
the appropriate cardinality (i.e. two paper/entry links), as shown in Figure 9(c).
This compressed skeleton is much smaller than its non-compressed version. Thus,
the compressed skeleton can be stored in the main memory, even for a large XML
document. It is also formally shown that the skeleton compression algorithm is
able to generate an equivalent compressed instance that is minimal in terms of the
number of vertices.

Although the technique is able to compress the structure of an XML document
well, the overall compression ratio (including textual data) achieved by this frame-
work, as mentioned in [7], is worse than that of XMill. However, using the proposed
compression technique, the authors formally study the accessing techniques for Core
XPath, which is a simplified version of XPath. A core XPath query is evaluated by
manipulating the compressed skeleton instance with only partial decompression.
The technique allows the navigational aspect of query evaluation, which is respon-
sible for a large portion of the query processing time, to be carried out in the main
memory. Thus, the query evaluation is extremely efficient. The complexity of query
evaluation is found to be O(2/%/x | I |), where @ is the query size and I is the skele-
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Figure 9: (a) The XML Skeleton (top), (b) the Compressed Skeleton (left), and (c)
the Minimal Compressed Skeleton for the XML Publication Snippet (right)

ton instance size. The exponential factor arises from the decompression cost. If no
decompression is needed for the evaluation, the complexity reduces to O(] Q [x | I |).

3.3 XPress

XPress [35] proposes an XML compressor that supports direct querying over com-
pressed XML documents. Similar to XGrind, XPress adopts a homomorphic trans-
formation strategy to transform an XML document into a compressed form, that
preserves the syntactic and semantic information of the original XML document.

1(/paper)

I(/paper/entry) I(/paper/entry/Qyear) H(2003)
I(/paper/entry/journal)
I(/paper/entry/journal/title) H(Secret Sharing) 0x80
0x80

0x80

I(/paper/entry) I(/paper/entry/Qyear) H(2003)
I(/paper/entry/conference)
I(/paper/entry/journal/title) H(XML Water Mark) 0x80
0x80

0x80

0x80

Figure 10: A Conceptual View of the XPress Compressed Publication Catalog Snip-
pet

XPress is built based on a novel coding scheme called Reverse Arithmetic Encod-
ing. This coding technique is designed for encoding the tree paths of the elements

12



in an XML document using real number intervals. Each of these real number in-
tervals falls in the range from 0.0 (inclusive) to 1.0 (exclusive), which represents
their corresponding root node to element node path. These number intervals, which
represent the encoded element paths, have an important feature that they conform
to the suffiz containment property. This property ensures that if an element path
P is a suffir of an element path @, then the interval that represents P, denoted
as I, should contain the interval that represents (), denoted as I;. For example, if
the element paths in our XML snippet example are encoded using Reverse Arith-
metic Encoding, the interval that represents the element path “//journal/title/”
contains the interval that represents the element path “/paper/entry/journal/title”
since “//journal/title/” is a suffix of “/paper/entry/journal/title”.

PCDATASs and attribute values in the document are compressed individually
using different context-free compression methods depending on their data types based
on the following three scenarios:

1. If the data values under a particular tree path belong to a numerical domain,
the compressor transforms the data values into their corresponding binary
representations and applies differential encoding on the transformed values.

2. If the data values under a particular tree path are enumerated-type values, the
compressor encodes them using dictionary encoding.

3. If the data values under a particular tree path are string values, the compressor
encodes them using context-free Huffman encoding.

The coding scheme in XPress improves the compression strategy adopted in
XGrind in two aspects. First, instead of just encoding the element tags of the ele-
ments in an XML document, XPress encodes the tree paths of the elements using real
number intervals, that satisfy the suffixes containment property. As such, XPress is
able to evaluate the path-based queries over compressed XML documents directly
by checking the interval containment between the paths in an imposed query and
the paths of the elements in the compressed document without decompression. Sec-
ond, numerical domain data values in XPress compressed documents are encoded
using order preserving context-free compression methods. This allows XPress to
evaluate exact match and range queries concerning numerical data over compressed
documents directly without decompressing the data values.

However, as also mentioned in [35], the compression ratio of XPress is in fact
worse than that of XMill. In addition, XPress compression time is almost twice as
long as that of XMill, since it requires parsing the input XML document twice in
the compression process.

3.4 XMLZip

XMLZip [53] compresses XML documents that are represented as DOM trees. Like
XMill, XMLZip is built on the generic text compressor Gzip. XMLZip essentially
parses and divides an XML DOM tree at a certain pruning depth into multiple
components, and then compresses the components separately.
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Figure 11: DOM Tree Component Separation in XMLZip

As illustrated in Figure 11, the DOM tree of the publication snippet is divided
into a root component, which contains all the nodes in the tree up to depth d from
the root, and child components for each of the remaining subtrees starting at depth
d. These components are then compressed individually by Gzip. Users are allowed
to change the pruning depth d, when selecting the DOM level at which to pack the
data.

In fact, the node level grouping strategy in XMLZip does not improve compres-
sion efficiency. We find that the compression ratio achieved by XMLZip is usually
worse than that achieved by Gzip, which will be detailed in Section 4.2.1. However,
the advantage of XMLZip is that it allows limited random access to partially de-
compressed XML documents, since XMLZip supports decompressing the portions
of the compressed components that are needed in query evaluation.

3.5 Recent Proposals

At the time of writing (2003-2004), there are few emerging XML compression tech-
nologies. It is worth mentioning the following very recently proposed XML com-
pressors: XQueC [3, 2], XQzip [13], and XCQ [28]. All three of them claim to be
able to support the querying of compressed XML data to different extents and to
maintain a reasonably good compression performance in the meantime.

Like XGrind and XPRESS, XQueC compresses individual data items of an XML
document in order to avoid decompression during query evaluation. However, it
differs from XGrind and XPRESS in that it separates the XML structure from the
XML data items. Data items specified by the same root-to-leaf path are grouped
into the same container. XQueC can choose to compress the XML data by applying
either the ALM algorithm [1] to preserve order in the encoded data for efficient
evaluation of inequality predicates or the classical Huffman algorithm [25] to support
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prefix-wildcards (but not inequality). A cost model is devised to perform the choice
of a suitable compression algorithm and to group the compressed data granules
according to their common properties, based on the given query workload. XQueC
supports a large subset of XQuery [5] queries. To support efficient query processing,
XQueC constructs the structure tree of the input XML document and its structure
summary that represents all distinct paths in the document. To allow efficient
access of the compressed data items, XQueC links each individually compressed
data item to its corresponding node in the structure tree and links each container
to the corresponding path in the structure summary. Although XQueC achieves
significantly improved query performance and query expressiveness over XGrind
and XPRESS, the fine-grained compression adopted in XQueC is an insufficient use
of the commonality of the XML data and hence results in a worse compression ratio
than XMill. Moreover, the auxiliary data structures, in particular the structure tree
and the pointers to and from the individually compressed data items, might incur
huge space overhead.

XQzip supports a wide spectrum of XPath queries on compressed XML data
by introducing a Structural Indexing Tree (SIT) scheme. The SIT, which evolves
from the notion of covering indexes [27], is constructed based on the partitioning of
equivalent paths in an XML document. The data are separated from the structures
(i.e., the SIT) and compressed into distinct data containers, which are further divided
into smaller data blocks that can be compressed and decompressed as an individual
unit. This block-compression exploits a trade-off between the compression ratio
and decompression overhead incurred in query processing: it takes advantage of
the commonality of the XML data to achieve a good compression ratio and at the
same time avoids full decompression in query evaluation. The data blocks also lend
themselves naturally to the employment of a buffer pool, which avoids repeated
decompression in query evaluation if the data is already in the pool. With the
use of the SIT index and the buffer pool, XQzip achieves a competitive querying
time, especially when the workload of queries is high and exhibits a high degree
of locality. However, since the characteristics of input XML documents may vary
greatly, a suitable block size is difficult to find and hence a good balance between
the compression ratio and the stability of the query performance may be difficult to
maintain for some datasets. Moreover, the SIT index does not support the evaluation
of complex queries such as joins and order-based predicates.

XCQ is a schema-aware XML-conscious compressor. The compressor supports
the evaluation of a subset of XPath queries as well as aggregation queries over
compressed XML data by partial decompression. By exploiting the structural in-
formation in the input document and its associated DTD, XCQ restructures the
input document into distinct data streams in a path-based manner. These data
streams are then partitioned into indexed blocks that can be compressed and de-
compressed as an individual unit. Since the compressed contexts are confined to a
single compressed data block, only those blocks that contain information relevant to
the query are needed to be decompressed when evaluating an imposed query. How-
ever, one of the limitations of XCQ is that it only processes valid XML documents
(i.e. documents conforming to a given DTD). It also requires longer compression
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and decompression times when forming the XCQ partitioned data streams.

4 Comparative Analysis of Performance

In the previous sections, we introduced a collection of currently known XML-conscious
compression technologies and outlined their underlying working principles. We also
briefly discussed their relative strengths and weaknesses. In this section, we compare
the compression performance and query performance of some of the compression
technologies discussed above. We exclude skeleton compression [7], since it com-
presses against XML structures only and is not directly comparable with the others.
We also exclude XMLZip [53] in the discussion of query coverage, since it does not
have a query processor.

4.1 XML Datasets

We use six data sources for the experiments that cover a wide range of XML data
formats and structures. Some characteristics of these data sources are shown in
Table 1, where E_num and A_num refer to the number of elements and attributes in
the document, respectively. We also show in the last column the parameter pruning
depth of XMLZip we set for different datasets. The following is the description of
each data source: XMark, produced by the zmlgen of the XML benchmark project
XMark [39], models an auction database with deeply nested elements. DBLP [17],
the popular bibliography database, is relatively regular. SwissProt [43], which de-
scribes the DNA sequences, has a minimal level of redundancy. Shakespeare [6] is a
corpus of marked-up Shakespeare plays that contains many long textual passages.
TPC-H is the TPC-H benchmark database [47] converted into XML format. Weblog
[31], which is a set of real world web-server log files converted into XML format, has
a relatively regular structure.

Table 1: XML Datasets for Comparison Experiments

| Dataset [ File Size | Depth | Enum | Anum | XMLZip Depth |

XMark 97MB 4 2873293 | 621490 2
DBLP 42MB 3 1107711 | 118028 2
Shakespeare | 7.8MB 5 179072 0 5 (no partitioning)
TPC-H 34MB 3 1022976 0 2
Weblog 30MB 3 641037 0 2
SwissProt 21MB 4 618412 | 336073 2

4.2 Compression Performance

Using an extensive set of experiments, we compare the compression performance of
the following compression technologies: XMill, XGrind, XMLPPM, and XMLZip,
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along with GZip as a reference. We have not empirically compared those systems
that have not released a version of their systems at the time of writing. All experi-
ments were run on a Windows 2000 machine with a Pentium III, 600 MHz processor
and 192 MB of main memory. We measure the following three performance metrics
for five compressors: (1) the compression ratio; (2) the compression and decompres-
sion times; and (3) the memory usage.

4.2.1 Compression Ratio

There are two different expressions that are commonly used to define the Com-
pression Ratio (CR) of a compressed XML document (c.f. see the different CR
definitions used in [12, 30, 35, 46]). The first compression ratio, denoted as CR;,
is expressed as the number of bits required to represent a byte. Using C'R; a better
performed compressor achieves a relatively lower value. On the other hand, the
second compression ratio, denoted as C'Ro, is expressed as the fraction of the input
document eliminated. Using C'Ro, a better performed compressor achieves a rela-
tively higher value. The essential difference between the two ratios is that CR; is
proportional to the size of the space that is actually used to store the compressed
document, while C'Rs only shows the percentage reduction of the compressed file
size to the original file size.

sizeof(compressed file) x 8

CRy bits/byte

sizeof(original file)
sizeof(compressed file)

CR, = (1— ) x 100%

sizeof(original file)

Table 2: Comparing Compression Ratio Expressions C'Ry and CRs

XML Doc Compressed CRy CRy
Dataset Size Document Size
(KB) (KB) (bits/byte) (percentage %)
Gzip | XMill Gzip | XMill [ Gzip | XMill
Weblog 32722 1156 726 0.282 | 0.177 | 96.5 97.8
SwissProt 21254 2889 1739 1.088 | 0.654 | 86.4 91.8
DBLP 40902 7418 6149 1.451 | 1.203 | 81.9 85.0
TPC-H 32295 2912 1514 0.721 | 0.375 | 91.0 95.3
XMark 103636 || 13856 | 8313 1.07 0.642 | 86.6 92.0
Shakespeare 7882 2152 1986 2.184 | 2.016 | 72.7 74.8

We now illustrate the difference in both CR definitions by listing the compression
ratios achieved by Gzip and XMill in Table 2. C'Ry shows that the fraction of an
input document eliminated by Gzip is only a few percent smaller than that of XMill.
This means that the performance of Gzip and XMill measured based on C Ry appear
to be similar. However, the actual size of the compressed documents generated by
XMill is generally much smaller than that of the Gzip compressed one. For example,
the size of the XMill compressed Weblog document is about 60% of that of Gzip.
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This is also true for the SwissProt, TPC-H and XMark documents. On the other
hand, as we can see in Table 2, the difference is better reflected by the measurement
based on CR,. For example, we can see from Table 2 that there is an eleven-
fold difference between the C'R; readings for the Weblog (0.177 bits/bytes) and
Shakespeare (2.016 bits/bytes) datasets in XMill compression, while the difference
between the corresponding C' Ry readings (i.e. 97.8% and 74.8%) is only 23%. In
addition, the notion behind the C'R; expression (i.e. the number of bits required to
represent a byte) gives us intuition related to the amount of information, which is
a commonly used notion in information theory [40]. Thus, we henceforth choose to
adopt C'R; as the metric to measure compression performance (i.e. the lower C'R;
the better compression).
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Figure 12: Compression Ratio

Figure 12(a) shows the compression ratio of XMLPPM, XMill, XMLZip, Gzip,
and XGrind on the six datasets, respectively. The three unqueriable compressors,
XMLPPM, XMill, and XMLZip, achieve compression ratios consistently better than
that achieved by the generic text compressor Gzip, while the compression ratio of
the queriable compressor XGrind is on average 2.70, 2.77, 3.63, and 4.64 times worse
than that of Gzip, XMLZip, XMill, and XMLPPM, respectively. The compression
ratios of XMLZip and Gzip are very close to each other for all the datasets, but
these two compressors are worse than those of XMill and XMLPPM. XMLPPM
achieves the best compression ratio (an average of 0.66 bits per byte) among all the
compressors in this experiment. The exceptionally low compression ratio achieved
by XMill on Weblog is due to the highly regular structure in Weblog, which makes
it fits extremely well in XMill data containers.

The underlying reason for the good compression ratio achieved by the unqueri-
able compression technologies is that they utilize the exposed structure information
in the input XML document to help restructure the document, which makes it more
amenable to compression. On the other hand, in order to support querying over
compressed documents, XGrind needs to preserve the XML structure and to com-
press each XML data item as an individual unit, thus resulting in degradation in
the compression ratio. Figure 12(b) helps gain further insight of an overall compres-
sion performance for individual compressor. In this chart we simply assume an even
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weight of the compression ratios with respect to the six datasets given in Figure
12(a) and then compute the average of the compression ratio achieved by the five
compressors. Remarkably, other interesting normalization of compression ratio can
also be done by assigning unequal weight on the datasets. For example, we may as-
sign different weight in favor to either document-centric or data-centric documents,
which is able to reflect the compression performance of a compressor relative to the
commonly used data in certain applications.

Among the six compressors, XMLPPM achieves the best compression ratio for
all the datasets except Weblog. This could be explained for the following reasons.
In XMLPPM, a PPM compression library is adopted to compress the restructured
document. Since PPM spends more time exploring and eliminating redundancies of
the input document (see the evidence presented in Section 4.2.2 below), it generally
achieves a better compression than Gzip. In addition, the underlying PPM com-
pressors in XMLPPM are multiplexed to deal with the input stream effectively (see
Section 2.2), which enables XMLPPM to yield a more accurate prediction over the
input SAX event tokens and hence boosts its performance in terms of the compres-
sion ratio.

4.2.2 Compression and Decompression Times
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Figure 13: Compression and Decompression Times

Figures 13(a) and 13(b) show the compression and decompression time of XMLPPM,

XMill, XMLZip, Gzip, and XGrind on the six datasets, respectively. Except for
XMill, all the compression technologies require longer compression and decompres-
sion times than Gzip. The underlying reasons for this are as follows.

The compression time of XMill is slightly longer than that of Gzip. This is be-
cause in its pre-compression phase, XMill separates the structures from the data
before applying Gzip to compress the data containers (recall the discussion in Sec-
tion 2.1). This pre-compression phase introduces a time overhead to the compression
process. XMill also needs to reconstruct the original XML structure, with the data
items merged into their original position, after decompressing the data containers.
Therefore, this extra decompression overhead slightly increases the total decompres-
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sion time. However, when the XMill-compressed file size is much smaller than the
Gzip compressed file size of a given XML size, as shown in the case of the XMark
dataset, it is possible that XMill achieves a decompression time that is even shorter
than that of Gzip, mainly due to the much smaller disk read overhead.

XMLZip takes more time to compress and decompress an XML document be-
cause it uses DOM tree parsing. Both its compression and decompression times are
lengthened, since much time is needed to convert the input XML document into
a DOM tree in the compression phase, and to convert the DOM tree back to the
original document in the decompression phase.

The compression and decompression times of the other two compression technolo-
gies, XMLPPM and XGrind, are much slower than those of the other technologies.
XMLPPM requires much longer compression and decompression time because it is
built on top of PPM, which is intrinsically slower than Gzip. XGrind uses Huffman
coding and thus needs an extra parse of the input XML document to collect statis-
tics for a better compression ratio, resulting in almost double the compression time
required in a generic compressor, as discussed in Section 3.1.

4.2.3 Memory Usage
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Figure 14: Memory Consumption

Figure 14 shows the maximum size of memory needed for different compressors
to run compression on various datasets, where we use the first bar to represent the
size of the dataset as a reference. Among all the compressors, Gzip uses the least
memory, a fixed 3 MB buffer size, regardless of the input documents. XMill and
XGrind use approximately 8 MB of memory over all datasets, while XMLPPM uses
about 3 MB more memory than XMill. XMill uses a fixed main memory window
size (default 8 MB) and when the memory consumption reaches this fixed size,
XMill writes all compressed data to disk and then resumes the compression process.
XGrind uses Huffman coding to compress the data and then only needs a small
size to maintain the status of the Huffman models. Due to the small overhead of
the Huffman models, the total memory consumption does not vary greatly among
the datasets. XMLPPM builds four PPM models for all input documents (recall
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the discussion in Section 2.2); the models have a fixed size limit and therefore the
overall memory consumption is also limited. XMLZip parses the XML document
using DOM and thus requires the largest memory consumption, which is roughly
proportional to the size of the input XML document. This is prohibitive when the
input XML document is large.

4.3 Query Coverage and Performance

We analyze the query languages supported by XGrind and XPRESS, and describe
them in Extended Backus Naur Form (EBNF), as shown in Figures 15 and 16,
respectively. The recent systems XQueC [2] and XQzip [13] claim to be able to
support a large part of XQuery [5] and XPath [14] respectively, while XCQ [28] claims
to be able to support path queries with multi-predicates and aggregations. Other
compression technologies discussed in previous sections (i.e. XMill [30], SCA [29],
Millau DDT [42], and XMLPPM [12]) do not support querying, since the generated
compressed data is a single unit and therefore must be fully decompressed before
any query evaluation.

Q ::= ¢/ LP OP ‘‘literal’’
LP ::= tag ‘/’ LP | tag (¢/’ Qattribute)?
OP ::=> | < | > | =] =] I=
Figure 15: EBNF for the Query Language Supported by XGrind
Q ::= (/2| <//°) LP
LP ::= tag (/> | “//’) LP | tag ([’ P ‘1°)7
| tag (‘/’ @attribute)?
P ::= (tag | @attribute) OP ‘‘literal’’
0P ::=> | < | > | <= | =] !'= | range-match

Figure 16: EBNF for the Query Language Supported by XPress

From Figures 15 and 16, we can see that XGrind and XPRESS support a very
restricted portion of XPath [14]. XGrind only supports path expressions with the
child and attribute axes, while XPRESS only adds the descendant axis. The reason
for this is that both XGrind and XPRESS adopt homomorphic transformations
to preserve the XML structure and their query processing is based on a naive top-
down evaluation mechanism. This large preserved structure, together with the naive
algorithm, is not efficient enough to support more complex queries.

Admittedly, we are not able to compare the query performance of the various
compressors empirically, since at the time of writing, the source code of these com-
pressors, except XGrind, has not been made open. However, we could still obtain
some useful numerical data of their query performance evaluation published in the
respective papers. According to the results in [46], XGrind’s query performance is
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on average 2 to 3 times better than that of the Native query processor built upon
XMill’s parser. According to the results in [35], XPRESS’s query performance is 2.83
times better than that of XGrind, while XQzip’s experimental results in [Cheng and
Ng 2004] show that its query performance is 12.84 times better than that of XGrind.
XQueC [3] does not compare to any of the compressors for query performance but
compared to Galax [33], the results show that XQueC performs better than Galax
in many cases.

4.4 An Overall Comparison

We now give an overall comparison of the compression technologies, as listed in
Tables 3 and 4, as a summary of our main findings.

With respect to compression performance, XMill has the best average perfor-
mance, since it achieves a good compression ratio at a comparable speed to that
of Gzip and with low constant memory consumption. Although XMLPPM also
achieves a very good compression ratio, its compression time is prohibitively longer
than that of Gzip, thus hindering its practical applications. XMLZip, SCA, and Mil-
lau DDT are generally not preferred to XMill and XMLPPM, since they only achieve
a compression ratio slightly better than Gzip and have a much longer compression
time. In addition, their memory consumption is proportional to the input data.
The other two compressors, XGrind and XPRESS, achieve much worse compression
ratio than Gzip; however, they have the benefits of allowing direct evaluation of
queries on the compressed data. Both compressors support ezact-match and prefia-
match on compressed data, partial-match and range-match on decompressed data,
and the XPath axes child and attribute; while XPRESS also supports range-match
on compressed numeric data and the XPath axis descendant.

5 Desirable Features of XML Compression

In this section, we propose some desirable quality features for XML conscious com-
pression technology.

1. Effective Compression.

Effective XML compression requires a good performance in compression ratio,
compression and decompression times, and memory consumption. An effective
XML compressor should be able to achieve consistently, over various types
of XML data, a compression ratio better than (for the case of unqueriable
compression) or comparable to (for the case of queriable compression) that of
the generic text compressor Gzip; while it should also achieve compression and
decompression times comparable to those of XMill.

According to information theory [40], two information sources carrying the
same messages should have the same degree of entropy; thus an equal ulti-
mate compressed size can be obtained. In practice, a good compression ratio
is achievable only if there is adequate exploring and exploiting of the redun-
dancy in the XML structure and the commonality in the XML data. Good
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Technologies | Compression | Compression Memory Usage Underlying Query Parser
Ratio Time Compression Coverage Used
(compared (compared (for compression) Scheme
with Gzip) with Gzip) Used
XMill Consistently Slightly Constant Gazip (default), Not Support SAX
Better Slower 8 MB (default) Bzip, Querying
Compress (UNIX)
XGrind Much At least two Roughly Huffman Exact-match, SAX
Worse times longer Constant Coding Prefix-match,
Xpath Axes:
Child
Attribute
XPRESS Much At least two Roughly Huffman Coding, Exact-match, SAX
Worse times longer Constant Approximated Prefix-match,
Reverse Xpath Axes:
Arithmetic Child and
Encoding Descendant
Attribute
XMLPPM Much Prohibitively Constant PPM Not Support SAX
Better Longer Querying
XMLZip Comparable Much Proportional Gzip Not Support DOM
Longer To Querying
Input Data Size
SCA Slightly Much Proportional Structure Not Support DOM
Better Longer To Compression Querying
Input Data Size Algorithm
Millau Slightly Much Proportional Differential Not Support DOM
DDT Better Longer To DTD Tree Querying
Input Data Size Compression,
Gzip

Table 3: Comparison of XML Conscious Compression Technologies (Part I)

[ Technologies [ Platform [ Evaluation Method [ Code Availability ]
XMill Unix/Windows (Implemented in C++) Empirical Yes
XGrind Unix/Windows (Implemented in C++) Empirical Yes But Not Fully Portable
XPRESS Portable (Implemented in Java) Reference No
XMLPPM Unix/Windows Empirical Yes
XMLZip Portable (Implemented in Java) Empirical Yes (Binary Code Only)
SCA — Reference No
Millau DDT Portable (Implemented in Java) Empirical No

Table 4: Comparison of XML Conscious Compression Technologies (Part 1)

compression and decompression times are achievable only by parsing and pro-

cessing the XML document just once, such as by using an SAX parser.

The memory consumption should also be taken into consideration of effective
compression, since an XML document can be huge and it is infeasible to load
the entire document into the memory to perform compression or decompres-
sion. Therefore, there should be a limit to the main memory window size for
the compression and decompression processes. In addition, the window size
should be independent of the size of the input document and preferably be a
constant. This also implies that parsing the input document using a DOM

parser is prohibitive and an SAX parser should always be used instead.
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2. Ezpressive Query Language and Efficient Querying Engine.

The recently proposed XML compressor is capable of evaluating a range of
common XML queries over the compressed XML data. Ideally, the compres-
sor should support an expressive query language as well as an efficient query
evaluation. XPath [14] and XQuery [5] are the two most commonly supported
querying languages and they are also the standard XML query languages pro-
posed by the W3C. Therefore, a compressor should be able to support one of
these two well-established languages or a large fragment of them. The chal-
lenge of supporting XQuery over compressed data is that it requires semantics
for connecting nodes on paths, such as a natural join for the For clause, a
semi-join for the Where clause, and an outer-join for the Return clause in the
FLWR expressions [5].

A main contributor to the querying cost for compressed data is the decom-
pression overhead. A general approach, as discussed in Sections 3.1 and 3.3,
is to compress each data item individually, such as those proposed in [46, 35].
Decompression can then be avoided by encoding string conditions to match
the compressed data items. However, the Huffman algorithm [25], as used
in [46, 35], supports only equality predicates, while decompression is still in-
evitable for any other inequality predicates. To support inequality predicates
without decompression, the ALM compression algorithm [1], as adopted in
XQueC [2], can be used. However, in general, compressing data items indi-
vidually degrades compression ratio and increases compression time. Another
approach proposed recently [28, 13] is to compress the XML data into small
blocks and then manage a buffer pool for the decompressed blocks. This avoids
the same block being repeatedly decompressed during the query evaluation,
as discussed in Section 3.5. However, it is difficult to choose an optimal block
size due to the different characteristics of XML documents and queries.

3. Minimal User Intervention and Auziliary Structures

A good compression technology should be general enough to perform compres-
sion; that is, a minimal level of special aids, such as DTD and XML schema, is
needed. Among existing XML compression techniques, XMill is the only one
that uses specialized semantic compression algorithms. However, in XMill the
container expressions are specified manually by user and thus it hinders the
application of semantic compressions to obtain a better compression ratio. As
XML schema has become more stable standard after several years of devel-
opment by the World Wide Web Consortium, it can be employed to extract
the data-type information and the paths of the data in order to automatically
select specialized semantic compression algorithms.

To support efficient query processing and an expressive query language, an
efficient auxiliary structure, such as the SIT structure proposed in XQzip [13]
or the structure summary used in XQueC [3], can be employed to aid the
efficient access to a required data item. However, the extra data structure
adds to the total output file size and total processing time, which degrade the
overall compression ratio and processing time, respectively. Therefore, such
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an auxiliary structure should be devised strategically.

It should be noted that the features listed above may conflict with each other.
For example, compressing XML data into blocks [30] generally achieves a good
compression ratio but full decompression is needed to query the compressed data.
On the other hand, compressing the data items individually [46, 35, 2] can avoid full
decompression in query processing, but usually degrades the compression ratio and
time. Auxiliary data structures can be used to support efficient query evaluation and
an expressive query language; however, they increase the total file size and require
an extra amount of processing time to construct and load into memory for query
evaluation.

We agree with the view in [12] that the compression ratio and the compression
time are two conflicting factors, and that a better compression ratio can generally
be achieved if the user is willing to accept a longer compression time. For example,
in XMill and XCQ, a compression ratio that is of 10% to 30% better can also be
achieved by using Bzip [44] instead of Gzip as the underlying compression library.
However, Bzip is much slower than Gzip (several times in magnitude) when used
as the underlying compression library in a compressor. A similar trade-off between
compression ratio and time is also found in [53].

Despite all these challenges, we believe that for more advanced XML compression-
and-querying systems, innovative technologies are able to reach a better compromise,
getting closer to the desirable quality features of effective compression, an expressive
query language and an efficient querying engine, and minimal auxiliary structure and
user intervention.

6 Deploying Compression Techniques

From the point of view of applicability, compression techniques should not be an
isolated component in a real-world information system. We now discuss some de-
ployment issues related to the compression technology.

Suppose in a proxy server architecture [36], an XML request is sent from a client
via a browser. The request is compressed by the client-side proxy and then sent
to the server. The sever-side proxy decompresses the request before it is sent to
the server. The response from the server can be returned using the similar pro-
cesses in the architecture. In this setting the cost-effectiveness depends on the
compression/decompression overhead, the average size of the documents and the
effectiveness of a programmable proxy server packages for handling arbitrary XML
document compression.

In addition to applying the compression techniques in the scenario of data ex-
change over the Web, another important area of XML compression is on a native
XML DBMS. In fact, compression techniques have been studied extensively in the
context of relational data [32, 51]. By compressing XML documents in the database,
we are able to obtain a significant advantage in reducing the I/O cost. In this case,
the reduction of I/O is often more significant than the overhead of decompression,
since the disparity of CPU and I/O is increasing fast. For example, Tamino 2.3 XML
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databases [45] gain performance benefits from supporting field compression inside
the database system, which uses some proprietary compression algorithms such as
Java built-in “JAR” or generic Gzip.

The choice of the compression techniques also depends on the application in
which the technologies are to be embedded. For example, in applications such as
data archiving, where querying is infrequent, and data exchange, when data are
filed as LOBs or large documents, XMill is desirable for the reason that it is able
to reduce greater space requirement and better utilize the network bandwidth. It
is demonstrated in [8] that, when XMill is applied to archive scientific data such
as SwissProt, the compressor can obtain a better compression ratio than general
compression tools like gzip. It is also worth mentioning that when compression and
decompression speeds are not a concern, XMill’s compression ratio can be further
improved by adopting Bzip [44] as its underlying compression library.

On the other hand, if querying is frequent and the XML data are managed in a
fine-granular way such as in an underlying XDBMS, XQueC can be embedded in such
applications, since XQueC allows efficient access to individual compressed values
and outperforms its counterpart fine-grained compression techniques, XGrind and
XPRESS, in both query expressiveness and query performance. Moreover, XQueC
addresses the embedment of compression in XML databases and is thus the most
feasible choice among existing compression techniques for applications that operate
on a backend database system.

If we strike for a balance between the features of XMill and XQueC in some
systems, XQzip is a good choice for those applications that do not heavily rely on or
cannot afford using a secondary storage system. In the meantime the applications
may still require fast response to (path) queries and a good compression ratio. For
example, in order to exchange information in a peer-to-peer network of Pocket-PCs,
for which a secondary storage is obviously not feasible, we can apply XQgzip to
compress the XML data into a set of small blocks which can be transferred and
queried among the peers.

7 Concluding Remarks

We recognize that the size problem already hinders the adoption of XML, since
in practice, it substantially increases the costs of data processing, data storage,
and data exchanges over the Web. We believe that XML-conscious compression is
one of the key solutions to the problem. With limited resources, it has not been our
intention to cover all the activities concerning XML data compression in this article.
Our purpose is to stimulate interest among the involved communities by presenting
an overview of the development.

We surveyed and analyzed the efforts that have been made towards developing
better strategies and technologies for compressing XML data. We classified the fol-
lowing eight XML-conscious compression technologies: (1) XMill, (2) XMLPPM,
(3) SCA, (4) Millau, (5) XMLZip, (6) XGrind, (7) XPress, and (8) XML Skeleton
Compression [7], into two categories of queriable and unqueriable XML compression
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technologies. We also briefly discussed three recently proposed query-aware XML
compressors, XQueC, XQzip and XCQ, in Section 3.5. We discussed the working
principles and highlighted the features of the queriable and unqueribale XML com-
pression in Sections 2 and 3, respectively. We made a detailed comparison in Section
4 of XMill, XGrind, XMLPPM, and XMLZip, with reference to a common generic
compressor GZip. We identified a set of desirable features for XML-conscious com-
pression and discussed the challenges in Section 5.

Research on XML compression is related to a wide range of computer science
disciplines such as databases, information retrieval, information theory, and algo-
rithm studies. We feel that there are still a number of issues to be addressed by
both academic researchers and practitioners. The following issues in particular are
interesting and challenging (though by no means exhaustive).

1. It is known that from a theoretical point of view, XML data compression, like
usual data compression, is determined by the degree of entropy of the data.
However, in addition to using the syntactic aspect of data, we could explore
the use of semantics or workload statistics in compression. How can data
semantics in XML and query workload statistics be exploited in order to make
an XML compressor adaptive and more effective to an application domain?

2. From the existing research work, we know that different kinds of trade-offs
exist among the different features of compressors. The most apparent one is
the trade-off between the compression ratio and the compression time. An-
other one is the trade-off between the compression ratio and the decompres-
sion overhead incurred in query processing of the full-chunk compression and
the fine-grain compression. If auxiliary data structures are used to support
efficient querying, the trade-off between the total file size and the querying
performance is another concern. Therefore, a challenge will be to address
the possible trade-offs between the compression quality (lossless, compression
ratio, etc) and speed, and the query performance and query expressiveness.

3. The queriable compressors are themselves strengthened to support efficient
querying over compressed XML data. A natural step to advance the compres-
sor is to address the following issue. How can the updating operations over
compressed data be carried in an effective manner?

4. It seems clear from the work in XQueC and XQgzip that auxiliary structures
are desirable in querying compressed XML data. However, we think that
there are still rooms for further improvement in terms of reducing the resource
overheads. How can a more effective auxiliary structure, such as an indexing
scheme, be devised to aid querying compressed XML data?

5. A comprehensive cost model that takes into account various factors, such as
query selectivity, the data chunk size of compressed data, and document char-
acteristics, will be useful when running queries over compressed data. How
can an analytical model for querying compressed data, which should help to
optimize the query engine of a compressor be established?
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To this end, almost all the compression technologies are studied as “standalone”
systems. Only Millau explicitly presented two e-commerce applications that adopt
the compressor in [42]. As a result, the usability of compression technologies are
not clear in the context of modern Web applications. In fact, different compressed
document formats are used in different compression technologies. So it is useful to
study the issues concerning how users are able to adopt the developed compressors in
different services and how the compressors are interoperable in a Web architecture,
which may consist of Web clients and servers, mediators, and Pocket PCs.

Acknowledgement: The authors would like to thank the anonymous referees for
their insightful and encouraging comments.
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