
UC Irvine
UC Irvine Previously Published Works

Title
Supporting efficient record linkage for large data sets using mapping techniques

Permalink
https://escholarship.org/uc/item/7323w64n

Journal
World Wide Web-Internet and Web Information Systems, 9(4)

ISSN
1386-145X

Authors
Li, C
Jin, L
Mehrotra, S

Publication Date
2006-12-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7323w64n
https://escholarship.org
http://www.cdlib.org/

Supporting Efficient Record Linkage for Large Data Sets Using
Mapping Techniques∗

Chen Li, Liang Jin, and Sharad Mehrotra
ICS 424B, University of California, Irvine, CA 92697, USA

chenli@ics.uci.edu, 1-949-824-9470 (telephone), 1-949-824-4056 (fax)

Abstract

This paper describes an efficient approach to record linkage. Given two lists of records, the record-
linkage problem consists of determining all pairs that are similar to each other, where the overall similarity
between two records is defined based on domain-specific similarities over individual attributes. The record-
linkage problem arises naturally in the context of data cleansing that usually precedes data analysis and
mining. Since the scalability issue of record linkage was addressed in [21], the repertoire of database tech-
niques dealing with multidimensional data sets has significantly increased. Specifically, many effective and
efficient approaches for distance-preserving transforms and similarity joins have been developed. Based on
these advances, we explore a novel approach to record linkage. For each attribute of records, we first map
values to a multidimensional Euclidean space that preserves domain-specific similarity. Many mapping al-
gorithms can be applied, and we use the Fastmap approach [16] as an example. Given the merging rule that
defines when two records are similar based on their attribute-level similarities, a set of attributes are chosen
along which the merge will proceed. A multidimensional similarity join over the chosen attributes is used to
find similar pairs of records. Our extensive experiments using real data sets show that our solution has very
good efficiency and recall.

Keywords: Data Cleaning, Record Linkage, Similarity Search, StringMap

∗Part of this article was published in [28]. In addition to the prior materials, this article contains more analysis, a complete proof,
and more experimental results that were not included in the original paper.

1

1 Introduction

The record-linkage problem — identifying and linking duplicate records — arises in the context of data cleans-
ing, which is a necessary pre-step to many database applications, especially those on the Web. Databases
frequently contain approximately duplicate fields and records that refer to the same real-world entity, but are
not identical. As the following examples illustrate, variations in representation may arise from typographical
errors, misspellings, abbreviations, as well as other sources. This problem is especially severe when data to
be stored within databases is automatically extracted from unstructured or semi-structured documents or Web
pages [5].

EXAMPLE 1.1 The DBLP bibliography server [33] has the following two pages for authors: “Sang K. Cha”1

and “Sang Kyun Cha”2. They are referring to exactly the same person in reality. However, due to the abbrevi-
ation of the middle name, the publications of the same person are split into two pages. This problem exists in
many web sources and databases. �

EXAMPLE 1.2 A hospital at a medical school has a database with thousands of patient records. Every year it
receives data from other sources, such as the government or local organizations. The data includes all kinds of
information about patients, such as whether a patient has moved to a new place, or whether a patient’s telephone
number has changed. It is important for the hospital to link the records in its own database with the data from
other sources, so that they can collect more information about patients. However, usually the same information
(e.g., name, SSN, address, telephone number) can be represented in different formats. For instance, a patient
name can be represented as “Tom Franz” or “Franz, T.” or other forms. In addition, there could be typos in the
data. For example, name “Franz” may be mistakenly recorded as “Frans”. The main task here is to link records
from different databases in the presence of mismatched information. �

With the increasing importance of record linkage (a.k.a data linkage) in a variety of data-analysis applica-
tions, developing effective and efficient techniques for record linkage has emerged as an important problem [38].
It is further evidenced by the emergence of numerous organizations (e.g., Trillium, FirstLogic, Ascential Soft-
ware, DataFlux) that are developing specialized domain-specific record-linkage and data-cleansing tools.

Three primary challenges arise in the context of record linkage. First, it is important to determine simi-
larity functions that can be used to link two records as duplicates [10, 48]. Such a similarity function consists
of two levels. First, similarity metrics need to be defined at the level of each field to determine similarity of
different values of the same field. Next, field-level similarity metrics need to be combined to determine the
overall similarity between two records. At the field level, a typical choice is string edit distance, particularly if
the primary source of errors are typographic and the type of the data is string. However, as the examples above
illustrated, domain-specific similarity measures (e.g., different functions for people’s names, addresses, paper
references, etc.) are more relevant. At the record level, merging rules that combine field-level similarity mea-
sures into an overall record similarity need to be developed. Approaches based on binary classifiers, expectation
maximization (EM) methods, and support vector machines have been proposed in the literature [5, 10, 48].

The second challenge in record linkage is to provide user-friendly interactive tools for users to specify
different transformations, and use the feedback to improve the data quality. Recently a few works [42, 15, 17,
40] have been conducted to solve this problem.

The third challenge is that of scale. A simple solution is to use a nested-loop approach to generate the
Cartesian product of records, and then use the similarity function(s) to compute the distance between each

1http://www.informatik.uni-trier.de/∼ley/db/indices/a-tree/c/Cha:Sang K=.html
2http://www.informatik.uni-trier.de/∼ley/db/indices/a-tree/c/Cha:Sang Kyun.html

2

pair of records. This approach is computationally prohibitive as the two data sizes become large. The scal-
ability issue of record linkage has previously been studied in [21]. Since the original work in [21], many
new data-management techniques have a direct bearing on the record-linkage problem. In particular, tech-
niques to map arbitrary similarity spaces into similarity/distance-preserving multidimensional Euclidean spaces
[31, 50, 16, 6, 25, 46, 47] have been developed. Furthermore, many efficient multidimensional similarity joins
have been studied [1, 7, 13, 30, 43, 32, 39, 45, 44]. In this paper, we develop an efficient strategy by exploiting
these advances to solve the record-linkage problem. In particular, we propose a two-step solution for duplicate
identification. In the first step, we combine the two sets of records, and map them into a high-dimensional Eu-
clidean space. In general, many mapping techniques can be used. As an example, in this paper we focus on the
FastMap algorithm [16] due to its simplicity and efficiency. We develop a linear algorithm called “StringMap”
to do the mapping, and the algorithm works independently of the specific distance metric.

In the second step, we find similar object pairs in the Euclidean space whose distance is no greater than
a new threshold. This new threshold is chosen closely related to the old threshold of string distances and the
mapping step. See Section 4 for details. Again, many similarity-join algorithms can be used in this step. In
this paper we use the algorithm proposed by Hjaltason and Samet [23] as an example. For each object pair in
the result of the second step, we check their corresponding strings to see if their original distance is within the
query threshold, and find those similar-record pairs.

We next study mechanisms for record linkage when multiple attributes are used to determine overall record
similarity. Specifically, we consider merging rules expressed as logical expressions over similarity predicates
based on individual attributes. Such rules would be generated from, for example, a classifier such as a decision
tree after being trained with certain number of records using a labeled training set [42]. Given a set of merging
rules, we choose a set of attributes over which the similarity join is performed (as discussed in the single-
attribute case), such that similar pairs can be identified with minimal cost (e.g., running time).

Our approach has the following advantages. (1) It is “open,” since many mapping functions can be applied
in the first step, and many high-dimensional similarity-join algorithms can be used in the second step. (2) It
does not depend on a specific similarity function of records. (3) Our extensive experiments using real large data
sets show that this approach has very good efficiency and recall (greater than99%).

The rest of the paper is organized as follows. Section 2 gives the formulation of the problem. Section 3
presents the first step of our solution, which maps strings to objects in a Euclidean space. Section 4 presents
the second step that conducts a similarity join in the high-dimensional space. Section 5 studies how to solve the
record-linkage problem if we have a merging rule over multiple attributes. In Section 6 we give the results of
our extensive experiments. We conclude the paper in Section 7.

1.1 Related Work

Record linkage was studied in [21, 22] (called the “Merge/Purge” problem). Their proposed approach first
merges two given lists of records, then sorts the records based on lexicographic ordering for each attribute (or
a “key” as defined in that paper). A fixed-size sliding window is applied, and the records within a window are
checked to determine if they are duplicates using a merging rule. Notice that, in general, records with similar
values for a given field might not appear close to each other in lexicographic ordering. For example, the string
edit distance of “Anderson” and “Zanderson” is1, but their names can be very far from each other in the sorted
list. As a result, they might not appear in the same sliding window. The effectiveness of this approach is based
on the expectation that if two records are duplicates, they will appear lexicographically close to each other in
the sorted list based on at least one key. Even if we choose multiple keys to do the search, the approach is
still susceptible to deterministic data-entry errors, e.g., the first character of a key attribute is always erroneous.
It is also difficult to determine a value of the window size that provides a “good” tradeoff between recall and
performance. In addition, it might not be easy to choose good “keys” to bring similar records close to each

3

other. Sometimes it requires specific domain knowledge to design the “key” construction.

[20] is tackling the problem of approximate whole-string matching inside a commercial DBMS. Their
proposed approach can guarantee no false dismissal. Their approach primarily focuses on the edit-distance
metric. In addition, the use of a DBMS could introduce extra storage and execution-time overhead. [8]
incorporates the TF/IDF [3] idea from the information retrieval community to define record similarities. They
split records into tokens, and consider token frequencies when calculating the similarity/distance between two
records. They also developed an error tolerant index to identify the closest fuzzy matching tuples with high
probability. Lee et al. developed a data cleansing system called “IntelliClean” [34]. In [35] they present several
efficient techniques to pre-process records before trying to find similar pairs. After these prepocessing steps a
key problem is still how to find those similar pairs using merging rules efficiently, which is the focus of this
work.

One key challenge in record linkage is to develop good merging rules to identify duplicate records. Recently
researchers are trying to apply machine-learning techniques to solve the record-linkage problem [42, 5]. These
techniques can be used to generate merging rules, and in this work we focus on how to evaluate given such
merging rules.

2 Problem Formulation

In this section, we formulate the record-linkage problem.

2.1 Distance Metrics of Attributes

We first introduce the concept ofmetric distances. Let setΨ be the universe of the objects in a database. A
function denoting a measure of the distance between two objects

d : Ψ × Ψ → R

is ametric if it satisfies the following properties:

1. Positiveness: ∀x, y ∈ Ψ, d(x, y) ≥ 0;

2. Symmetry: ∀x, y ∈ Ψ, d(x, y) = d(y, x);

3. Reflexivity: ∀x ∈ Ψ, d(x, x) = 0;

4. Triangular Inequality: ∀x, y, z ∈ Ψ, d(x, y) ≤ d(x, z) + d(z, y).

Consider two relationsR andS that share a set of attributesA1, . . . , Ap. Each attributeAj has a metric
Mj that defines the difference between a value ofR.Aj and a value ofS.Aj .3 There are many ways to define
the similarity metric at the attribute level, and domain-specific similarity measures are critical. We take two
commonly-used metrics as examples: edit distance and q-gram distance.

Edit distance, a.k.a. Levenshtein distance [37], is a common measure of textual similarity. Formally, given
two stringss1 ands2, their edit distance, denoted∆e(s1, s2), is theminimum number of edit operations (inser-
tions, deletions, and substitutions) of single characters that are needed to transforms1 to s2. For instance,

3In [21], “keys” constructed from multiple fields are used to represent the similarity between records. These keys can be viewed as
attributes in our setting.

4

∆e(“Harrison Ford”, “Harison Fort”) =2.

In particular, we can remove the third character “r” in the first string, and substitute the last character
“d” with “t” to transform it to the second string. Similarly,∆e(“Jack Lemmon”,“Jack Lemon”) =1, and
∆e(“Anderson”,“Zandersson”) =2. It is known that the complexity of computing the edit distance between
stringss1 ands2 is O(|s1| × |s2|), where|s1| and|s2| are the lengths ofs1 ands2, respectively [49].

There are many variations of the original edit-distance metric, such as allowing transposition of two charac-
ters, allowing “block move” [12] (i.e., move of multiple characters in one step), and assigning different weights
to different characters and operations.

TheJaccard coefficient distance [11, 29] is another possible metric. Letq be an integer. Given a strings,
the set ofq-grams of s, denotedG(s), is obtained by sliding a window of lengthq over the characters of string
s. For instance, ifq = 2:

G(“Harrison Ford”)={’Ha’, ’ar’, ’rr’, ’ri’, ’is’, ’so’, ’on’, ’n ’, ’ F’, ’Fo’, ’or’, ’rd’ }.
G(“Harison Fort”)={’Ha’, ’ar’, ’ri’, ’is’, ’so’, ’on’, ’n ’, ’ F’, ’Fo’, ’or’, ’rt’ }.

TheJaccard Coefficient Distance between two stringss1 ands2, denoted∆j(s1, s2), is defined as:

∆j(s1, s2) = 1 − |G(s1) ∩ G(s2)|
|G(s1) ∪ G(s2)|

For example,∆j(“Harrison Ford”, “Harison Fort”) = 1 -1013 ≈ 0.23. The Jaccard coefficient distance is
a metric, and the square root of Jaccard coefficient distance is Euclidean [19]. Clearly the smaller the Jaccard
coefficient distance between two strings is, the more similar they are.

2.2 Similarity Merging Rules

Given distance metrics for attributesA1, A2, . . . , Ap, there is anoverall function that determines whether or not
two records are to be considered as duplicates. Such a function may either be supplied manually by a human
(e.g., an analyst in the data analysis), or alternatively, learned automatically using a classification technique [36].
While the specifics of the method used to learn such a function are not of interest to us in this paper, we do make
an assumption that the function is captured in the form of a rule discussed below. The form of rules considered
include those that could be learned using inductive rule-based techniques such as decision trees. Furthermore,
this form of merging rules is consistent with the merging functions considered in [21].

Let r ands be two records whose similarity is being determined. A merging rule for recordsr ands is of
the following disjunctive normal form.

M1(A1) ≤ δ1,1 ∧ . . . ∧ Mp(Ap) ≤ δ1,p

∨ M1(A1) ≤ δ2,1 ∧ . . . ∧ Mp(Ap) ≤ δ2,p
...

∨ M1(A1) ≤ δk,1 ∧ . . . ∧ Mp(Ap) ≤ δk,p

(Merging Rule)

For each conjunctMj(Aj) ≤ δi,j (i = 1, . . . , k, andj = 1, . . . , p), the valueδ(i, j) is a threshold using the
metric functionMj on attributeAj . The conjunct means that two recordsr ands from the two relations should
satisfy the conditionMj(r.Aj , s.Aj) ≤ δi,j .

For instance, given three attributes about papers,title, author, andyear, suppose we use the edit distance
∆e as a metric for attributesauthor andyear, and the Jaccard coefficient distance function∆j as a metric for

5

attributetitle. Then we could have the following rule:

∆j(title) ≤ 0.10 ∧ ∆e(name) ≤ 4 ∧ ∆e(year) ≤ 1
∨ ∆j(title) ≤ 0.15 ∧ ∆e(name) ≤ 2 ∧ ∆e(year) ≤ 2

(QueryQ1)

The record-linkage problem studied in this paper is the following.

Given two relationsR andS, and the merging rules defined above, find pairs of records(r, s) from
relationsR andS, such that each pair satisfies the merging rule.

The quadratic nested-loop solution is not desirable, since as the size of the data set increases, this solution
becomes computationally prohibitive. For instance, in our experiments, it took more than6 hours to use this
approach on two single-attribute relations, each with10, 000 names, assuming the edit-distance function is
used.

Since by definition, the record-linkage problem is based onapproximate matching of those individual met-
rics for different attributes, an efficient solution that might miss some real matching pairs (but with a high recall)
might be more preferable.

In this paper, we first consider the case of a single attribute (Sections 3 and 4), then study the case of
multiple attributes (Section 5). Table 1 summarizes some symbols used in this paper.

Table 1: Symbols used in this paper.

Symbol Meaning

R, S two relations for record linkage
M metric function in the original space
∆e edit distance
∆j Jaccard coefficient distance function
δ threshold in the original string metric space
δ′ new threshold in the mapped Euclidean space
d dimensionality of the Euclidean space

3 Step 1: Mapping Strings to Euclidean Space

We first consider the single-attribute case, whereR and S share one attributeA. Thus the record-linkage
problem reduces to linking similar strings inR and S based on a given similarity metric. Formally, given
a predefined threshold valueδ, we want to find pairs of strings(r, s) from R andS respectively, such that
according to the metricM of attributeA, the distance ofr ands is within δ, i.e.,

M(r.A, s.A) ≤ δ.

Such a string pair is called asimilar-string pair; otherwise, it is called adissimilar-string pair. Our proposed
approach has two steps. In the first step, we map strings to objects in a multidimensional Euclidean space, such
that the mapped space preserves the original string distances. In the second step, a multi-dimensional similarity
join is conducted in the Euclidean space. In this section we discuss the first step.

6

3.1 StringMap: Mapping Strings to Objects

In the first step, we combine the strings from the two relations into one set, and embed them into a Euclidean
space. Formally, the process is the following.

Given N objectsO1, . . . , ON in a metric space, findN points P1, . . . , PN in a d-dimensional
Euclidean space, such that the distances are maintained as well as possible.

One way to describe how well the distances are maintained is to use the followingstress function:

stress2 =

∑
i,j(d̂ij − dij)2

∑
i,j d2

ij

(1)

in whichdij is the dissimilarity measure between objectOi and objectOj in the old metric space, and̂dij is the
Euclidean distance between their image objects in the new space. This function gives the relative error of the
mapping. Ideally the mapping algorithm can makestress as small as possible.

Many mapping/embedding functions can be used, such as multidimensional scaling [31, 50], FastMap [16],
Lipschitz [6], SparseMap [25], L1-Mapping [46], and MetricMap [47]. These algorithms have different prop-
erties in terms of their efficiency, contractiveness, and stress. (See [24] for a good survey.) In this paper we
use the FastMap algorithm because of its good time efficiency and distance-preserving capability. Here we
briefly review the algorithm. (See [16] for the details.) Its main idea is to findd mutually-orthogonal axes.
It iteratively chooses two objects (called “pivot objects”) to form an axis. For each axis, FastMap projects all
objects onto this axis by computing their coordinates using their distances. It also computes the new distances
after the projections.

We modify the FastMap slightly and propose an algorithm called “StringMap,” as shown in Fig. 1 (a).
StringMap removes the recursion in FastMap, and computes a distance between objects only when it becomes
needed. In particular, StringMap iterates to find pivot strings to formd orthogonal directions, and computes the
coordinates of theN strings on thed axes. The functionChooseP ivot(int h, Metric M) selects two strings
to form an axis for thed-th dimension. These two strings should be as far from each other as possible (ideally
the farthest pair). As we cannot afford a quadratic approach to find the exact farthest pair, we adopt the linear
heuristic algorithm in [16]. The functionChooseP ivot() iteratesm times to find the pivots. A typicalm value
could be5 (as in [16]). The algorithm assumes the dimensionalityd of the target space, and we will discuss
how to choose a goodd value shortly.

One important function is

GetDistance(int a, int b, int h, Metric M)

which computes the distance between strings (indexed bya andb) after they are mapped to the firsth− 1 axes.
As shown in Fig. 1 (b), it iterates over theh − 1 dimensions, and does the computation using only the original
metric distance between the two strings and their already-computed coordinates on theh − 1 dimensions.

There are few observations about the algorithm.

1. In the last line of the algorithm, the computation ofcoord[i, h] is not symmetric with respect to valuesx
andy.

2. In functionGetDistance(), it is known thatdist ∗ dist−w ∗w can be negative [47] . In StringMap, we
take the square root of theabsolute value to compute the new distance. See [24] for other ways to deal
with this case.

7

Algorithm StringMap
Input: • N strings: t[1, . . . , N].

• d: Dimensionality of Euclidean space.
• M : Metric function on strings.

Output: N corresponding objects in the new space.
Variables: • PA[1,2][1,. . . ,N]: 2 × d pivot strings.

• coord[1,. . . ,N][1,. . . ,d]: object coordinates.

Method:
for (h = 1 to d) {

(p1, p2) = ChoosePivot(h,M); // choose pivot strings
PA[1,h]= p1; PA[2,h] = p2; // store them
dist = GetDistance(p1, p2, h, M);
if (dist == 0) {

// set all coordinates in the h-th dimension to 0
for (i = 1 to N) { coord[i,h] = 0 };
break;

}

// compute coordinates of strings on this axis
for (i = 1 to N) {

x = GetDistance(t[i], p1, h, M);
y = GetDistance(t[i], p2, h, M);
coord[i,h] = (x*x + dist*dist - y*y) / (2*dist);

}
}

(a) The main algorithm

// choose two pivot strings on the h-th dimension
Function ChoosePivot(int h, Metric M)
{

seed sa = a random string from t[1], . . . , t[N];
for (i = 1 to m) { // a typical m value could be 5

// use function GetDistance(.,.,h,M)
// to compute distances
seed sb = a farthest point from sa;
seed sa = a farthest point from sb;

}
return (sa, sb);

}

// get distance of two strings (indexed by a and b)
// after they are projected onto the first h − 1 axes
Function GetDistance(int a, int b, int h, Metric M)
{

A = t[a]; B = t[b]; // get strings
dist = M(A, B); // get original metric distance
for (i = 1 to h − 1) {

// get their difference on dimension i
w = coord[a,i] - coord[b,i];

dist =
√

|dist × dist − w × w|;
}
return (dist);

}

(b) Functions

Figure 1: Algorithm StringMap.

All the steps in the StringMap algorithm are linear on the number of stringsN . In particular, consider the
h-th step of the algorithm. A call to function GetDistance(.,.,h) takesO(h) time. Here we assume that it takes
O(1) time to computeM(a, b), andO(1) time to compute thedist value in each iteration. Therefore, for each
h value, it takes

O(h × 2 × m × N) (2)

time to find two pivot seeds, andO(h × N) time to compute the coordinates of all the strings in theh-th
dimension. The complexity of theh-th step is:

O(h × 2 × m × N + h × N) = O(h × m × N)

Thus the complexity of the StringMap algorithm is:

O(d2 × m × N)

Notice that a major cost in the algorithm is spent in functionChooseP ivot(). We can reduce the cost in the
function as follows. At each step in the function, we want to find a new string that is as far from a string (e.g.,
sa) as possible. Instead of scanning the wholeN strings, we can just do sampling to find a string that is very
far from sa. Or we can just stop once we find a string that is “far enough” fromsa, i.e., their distance is above
certain value. See [27] for an approximation algorithm for finding this pair efficiently.

8

3.2 Choosing Dimensionality d

A good dimensionality valued used in algorithm StringMap should have the property that after the mapping,
similar strings can be differentiated from those dissimilar ones. On the one hand, the dimensionalityd cannot
be too small, since otherwise those dissimilar pairs will not “fall apart” from each other. In particular, the
distances of similar-string pairs are too close to those of dissimilar ones. On the other hand,d cannot be too
high either. There are mainly two reasons. First, the complexity of the StringMap algorithm (see above) is
linear tod2. Second, since we need to do a similarity join in the second step, we want to avoid the curse of
dimensionality [4, 14]. In particular, asd increases, it becomes more time consuming to find object pairs whose
distance is within a new threshold. We choose a dimensionalityd as follows.

1. Select a set of string pairs from data setsR andS. (See Section 4.2 for details.) Use the nested-loop
approach to find all similar-string pairs within thresholdδ in the selected string pairs.

2. Run StringMap using differentd values. (Typicallyd is between5 and30.) For eachd, compute the new
distances of the similar-string pairs. Find their largest new distancew.

3. Find a dimensionalityd with a low cost:

cost =
of object pairs within distancew

of similar-string pairs
(3)

Intuitively, the cost is the average number of object pairs we need to retrieve in step 2 for each similar-
string pair, ifw is used as the new thresholdδ′ for selecting similar-object pairs in the mapped space.

Notice that we only use the pairs of selected strings to compute the cost. This value measures how well a
new thresholdδ′ = w differentiates the similar-string pairs from those dissimilar pairs. In particular, the string
pairs whose new distance is withinδ′ will be retrieved in step 2 and need to be pruned out by post checking
according to the merging rules. Thus the lower the cost is, relatively the fewer object pairs need to be retrieved
in step 2 whose original distance is more thanδ. Fig. 5 in Section 6.2 shows that typically a good dimensionality
value is between15 and25.

4 Step 2: Finding Similar-Object Pairs in Euclidean Space

In the second step, we find object pairs whose Euclidean distance is within a new thresholdδ′. For each
candidate pair, we check the distance of their original strings to see it is within the original thresholdδ. In this
section we study how to select the new threshold and how to do the similarity join.

4.1 Choosing New Threshold δ′

The selection of the new thresholdδ′ depends on the mapping function. For instance, we can setδ′ = δ if the
mapping function iscontractive [9]. That is, for any two stringsr ands, we have

M(r, s) ≤ M ′(r′, s′)

whereM(r, s) is their distance in the original metric space, andM′(r′, s′) is the new Euclidean distance of the
corresponding objectsr′ ands′ in the new space. In general, suppose there are two constantsc1, c2 ≥ 1, such
that for any two stringsr ands, we have:4

1
c1

· M(r, s) ≤ M ′(r′, s′) ≤ c2 · M(r, s)

4This equation measures thedistortion of the mapping [24].

9

Then we can just setδ′ = c2 · δ. Properties of different mapping functions are studied in [24].

Ideally, the thresholdδ′ should be set to a maximal value of the new distance between any two similar-string
pairs in the original space. Then it will guarantee no false dismissals. However, this maximal value could be
either too expensive to find (we do not want to have a nested-loop procedure), or the theoretical upper bound
could be too large. Since it is acceptable to miss a few pairs, we would like to choose a threshold such that
for most of the similar-string pairs, their new distances are within this threshold. As shown in our experimental
results, even though a theoretical upper bound could be large, most of the new distances could be within a much
smaller threshold.

In our approach to selecting the dimensionalityd, the thresholdw can be used to identify similar pairs in the
mapped space. Therefore, we can choose the thresholdδ′ as follows. We select a small number of string pairs
from data setsR andS. (See Section 4.2 for details.) Notice these selected strings might be different from those
used to decide the dimensionalityd in Section 3.2. We find all the similar-string pairs in these selected strings
pairs, and compute their new Euclidean distances after StringMap. We choose their maximal new distance as
the new thresholdδ′. We may do this sampling multiple times (on different sets of selected strings), and choose
δ′ as the maximal new distance of those similar-string pairs. By doing this sampling process for multiple times,
we increase the opportunity that the new thresholdδ′ cancapture the similar-string pairs as many as possible.

4.2 Selecting String Pairs via Sampling

In order to decide the dimensionalityd and the new thresholdδ′, we need to obtain a sample set of string pairs
from the two data setsR andS. The sample set should have enough string pairs whose original distances are
within δ. Now we consider several ways to choose the sample set.

• Double Random Sampling: We sample the stringsr ands randomly from R andS respectively, and find
similar string pairs from the sampled strings.

• Single Random Sampling: We sample a certain number of strings randomly from one data set, say,R.
For each of themr, we find similar stringss in S and produce pairs of(r, s).

• Sorted Sampling: We sort the strings inS lexicographically. We sample a certain number strings ran-
domly from R. For each of themr, we locate it in the sorted list ofS, and find its nearby, e.g.,100,
stringss. We produce pairs of(r, s).

We will show in Section 6 that Sorted Sampling produces the best new threshold among these methods. That
is, its estimated new threshold is the closest to the real new thresholdδ′. The reason is that the lexicographical
order ofS strings improves the chance for catching similar string pairs from.

4.3 Finding Object Pairs within δ′

We want to find all those object pairs whose new distance is within this new thresholdδ′. Similarity joins over
multidimensional spaces have been studied in [1, 7, 13, 30, 43, 32, 39, 45, 44]. Many algorithms can be used
in this step. In this paper we use a simplified version of the algorithm in [23] as an example. We could instead
have chosen any of those algorithms for our purpose. We chose the algorithm in [23] due to its simplicity and
availability of the code. This approach suffices for our purpose, since our intent is to establish a base line for
our approach of mapping record linkage into a similarity-join problem.

Here we will briefly explain the main idea of the algorithm. (See [23] for details.) We first build two R-trees
for the mapped objects of the two string sets, respectively. We traverse the two trees from the roots to the leaf

10

(R3, S3)

(R3, S5)

(R4, S5)

(R4, S4)

(R1, S2)

(R2, S1)

(R2, S2)R6

S2

S4

R3 R4

R2
R0

R4

R1

R3 R5

p1 p2 p3 p4

R5

p5 p6

R6

p7 p8

R7

S1

S6 S7

S7S4 S6

R7 S5

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

Queue

S3

S1 S2

S0

R1 R2

S3 S4

p9 p10

Figure 2: Finding similar-object pairs using R-trees.

nodes to find those pairs of objects within distanceδ′. As we do the traversal, a queue is used to store pairs of
nodes (internal nodes or leaf nodes) from the two trees.5 We only insert those node pairs that can potentially
yield object pairs that satisfy the condition. The lower bound of the distance between the node pairs must be
within the new thresholdδ′. Those node pairs that cannot produce results are pruned in the traversal, i.e., they
are never inserted back into the queue.

Take Fig. 2 as an example. Initially, a pair of the root nodes(R0, S0) is inserted into the queue. At each step,
we dequeue the head pair(Ri, Sj). If both nodes are internal nodes (i.e., hyper-rectangle regions), we consider
all the pairs of their children. For each pair(Ra, Sb), we compute their “distance,” which is alower bound of
all the distances of their child objects. (The case of a node-object pair is handled similarly.) For instance, we
can use the MINDIST function [41] to compute the distance between two nodes. Then we can prune node pairs
as follows: if the distance of a node pair is greater thanδ′, we do not insert this pair into the queue. The reason
is that the lower-bound property guarantees that these two nodes cannot generate object pairs whose distance is
within δ′. On the other hand, if the distance of two nodes is withinδ′, we insert this pair into the queue.

For instance, when we consider the two child nodes of each of the two root nodes in the figure, we have
four pairs:

(R1, S1), (R1, S2), (R2, S1), (R2, S2)

Suppose each of them has a MINDIST distance withinδ′, then we insert them into the queue. We remove the
pair (R1, S1) from the queue, and consider pairs of their child nodes:

(R3, S3), (R3, S4), (R3, S5), (R4, S3), (R4, S4), (R4, S5)

For each pair, we compute their MINDIST. If, for example, the distance betweenR3 andS4 is greater thanδ′,
we will not consider this pair, since they cannot generate object pairs that have a distance withinδ′. In other
words, all the pairs of their descendants are greater thanδ′.

Suppose only the following pairs have a MINDIST distance withinδ′:

(R3, S3), (R3, S5), (R4, S4), (R4, S5)

Then we insert these four pairs into the queue. The status of the queue is shown in the figure. Eventually we
have a pair ofobjects from the queue. Then we compute their Euclidean distance to check if it is withinδ′.
If so, we compute the metric distance of their original strings. We output this pair of strings if their metric
distance is within the original thresholdδ.

5Since we just want to find those object pairs whose distance is withinδ′, we donot need apriority queue. A priority queue based
on object-pair distances is necessary in [23], since they want to find the “all pair top-k” object pairs with the smallest distances.

11

4.4 Traversal Strategies

Different strategies can be used to traverse the two R-trees, such as depth first and breadth first. Our experiments
show that the depth-first traversal strategy has several advantages. These observations are consistent with those
in [23].

1. It can effectively reduce the queue size, since pairs of objects in the leaf nodes can be processed early,
and they can be dequeued from the queue. Thus the memory requirement of the algorithm tends to be
small. In our experiments, when each data set had about 27K strings, the breadth-first strategy required
about 1.2GB memory, while the depth-first strategy only requested about 30MB memory.

2. It also reduces the time that the first pair is output, since it can reach the leaf nodes more quickly than
the breadth-first strategy. If we use the breadth-first traversal strategy, we need to generate a very large
number of pairs before processing some pairs of leaf nodes.

5 Combining Multiple Attributes

So far we have studied the record-linkage problem for the single attribute case. In this section we discuss
how to join over multiple attributes efficiently where the merging rule is of the disjunctive normal form (DNF)
discussed in Section 2.2. We first study how a single disjunct (in the form of a conjunctive clause) can be
evaluated, then describe the more general case when the merging rule consists of multiple conjunctive clauses.

5.1 Single Conjunctive Clause

For a single conjunctive clause, we can process the most “selective” attribute to find the candidate pairs that
satisfy this conjunct condition, and then check other conjunct conditions. For instance, consider the following
clause.

∆j(title) ≤ 0.15 ∧ ∆e(name) ≤ 3 ∧ ∆e(year) ≤ 1 (QueryQ2)

We could first do a similarity search to find all the record pairs that satisfy the first condition,∆j(title) ≤ 0.15.
For each of the returned candidate pairs, we check if it satisfies the other two conditions on thename andyear
attributes. Alternatively, we can choose eithername or year to do the similarity join. Our experiments show that
the step of testing other attributes takes relatively much less time than the step of finding the candidate record
pairs, thus we mainly focus on the time of doing the similarity join that finds the candidate pairs. We can use
existing techniques on estimating the performance of spatial joins (e.g., [2, 26]), and choose the attribute that
takes the least time to do the corresponding similarity join. (This attribute is called themost selective attribute
for this conjunctive clause.) Notice that similarly to [21], we could also search along multiple attributes of the
conjunction to improve the recall. Since the mapping in Step 1 does not guarantee that all the relevant string
pairs will be found, using multiple attributes may improve recall. However, as will be shown in the experimental
section, since our strategy for single attributes is able to identify matching string pairs at a very high recall (over
99%), after doing a join based on the condition of one attribute, we can postprocess the candidate record pairs
by checking the remaining conditions. Thus the high-recall property can help to reduce the running time of a
conjunctive clause with multiple attributes.

5.2 Disjunctive Clauses

The problem becomes more challenging in the case of multiple conjunctive clauses. Take queryQ1 in Sec-
tion 2.2 as an example. We have at least the following different approaches to answering this query.

12

1. Approach A: Find all record pairs that satisfy the first conjunctive clause by doing a similarity search
using the conjunct∆j(title) ≤ 0.10. Find all record pairs satisfying the second conjunctive clause by
doing a similarity search using the conjunct∆e(name) ≤ 2. Take the union of these two sets of results.

2. Approach B: Do a similarity search to find record pairs that satisfy∆j(title) ≤ 0.15 in the second
conjunctive clause. These pairs also include all the pairs satisfying the first conjunctive clause, since
∆j(title) ≤ 0.10 implies ∆j(title) ≤ 0.15. Among all these pairs, find those satisfying the merging
rule.

Approach A needs to do two similarity searches, while approach B requires only one. However, both
similarity searches in approach A could be more selective than the single similarity search in approach B, thus
require less combined running time than approach B. Which approach is better depends on the data set.

The example shows that to answer a disjunct (in the form of a conjunctive clause), we can choose at most
one conjunct in it to do a similarity join. After we find the candidate pairs using similarity join over that
conjunct, we assume that we can get the answer for this disjunct for free because the step of testing other
attributes takes much much less time than the similarity join, as will be shown in experimental section. In
addition, once we choose a conjunctMj(Aj) ≤ δi,j to do a similarity join, we do not need to do a similarity
join for any other conjunctive clause that has a conjunctMj(Aj) ≤ δk,j, whereδk,j ≤ δi,j. The reason is that
a superset of the results for the conjunctMj(Aj) ≤ δk,j has been returned by the similarity search. As the
number of attributes and the number of conjunctive clauses increase, there could be an exponential number of
possible ways to answer the query.

Theorem 5.1 Assuming the time of doing a similarity search for each conjunct is given, the problem of finding
an optimal solution (i.e., a plan with a minimum total running time for the similarity joins) to answer the query
is NP-hard. �

Proof: We reduce the Vertex Cover problem [18] to our problem. Since the Vertex Cover problem isNP-
complete, our problem isNP-hard.

Given a graphG with n verticesV1, . . . , Vn, we construct a query onn attributes, withn conjunctsM1 ≤
δ1, . . . ,Mn ≤ δn, where eachδi is a nonzero constant. For all1 ≤ i ≤ j ≤ n, if Vi andVj are connected by
an edgeE in G, we construct a conjunctive clauseCE in the form ofMi ≤ δi ∧ Mj ≤ δj . If the graphG has
m edges, we get a merging rule withm conjunctive clauses, each of which has two conjuncts. Fig. 3(a) shows
a sample graphG with 5 vertices and6 edges, and Fig. 3(b) is the merging rule constructed fromG.

V1

V2

V5

V4

Graph G

E1

E2
E3

E4
E5

V3
E6

(a) Sample graphG.

M1 ≤ δ1 ∧ M2 ≤ δ2

∨ M2 ≤ δ2 ∧ M3 ≤ δ3

∨ M1 ≤ δ1 ∧ M4 ≤ δ4

∨ M3 ≤ δ3 ∧ M4 ≤ δ4

∨ M4 ≤ δ4 ∧ M5 ≤ δ5

∨ M2 ≤ δ2 ∧ M4 ≤ δ4

(b) Merging rule converted from the sample graphG.

Figure 3: Sample graph and the corresponding merging rule.

The above construction of the merging rule takes time that is polynomial in the size ofG. Now, we show
thatG has a vertex cover of sizek if and only if we can pickk different conjuncts in the merging rule to answer

13

the query, with the total cost ofk × C, whereC is the cost of doing one similarity search on a single conjunct.
Here all the conjuncts have the same cost to evaluate.

For the “only if” part, supposeG has a vertex coverS of sizek. For each vertexVi in S, we evaluate
one of theMi ≤ δi conjuncts. Since all the edges are covered by the vertices inS, all the conjunctive clauses
in the merging rule can be answered either by being evaluated, or by doing post-processing. The cost of this
evaluation plan isk × C.

For the “if” part, suppose there is a plan to answer the query, which picksk conjuncts to evaluate and has a
total cost ofk×C. Without loss of generality, let them beM1 ≤ δ1, . . . ,Mk ≤ δk. We pick the corresponding
V1, . . . , Vk to form a cover setS. For eachMi ≤ δi, we can do post-processing, and get the answers for all
the conjunctive clauses that containMi ≤ δi. Since the plan can compute the answers for all the conjunctive
clauses, the corresponding vertices must cover all the edges in the graphG. SoS is a vertex cover of graphG
with k vertices.

Notice the proof also shows that the problem of finding optimal solution to answer the query isNP-hard
in terms of the number ofdistinct conjuncts.

When the number of distinct conjuncts is small, we can exhaustively search among all the combinations of
the conjuncts to find an optimal plan. In the case where this number is large, we propose three heuristic-based
greedy algorithms for finding a good solution to evaluate a merging rule.

• Algorithm 1: Treat all the conjunctive clauses separately. For each of them, choose the most selective
attribute to do the corresponding similarity join. If we choose the same attributeAj in two conjunctive
clauses, and their corresponding thresholdsδi,j ≤ δk,j, then we only choose the thresholdδk,j to do the
similarity search for the second clause, saving one similarity search for the first clause. Take the union of
results of all conjunctive clauses.

• Algorithm 2: For each attribute, choose the largest threshold among all its conjuncts. Among all the
largest thresholds of different attributes, choose the most selective one to do a similarity join. Among the
results, find the record pairs that satisfy the merging rule.

• Algorithm 3: For each conjunct, we associate it with the cost as the running time required to evaluate the
conjunct, and the benefit as the number of conjunctive clauses it can cover. A conjunctMj(Aj) ≤ δi,j

covers those conjuncts on the same attribute with a threshold withinδi,j (including itself), and those
conjuncts in their conjunctive clauses. We greedily choose a conjunct with the largest “benefit/cost”
ratio, and add this conjunct to the plan. We remove the conjunct and its covered conjuncts, and repeat the
process until all the conjuncts are covered. (An alternative to define the benefit of a conjunct is to use the
total running time of the covered conjuncts.)

For instance, consider the queryQ1 in Section 2.2. Suppose Algorithm 1 chooses∆j(title) ≤ 0.10 as
the most selective condition for the first clause, and∆e(name) ≤ 2 for the second one. Thus it will produce
the approach A above. For Algorithm 2, the largest thresholds of the three attributestitle, name, andyear are
0.15, 4, and2, respectively. Suppose∆j(title) ≤ 0.15 is the most selective one. This algorithm will produce
approach B as the solution. In general, Algorithm 1 works better than Algorithm 2 if doing multiple similarity
searches with small thresholds is more efficient than one with a large threshold.

6 Experiments

In this section we present our extensive experimental results to evaluate our solution. The following are three
main sources we used.

14

1. Source 1 consists of54, 000 movie star names collected from The Internet Movie Database.6 The length
of each name varies from5 to 20, and their average length is about12.

2. Source 2 is from the Die Vorfahren Database, a database of mostly Pomeranian surnames and geographic
locations.7 The database as of 2001 contains of 133,101 full names that have appeared in theDie Pom-
merschen LeuteNewsletter, Die Vorfahren section over the 19.5 years of its publication. The lengths of
names are less than 40, and their mean length is around 15.

3. Source 3 is from the publications in DBLP.8 We randomly selected20, 000 papers in the proceedings.
We use this data source to show how to do data linkage in multiple-attribute cases. The lengths of titles
are less than300, and their mean length is around70. The lengths of author names are less than50, and
their mean length is around15. The published years range from1970 to 2002, with an average of1995.

For each dataset, we introduced about10% duplicate records by slightly modifying the values of randomly
selected records. The errors introduced to string values consisted of character insertions, deletions, and substi-
tutions. The errors for the numeric attributes were additions and subtractions to their numeric values.

All the experiments were run on a PC, with a 1.5GHz Athlon CPU and 512MB memory. The operating
system is Windows 2000, and the compiler is gnu C++ running in cygwin. We used8, 192 as the page size to
build R-trees. Most of our experimental results are similar for three sources.

6.1 Nested-Loop and Our Approach

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30 35

tim
e

(s
ec

)

total # of strings in two data sets (K)

Nested-loop
Our approach

Figure 4: Comparing nested-loop with our approach.

Fig. 4 shows the performance difference of the nested-loop approach and our approach. We selected subsets
of strings from Source 1, and let both sets have the same number of strings. In our approach we used the edit
distance as the distance function, and chose threshold∆e = 2, dimensionalityd = 20, and new threshold
δ′ = 6.3. Thex-axis is thetotal number of strings from both sets. They-axis is the running time in seconds. The
figure shows that our approach can substantially reduce the time of finding similar-string pairs. For instance,
when each data set had16, 000 strings, it took the nested-loop approach about19, 200 seconds (5 hours20
minutes), while it took our approach only about1, 000 seconds (less than17 minutes).

6http://www.imdb.com/

7http://feefhs.org/dpl/dv/indexdv.html

8http://www.informatik.uni-trier.de/∼ley/db/index.html

15

6.2 Choosing Dimensionality d

As discussed in Section 3.2, we need to choose a good dimensionalityd for the StringMap algorithm. We used
Source 1 as an example. To select ad value, we randomly sampled2, 000 strings fromR. For each of them, we
located its lexicographical position inS, and paired it with the nearby100 strings. We used the sampled string
pairs to measure the “cost” of differentd values (Section 3.2). For edit distance, we considered the case where
δ = 1, 2, and3. For the Jaccard metric, we consideredδ = 0.1 and0.15.

0

500

1000

1500

2000

2500

3000

3500

10 15 20 25 30

C
o

st

Dimensionality d

Effect of different dimensionalities

δ = 1
δ = 2
δ = 3

(a) Edit Distance

0

50

100

150

200

250

300

350

400

10 15 20 25 30
C

o
st

Dimensionality d

Effect of different dimensionalities

δ = 0.1
δ = 0.15

(b) Jaccard Distance

Figure 5: Costs of different dimensionalities.

Fig. 5(a) and (b) show costs for different dimensionalities for edit distance and Jaccard distance, respec-
tively. (See Section 3.2 for the definition of “cost.”) It is clear that the cost decreased with the increase of the
dimensionality. That is, the larger the dimensionality is, the fewer extra object pairs we need to retrieve in step
2 for each similar-string pair, while the original strings of these objects have a distance greater thanδ. On the
other hand, due to the complexity of StringMap and the curse of dimensionality,d cannot be high either. The
results show thatd = 20 is a good dimensionality for both metrics.

Fig. 6 shows the distributions of the object-pair distances after StringMap, for the edit-distance metric. We
constructed the sample set from Source 1. We choseδ = 2 for similar-string pairs, and setd = 10, 20, and30,
respectively. The figures show that after StringMap, there is a new threshold to differentiate similar pairs from
most dissimilar pairs. In particular, all the sampled similar-string pairs had new object-pair distances within5.5,
while most of dissimilar-string pairs had their object-pair distances larger than5.5 in the case whend = 20.
Figures for other two dimensionalities exhibit the similar existence of such a new threshold.

Fig. 7(a) and (b) show the distributions of the object-pair distances after StringMap, for the Jaccard distance
metric. We choseδ = 0.2 for similar-string pairs, and setd = 20. We have the similar observations as for the
edit-distance metric. In particular, the new distances of all the similar-string pairs are within0.2.

6.3 Choosing Threshold δ′

As discussed in Section 4.1, we selected the new thresholdδ′ for the second step as follows. We constructed the
sample set as described in Section 4.2. We ran StringMap withd = 20, and traced the new Euclidean distances
of these sampled similar-string pairs. We did this sampling10 times, and choseδ′ as the largest new object-
pair distance of the sampled similar-string pairs. We evaluated the three sampling approaches, and compared

16

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

5

6

7

Euclidean Distance

N
um

be
r o

f P
ai

rs

Histogram for the Similar Pairs

 d=10

(a) Similar pairs(d=10)

1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

1

2

3

4

5

6

7

8

Euclidean Distance

N
um

be
r o

f P
ai

rs

Histogram for Similar Pairs

d=20

(b) Similar pairs(d=20)

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

10

N
um

be
r o

f P
ai

rs

Euclidean Distance

Histogram for Similar Pairs

d=30

(c) Similar pairs(d=30)

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

Euclidean Distance

N
um

be
r o

f P
ai

rs

Histogram for the Dissimilar Pairs

d=10

New
Threshold

(d) Dissimilar pairs(d=10)

0 5 10 15 20 25 30
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Euclidean Distance

N
um

be
r o

f P
ai

rs

Histogram for Dissimilar Pairs

d=20

New
Threshold

(e) Dissimilar pairs(d=20)

0 5 10 15 20 25 30
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Euclidean Distance

N
um

be
r o

f P
ai

rs

Histogram for Dissimilar Pairs

d=30

New Threshold

(f) Dissimilar pairs(d=30)

Figure 6: Histograms of new Euclidean distances for differentd’s: edit distance,δ = 2.

them against the realδ′ obtained by the nested-loop approach, which is the largest Euclidean distance of the
similar string pairs. Table 2 shows the results. Among the three approaches, Sorted Sampling produced the new
threshold that is closest to the realδ′. Thus we used Sorted Sampling in other experiments.

Table 2: Comparison of different sampling methods

Data Source Original Threshold DoubleRandom SingleRandom SortedRandom Real New Threshold
Source 1 δ = 2 5.8 5.9 6.3 6.6

δ = 3 6.3 6.7 7.3 7.7
Source 2 δ = 2 6.8 6.9 7.2 7.4

δ = 3 8.6 9.1 9.3 10.0

Table 3 shows theδ′ values used in step 2 for two different metrics. Notice that when we are using the
edit-distance metric, since the two sources have different strings with different length distributions, it is not
surprising that theirδ′ values from the sampling step are different. For the Jaccard metric, we setδ′ = 0.2 for
both data sources 1 and 2.

6.4 Running Time

In order to measure the performance of our approach, we ran our algorithm on different data sizes. In each case,
we chose the same number of strings in both data sets. We chose dimensionalityd = 20, and let the total size
of strings for Source 1 vary from2, 000 to 54, 000. We measured the corresponding running time forδ = 1, 2,

17

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

10

20

30

40

50

60

70
Histogram for Similar Pairs

QGram Distance

N
um

be
r o

f P
ai

rs

d=20

(a) Similar pairs (b) Dissimilar pairs

Figure 7: Histograms of new Euclidean distances: Jaccard distance,δ = 0.2, d = 20.

Table 3: Thresholdδ′ used in step 2 (d = 20).

edit distanceδ = 1 edit distanceδ = 2 edit distanceδ = 3 Jaccard distanceδ = 0.2
δ′ (Source 1) 4.5 6.3 7.5 0.2
δ′ (Source 2) 5.36 7.3 9.6 0.2

and3 for the edit distance metric andδ = 0.2 for the Jaccard metric.

Fig. 8(a)-(c) show the time of the complete two-step algorithm, and the time of the StringMap step, as-
suming we use the edit-distance metric. Their gap is the time of the second step that did the R-tree similarity
join. The figures show that as the data sizes increased, both the StringMap time and the total time grew. Our
approach is shown to be very efficient and scalable. For instance, when the total number of strings is54, 000,
it took the approach only41 minutes to find the similar-string pairs, while it look almost one week for the
nested-loop approach to finish. The figures also indicate that other similarity-join techniques may be used in
the second step to improve its performance. Fig. 8 (d) shows the times if we used the Jaccard distance. The
times are similar to those of the edit distance.

6.5 Time versus Threshold δ′

Fig. 9(a) and (b) illustrate how the execution time grew as the thresholdδ′ increased. We used the full string
sets from Source 1 and Source 2, setd = 20, δ = 2, and letδ′ vary. The figures show that the time did not
increase too rapidly when we increased the threshold. Therefore, to make sure we achieve a very high recall, it
is desirable to choose a slightly larger threshold if possible.

6.6 Comparison with the Approach in [20]

In the case where the edit-distance metric is used, the approach in [20] can be used to find all the string pairs
whose edit distance is within a given threshold. Its main idea is to convert the strings to q-grams stored in
a relational DBMS, then run a sophisticated SQL query to find all similar-string pairs. We implemented this
approach using Oracle 8.1.7 on the same PC, and let the database use indexes to run the SQL query. We selected
subsets of strings from Source 1, and let both sets have the same number of strings. In our approach we chose
thresholdδ = 2, dimensionalityd = 20, and new thresholdδ′ = 6.3. Fig. 10 shows the performance difference
between these two approaches. The figure shows that our approach can substantially reduce the time of finding

18

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60

tim
e
 (

se
c)

total # of strings in 2 data sets (K)

Running time for for different sizes of datasets (k=1)

Total Time
Time for StringMap

(a) Edit distanceδ = 1

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60

tim
e
 (

se
c)

total # of strings in 2 data sets (K)

Running time for different sizes of datasets (k=2)

Total Time
Time for StringMap

(b) Edit distanceδ = 2

0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30 40 50 60

tim
e
 (

se
c)

total # of strings in 2 data sets (K)

Running time for different sizes of datasets (k=3)

Total Time
Time for StringMap

(c) Edit distanceδ = 3

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60

tim
e
 (

se
c)

total # of strings in 2 data sets (K)

Running time for different sizes of datasets (δ=0.15)

Total Time
Time for StringMap

(d) Jaccard distanceδ = 0.2

Figure 8: Running time (d=20).

similar-string pairs. Notice that even though our approach cannot guarantee to find all such pairs, which can be
achieved by the approach in [20], as we will see shortly, our approach has a very high recall.

Our approach has several advantages in the context of the record-linkage problem. First, the distance metrics
used at individual attributes might not be edit distance. As argued earlier, domain-specific methods work better
in identifying similar records. Furthermore, the algorithm in [20] is geared towards finding all the string pairs
that are within a fixed edit-distance threshold. Since the record-linkage problem, by definition, is based on
approximate matching, solutions that might miss some such pairs (say those that obtain around 99% recall) but
result in significant time savings might be more preferable. In addition, the implementation of the q-gram-based
approach inside a database might be less efficient than a direct implementation using other languages (e.g., the
C language).

6.7 Recall

We want to know how well our approach can find all the similar-string pairs. (Ideally we want to find all of
them!) In particular, we are interested in the recall, i.e., ratio of similar-string pairs found among all similar-
string pairs.

Fig. 11(a) shows the recall of our approach on data source 1, with different thresholdδ′ values in the second
step, using the edit-distance metric. In order to measure the recall, we first used the nested-loop approach to get
all the matching record pairs. We then ran our approaches, and compared the result with all the matching pairs.
As theδ′ value increased, the recall also increased, and it quickly got very close to100%. For instance, in the
case whereδ = 2, the recall reached99% whenδ′ = 5.6. When we further increased the threshold, the recall

19

1500

2000

2500

3000

3500

5 5.2 5.4 5.6 5.8 6

T
im

e
 (

s)

Threshold δ’ in step 2

Running time vs δ’

Source 1

(a) Source 1

10000

10500

11000

11500

12000

12500

13000

13500

14000

14500

15000

5 5.5 6 6.5 7

T
im

e
 (

s)

Threshold δ’ in step 2

Running time vs δ’

Source 2

(b) Source 2

Figure 9: Time versus thresholdδ′.

0

10000

20000

30000

40000

50000

60000

0 5 10 15 20 25 30 35 40

tim
e

(s
ec

)

total # of strings in two data sets (K)

QGram Approach
Our Approach

Figure 10: Our approach (approximate search) versus the q-gram approach in [20] (exact search).

continued to grow close to100%. Fig. 11(b) shows similar recall results when we used the Jaccard distance on
data source 1. Fig. 12 shows the similar trend for data source 2 when the edit-distance metric was used.

We also implemented the sliding-window approach in [22]. Without loss of generality, we used attributes as
keys in the sliding-window approach, and the condition is∆e(name) ≤ 2 for data source 1. We chose different
window sizes, and measure the time and recall for each of them.

Fig. 13 shows the recall and the time for these two approaches. It shows that our approach can achieve
a very high recall given a time limit. The primary reason is that our mapping function provides very good
distance/similarity preservation. Since lexicographic ordering does not preserve edit distances as well, the
approach discussed in [22] needs to consider a very large window size (and hence cost) to obtain competitive
degree of recall, or choose different keys to run the sliding-window algorithm multiple times.

We also examined the effectiveness of our two-step approach on eliminating dissimilar string pairs. Fig. 14
shows the results on data source 1 using edit distance metric. It shows the cross-product size, the number of
pairs after the similarity join, and the number of similar pairs, forδ = 1, 2, and3. (Our results on Jaccard
coefficient metric were even better.) Notice that they-axis has a log scale (in thousands). The results showed
that our two-step approach can effectively eliminate dissimilar pairs. For instance, whenδ = 2, the approach
only returned less than0.2% of the cross-product size. This ratio remained low for different edit distances. The
postprocessing step took about80 seconds, while the total running time was about2, 500 seconds. Thus the
postprocessing time was relatively small compared to the total running time.

20

80

85

90

95

100

105

110

3 4 5 6 7

R
e
ca

ll
(%

)

Threshold δ in step 2

Recall for Source1

δ=1
δ=2
δ=3

(a) Edit Distance

60

65

70

75

80

85

90

95

100

105

110

0.05 0.1 0.15 0.2 0.25

R
e
ca

ll
(%

)

Threshold δ in step 2

Recall for Source1

δ=0.15
δ=0.20
δ=0.25

(b) Jaccard distance

Figure 11: Recall versus thresholdδ′ for Source1, (d = 20).

80

85

90

95

100

105

110

5 6 7 8 9 10

R
ec

al
l (

%
)

Threshold δ in step 2

Recall for Source2

δ=1
δ=2
δ=3

Figure 12: Recall versus thresholdδ′ for Source2, (edit distance,d = 20).

6.8 Results on Multiple Attributes

Now we report our experimental results for the multiple-attribute case. We report our results on data source 3.

Single Conjunctive Clause

We evaluated the single conjunctive queryQ2 in Section 5.1. There are three attributes to perform a similarity
join: title, name, andyear. Our experimental results showed that the attributeyear is not very selective in a
similarity join, and many candidate pairs were generated. Thus we mainly reported the results of similarity
joins using attributestitle andname.

Table 4: Results of similarity join using different attributes.

Similarity-join Attribute Time (sec) Final Result Size (# of similar-record pairs)
∆j(title) ≤ 0.15 1, 543 702
∆e(name) ≤ 3 1, 140 700

Table 4 gives the results. It is shown that for the thresholds in the query, doing a similarity join onname is
more efficient than ontitle. Notice that the result size is different for these two similarity searches, since both
of them are approximate. The small difference (only two pairs) between them again shows that our approach
has a very high recall (more than 99%).

21

80

85

90

95

100

105

110

2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

R
ec

al
l (

%
)

Running time (sec)

Time vs. Recall Comparison of two approaches for Source 1

Our approach
Sliding-window approach

Figure 13: Our approach versus the sliding-window approach in [21].

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

delta = 3delta = 2delta = 1

of

 p
ai

rs
 (

in
 th

ou
sa

nd
s)

Total possible pairs
Generated pairs before postprocessing

Real matching pairs

Figure 14: Candidate set size after the two steps.

Disjunctive Normal Form

We used the queryQ1 in Section 2.2 as an example disjunctive normal form. We implemented the four algo-
rithms (including exhaustive search) described in Section 5.2. We measured the running time for each conjunct
in the merging rule. Our experiments showed that many record pairs were returned if we first processed the
condition ∆e(year) ≤ 1 (4, 587, 937 pairs) or condition∆e(year) ≤ 2 (13, 371, 074 pairs), and the post-
processing time was substantially larger than those of the similarity joins on the other two attributes. In ad-
dition, the post-processing time for the conjuncts of the other two attributes was very short compared to the
similarity-join times. Thus an optimal plan did not use ayear condition to do a join first, neither did the three
algorithms. Here we mainly report the results on the other two attributes. Table 5 shows the numbers.

Table 5: Running times for conjuncts in merging ruleQ1.

∆j(title) ≤ 0.10: 1, 040 secs ∆e(name) ≤ 4: 1, 780 secs
∆j(title) ≤ 0.15: 1, 543 secs ∆e(name) ≤ 2: 710 secs

Table 6 shows the results for different algorithms. Among all the possible plans, the exhaustive search
algorithm found an optimal plan, which chose∆j(title) ≤ 0.15 from Clause 2 to perform the join. This plan
required1, 743 seconds and produced619 pairs.

For Algorithm 1 that produces approach A, we chose the conjunct∆j(title) ≤ 0.10 to do the similarity
search for the first clause, and conjunct∆e(name) ≤ 2 for the second one. After getting the result pairs for
each clause, we took a union of the two sets and produced the final result. The total time for approach A was
1, 820 seconds, and the size of the final result set was619 pairs. Notice that the results of the two clauses had
overlapped record pairs, explaining why619 is not the summation of406 and518. The recall of this approach

22

is more than 99%.

Table 6: Different algorithms for a disjunctive normal form.

Algorithms Selected Condition(s) Time (sec) Number of Pairs Total Time (sec) Total Pairs
Exhaustive Search Clause 2,∆j(title) ≤ 0.15 1, 743 619 1, 743 619

Algorithm 1 Clause 1,∆j(title) ≤ 0.10 1, 060 406 1, 820 619
Clause 2,∆e(name) ≤ 2 760 518

Algorithm 2 Clause 2,∆j(title) ≤ 0.15 1, 743 619 1, 743 619
Algorithm 3 Clause 2,∆e(name) ≤ 2 760 518 1, 820 619

Clause 1,∆j(title) ≤ 0.10 1, 060 406

For Algorithm 2 that produces approach B, we found that∆j(title) ≤ 0.15 was the most selective conjunct,
using which we performed the similarity join. The total time for approach B was1, 743 seconds, and the size
of the final result set was also619 pairs. This plan happened to be the optimal plan.

For Algorithm 3, we first chose the conjunct∆e(name) ≤ 2 from Clause 2 since it has the highest bene-
fit/cost ratio. (Its benefit is 3, since it can cover three conjuncts (including itself). Its cost is710 seconds.) Then
we selected∆j(title) ≤ 0.10 from Clause 1 to cover the remaining conjuncts. This plan happened to be the
same as that of Algorithm 1. Notice that if we use the total running time of the covered conjuncts as the benefit
of a conjunct, then this algorithm will produce the optimal plan.

In general, Algorithm 1 produces a solution that tries to minimize the time of each individual similarity join,
which tends to produce a small candidate set. Algorithm 2 produces a solution that needs to perform a similarity
join only once for all the clauses. It may need more time for the single similarity join, since the threshold could
be large. The remaining time is spent on postprocessing the candidate record pairs. Algorithm 3 does a more
sophisticated search by greedily choosing efficient conjuncts that can cover many other conjuncts.

7 Conclusion

In this paper we developed a novel approach to the record-linkage problem: given two lists of records, we
want to find similar record pairs, where the overall similarity between two records is defined based on domain-
specific similarities over individual attributes. For each attribute of the records, we first map records to a
multidimensional Euclidean space that preserves domain-specific similarity. Given the merging rule that defines
when two records are similar, a set of attributes are chosen along which the merge process will proceed. A
multidimensional similarity join over the chosen attributes is performed to determine similar pairs of records.
Our extensive experiments using real data sets showed that our solution has very good efficiency and recall. In
addition, our approach is very extendable, since many existing mapping and join techniques can be used, many
similarity functions between attributes can be supported.

References

[1] K. Alsabti, S. Ranka, and V. Singh. An efficient parallel algorithm for high dimensional similarity join. InIPPS:
11th International Parallel Processing Symposium. IEEE Computer Society Press, 1998.

[2] P. M. Aoki. Algorithms for index-assisted selectivity estimation. InICDE, page 258, 1999.
[3] R. Baeza-Yates and B. Ribeiro-Neto.Modern Information Retrieval. Addison Wesley, 1999.
[4] R. E. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University Press, Princeton, New Jersey,

U.S.A., 1961.
[5] M. Bilenko and R. J. Mooney. Learning to combine trained distance metrics for duplicate detection in databases.

Technical report, Technical report, Computer Science Dept., University of Texas, Austin, 2002.

23

[6] J. Bourgain. On lipschitz embedding of finite metric spaces in hilbert space.Israel Journal of Mathematics, 52(1-
2):46–52, 1985.

[7] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient processing of spatial joins using r-trees. InSIGMOD, pages
237–246, 1993.

[8] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust and efficient fuzzy match for online data cleaning. In
SIGMOD, 2003.

[9] E. Chvez, G. Navarro, R. Baeza-Yates, and J. L. Marroqułn. Proximity searching in metric spaces.ACM Computing
Surveys, 33(3):273–321, Sept. 2001.

[10] W. W. Cohen, H. A. Kautz, and D. A. McAllester. Hardening soft information sources. InKnowledge Discovery
and Data Mining, pages 255–259, 2000.

[11] W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A comparison of string distance metrics for name-matching tasks.
In Workshop on Information Integration on the Web, 2003.

[12] G. Cormode and S. Muthukrishnan. The string edit distance matching problem with moves. Technical report,
Rutgers Univ., 2001.

[13] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopoulos. Closest pair queries in spatial databases. In
SIGMOD, pages 189–200, 2000.

[14] V. C. (Editor) and L. D. B. (Editor).Image Databases: Search and Retrieval of Digital Imagery. John Wiley and
Sons, 2001.

[15] M. G. Elfeky, V. S. Verykios, and A. K. Elmagarmid. Tailor: A record linkage toolbox. InICDE, 2002.
[16] C. Faloutsos and K.-I. Lin. Fastmap: A fast algorithm for indexing, data-mining and visualization of traditional and

multimedia datasets. In M. J. Carey and D. A. Schneider, editors,SIGMOD, pages 163–174, 1995.
[17] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A. Saita. Declarative data cleaning: Language, model, and

algorithms. InVLDB, pages 371–380, 2001.
[18] M. R. Garey and D. S. Johnson.Computers and Intractability, a Guide to the Theory of NP-Completeness. W. H.

Freeman and Company, 1991.
[19] J. C. Gower and P. Legendre. Metric and euclidean properties of dissimilarity coefficients.Journal of Classification,

3:5–48, 1986.
[20] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan, and D. Srivastava. Approximate string

joins in a database (almost) for free. InVLDB, pages 491–500, 2001.
[21] M. A. Hernández and S. J. Stolfo. The merge/purge problem for large databases. In M. J. Carey and D. A. Schneider,

editors,SIGMOD, pages 127–138, 1995.
[22] M. A. Hernández and S. J. Stolfo. An incremental merge/purge procedure. Technical report, University of Illinois,

2000.
[23] G. R. Hjaltason and H. Samet. Incremental distance join algorithms for spatial databases. In L. M. Haas and

A. Tiwary, editors,SIGMOD, pages 237–248, 1998.
[24] G. R. Hjaltason and H. Samet. Contractive embedding methods for similarity searching in metric spaces. Technical

report, University of Maryland Computer Science, 2000.
[25] G. Hristescu and M. Farach-Colton. Cluster-preserving embedding of proteins. Technical Report 99-50, Rutgers

Univ., 8 1999.
[26] Y.-W. Huang, N. Jing, and E. A. Rundensteiner. A cost model for estimating the performance of spatial joins using

r-trees. InStatistical and Scientific Database Management, pages 30–38, 1997.
[27] P. Indyk. Sublinear time algorithms for metric space problems. InSTOC, pages 428–434, 1999.
[28] L. Jin, C. Li, and S. Mehrotra. Efficient record linkage in large data sets. InEighth International Conference on

Database Systems for Advanced Applications (DASFAA ’03), Kyoto, Japan, 2003.
[29] J. Kamps. Exploiting keyword structure for domain-specific retrieval. InCross Language Evaluation Forum, 2002.
[30] N. Koudas and K. C. Sevcik. Size separation spatial join. InSIGMOD, pages 324–335, 1997.
[31] J. B. Kruskal and M. Wish.Multidimensional Scaling. Sage Piblications, Beverly Hills, CA, 1978.
[32] K. Kukich. Techniques for automatically correcting words in text.ACM Computing Surveys, 24(4):377–439, 1992.
[33] M. Lay. Dblp bibliography.
[34] M.-L. Lee, T. W. Ling, and W. L. Low. Intelliclean: a knowledge-based intelligent data cleaner. InKnowledge

Discovery and Data Mining, pages 290–294, 2000.
[35] M.-L. Lee, T. W. Ling, H. Lu, and Y. T. Ko. Cleansing data for mining and warehousing. InDatabase and Expert

Systems Applications, pages 751–760, 1999.
[36] M.-L. Lee, T. W. Ling, H. Lu, and Y. T. Ko. Cleansing data for mining and warehousing. InDEXA, pages 751–760,

1999.
[37] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals.Soviet Physics Doklady,

10:707–710, 1966.

24

[38] D. Loshin. Value added data: merge ahead.Intelligent Enterprise, 3(3), 2000.
[39] N. Mamoulis and D. Papadias. Integration of spatial join algorithms for processing multiple inputs. InSIGMOD,

pages 1–12, 1999.
[40] V. Raman and J. M. Hellerstein. Potter’s wheel: An interactive data cleaning system. InThe VLDB Journal, pages

381–390, 2001.
[41] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. InSIGMOD, pages 71–79, 1995.
[42] S. Sarawagi, A. Bhamidipaty, A. Kirpal, and C. Mouli. Alias: An active learning led interactive deduplication

system. InProc. of the 28th Int’l Conference on Very Large Databases (VLDB) (Demonstration session), Hongkong,
August 2002.

[43] K. C. Sevcik and N. Koudas. High dimensional similarity joins: Algorithms and performance evaluation.TKDE,
12(1):3–18, 2000.

[44] K. Shim, R. Srikant, and R. Agrawal. High-dimensional similarity joins. InICDE, pages 301–311, 1997.
[45] H. Shin, B. Moon, and S. Lee. Adaptive multi-stage distance join processing. InSIGMOD, pages 343–354, 2000.
[46] T. Shinohara, J. An, and H. Ishizaka. Approximate retrieval of high-dimensional data with L1 metric by spatial

indexing.Journal of New Generation Computer, 18(1):39–47, 2000.
[47] J. T.-L. Wang, X. Wang, K.-I. Lin, D. Shasha, B. A. Shapiro, and K. Zhang. Evaluating a class of distance-mapping

algorithms for data mining and clustering. InKnowledge Discovery and Data Mining, pages 307–311, 1999.
[48] W. Winkler. Advanced methods for record linkage. Technical report, Statistical Research Division, Washington,

DC: U.S. Bureau of the Census., 1994.
[49] P. N. Yianilos and K. G. Kanzelberger. TheLIKEIT intelligent string comparison facility. Technical report, NEC

Research Institute, 1997.
[50] F. W. Young and R. M. Hamer.Multidimensional Scaling: History. Theory and Applications Erlbaum, New York,

1987.

25

