arXiv:1110.2890v1 [cs.DB] 13 Oct 2011

ELCA Evaluation for Keyword Search on Probabilistic XML
Data

Rui Zhou
Faculty of Information and Communication
Technologies
Swinburne University of Technology
Melbourne, VIC 3122, Australia
rzhou@swin.edu.au

Jianxin Li
Faculty of Information and Communication
Technologies
Swinburne University of Technology
Melbourne, VIC 3122, Australia
jlanxinli@swin.edu.au

ABSTRACT

As probabilistic data management is becoming one of the neain
search focuses and keyword search is turning into a morelggopu
query means, it is natural to think how to support keywordrigse
on probabilistic XML data. With regards to keyword query @ d
terministic XML documents, ELCA (Exclusive Lowest Common
Ancestor) semantics allows more relevant fragments roatete
ELCAs to appear as results and is more popular compared with
other keyword query result semantics (such as SLCAS).

In this paper, we investigate how to evaluate ELCA results fo
keyword queries on probabilistic XML documents. After defin
ing probabilistic ELCA semantics in terms of possible woskt
mantics, we propose an approach to compute ELCA probaisiliti
without generating possible worlds. Then we develop anieifftc
stack-based algorithm that can find all probabilistic EL@&ults
and their ELCA probabilities for a given keyword query on algr
abilistic XML document. Finally, we experimentally evataghe
proposed ELCA algorithm and compare it with its SLCA counter
part in aspects of result effectiveness, time and spacéesgitig, and
scalability.

1. INTRODUCTION

Uncertain data management is currently one of the mainrefsea
focuses in database community. Uncertain data may be dedera
by different reasons, such as limited observation equipmen
supervised data integration, conflicting feedbacks. Megeaun-
certainty itself is inherent in nature. This drives the t@ckans to
face the reality and develop specific database solutionshyace
the uncertain world. In many web applications, such as méor
tion extraction, a lot of uncertain data are automaticaéiperated

Permission to make digital or hard copies of all or part o tvork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Chengfei Liu
Faculty of Information and Communication
Technologies
Swinburne University of Technology
Melbourne, VIC 3122, Australia
cliu@swin.edu.au

Jeffrey Xu Yu
Department of Systems Engineering &
Engineering Management
The Chinese University of Hong Kong
Hong Kong, China

yu@se.cuhk.edu.hk

by crawlers or mining systems, and most of the time they ama fr
tree-like raw data. In consequence, it is natural to orgatitie
extracted information in a semi-structured way with praliéds
attached showing the confidence for the collected informnatin
addition, dependencies between extracted informatiobeaasily
captured by parent-child relationship in a tree-like XMlcdment.
As a result, research on probabilistic XML data managensex-
tensively under way.

Many probabilistic models [1)2] B8] 4,[5,[€, 7] have been psejo
to describe probabilistic XML data. The expressivenessvéen
different models is discussed inl [7]. Beyond the above, yjogr
probabilistic XML data to retrieve useful information is efual
importance. Current studies mainly focused on twig qudBEs,
10], with little light [11] shed on keyword queries on prollah
tic XML data. However, support for keyword search is impotta
and promising, because users will be relieved from learnormg-
plex query languages (such as XPath, XQuery) and are nateequ
to know the schema of the probabilistic XML document. A user
only needs to submit a few keywords and the system will auto-
matically find some suitable fragments from the probalidlixtML
document.

There has been established works on keyword search over dete
ministic XML data. One of the most popular semantics to model
keyword query results on an deterministic XML document & th
ELCA (Exclusive Lowest Common Ancestor) semant(cs [12, 13,
14]. We introduce the ELCA semantics using an example. Forma
definitions will be introduced in Sectidd 2. F[g. 1(a) showsos-
dinary XML tree. Nodes{a1,a2,as} directly contain keyword
a, and nodes{b, bz, b3, bs} directly contain keyworch. Node
{z1, 2,24} are considered as ELCAs of keywordsaandb. An
ELCA is firstly an LCA, and after excluding all its children wh
contain all keywords, the LCA still contains all the keywsrdNode
x2 IS an ELCA, because after excluding which contains all the
keyword, z» still has its own contributora; andb,. Nodexs is
not an ELCA, because after excluding, =3 only covers keyword
b. Nodesz; andz4 are also ELCAs, because they contain both
keywords. No children of:; or x4 contain all the keywords, so
no need to exclude any child fromy or z4. Another popular se-
mantics is SLCA (Smallest LCA) semantic¢s [15] 16]. It asks fo
the LCAs that are not ancestors of other LCAs. For exampléeno
x1 andz4 are SLCAs on the tree, but; is not, because it is an

http://arxiv.org/abs/1110.2890v1

r

r |
IND1

o,gy \0.9

X2 X3 X2 X3
ZIN NN /TN NN
ai X1 b2 X4 ba ai X1 b2 X4 ba
/ \ / \ IN‘DZ MLXl
az b1 a3 b3 0.6/ \3.7 0.2/ \0.7
az b1 as b3

(a) (b)

Figure1: Examples of ELCAsand A Probabilistic XML Tree

ancestor ofcq. It is not difficult to see that the ELCA result is a
superset of the SLCA result, so the ELCA semantics can peovid
more interesting information to users. This motivates usttaly
the ELCA semantics, and particularly on a new type of databpr
abilistic XML data. Note that although SLCA semantics isistd

on probabilistic XML data in[[11], the solution cannot be dige

solve ELCA semantics, as readers may notice that the ELCA se-

mantics is indeed more complex than the SLCA semantics.

On a probabilistic XML document, nodes may appear or not,

each possible world, and combine the result finally. Howatés
obvious that this method is infeasible, because the coripoteost
is too high, since the number of possible worlds is expoaéntihe
challenge is how to evaluate the ELCA probability of a nodegis
only the p-document without generating possible worlds iflea
of our approach is to evaluate the ELCA probabilities in &diot
up manner.
We summarize the contributions of this paper as follows:

e Tothe best of our knowledge, this is the first work that stedie
ELCA semantics on probabilistic XML data.

e \We have defined probabilistic ELCA semantics for keyword
search on probabilistic XML documents. We have proposed
an approach on how to evaluate ELCA probabilities without
generating possible world and have designed a stack-based
algorithm, PrELCA algorithm, to find the probabilistic EL-
CAs and their probabilities.

e We have conducted extensive experiments to test the result
effectiveness, time and space efficiency, scalability ef th
PrELCA algorithm.

The rest of this paper is organized as follows. In Sedfion&, w
introduce ELCA semantics on a deterministic XML documert an
define probabilistic ELCA semantics on a probabilistic XMacd

accordingly a node is (usually) not certain to be an ELCA. As a ument. In Sectiohl3, we propose how to compute ELCA probabili
result, we want to find not only those possible ELCA nodes, but ties on a probabilistic XML document without generating sibke

also their ELCA probabilities. Before we point out the corgsu
tion challenge, we briefly introduce the probabilistic XMLodel
used throughout this paper. We consider a popular probtbili
XML model, PrXML{™dmu=} 2] [17], where a probabilistic XML
document (also called p-document) is regarded as a treetwith
types of nodes:ordinary nodesand distributional nodes Ordi-
nary nodes store the actual data and distributional nodasedée
probability distribution for the child nodes. There are tiypes of
distributional nodes: IND and MUX. IND means the child nodes

worlds. An algorithm, PrELCA, is introduced in Sectignh 4 tc e
plain how to put the conceptual idea in Sectidn 3 into procaidu
computation steps. We report the experiment results ini@gbt
Related works and Conclusion are in Secfidbn 6 and SeLtion 7 re
spectively.

2. PRELIMINARIES

In this section, we first introduce ELCA semantics on a deter-

may appear independently and MUX means the child nodes areministic XML document, and then define probabilistic ELCA se

mutually-exclusive (i.e. only one child can appear amorgdé-
fined alternative children). A real number from (0,1] is ekted on
each edge in the XML tree, indicating the conditional praligb
that the child node will appear under the parent node givereia
istence of the parent node. A randomly generated documemt fr
a p-document is called a possible world. Apparently, eacdsibte
world has a probability. The sum of the probabilities of alspible
worlds is 1. A probabilistic XML tree is given in Figl 1(b), wte
unweighted edges have the default probability 1.

mantics on a probabilistic XML document.

2.1 ELCA Semanticson Deterministic XML

A deterministic XML document is usually modeled as a labeled
ordered tree. Each node of the XML tree corresponds to an XML
element, an attribute or a text string. The leaf nodes artexzl
strings. A keyword may appear in element names, attributeesa
or text strings. If a keyword: appears in the subtree rooted at a
nodev, we say the node contains keyword:. If k appears in the

Given a keyword query, and a p-document, a node may be anelement name or attribute namewgfor & appears in the text value

ELCA of the keywords in some possible worlds but not in other
possible worlds. We cannot ignore the distributional nodes
cause the ELCA results on a probabilistic XML tree may bellypta
different from those on a deterministic XML tree. For exaeph
Fig.[(b),z4 is no longer an ELCA due to the MUX semantias.
may become an ELCA if a possible world contaiasotbs, but on

the deterministic version;s is never an ELCA node. Furthermore,
z1, a 100% ELCA node in Figl]1(a), becomes a conditional ELCA
with probability 0.8*0.6*0.7 in FiglIL(b)z- also becomes an 80%
ELCA node. As aresult, deterministic ELCA solutiohs|[12,/13]

are not applicable to the new problem. Furthermore, to firtdtaa

possible ELCA nodes is not enough. Users may want to know the nodeswvy, . .

ELCA probabilities of the possible ELCAs.

To solve the problem, a straightforward and safe method is to

generate all possible worlds from the given p-documentiuat@
ELCAs using existing ELCA algorithms on deterministic XMarf

of v whenw is a text string, we say nodedirectly contains key-
word k. A keyword query on a deterministic XML document often
asks for an XML node that contains all the keywords, themsfor
for large XML documents, indexes are often built to recordaluh
nodes directly contain which keywords. For example, for & ke
word k;, all nodes directly contaik; are stored in a lisf; (called
inverted list) and can be retrieved altogether at once.

We adopt the formalized ELCA semantics as the work [13]. We
introduce some notions first. Let <, « denotev is an ancestor
node ofu, andv <, u denotev <, u or v = u. The function
lea(vi,...,vn) computes the Lowest Common Ancestor (LCA) of
.,Un. The LCA of setsSy, . .., S, is the set of LCAs
for each combination of nodes B throughsS,,.

7Sn):
S,on)|vr € S1,...,un € S}

lea(ki, ..., kn) =lca(Sh,. ..
{lca(v1,..

Givenn keywords{ku, ..., k,} and their corresponding inverted
lists S1,...,S, of an XML treeT, the Exclusive LCA of these
keywords onl" is defined as:

elca(ky, ..., kn) =elca(S1,...,S,) =
{v|Fv1 € S1,...,vn € Sn (=leca(vi,...,vn) A
Vi € [1,n] Az(z € lca(Si,. .., Sn) A child(v,v;) <a z))}

wherechild(v, v;) denotes the child node ofon the path fromy
tov;. The meaning of a nodeto be an ELCA isw should contain
all the keywords in the subtree rootedvaiand after excluding’s
children which also contain all the keywords from the sulsttbe
subtree still contains all the keywords. In other words, dach
keyword, nodes should have its own keyword contributors.

2.2 ELCA Semanticson Probabilistic XML

A probabilistic XML document (p-document) defines a proba-
bility distribution over a space of deterministic XML docents.
Each deterministic document belonging to this space idal
possible world. A p-document can be modelled as a labelésitr
with ordinary anddistributional nodes. Ordinary nodes are regu-
lar XML nodes that may appear in deterministic documentslevh
distributional nodes are used for describing a probalulmtocess
following which possible worlds can be generated. Distiiinal
nodes do not occur in deterministic documents.

We define ELCA semantics on a p-document with the help of
possible worlds of the p-document. Given a p-docuniErdand
a keyword quenf ki, k2, . .., k. }, we defineprobabilistic ELCA
of these keywords o’ as a set of node and probability pairs
(v, PrS.,(v)). Each node is an ELCA node in at least one pos-
sible world generated b§’, and its probabilityPrS., (v) is the
aggregated probability of all p035|ble worlds that haveenods an
ELCA. The formal definition ofPrS_, (v) is as follows:

m

Pr&..(v) = Z{Pr(wi)|elca(v, w;) = true}

i=1

@)

where{ws, ..., w. } denotes the set of possible worlds implied by
T, elca(v,w;) = true indicates thav is an ELCA in the possible
world w;. Pr(w;) is the existence probability of the possible world
Wi .

To develop the above discussioRyS,, (v) can also be com-
puted with Equatiohl2. Heré>r (path,—,.) indicates the existence
probability ofv in the possible worlds. It can be computed by mul-
tiplying the conditional probabilities iff’, along the path from the
rootr to nodev. Prk..(v) is the local probability for being an
ELCA in Ty, (v), whereTs,,(v) denotes a subtree @f rooted at
V.

Priea(v) = Pr(path,) x Pri.,(v))

To computePr%., (v), we have the following equation similar to
Equatior[1.

77L

Z{Pr

where deterministic tree@1, t2, ..., t,,,» } are local possible worlds
generated fronTs.s(v), Pr(t;) is the probability of generating
from Tsp(v); elea(v, t;) = true meansv is an ELCA node int;.
In the following sections, we mainly focus on how to compute

the local ELCA probabilityPr5., (v) for anodev. Pr(path,—_.)

is easy to obtain if we have index recording the probabdifrem
the root to node. Then it is not difficult to have the global proba-
bility PrS.,(v) using Equatiofi2.

Prelw)|elea(v, t;) = true}

©)

3. ELCA PROBABILITY COMPUTATION

In this section, we introduce how to compute ELCA probaleiit
for nodes on a p-document without generating possible sokide
start from introducindgkeyword distribution probabilitiesand then
introduce how to compute tHeL. CA probabilityfor a nodev using
keyword distribution probabilitiesf v’s children.

3.1 Keyword Distribution Probabilities

Given a keyword quer®) = {ku, ..., kn } with n keywords, for
each nodev in the p-documenfl’, we can assign an arrayb,
with size2™ to record the keyword distribution probabilities under
v. For example, le{k1, k2 } be a keyword query, entrgab, [11]
records the probability when contains bothk; andk, in all pos-
sible worlds produced b¥.(v); similarly, tab,[01] stores the
probability whenv contains onlyks; tab, [10] keeps the probabil-
ity when v contains onlyk:; andtab, [00] records the probability
when neither ofc; and k. appears unders. Note that the proba-
bilities stored intab, of nodewv are local probabilities, i.e. these
probabilities are based on the condition that nedexists in the
possible worlds produced B¥. To implementab,,, we only need
to store non-zero entries ofib, using a HashMap to save space
cost, but, for the clearness of discussion, let us des¢iibeas an
array with2" entries.

For a leaf nodev in T, the entries oftab, are either 1 or 0.
Precisely speaking, one entry is “1”, and all the other estdre
“0”. When v is an internal node, lei’s children be{ci, ..., ¢m },
let \; be the conditional probability when appears under, then
tab, can be computed usingab,, ..., tabe,, } and{\1, ..., Am }.
We will elaborate the computation for different typesobrdinary
nodes, MUX nodes and IND nodes.

3.1.1 Node is an Ordinary node

Whenv is an ordinary node, all the children ofwill definitely
appear unden, so we have\; = ... = \,, = 1. Lettab,[u] be
an entry intab,,, wherey is a binary expression of the entry index
(eg. tab, [101] refers totab,[5], herep="101"), thentab,[u] can
be computed using the following equation:

Z H tabe, [:U‘Z]

pw=p1V...Vpm i=1

Here, tab., [u:] is an entry intab.,, p; gives the keyword occur-
rences undep’s child ¢;, andpi V ... V un, gives the keyword
occurrences among alfs children. Different{yu, ..., um } com-
binations may produce the sameso the total probability of these
combinations givesab, [].

Fig.[2 (a) shows an example, wherés an ordinary nodec;, c2
arev’s children. v's keyword distribution table can be computed
usingci, c2's keyword distribution tables. Take enttyb,,[01], de-
noted ag-, as an examplep, stands for the case thatcontains
keyword k2 but does not contaik;. It correspondingly implies
three cases: (1) containsks andcy contains neithek:, k2; (2)
c2 containskz ande; contains neither; (3) botfy, ¢; only contains
keywordkz. The probability sum of the three cases gives the local
probability ps.

The naive way to computb, based on Equatidd 4 results in an
O(m2™™) algorithm, because eachb., contains2™ entries, and
there arg(2"™)™ = 2™™ combinations of 1, ..., um }. FOr each
combination, computing ;" , tabe, 1] takesO(m) time. How-
ever, we can computab, progressively inO(m2%") time. The
idea is to use an intermediate array., to record a temporary dis-
tribution and then combine the intermediate artay, with each
tab., one by ongnot all togethe). We now illustrate the process:

taby [u] <+ 4)

(ordinary node) v & | {k1} | {k2} |{k1,k2} 4 | {k1} | {k2} |{k1,k2} A% (MUX node)
/ \ po p1 P2 p3 po p1 p2 p3 A / \M
Cl1 C2 C1 C2
O | fkay | {kah |{k1,k2} 0 | fka} | {k2} |{k1k} O | (K} | {k2} [{k1k2} 4 | {k1y | {k2} |{k1k2}
01 | 03| 05 | 01 02 | 04 | 03 | 01 01| 03] 05| 01 02 | 04 | 03 | 01
B TS = »\“ “‘
s e e T po = 0.1%A1 + 0.4.2*7»2 +‘l‘-‘k1-7»2
p2 = 01*03 + 0.5%0.2 + 0.5*%0.3 ey v
p2 = 05%A1 + 03*A2
(a) (b)
(IND node) O | Kk} | k2 |k k2 | {kap | {k2} |[{k1k2} v (IND node)
v po pi p2 p3 po p1 P2 p3
LV \: 1/ \1
Ci C2 Ci Gz
g | Ky | k2 |{k1.k2} O | k| (k2 |{k1.k2} { {k1} {ka} | {k1,k2} { {k1} k2 | {k1,ka}
01) s | s) 0 02 | 04 | 03 | 01 01" +tA1| 031 | 0541 | 041 | 02724142 | 0.4%2 | 0.3%2 | 0.1%A2

p2 = (0.1*A+1-A1)*03%A2 + 0.5*’11*(0.2*7»2“-}»2)+0.5*M*0.3*M

(©)

Figure 2: Evaluation of Keyword Distribution Table

at the beginningtabl, is initialized using Equationl5, and then each
tabe, (i € [1,m]) is merged withtab,, based on Equatidd 6, in the
end, after incorporating all's children,tab, is set agab,,.

0
1

(1 # 00...0)

(1 =00...0) ®)

tabl,[u] + {

taby(p) > tab,[u] - tabe, 1] (6)
n=p'Vp;

Generally speaking, we are expecting a keyword query consis
ing of less tham < 5 keywords, s@2" is not very large, besides
the number of none-zero entries is much smaller than theeheo
ical bound2™, and therefore we can consider the complexity of
computingtab, asO(m). When we are facing too many keywords,

a situation out of the scope of this paper, some preproagssi-
nigues may be adopted to cut down the number of keywords, such
as correlating a few keyword as one phrase. In this papereap k
our discussion on queries with only a few keywords.

3.1.2 Node is an MUX node

For an MUX node, Equation] 7 shows how to comptté, 1]
under mutually-exclusive semantics. A keyword distribnti: ap-
pearing at node implies thatu appears at one af’s children,
and thusd_" | A; - tabe, [p] givestab,[u]. The caseu="00...0”
is specially treated. An example is given in Hig. 2 (b), cdesi
nodev as an MUX node now, thetub, [01] can be computed as
A1 - tabe, [01] 4+ A2 - tabe,[01]. Differently, the entrytab,[00] in-
cludes an extrdl — A1 — A\2) component, because the absence
of both ¢; andc2 also implies that node does not contain any

keywords.
>0 Ai - tabe, (1] (1 #00...0)
tab’” [I‘L] — m =1 m
> i -tabe,[0] +1 =3 A (= 00...0)

i=1 i=1

)
Similar to the ordinary caseqb, can be progressively computed
under mutually-exclusive semantics as well. At the begignini-
tialize tabletab), using Equatiofil5, the same as the ordinary case;
and thentab;, is increased by merging wittub., (i € [1, m]) pro-
gressively using Equatidd 8. In the end, &él, astab,. Both the
straightforward and the progressive methods t@Ke:2™) com-

plexity.

3.1.3 Node is an IND node

Whenv is an IND node, the computation afb, is similar to the
ordinary case. Before directly applying Equatibhs 5[@ndé&need
to standardize the keyword distribution table. The idea isdns-
form edge probability\; into 1, and make corresponding changes
to the keyword distribution table with no side-effects. Thedifi-
cation is based on Equatibh 9. An example is shown inFig.,2{c)
andc; are two children of IND node with probabilities\1, A2, we
can equally transform the keyword distribution tables th®right
ones and change probabilities on the edges into 1. t&heg [00]
andtab., [00] fields have(l — A1) and(1 — A2) components, be-

tab, [u] + Ai - tabe, (1]
tab; [0] + N - tabci [0] — i

(1 # 00...0)

(1 =00...0) ®)

tabl,[u] +

(ordinary node) v 0 {k1} | {k2} |{k1k2}
/ \ po p1 p2 p3
C1 C2
{} {k1} {k2} |[{kz,k2} {} {k1} {k2} |{kzk2}
X1 X2 x3 x4 y1 y2 y3 y4
p2 = Xi*y3 + X3*yl + X3*y3

X4 +y4 + X2*y3 + X3*y2

()

p3

(ordinary node) v { {k1} | {k2} |{ki,k2}
/ \ Po p1 p2 p3
C1 C2
{} {k1} {k2} |[{k1,k2} {} {k1} {k2} |{kzk2}
X1+X4 X2 X3 0 yi+y4 y2 y3 0

p2 = (X1+X4)*y3 + X3*(yl+y4) + X3*y3

P3 = X2*y3 + X3*y2

(b)

Figure3: Comparison of keyword distribution probability and EL CA probability

cause the absence of a child also implies that no keywordrinses
could appear under that child. After the transformation, caa
computev’s keyword distribution table using the transformed key-
word distribution tables of; andc. following the same way as
Sectio 3. 11.

Ai - tabe, [
Ai - tabe; [0] +1-X

(1 # 00...0)

(w=o00.0 ©

tabe, [p] < {

In summary, we can obtain keyword distribution probalati

It means thafi remains the same asin the most cases, except
that wheng is “11...1", fi is set to “00...0". According to ELCA
semantics, if a child; of nodewv has contained all the keywords,
¢; will screen the keyword instances from contributing upwerd
the its parenb. This is our motivation to defing. That is to say:
wheny; is “11...1", we regard the contributing distributign of
;i (to parent node) as “00...0".

For an ordinary node, let {ci,...,,cn} be v's children and
{tabe,, ..., tab.,, } be the keyword distribution probability arrays
of {ci1, ..., cm } respectively, lefi; be the corresponding contribut-

for every node in the p-document. The computation can be done ing distribution of, EquatiorIlL gives how to compute the local

in a bottom-up manner progressively. In the next sectionylle
show how to obtain the ELCA probability of nodeusing keyword
distribution probabilities of’s children.

3.2 ELCA Probability

We consider ELCA nodes to be ordinary nodes only. We first
point out two cases in which we do not need to compute the ELCA _

probability or we can simply reuse the ELCA probability ofrald

node, after that we discuss when we need to compute ELCA prob-

abilities and how to do it using keyword distribution table.
Case 1:v is an ordinary node, and has a distributional node

as a single child. For this case, we do not need to compute ELCA gi

probability forv, because the child distributional node will pass its
probability upward ta.

Case 2w is an MUX node and has ELCA probability as 0. Ac-
cording to the MUX semantics; has a single child. If the child
does not contain all the keywords, therdoes not contain all the
keywords either, on the other hand, if the child containstta!
keywords, the child will screen the keywords from contribgtup-
wards. Nodev still does not contain its own keyword contributors.
In both situationsy is not regarded as an ELCA.

In other cases, including is an ordinary or IND node and
has a set of ordinary nodes as children, we need to comput&ELC
probability forv. Note that, wherv is an IND node, although
cannot be considered as an ELCA result, we still computeliGA&
probability, because this probability will be passedute parent
according to Case 1. We discuss the ordinary node case fi3t, |
node is similar. We first define a concepontributing distribution
for the sake of better presenting the idea.

DEFINITION 1. Lety be a binary expression of an entry index
representing a keyword-distribution case, we definas thecon-
tributing distributionof 1, with the value as follows:

ﬁ“_{oo.u..o (u#11...1) (10)

(p=11...1)

ELCA probability, Pr5_, (v), for nodev using{tab., , ..., tabe,, }.

Priica(v) < (11)

Z H tabci [,“l]

11, 1=/ V...V iy i=1

To explain Equatiof 11y is an ELCA when the disjunction of
i1, ..., b is “11...1"7, which means after excluding all the chil-
dren ofv containing all the keywordsg; still contains all the key-
words under other children. All suchis, ..., i, } combinations
contribute toPr5,, (v), and hence the right part of Equationl 11
ves an intuitive way to computBr’., (v).

Similar to keyword distribution probabilities, we can coute

rk . (v) in a progressive way, reducing the computation com-
plexity from O(m2"™) to O(m2?"). An intermediate array of
size2” is used, denoted aab . Here, the function ofab, is sim-

ilar to that oftab), used in the last section. To be specific, at the
beginning,tab’ is initialized by Equatiofi 12. As the computation
goes ontab;, is continuously merged wittub., (i € [1, m]) using
EquatiorIB. In the end, after merging the intermediateetalith

all v’s children one by one, entryub)/[11...1] gives PrL_, (v).
Note that, although only one entry ofib”, tab,[11...1], is re-
quired as the final result. In the computation, we need toestor
the whole tableab”, because other entries are used to compute the
final taby [11...1] entry.

il 4§ (25070 @)
tabj[u] < > taby[u'] - tabe,] (13)

n=p'V

For each child:;, when we computé®r’.. (v), the array entry
tabe,[11...1] acts the same as the enttyb., [00...0], because it
does not contribute any keyword to its parent. In conseqiene

can first modifytab., with Equatio1#, and reuse Equatidn 6 to
computePr5,, (v).

tabe, [00...0] + tabe, [11...1] (1 = 00...0)
tabe, [p] < 0 (p=11...1)
tabe, 1] otherwise

(14

For an IND nodev, we can standardize the keyword distribution
table using Equation] 9. Then, the computation is the sambeas t
ordinary node case.

In Fig.[3 (b), we give an example to show how to compute the
intermediate tabléab). An ordinary nodev has two childrer;,
c2. Their keyword distribution tables have been modified adicor
to Equation_IW. The probability of containing both keywords
(coming from different children) is given bys = z2 - y3 + 3 - yo,
which implies two cases: (1) containsk; andc. containsks;

(2) ¢1 containskz andce containsk;. Neitherc:, c; are allowed

to solely contain both keywords. In ELCA semantics, if a node
contains all the keywords, the node will not make contritmsi

to its parent. The probability is smaller than the probapitis
Ta+ya+x2-ys +x3-y2 (given in Fig[3(a)), which is the keyword
distribution probability when node contains both keywords, but
not required to be from different children. Similarly, tred@ulation
of tab,[01] andtab; [01] (i.e. p2) are also different.

4. ALGORITHM

In this section, we introduce an algorithm, PrELCA, to pug th
conceptual idea in the previous section into proceduralpraes
tion steps. We start with indexing probabilistic XML datayda
then introduce PrELCA algorithm, in the end, we discuss why i
is reluctant to find effective upper bounds for ELCA probitiei,
and it turns out that PrELCA algorithm may be the only acdalgta
solution.

4.1 Indexing Probabilistic XML Data

We useDewey Encoding SchenfE8] to encode the probabilis-
tic XML document. By playing a little trick, we can encode edg
probability into Dewey code and save some space cost. We illu
trate the idea using Fif]l 4. 1.3.6.9 is the Dewey code of tlie no
x4, 0.9->1->0.7 are the probabilities on the path from the toot
nodezx. To assist with the encoding, we add a dummy probability
1 before 0.9, and get the probability path as 1->0.9->1->®Y
performing an addition operation, Dewey code and prokssin
be combined and stored together as 2->3.9->7->9.7. We rniagne t
code as pDewey code. For each figléh the combined pDewey
code, the corresponding Dewey code can be decodéd|as 1,
and the probability can be decodedas- 1 — [y]. The correct-
ness can be guaranteed, because edge probabilities alelaysg b
to (0, 1]. Apparently, this encoding trick trades time for space.

Dewey code: 1 X1
0.9
Dewey code: 1.3 X2

X4 Dewey code: X4 path probability from the root:
1369 1->09->1->07

N/

2 (1+41)->3.9(3+0.9) -> 7 (6+1) -> 9.7 (9+0.7)

Dewey code: 1.3.6 X3
|07
Dewey code: 1.3.6.9 X4 X4 pDewey code:

Figure4: pDewey code

Algorithm 1 PrELCA Algorithm

Input: inverted lists of all keywords$
Output: a set of(r[], f) pairs R, wherer[] is a node (repre-
sented by its Dewey code)f is the ELCA probability of the
node
1: result selR := ¢;
2: stack := empty;
3: whilenot end ofS do
4: Read a new node from S according to Dewey order, let
arrayv[] record its Dewey code;
5. p:=lep(stack,v); {find the longest common prefix such
thatstack[i].node = v[i], 1 <1i < p}
6: whilestack.size > pdo
7: letr[] be the Dewey code in the current stack;
8: let f = stack.top().elcaTbl[11...1];
9 add ([], f) into the result set R;

0 popEntry = stack.pop();

1: mergepop Entry.disTbl[] into stack.top().disTbl(];

2 calculate a newtack.top().elcaT'bl[] using the previous
stack.top().elcaTbl]] andpopEntry.disTbl[];

13: end while

14: for p < j <wv.lengthdo

15: disTbl[] = new disTable();
16: elcaTdl]] = new elcaTable();
17: newEntry = (node := v[j]; disTbl[]; elcaTbl[]);
18: stack.push(newEntry);
19: end for

20: end while

21: while stack is not emptydo

22: Repeatline 7 to line 13;

23: end while

For each keyword, we store a list of nodes tHaectly con-
tain that keyword using B+-tree. The nodes are identifiechieyrt
pDewey codes. For each node, we also store the node types, (ORD
IND, MUX) on the path from the root to the current node. This
node type vector helps to perform different types of calbotefor
different distribution types. For simplicity, we use thaditional
Dewey code and omit pDewey code decoding when we introduce
the PrELCA algorithm in the next section.

4.2 PrELCA Algorithm

According to the probabilistic ELCA semantics (Equafidrué)
fined in Sectio R, a node with non-zero ELCA probability must
contain all the keywords in some possible worlds. Therefalle
nodes in the keyword inverted lists and the ancestors oéthedes
constitute a candidate ELCA set. The idea of the PrELCA algo-
rithm is to mimic a postorder traversal of the original p-doent
using only the inverted lists. This can be realized by maiirg
a stack. We choose to mimic postorder traversal, becausssit h
the feature that a parent node is always visited after athiigiren
have been visited. This feature exactly fits the idea on havoio-
pute ELCA probability conceptually in Sectibh 3. By scamnail
the inverted lists once, PrELCA algorithm can find all nodéghw
non-zero ELCA probabilities without generating possibleriads.
Algorithm [1 gives the procedural steps. We first go through th
steps, and then give a running example to illustrate therighgo.

PrELCA algorithm takes keyword inverted lists as input, ant
puts all probabilistic ELCA nodes with their ELCA probabiéis.
The memory cost is a stack. Each entry of the stack contaas th
following information: (1) a visited node, including the last num-
ber ofv’s Dewey code (eg. 3is recorded if 1.2.3 is the Dewey code

Stepl: Read a 1 Step 2: Read a 2 Step 3: Read b 1
(@2, (0.4,0.6,0,0), (@2, (0.4,0.6,0,0), (b1, (0.3,0,0.7,0),
(0.4,0.6,0,0)) (0.4,0.6,0,0)) ~~ (0.3,0,0.7,0))
(IND2, (1,0,0,0), I’ (IND2, (1,0,0,0), (IND2, (0.4,0.6,0,0),
(@1,(0,1,00),(0,1,00) [P @1, (0,1,0,0) (0,1,0,0) (1.000) y— 0(10'0(;0'0))0 0 049600)
02, (10.0.0), L0.0.0) 7 |62 1000) L000) (x1, (1,0,0,0), (1,0,0,0)) (x1,(1,0,0,0), (1,0,0,0) (x1,(1,0,0,0), (1,0,0,0))
(NDL. (1.0.0.0), — INDL, (L0.0.0) (X2, (0,1,0,0), (0,1,0,0)) (X2,(0,1,0,0),(0,1,0,0)) (X2,(0,1,0,0),(0,1,0,0))
(1,0,0,0)) (1,0,0,0)) (IND1, (1,0,0,0), (IND1, (1,0,0,0), (IND1, (1,0,0,0),
6,1000),1000) ¥ | (1000) (1000) 4.0.0.0) .00 (.0.9.9)
(r (2,0,0,0), (1,0,0,0)) (r.(1,0,0,0), (1,0,0,0) (r, (1,0,0,0), (1,0,0,0))
Step 4: Read b 2 f
(b1, (0.3,0,0.7,0), o~ node
(0.3,0,0.7,0)) (IND2,
(IND2, (0.4,0.6,0,0), (0.12,0.18,0.28,0.42), (X1, PN intermediate keyword distribution table
(0.4,0.6,0,0)) (0.12,0.18,0.28,0.42)) (0.12,0.18,0.28,0.42), (02, 0.0.1.0), 0.0.L0) ¥ (0, K, G2, ekl
(x1,(1,0,0,0), (1,0,0,0)) (x1,(1,0,0,0), (1,0,0,0)) (0.12,0.18,0.28,0.42)) (X2,(0,0.3,0,0.7), (0,
(X2, (0,1,0,0), (0,1,0,0)) (X2, (0,1,0,0), (0,1,0,0)) (X2, (0,1,0,0), (0,1,0,0)) 0.72,0, 0.28)) _ _ A
(IND1, (1,0,0,0), (IND1, (1,0,0,0), (IND1, (1,0,0,0), (IND1, (1,0,0,0), intermediate ELCA probability table
(1,0,0,0)) (1,0,0,0)) (1,0,0,0) (1,0,0,0)) ({1, {1}, {k2}, {k1.k2})
(r, (1,0,0,0), (1,0,0,0)) (r, (1,0,0,0), (1,0,0,0)) (r, (1,0,0,0), (1,0,0,0)) (r, (1,0,0,0), (1,0,0,0))

Figure5: Stack statusfor some steps of running PrEL CA algorithm on the probabilistic XML treein Fig.2 (b)

of v), the type of the node; (2) an intermediate keyword distri-
bution table ofv, denoted aglisTbl[]; (3) an intermediate ELCA
probability table ofv, denoted aslcaT'bl[]. At the beginning, the

of the stack. IND2’s disTbl[] is updated into (0.12, 0.1828&.
0.42) by merging1's disT'bl[] (0.3, 0, 0.7, 0) with IND2’s current
disTbl[] (0.4, 0.6, 0, 0). Readers may feel free to verify the com-
result set and the stack are initialized as empty (line 1 gndr@r putation. Similarly,z1’s disT'bl[] is updated as (0.12, 0.18, 0.28,
each new node read from the inverted list (line 3-20), therilgm 0.42) when IND2 is popped outr,'s elcaTbl[] is set as IND2's
will pop up some nodes whose descendant nodes will not be seenclcaTbl[], because IND2 is a single child distributional nodecof
in future and output their ELCA probabilities (line 6-13jhdapush and thus it does not screen keywords from contributing ugsiar
some new nodes into the stack (line 14-19). Line 5is to cateul ~ (Recall Case 1 in Sectidn 3.2). When is popped out, we find
how many nodes need to be popped from the stack by finding the z1’s elcaTbl[11] is non-zero. Therefore;; has local ELCA prob-
longest common prefix between the stack and the Dewey code ofability, PrL.,(z1) = 0.42. The global ELCA probability forz,
the new node. Line 7-9 is to output a result. After that, thedntry can be obtained by multiplying 0.42 with the edge probabdit
will be popped up (line 10), and its keyword distributionl&twill along the path from the rootto z:. In this example, the global
be merged into the new top entry (which records the parerg nbd ELCA probability P&, (1) = 0.42 * 0.8. An interesting scene
the popped node) based on Equatfdns 6and 8 at line 11, armhits n takes place whemr; is popped out of the stack;s’s disTbl]] is
top entry’s ELCA probability table will also be recalculdtbased updated accordingly as (0, 0.3, 0, 0.7) angs elcaT'bl[] is up-
on Equatiofi 1B at line 12. For each newly pushed node, itséeyw dated as (0, 0.72, 0, 0.28). For the first time during the E®ce
distribution tabledisT'bl[] will be initialized using Equatiohl5 and z2's elcaTbl|] is updated into a different value from i8sTbl[].
EquationIP at line 15 and 16 respectively. Line 17 constract The reason is that; has screened keyword b from contributing
stack entry and line 18 pushes the new entry into the stacter Af upwards when; itself has already contained both keywords. So
we finish reading the inverted lists, the remaining nodekérstack the local probability that:> contains both keywords, represented
are popped and checked finally (line 21-23). by x2's disTbl[11] is 0.7, but the local ELCA probability ofo,

In Fig.[5, we show some snapshots for running PrELCA algo- represented by.'s elcaTbl[11] is only 0.28. At lastp. is pushed
rithm on the probabilistic XML tree in Fig] 1(b). At the beging into the stack.
(step 1), the first keyword instaneg is read. All the ancestors of
a1 are pushed into the stack, with the correspondifg'bl[] and 4.3 NoEarly Stop
elcaTbl[] fields initialized. In step 24 is read according the or- In this subsection, we explain why we need to access all keywo
der of Dewey code. The longest common prefix between the stackinyerted list once, and it is not likely to develop an algumit that
and the Dewey code af> is 7.IND1.z2. Soas is popped up, and can stop earlier. We use an example to illustrate the idearsho
2's disTbl[] andelcaTbl]] are updated into (0, 1, 0, 0) and (0, i Fig.[d. Reader can find that nodéndeed has the ELCA prob-
1, 0, 0) by merging withu,'s disTbl[]. Nodea, is notaresult, apility 1, i.e. nodev is 100% an ELCA node, but we are totally
because the.'s elcaTbl[11] is 0. Then, nodes IND2 an@; are nclear about this result when we are examining the pre\éabs
pushed into the stack. In stepf, is read afterwards. Similarto treesTy, 75, etc. One may want to access the nodes in the order
step 2,az is popped up with IND2'slisT'bl[] updated, and then of probability values, but it does not change the nature EatA
b1 is pushed into the stack. In step 4, we read a new riede probability is always increasing according to Equalioh Bgther-
from the inverted lists. In the stack, node is first popped out mgre, that sort of algorithms may need to access the invéigted

multiple times, which is not superior compared with the entr
PrELCA algorithm.

Figure 6: Node v is 100% an EL CA node, but cannot be dis-
covered until all children have been visited.

5. EXPERIMENTS

In this section, we report the performance of the PrELCA algo
rithm in terms of effectiveness, time and space cost, arldlsitisy.
All experiments are done on a laptop with 2.27GHz Intel Renti
4 CPU and 3GB memory. The operation system is Windows 7, and
code is written in Java.

5.1 Datasetsand Queries

Two real life datasets, DBIIPand Mondid, and one synthetic
benchmark dataset, XM&tkave been used. We also generate four
test datasets with sizes 10M, 20M, 40M, 80M for XMark datae Th
three types of datasets are chosen due to the followingalfea-
tures: DBLP is a large shallow dataset; Modial is a deep, ¢texap
but small dataset; XMark is a balanced dataset, and usedefiae
different depths and sizes to mimic various types of documen

For each dataset, we generate a corresponding probabi i
tree, using the same method|in[17]. To be specific, we travibes
original document in preorder, and for each visited nodee ran-
domly generate some distributional nodes with “IND” or “MUX
types as children of. Then, for the original children of, we
choose some of them to be the children of the new generated dis
butional nodes and assign random probability distribuimrthese
children with the restriction that the probability sum undeMUX
node is no greater than 1. For each dataset, the percentdige of
IND and MUX nodes are controlled around 30% of the total nodes
respectively. We also randomly select some terms and cmstr
five keyword queries for different datasets, shown in Table 1

Table 1: Keyword Queriesfor Each Dataset

ID | Keyword Query ID | Keyword Query

X1 | United States, Graduate X5 | United States, Credit, Ship
X3 | Check, Ship X4 | Alexas, Ship

X5 | Internationally, Ship

M, | Muslim, Multiparty M, | City, Area

M3 | United States, Islands M, | Government, Area

M5 | Chinese, Polish

D: | Information, Retrieval, Database D> | XML, Keyword, Query

Ds | Query, Relational, Database D, | probabilistic, Query

Ds | stream, Query

In Sectiod 5.2 and 513, we will compare PrELCA algorithm with
a counterpart algorithm, PrStack [11]. We refer PrStack 86 A

http://dblp.uni-trier.de/xml/
2http://www.dbis.informatik.uni-goettingen.de/MontkML
3http://monetdb.cwi.nl/xml/

for the sake of antithesis. PrStack is an algorithm to findbaro
bilistic SLCA elements from a probabilistic XML documentn |
Sectiol 5.2, we will compare search result confidence (fitiba
ties) under the two semantics. In Section] 5.3, we will replost
run-time performance of both algorithms.

5.2 Evaluation of Effectiveness

Table 2: Comparison of ELCA and SLCA

Queries@Mondial| Max Min Avg | Overlap
ELCA 0.816 | 0.426 | 0.55
0,
M1 SLCA 0.703 | 0.072 | 0.23 60%
ELCA 1.000 | 0.980| 0.99
0,
M2 SLCA 1.000| 0.980 | 0.99 100%
M3 ELCA 0.788 | 0.304 | 0.45 20%
SLCA 0.582| 0.073| 0.13
ELCA 0.730| 0.100| 0.42
0,
M4 SLCA 0.180 | 0.014 | 0.08 20%
ELCA 1.000 | 0.890| 0.94
M5 90%
SLCA | 1.000| 0.840 | 0.90 ’
Queries@XMark | Max Min Avg | Overlap
X1 ELCA 0.560 | 0.165| 0.27 20%
SLCA 0.209 | 0.054 | 0.15
ELCA 0.789| 0.353 | 0.54
X2 50%
SLCA | 0.697] 0.153] 0.22 ’
ELCA 0.970| 0.553 | 0.62
X3 30%
SLCA | 0.750| 0.370 | 0.51 ’
ELCA 0.716 | 0.212 | 0.34
0,
x4 SLCA 0.236 | 0.014| 0.13 20%
X5 ELCA 0.735| 0.525| 0.62 0%
SLCA 0.163| 0.044 | 0.08

Table[2 shows a comparison of probabilistic ELCA results and
probabilistic SLCA results when we run the queries over Mahd
dataset and XMark 20MB dataset. For each query and dataset pa
we select top-10 results (with highest probabilities), eswbrd the
maximum, the minimum, and average probabilities of the X0p-
results. We also count how many results are shared among-the r
sults returned by different semantics.

For some queries, M2 and M5, ELCA results are almost the
same as SLCA results (see the Overlap column), but in mosscas
ELCA results and SLCA results are different. Query X5 on Xklar
even returns totally different results for the two semamtid-or
other queries, at least 20% results are shared by the twonsema
tics. After examining the returning results, we find that,sinof
time, PrELCA algorithm will not miss high-ranked resultsumed
by PrSLCA. The reason is that, in an ordinary document, SLCAs
are also ELCAs, so probabilistic SLCAs are also probaiilist -
CAs. A node with high SLCA probability is likely to have ELCA
probability.

One interesting feature is that, compared with SLCA results
ELCA results always have higher probabilities (except fome
queries returning similar results, like M2, M5). For querid1,

M3, M4 on Mondial dataset, the average probability valueloCE
ranges from 0.42 to 0.55, while that of SLCA is about 0.08 30.2
On XMark dataset, we have a similar story, with average ELCA
probability from 0.27 to 0.62 and average SLCA probabilityrh
0.08 - 0.51. ELCA results also have higher Max and Min val-
ues. Since the probability reflects the likelihood that aenexiists
among all possible worlds as an ELCA or an SLCA, it is des&abl
that returned results have higher probability (or we sayidence).

From this point of view, ELCA results are better that SLCA re-
sults, because they have higher existence probabilitiesedier,
the Max probabilities of ELCA results are usually high, ab®/5
in all query cases, but for some queries, such as M4, X5, the Ma
probabilities of SLCA results are below 0.2. If a user isstigesh-
old query asking results with probability higher than Ohere will
be no result using SLCA semantics, but ELCA semantics $télsgy
non-empty results. This could be a reason to use ELCA seosanti
to return keyword query results.

For the DBLP dataset, we have not listed the results due terpap
space limitation, but it is not difficult to understand thedlpabilis-
tic ELCA results and probabilistic SLCA results are very i&am
on the DBLP dataset, since it is a flat and shallow dataset.

5.3 Evaluation of Time Cost and Space Cost

Fig.[d shows the time and space cost when we run the queries

X:1-X5 on Doc2, M;-Ms on Doc5, andD;-Ds on Doc6. From
Fig.[7(@)[7(9[7(8), we can see that both algorithms PrElaGé
PrSLCA are efficient. Although ELCA semantics is more com-
plex than SLCA semantics, PrELCA algorithm has a similar per
formance as PrSLCA algorithm in terms of time cost. The reaso
may be that both PrELCA and PrSLCA algorithms are stacksbase
algorithms and access keyword inverted lists in a similanmea
PrELCA algorithm is slightly slower than PrSLCA in most case

which is acceptable, because ELCA semantics is more complex

and needs more computation. The gap is not large, reflediatg t
PrELCA algorithm is a competent algorithm if users woulaelio
know probabilistic ELCAs rather than probabilistic SLCAZFom

Fig.[7(B),[7(d) and 7{f), we can see that PrELCA consumes more
memory than PrSLCA. This is because besides the keyword dis-

tribution tables which are used in both algorithms, PrELGEs h
to maintain some other intermediate results to compute tta fi
ELCA probabilities, such as the intermediate table meetibim

Equatior 12 anB13 in Sectifn B.2.
5.4 Evaluation of Scalability

In this section, we use XMark dataset to test the scalalulity
the PrELCA algorithm. We test two querigs , X» on the XMark
dataset ranging from 10M to 80M. F[g. 8(a) shows that the tioss
of both queries is going up moderately when the size of thasgat
increases. Fid. 8(b) shows that space cost has a similat &&n
the time cost, when document size is increasing. The expatim
shows that, for various keyword queries, PrELCA algoritloales
well on different documents, although different queriesyroan-
sume different memories and run for different time, due fiedént
lengths of the inverted lists.

6. RELATED WORK

There are two streams of works related to our work: probsbili
tic XML data management and keyword search on ordinary XML
documents.

Uncertain data management draws the attention of database r
search community recently, including both structured agchis
structured data. In the XML context, the first probabilistiML
model is ProTDBI[[2]. In ProTDB, two new types of nodes are
added into a plain XML document. IND describes independent
children and MUX describes mutually-exclusive childrenor@-
spondingly, to answer a twig query on a probabilistic XML doc
ument is to find a set of results matching the twig pattern bet t
results will have existence probabilities. Hung et [al. [3}daled
probabilistic XML documents as directed acyclic graphgliexly
specifying probability distribution over child nodes. 4][prob-
abilities are defined as intervals, not points. Keulen ef5}lin-

W PrSLCA
OPreLCA

W PrSLCA
OPrELCA

Response Time ms
e}
o

Memory Usage MB

X1 X2 X3 X4

Keyword Queries

X5 X1 X2 X3 X4

Keyword Queries

X5

(a) Time vs. Query (b) Memory Usage vs. Query

W PrSLCA
OPreLCA

140
120
100
80
60
40
20

EPrSLCA
OPreLCA

Response Time ms
Memory Usage MB
©

M1 M2 M3 M4

Keyword Queries

M5 M1 M2 M3 M4

Keyword Queries

M5

(c) Time vs. Query (d) Memory Usage vs. Query

HPrSLCA
EPrSLCA
BRELER

Response Time seconds
=
v
Memory Usage MB
n
S

D1

D2 D3 D4
Keyword Queries

D5

D1

D2 D3 D4
Keyword Queries

D5

(e) Time vs. Query (f) Memory Usage vs. Query

Figure7: Vary Query over Doc2, Doc5, Doc6

troduced how to use probabilistic XML in data integratiorheir
model is a simple model, only considering mutually-exalasiub-
elements. Abiteboul and Senellart [6] proposed a “fuzzgdte
model, where the existence of the nodes in the probabiligie
document is defined by conjunctive events. They also gavdl a fu
complexity analysis of querying and updating on the “fuazaes”

in [1]. In [7], Abiteboul et al. summarized all the probabilc
XML models in one framework, and studied the expressiveards
translations between different models. ProTDB is represkas
PrXML {ndmuz} ysing their framework. Cohen et &l [19] incor-
porated a set of constraints to express more complex depeirde
among the probabilistic data. They also proposed efficigya-a
rithms to solve the constraint-satisfaction, query evidma and
sampling problem under a set of constraints. On queryingaro
bilistic XML data, twig query evaluation without index (nedists)
and with index are considered In [20] and][10] respectivElyang

et al. [9] addressed a more complex situation where resughvve

is also considered. The most closest work to ours_i$ [11]. <Com
pared to SLCA semantics in [11], we studied a more complex but
reasonable semantics, ELCA semantics.

Keyword search on ordinary XML documents has been exten-
sively investigated in the past few years. Keyword searstlteare
usually considered as fragments from the XML document. Most
works use LCA (lowest common ancestor) semantics to find a set
of fragments. Each fragment contains all the keywords. &lses
mantics include ELCAI[12, 13, 14], SLCATL5,.116], MLCA[R1]
and Interconnection Relationship [22]. Other LCA-baseéryue-

_ [8] Benny Kimelfeld, Yuri Kosharovsky, and Yehoshua Sagiv.
——PrSLCA-X2 —¥—PrELCA-X2 ——PrSLCA-X2 —%—PrELCA-X2

Query evaluation over probabilistic xmiLDB J,

18(5):1117-1140, 2009.
33?2 [9] Lijun Chang, Jeffrey Xu Yu, and Lu Qin. Query ranking in
2 10 / probabilistic xml data. IfEDBT, pages 156167, 2009.

0 [10] Bo Ning, Chengfei Liu, Jeffrey Xu Yu, Guoren Wang, and

10M 20M 40M 80M 10M 20M 40M 80M

Document size Document size Jianxin Li. Matching top-k answers of twig patterns in
(a) Time vs. Doc. Size (b) Memory Usage vs. Doc. p_roba_biligtic xml. In!DASFAA (1) pages 125__139’ 2010.
Size [11] Jianxin Li, Chengfei Liu, Rui Zhou, and Wei Wang. Top-k
keyword search over probabilistic xml data.l@DE, pages
673-684, 2011.
[12] Lin Guo, Feng Shao, Chavdar Botev, and Jayavel
Shanmugasundaram. XRANK: Ranked Keyword Search

@
8
3
s
3

Response Time ms
Now s
8 8 3
g 8 8

e
1
3

o

Figure8: Vary Document Size

sult semantics rely more or less on SLCA or ELCA by either im- over XML Documents. I'SIGMOD Conferencepages
posing further conditions on the LCA nodés[23] or refining th 16-27, 2003.
subtrees rooted at the LCA nodés|[24] 5| 26]. The wdrks [27] [13] Yu Xu and Yannis Papakonstantinou. Efficient Ica based
and [28] utilize statistics of the underlying XML data to idiy keyword search in xml data. BEDBT, pages 535-546, 2008.
possible query results. All the above works consider detésm [14] Rui Zhou, Chengfei Liu, and Jianxin Li. Fast elca
tic XML trees. Algorithms on deterministic documents canbe computation for keyword queries on xml data HBBT,
directly used on probabilistic documents, because, ongtitibtic pages 549-560, 2010.
XML documents, a node may or may not appear, as a result, a node[15] Yu Xu and Yannis Papakonstantinou. Efficient Keyword
may be an LCA in one possible world, but not in another. How Search for Smallest LCAs in XML Databases SIGMOD
to compute the LCA probability for a node also comes along as a Conferencepages 537-538, 2005.
challenge. [16] Chong Sun, Chee Yong Chan, and Amit K. Goenka.
Multiway slca-based keyword search in xml dataWivw/

7. CONCLUSIONS pages 1043-1052, 2007.

In this paper, we have studied keyword search on probabilist [17] Benny Kimelfeld, Yuri Kosharovsky, and Yehoshua Sagiv
XML documents. The probabilistic XML data follows a popu- Query efficiency in probabilistic xmI models. BIGMOD
lar probabilistic XML model, PrxMLtndm e} \We have defined Conferencepages 701-714, 2008.
probabilistic ELCA semantics for a keyword query on a proba- [18] Igor Tatarinov, Stratis Viglas, Kevin S. Beyer, Jaylave
bilistic XML document in terms of possible world semantics. Shanmugasundaram, Eugene J. Shekita, and Chun Zhang.
stacked-based algorithm, PrELCA, has been proposed totfitd p Storing and querying ordered xml using a relational datbas
abilistic ELCAs and their ELCA probabilities without geaéing system. I'SIGMOD Conferencepages 204-215, 2002.
possible worlds. We have conducted extensive experimeriest [19] Sara Cohen, Benny Kimelfeld, and Yehoshua Sagiv.
the performance of the PrELCA algorithm in terms of effegtigs, Incorporating constraints in probabilistic x/lCM Trans.
time and space cost, and scalability. We have compared the re Database Syst34(3), 2009.
sults with a previous SLCA based algorithm. The experimkat® [20] Benny Kimelfeld and Yehoshua Sagiv. Matching twigs in
shown that ELCA semantics gives better keyword querieslteesu probabilistic xml. InVLDB, pages 27-38, 2007.
with only slight performance sacrifice. [21] Yunyao Li, Cong Yu, and H. V. Jagadish. Schema-Free

XQuery. InVLDB, pages 72-83, 2004.

8. REFERENCES [22] Sara Cohen, Jonathan Mamou, Yaron Kanza, and Yehoshua

Sagiv. XSEarch: A Semantic Search Engine for XML. In
VLDB, pages 45-56, 2003.

[23] Guoliang Li, Jianhua Feng, Jianyong Wang, and Lizhuizho
Effective keyword search for valuable Icas over xml
documents. IICIKM, pages 31-40, 2007.

[24] ziyang Liu and Yi Chen. Identifying meaningful return
information for xml keyword search. IBIGMOD
Conferencepages 329-340, 2007.

[25] ziyang Liu and Yi Chen. Reasoning and identifying relet/
matches for xml keyword searcRVLDB, 1(1):921-932,
2008.

[26] Lingbo Kong, Rémi Gilleron, and Aurélien Lemay.
Retrieving meaningful relaxed tightest fragments for xml
keyword search. IIEDBT, pages 815-826, 2009.

[27] zhifeng Bao, Tok Wang Ling, Bo Chen, and Jiaheng Lu.
Effective xml keyword search with relevance oriented
ranking. InICDE, pages 517-528, 2009.

[28] Jianxin Li, Chengfei Liu, Rui Zhou, and Wei Wang.
Suggestion of promising result types for xml keyword
search. IrEDBT, pages 561-572, 2010.

[1] Pierre Senellart and Serge Abiteboul. On the complexity
managing probabilistic xml data. PODS pages 283-292,
2007.

[2] Andrew Nierman and H. V. Jagadish. ProTDB: Probabitisti
data in xml. InVLDB, pages 646—657, 2002.

[3] Edward Hung, Lise Getoor, and V. S. Subrahmanian. Pxml:
A probabilistic semistructured data model and algebra. In
ICDE, pages 467—, 2003.

[4] Edward Hung, Lise Getoor, and V. S. Subrahmanian.
Probabilistic interval xmIACM Trans. Comput. Log8(4),
2007.

[5] Maurice van Keulen, Ander de Keijzer, and Wouter Alink. A
probabilistic xml approach to data integrationIGDE,
pages 459-470, 2005.

[6] Serge Abiteboul and Pierre Senellart. Querying and tipga
probabilistic information in xml. IFEDBT, pages
1059-1068, 2006.

[7] Serge Abiteboul, Benny Kimelfeld, Yehoshua Sagiv, and
Pierre Senellart. On the expressiveness of probabiligtic x
models.VLDB J, 18(5):1041-1064, 2009.

	1 Introduction
	2 Preliminaries
	2.1 ELCA Semantics on Deterministic XML
	2.2 ELCA Semantics on Probabilistic XML

	3 ELCA Probability Computation
	3.1 Keyword Distribution Probabilities
	3.1.1 Node v is an Ordinary node
	3.1.2 Node v is an MUX node
	3.1.3 Node v is an IND node

	3.2 ELCA Probability

	4 Algorithm
	4.1 Indexing Probabilistic XML Data
	4.2 PrELCA Algorithm
	4.3 No Early Stop

	5 Experiments
	5.1 Datasets and Queries
	5.2 Evaluation of Effectiveness
	5.3 Evaluation of Time Cost and Space Cost
	5.4 Evaluation of Scalability

	6 Related Work
	7 Conclusions
	8 References

