
ar
X

iv
:1

11
0.

28
90

v1
 [

cs
.D

B
]

13
 O

ct
 2

01
1

ELCA Evaluation for Keyword Search on Probabilistic XML
Data

Rui Zhou
Faculty of Information and Communication

Technologies
Swinburne University of Technology

Melbourne, VIC 3122, Australia
rzhou@swin.edu.au

Chengfei Liu
Faculty of Information and Communication

Technologies
Swinburne University of Technology

Melbourne, VIC 3122, Australia
cliu@swin.edu.au

Jianxin Li
Faculty of Information and Communication

Technologies
Swinburne University of Technology

Melbourne, VIC 3122, Australia
jianxinli@swin.edu.au

Jeffrey Xu Yu
Department of Systems Engineering &

Engineering Management
The Chinese University of Hong Kong

Hong Kong, China
yu@se.cuhk.edu.hk

ABSTRACT
As probabilistic data management is becoming one of the mainre-
search focuses and keyword search is turning into a more popular
query means, it is natural to think how to support keyword queries
on probabilistic XML data. With regards to keyword query on de-
terministic XML documents, ELCA (Exclusive Lowest Common
Ancestor) semantics allows more relevant fragments rootedat the
ELCAs to appear as results and is more popular compared with
other keyword query result semantics (such as SLCAs).

In this paper, we investigate how to evaluate ELCA results for
keyword queries on probabilistic XML documents. After defin-
ing probabilistic ELCA semantics in terms of possible worldse-
mantics, we propose an approach to compute ELCA probabilities
without generating possible worlds. Then we develop an efficient
stack-based algorithm that can find all probabilistic ELCA results
and their ELCA probabilities for a given keyword query on a prob-
abilistic XML document. Finally, we experimentally evaluate the
proposed ELCA algorithm and compare it with its SLCA counter-
part in aspects of result effectiveness, time and space efficiency, and
scalability.

1. INTRODUCTION
Uncertain data management is currently one of the main research

focuses in database community. Uncertain data may be generated
by different reasons, such as limited observation equipment, un-
supervised data integration, conflicting feedbacks. Moreover, un-
certainty itself is inherent in nature. This drives the technicians to
face the reality and develop specific database solutions to embrace
the uncertain world. In many web applications, such as informa-
tion extraction, a lot of uncertain data are automatically generated

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

by crawlers or mining systems, and most of the time they are from
tree-like raw data. In consequence, it is natural to organize the
extracted information in a semi-structured way with probabilities
attached showing the confidence for the collected information. In
addition, dependencies between extracted information canbe easily
captured by parent-child relationship in a tree-like XML document.
As a result, research on probabilistic XML data management is ex-
tensively under way.

Many probabilistic models [1, 2, 3, 4, 5, 6, 7] have been proposed
to describe probabilistic XML data. The expressiveness between
different models is discussed in [7]. Beyond the above, querying
probabilistic XML data to retrieve useful information is ofequal
importance. Current studies mainly focused on twig queries[8, 9,
10], with little light [11] shed on keyword queries on probabilis-
tic XML data. However, support for keyword search is important
and promising, because users will be relieved from learningcom-
plex query languages (such as XPath, XQuery) and are not required
to know the schema of the probabilistic XML document. A user
only needs to submit a few keywords and the system will auto-
matically find some suitable fragments from the probabilistic XML
document.

There has been established works on keyword search over deter-
ministic XML data. One of the most popular semantics to model
keyword query results on an deterministic XML document is the
ELCA (Exclusive Lowest Common Ancestor) semantics [12, 13,
14]. We introduce the ELCA semantics using an example. Formal
definitions will be introduced in Section 2. Fig. 1(a) shows an or-
dinary XML tree. Nodes{a1, a2, a3} directly contain keyword
a, and nodes{b1, b2, b3, b4} directly contain keywordb. Node
{x1, x2, x4} are considered as ELCAs of keywordsa andb. An
ELCA is firstly an LCA, and after excluding all its children which
contain all keywords, the LCA still contains all the keywords. Node
x2 is an ELCA, because after excludingx1 which contains all the
keyword,x2 still has its own contributorsa1 andb2. Nodex3 is
not an ELCA, because after excludingx4, x3 only covers keyword
b. Nodesx1 andx4 are also ELCAs, because they contain both
keywords. No children ofx1 or x4 contain all the keywords, so
no need to exclude any child fromx1 or x4. Another popular se-
mantics is SLCA (Smallest LCA) semantics [15, 16]. It asks for
the LCAs that are not ancestors of other LCAs. For example, node
x1 andx4 are SLCAs on the tree, butx2 is not, because it is an

http://arxiv.org/abs/1110.2890v1

r

x
2
 x
3

a
1
 x
1
 b
2

a
2
 b
1

x
4

a
3
 b
3

b
4

r

x
2
 x
3

a
1
 x
1
 b
2

a
2
 b
1

x
4

a
3
 b
3

b
4

I
N
D
1

I
N
D
2
 M
U
X
1

(
a
)
 (
b
)

0
.
8
 0
.
9

0
.
6
 0
.
7
 0
.
2
 0
.
7

Figure 1: Examples of ELCAs and A Probabilistic XML Tree

ancestor ofx1. It is not difficult to see that the ELCA result is a
superset of the SLCA result, so the ELCA semantics can provide
more interesting information to users. This motivates us tostudy
the ELCA semantics, and particularly on a new type of data, prob-
abilistic XML data. Note that although SLCA semantics is studied
on probabilistic XML data in [11], the solution cannot be used to
solve ELCA semantics, as readers may notice that the ELCA se-
mantics is indeed more complex than the SLCA semantics.

On a probabilistic XML document, nodes may appear or not,
accordingly a node is (usually) not certain to be an ELCA. As a
result, we want to find not only those possible ELCA nodes, but
also their ELCA probabilities. Before we point out the computa-
tion challenge, we briefly introduce the probabilistic XML model
used throughout this paper. We consider a popular probabilistic
XML model, PrXML{ind,mux} [2, 17], where a probabilistic XML
document (also called p-document) is regarded as a tree withtwo
types of nodes:ordinary nodesand distributional nodes. Ordi-
nary nodes store the actual data and distributional nodes define the
probability distribution for the child nodes. There are twotypes of
distributional nodes: IND and MUX. IND means the child nodes
may appear independently and MUX means the child nodes are
mutually-exclusive (i.e. only one child can appear among the de-
fined alternative children). A real number from (0,1] is attached on
each edge in the XML tree, indicating the conditional probability
that the child node will appear under the parent node given the ex-
istence of the parent node. A randomly generated document from
a p-document is called a possible world. Apparently, each possible
world has a probability. The sum of the probabilities of all possible
worlds is 1. A probabilistic XML tree is given in Fig. 1(b), where
unweighted edges have the default probability 1.

Given a keyword query, and a p-document, a node may be an
ELCA of the keywords in some possible worlds but not in other
possible worlds. We cannot ignore the distributional nodes, be-
cause the ELCA results on a probabilistic XML tree may be totally
different from those on a deterministic XML tree. For example, in
Fig. 1(b),x4 is no longer an ELCA due to the MUX semantics.x3

may become an ELCA if a possible world containsa3 notb3, but on
the deterministic version,x3 is never an ELCA node. Furthermore,
x1, a 100% ELCA node in Fig. 1(a), becomes a conditional ELCA
with probability 0.8*0.6*0.7 in Fig. 1(b).x2 also becomes an 80%
ELCA node. As a result, deterministic ELCA solutions [12, 13, 14]
are not applicable to the new problem. Furthermore, to find out the
possible ELCA nodes is not enough. Users may want to know the
ELCA probabilities of the possible ELCAs.

To solve the problem, a straightforward and safe method is to
generate all possible worlds from the given p-document, evaluate
ELCAs using existing ELCA algorithms on deterministic XML for

each possible world, and combine the result finally. However, it is
obvious that this method is infeasible, because the computation cost
is too high, since the number of possible worlds is exponential. The
challenge is how to evaluate the ELCA probability of a node using
only the p-document without generating possible worlds. The idea
of our approach is to evaluate the ELCA probabilities in a bottom-
up manner.

We summarize the contributions of this paper as follows:

• To the best of our knowledge, this is the first work that studies
ELCA semantics on probabilistic XML data.

• We have defined probabilistic ELCA semantics for keyword
search on probabilistic XML documents. We have proposed
an approach on how to evaluate ELCA probabilities without
generating possible world and have designed a stack-based
algorithm, PrELCA algorithm, to find the probabilistic EL-
CAs and their probabilities.

• We have conducted extensive experiments to test the result
effectiveness, time and space efficiency, scalability of the
PrELCA algorithm.

The rest of this paper is organized as follows. In Section 2, we
introduce ELCA semantics on a deterministic XML document and
define probabilistic ELCA semantics on a probabilistic XML doc-
ument. In Section 3, we propose how to compute ELCA probabili-
ties on a probabilistic XML document without generating possible
worlds. An algorithm, PrELCA, is introduced in Section 4 to ex-
plain how to put the conceptual idea in Section 3 into procedural
computation steps. We report the experiment results in Section 5.
Related works and Conclusion are in Section 6 and Section 7 re-
spectively.

2. PRELIMINARIES
In this section, we first introduce ELCA semantics on a deter-

ministic XML document, and then define probabilistic ELCA se-
mantics on a probabilistic XML document.

2.1 ELCA Semantics on Deterministic XML
A deterministic XML document is usually modeled as a labeled

ordered tree. Each node of the XML tree corresponds to an XML
element, an attribute or a text string. The leaf nodes are alltext
strings. A keyword may appear in element names, attribute names
or text strings. If a keywordk appears in the subtree rooted at a
nodev, we say the nodev contains keywordk. If k appears in the
element name or attribute name ofv, or k appears in the text value
of v whenv is a text string, we say nodev directly contains key-
wordk. A keyword query on a deterministic XML document often
asks for an XML node that contains all the keywords, therefore,
for large XML documents, indexes are often built to record which
nodes directly contain which keywords. For example, for a key-
word ki, all nodes directly containki are stored in a listSi (called
inverted list) and can be retrieved altogether at once.

We adopt the formalized ELCA semantics as the work [13]. We
introduce some notions first. Letv ≺a u denotev is an ancestor
node ofu, andv �a u denotev ≺a u or v = u. The function
lca(v1, . . . , vn) computes the Lowest Common Ancestor (LCA) of
nodesv1, . . . , vn. The LCA of setsS1, . . . , Sn is the set of LCAs
for each combination of nodes inS1 throughSn.

lca(k1, . . . , kn) = lca(S1, . . . , Sn) =

{lca(v1, . . . , vn)|v1 ∈ S1, . . . , vn ∈ Sn}

Givenn keywords{k1, . . . , kn} and their corresponding inverted
lists S1, . . . , Sn of an XML treeT , the Exclusive LCA of these
keywords onT is defined as:

elca(k1, . . . , kn) = elca(S1, . . . , Sn) =

{v|∃v1 ∈ S1, . . . , vn ∈ Sn(v = lca(v1, . . . , vn) ∧

∀i ∈ [1, n] 6 ∃x(x ∈ lca(S1, . . . , Sn) ∧ child(v, vi) �a x))}

wherechild(v, vi) denotes the child node ofv on the path fromv
to vi. The meaning of a nodev to be an ELCA is:v should contain
all the keywords in the subtree rooted atv, and after excludingv’s
children which also contain all the keywords from the subtree, the
subtree still contains all the keywords. In other words, foreach
keyword, nodev should have its own keyword contributors.

2.2 ELCA Semantics on Probabilistic XML
A probabilistic XML document (p-document) defines a proba-

bility distribution over a space of deterministic XML documents.
Each deterministic document belonging to this space is called a
possible world. A p-document can be modelled as a labelled treeT
with ordinary anddistributional nodes. Ordinary nodes are regu-
lar XML nodes that may appear in deterministic documents, while
distributional nodes are used for describing a probabilistic process
following which possible worlds can be generated. Distributional
nodes do not occur in deterministic documents.

We define ELCA semantics on a p-document with the help of
possible worlds of the p-document. Given a p-documentT and
a keyword query{k1, k2, . . . , kn}, we defineprobabilistic ELCA
of these keywords onT as a set of node and probability pairs
(v, PrGelca(v)). Each nodev is an ELCA node in at least one pos-
sible world generated byT , and its probabilityPrGelca(v) is the
aggregated probability of all possible worlds that have nodev as an
ELCA. The formal definition ofPrGelca(v) is as follows:

Pr
G
elca(v) =

m
∑

i=1

{Pr(wi)|elca(v, wi) = true} (1)

where{w1, . . . , wm} denotes the set of possible worlds implied by
T , elca(v, wi) = true indicates thatv is an ELCA in the possible
worldwi. Pr(wi) is the existence probability of the possible world
wi.

To develop the above discussion,PrGelca(v) can also be com-
puted with Equation 2. Here,Pr(pathr→v) indicates the existence
probability ofv in the possible worlds. It can be computed by mul-
tiplying the conditional probabilities inT , along the path from the
root r to nodev. PrLelca(v) is the local probability forv being an
ELCA in Tsub(v), whereTsub(v) denotes a subtree ofT rooted at
v.

Pr
G
elca(v) = Pr(pathr→v)× Pr

L
elca(v) (2)

To computePrLelca(v), we have the following equation similar to
Equation 1.

Pr
L
elca(v) =

m′

∑

i=1

{Pr(ti)|elca(v, ti) = true} (3)

where deterministic trees{t1, t2, ..., tm′} are local possible worlds
generated fromTsub(v), Pr(ti) is the probability of generatingti
from Tsub(v); elca(v, ti) = true meansv is an ELCA node inti.

In the following sections, we mainly focus on how to compute
the local ELCA probability,PrLelca(v) for a nodev. Pr(pathr→v)
is easy to obtain if we have index recording the probabilities from
the root to nodev. Then it is not difficult to have the global proba-
bility PrGelca(v) using Equation 2.

3. ELCA PROBABILITY COMPUTATION
In this section, we introduce how to compute ELCA probabilities

for nodes on a p-document without generating possible worlds. We
start from introducingkeyword distribution probabilities, and then
introduce how to compute theELCA probabilityfor a nodev using
keyword distribution probabilitiesof v’s children.

3.1 Keyword Distribution Probabilities
Given a keyword queryQ = {k1, ..., kn} with n keywords, for

each nodev in the p-documentT , we can assign an arraytabv
with size2n to record the keyword distribution probabilities under
v. For example, let{k1, k2} be a keyword query, entrytabv[11]
records the probability whenv contains bothk1 andk2 in all pos-
sible worlds produced byTsub(v); similarly, tabv[01] stores the
probability whenv contains onlyk2; tabv[10] keeps the probabil-
ity whenv contains onlyk1; andtabv[00] records the probability
when neither ofk1 andk2 appears underv. Note that the proba-
bilities stored intabv of nodev are local probabilities, i.e. these
probabilities are based on the condition that nodev exists in the
possible worlds produced byT . To implementtabv, we only need
to store non-zero entries oftabv using a HashMap to save space
cost, but, for the clearness of discussion, let us describetabv as an
array with2n entries.

For a leaf nodev in T , the entries oftabv are either 1 or 0.
Precisely speaking, one entry is “1”, and all the other entries are
“0”. When v is an internal node, letv’s children be{c1, ..., cm},
let λi be the conditional probability whenci appears underv, then
tabv can be computed using{tabc1 , ..., tabcm} and{λ1, ..., λm}.
We will elaborate the computation for different types ofv: ordinary
nodes, MUX nodes and IND nodes.

3.1.1 Nodev is an Ordinary node
Whenv is an ordinary node, all the children ofv will definitely

appear underv, so we haveλ1 = ... = λm = 1. Let tabv[µ] be
an entry intabv, whereµ is a binary expression of the entry index
(eg. tabv[101] refers totabv[5], hereµ=“101”), thentabv[µ] can
be computed using the following equation:

tabv[µ]←
∑

µ=µ1∨...∨µm

m
∏

i=1

tabci [µi] (4)

Here,tabci [µi] is an entry intabci , µi gives the keyword occur-
rences underv’s child ci, andµ1 ∨ . . . ∨ µm gives the keyword
occurrences among allv’s children. Different{µ1, ..., µm} com-
binations may produce the sameµ, so the total probability of these
combinations givestabv[µ].

Fig. 2 (a) shows an example, wherev is an ordinary node.c1, c2
arev’s children. v’s keyword distribution table can be computed
usingc1, c2’s keyword distribution tables. Take entrytabv[01], de-
noted asp2, as an example:p2 stands for the case thatv contains
keywordk2 but does not containk1. It correspondingly implies
three cases: (1)c1 containsk2 andc2 contains neitherk1, k2; (2)
c2 containsk2 andc1 contains neither; (3) bothc1, c2 only contains
keywordk2. The probability sum of the three cases gives the local
probabilityp2.

The naive way to computetabv based on Equation 4 results in an
O(m2nm) algorithm, because eachtabci contains2n entries, and
there are(2n)m = 2nm combinations of{µ1, ..., µm}. For each
combination, computing

∏m

i=1
tabci [µi] takesO(m) time. How-

ever, we can computetabv progressively inO(m22n) time. The
idea is to use an intermediate arraytab′v to record a temporary dis-
tribution and then combine the intermediate arraytab′v with each
tabci one by one(not all together). We now illustrate the process:

Figure 2: Evaluation of Keyword Distribution Table

at the beginning,tab′v is initialized using Equation 5, and then each
tabci (i ∈ [1, m]) is merged withtab′v based on Equation 6, in the
end, after incorporating allv’s children,tabv is set astab′v.

tab
′
v[µ]←

{

0 (µ 6= 00...0)
1 (µ = 00...0)

(5)

tab
′
v[µ]←

∑

µ=µ′∨µi

tab
′
v[µ

′] · tabci [µi] (6)

Generally speaking, we are expecting a keyword query consist-
ing of less thann ≤ 5 keywords, so22n is not very large, besides
the number of none-zero entries is much smaller than the theoret-
ical bound2n, and therefore we can consider the complexity of
computingtabv asO(m). When we are facing too many keywords,
a situation out of the scope of this paper, some preprocessing tech-
niques may be adopted to cut down the number of keywords, such
as correlating a few keyword as one phrase. In this paper, we keep
our discussion on queries with only a few keywords.

3.1.2 Nodev is an MUX node
For an MUX node, Equation 7 shows how to computetabv[µ]

under mutually-exclusive semantics. A keyword distributionµ ap-
pearing at nodev implies thatµ appears at one ofv’s children,
and thus

∑m

i=1
λi · tabci [µ] gives tabv[µ]. The caseµ=“00...0”

is specially treated. An example is given in Fig. 2 (b), consider
nodev as an MUX node now, thentabv[01] can be computed as
λ1 · tabc1 [01] + λ2 · tabc2 [01]. Differently, the entrytabv[00] in-
cludes an extra(1 − λ1 − λ2) component, because the absence
of both c1 and c2 also implies that nodev does not contain any

keywords.

tabv[µ]←











m
∑

i=1

λi · tabci [µ] (µ 6= 00...0)

m
∑

i=1

λi · tabci [0] + 1−
m
∑

i=1

λi (µ = 00...0)

(7)
Similar to the ordinary case,tabv can be progressively computed

under mutually-exclusive semantics as well. At the beginning, ini-
tialize tabletab′v using Equation 5, the same as the ordinary case;
and thentab′v is increased by merging withtabci (i ∈ [1, m]) pro-
gressively using Equation 8. In the end, settabv astab′v. Both the
straightforward and the progressive methods takeO(m2n) com-
plexity.

tab
′
v[µ]←

{

tab′v[µ] + λi · tabci [µ] (µ 6= 00...0)
tab′v[0] + λi · tabci [0]− λi (µ = 00...0)

(8)

3.1.3 Nodev is an IND node
Whenv is an IND node, the computation oftabv is similar to the

ordinary case. Before directly applying Equations 5 and 6, we need
to standardize the keyword distribution table. The idea is to trans-
form edge probabilityλi into 1, and make corresponding changes
to the keyword distribution table with no side-effects. Themodifi-
cation is based on Equation 9. An example is shown in Fig. 2 (c), c1
andc2 are two children of IND nodev with probabilitiesλ1, λ2, we
can equally transform the keyword distribution tables intothe right
ones and change probabilities on the edges into 1. Thetabc1 [00]
andtabc2 [00] fields have(1 − λ1) and(1 − λ2) components, be-

v

{
}
 {
k
1
}
 {
k
2
}
 {
k
1
,
k
2
}

x
1
 x
2
 x
3
 x
4

{
}
 {
k
1
}
 {
k
2
}
 {
k
1
,
k
2
}

y
1
 y
2
 y
3
 y
4

C
1
 C
2

(
o
r
d
i
n
a
r
y

n
o
d
e
)
 {
}
 {
k
1
}
 {
k
2
}
 {
k
1
,
k
2
}

p
0
 p
1
 p
2
 p
3

p
2

=
 x
1
*
y
3

+
 x
3
*
y
1

+
 x
3
*
y
3

(
a
)
 (
b
)

v

{
}
 {
k
1
}
 {
k
2
}
 {
k
1
,
k
2
}

x
1
+
x
4
 x
2
 x
3
 0

{
}
 {
k
1
}
 {
k
2
}
 {
k
1
,
k
2
}

y
1
+
y
4
 y
2
 y
3
 0

C
1
 C
2

(
o
r
d
i
n
a
r
y

n
o
d
e
)
 {
}
 {
k
1
}
 {
k
2
}
 {
k
1
,
k
2
}

p
0
 p
1
 p
2
 p
3

p
3

=
 x
4

+
 y
4

+
 x
2
*
y
3

+
 x
3
*
y
2
 p
3

=
 x
2
*
y
3

+
 x
3
*
y
2

p
2

=

(
x
1
+
x
4
)
*
y
3

+
 x
3
*
(
y
1
+
y
4
)

+
 x
3
*
y
3

Figure 3: Comparison of keyword distribution probability and ELCA probability

cause the absence of a child also implies that no keyword instances
could appear under that child. After the transformation, wecan
computev’s keyword distribution table using the transformed key-
word distribution tables ofc1 andc2 following the same way as
Section 3.1.1.

tabci [µ]←

{

λi · tabci [µ] (µ 6= 00...0)
λi · tabci [0] + 1− λi (µ = 00...0)

(9)

In summary, we can obtain keyword distribution probabilities
for every node in the p-document. The computation can be done
in a bottom-up manner progressively. In the next section, wewill
show how to obtain the ELCA probability of nodev using keyword
distribution probabilities ofv’s children.

3.2 ELCA Probability
We consider ELCA nodes to be ordinary nodes only. We first

point out two cases in which we do not need to compute the ELCA
probability or we can simply reuse the ELCA probability of a child
node, after that we discuss when we need to compute ELCA prob-
abilities and how to do it using keyword distribution table.

Case 1:v is an ordinary node, andv has a distributional node
as a single child. For this case, we do not need to compute ELCA
probability forv, because the child distributional node will pass its
probability upward tov.

Case 2:v is an MUX node and has ELCA probability as 0. Ac-
cording to the MUX semantics,v has a single child. If the child
does not contain all the keywords, thenv does not contain all the
keywords either, on the other hand, if the child contains allthe
keywords, the child will screen the keywords from contributing up-
wards. Nodev still does not contain its own keyword contributors.
In both situations,v is not regarded as an ELCA.

In other cases, includingv is an ordinary or IND node andv
has a set of ordinary nodes as children, we need to compute ELCA
probability for v. Note that, whenv is an IND node, althoughv
cannot be considered as an ELCA result, we still compute its ELCA
probability, because this probability will be passed tov’s parent
according to Case 1. We discuss the ordinary node case first, IND
node is similar. We first define a concept,contributing distribution,
for the sake of better presenting the idea.

DEFINITION 1. Letµ be a binary expression of an entry index
representing a keyword-distribution case, we defineµ̂ as thecon-
tributing distributionof µ with the value as follows:

µ̂←

{

µ (µ 6= 11 . . . 1)
00 . . . 0 (µ = 11 . . . 1)

(10)

It means that̂µ remains the same asµ in the most cases, except
that whenµ is “11...1”, µ̂ is set to “00...0”. According to ELCA
semantics, if a childci of nodev has contained all the keywords,
ci will screen the keyword instances from contributing upwardto
the its parentv. This is our motivation to definêµ. That is to say:
whenµi is “11...1”, we regard the contributing distribution̂µi of
µi (to parent nodev) as “00...0”.

For an ordinary nodev, let {c1, ..., cm} be v’s children and
{tabc1 , ..., tabcm} be the keyword distribution probability arrays
of {c1, ..., cm} respectively, let̂µi be the corresponding contribut-
ing distribution ofµ, Equation 11 gives how to compute the local
ELCA probability,PrLelca(v), for nodev using{tabc1 , ..., tabcm}.

Pr
L
elca(v)←

∑

11...1=µ̂1∨...∨µ̂m

m
∏

i=1

tabci [µi] (11)

To explain Equation 11,v is an ELCA when the disjunction of
µ̂1, ..., µ̂m is “11...1”, which means after excluding all the chil-
dren ofv containing all the keywords,v still contains all the key-
words under other children. All such{µ̂1, ..., µ̂m} combinations
contribute toPrLelca(v), and hence the right part of Equation 11
gives an intuitive way to computePrLelca(v).

Similar to keyword distribution probabilities, we can compute
PrLelca(v) in a progressive way, reducing the computation com-
plexity from O(m2nm) to O(m22n). An intermediate array of
size2n is used, denoted astab′′v . Here, the function oftab′′v is sim-
ilar to that oftab′v used in the last section. To be specific, at the
beginning,tab′′v is initialized by Equation 12. As the computation
goes on,tab′′v is continuously merged withtabci (i ∈ [1, m]) using
Equation 13. In the end, after merging the intermediate table with
all v’s children one by one, entrytab′′v [11...1] givesPrLelca(v).
Note that, although only one entry oftab′′, tab′′v [11...1], is re-
quired as the final result. In the computation, we need to store
the whole tabletab′′, because other entries are used to compute the
final tab′′v [11...1] entry.

tab
′′
v [µ]←

{

0 (µ 6= 00...0)
1 (µ = 00...0)

(12)

tab
′′
v [µ]←

∑

µ=µ′∨µ̂i

tab
′′
v [µ

′] · tabci [µi] (13)

For each childci, when we computePrLelca(v), the array entry
tabci [11...1] acts the same as the entrytabci [00...0], because it
does not contribute any keyword to its parent. In consequence, we

can first modifytabci with Equation 14, and reuse Equation 6 to
computePrLelca(v).

tabci [µ]←







tabci [00...0] + tabci [11...1] (µ = 00...0)
0 (µ = 11...1)

tabci [µ] otherwise

(14)
For an IND nodev, we can standardize the keyword distribution

table using Equation 9. Then, the computation is the same as the
ordinary node case.

In Fig. 3 (b), we give an example to show how to compute the
intermediate tabletab′′v . An ordinary nodev has two childrenc1,
c2. Their keyword distribution tables have been modified according
to Equation 14. The probability ofv containing both keywords
(coming from different children) is given byp3 = x2 ·y3 +x3 ·y2,
which implies two cases: (1)c1 containsk1 andc2 containsk2;
(2) c1 containsk2 andc2 containsk1. Neitherc1, c2 are allowed
to solely contain both keywords. In ELCA semantics, if a node
contains all the keywords, the node will not make contributions
to its parent. The probability is smaller than the probability p3 =
x4+y4+x2 ·y3+x3 ·y2 (given in Fig. 3(a)), which is the keyword
distribution probability when nodev contains both keywords, but
not required to be from different children. Similarly, the calculation
of tab′v[01] andtab′′v [01] (i.e. p2) are also different.

4. ALGORITHM
In this section, we introduce an algorithm, PrELCA, to put the

conceptual idea in the previous section into procedural computa-
tion steps. We start with indexing probabilistic XML data, and
then introduce PrELCA algorithm, in the end, we discuss why it
is reluctant to find effective upper bounds for ELCA probabilities,
and it turns out that PrELCA algorithm may be the only acceptable
solution.

4.1 Indexing Probabilistic XML Data
We useDewey Encoding Scheme[18] to encode the probabilis-

tic XML document. By playing a little trick, we can encode edge
probability into Dewey code and save some space cost. We illus-
trate the idea using Fig. 4. 1.3.6.9 is the Dewey code of the node
x4, 0.9->1->0.7 are the probabilities on the path from the rootto
nodex4. To assist with the encoding, we add a dummy probability
1 before 0.9, and get the probability path as 1->0.9->1->0.7. By
performing an addition operation, Dewey code and probability can
be combined and stored together as 2->3.9->7->9.7. We name the
code as pDewey code. For each fieldy in the combined pDewey
code, the corresponding Dewey code can be decoded as⌈y⌉ − 1,
and the probability can be decoded asy + 1 − ⌈y⌉. The correct-
ness can be guaranteed, because edge probabilities always belong
to (0, 1]. Apparently, this encoding trick trades time for space.

x
1

x
2

x
3

x
4

0
.
9

1

0
.
7

D
e
w
e
y

c
o
d
e
:

1

D
e
w
e
y

c
o
d
e
:

1
.
3

D
e
w
e
y

c
o
d
e
:

1
.
3
.
6

D
e
w
e
y

c
o
d
e
:

1
.
3
.
6
.
9

1
.
3
.
6
.
9
 1

-
>

0
.
9

-
>

1

-
>

0
.
7

2

(
1
+
1
)

-
>

3
.
9

(
3
+
0
.
9
)

-
>

7

(
6
+
1
)

-
>

9
.
7

(
9
+
0
.
7
)

X
4

D
e
w
e
y

c
o
d
e
:
 X
4

p
a
t
h

p
r
o
b
a
b
i
l
i
t
y

f
r
o
m

t
h
e

r
o
o
t
:

X
4

p
D
e
w
e
y

c
o
d
e
:

Figure 4: pDewey code

Algorithm 1 PrELCA Algorithm
Input: inverted lists of all keywords,S
Output: a set of(r[], f) pairs R, where r[] is a node (repre-
sented by its Dewey code),f is the ELCA probability of the
node
1: result setR := φ;
2: stack := empty;
3: while not end ofS do
4: Read a new nodev from S according to Dewey order, let

arrayv[] record its Dewey code;
5: p := lcp(stack, v); {find the longest common prefixp such

thatstack[i].node = v[i], 1 ≤ i ≤ p}
6: while stack.size > p do
7: letr[] be the Dewey code in the current stack;
8: letf = stack.top().elcaT bl[11...1];
9: add (r[], f) into the result set R;

10: popEntry = stack.pop();
11: mergepopEntry.disT bl[] into stack.top().disT bl[];
12: calculate a newstack.top().elcaT bl[] using the previous

stack.top().elcaT bl[] andpopEntry.disT bl[];
13: end while
14: for p < j ≤ v.length do
15: disT bl[] = new disTable();
16: elcaT bl[] = new elcaTable();
17: newEntry = (node := v[j]; disT bl[]; elcaT bl[]);
18: stack.push(newEntry);
19: end for
20: end while
21: while stack is not emptydo
22: Repeat line 7 to line 13;
23: end while

For each keyword, we store a list of nodes thatdirectly con-
tain that keyword using B+-tree. The nodes are identified by their
pDewey codes. For each node, we also store the node types (ORD,
IND, MUX) on the path from the root to the current node. This
node type vector helps to perform different types of calculation for
different distribution types. For simplicity, we use the traditional
Dewey code and omit pDewey code decoding when we introduce
the PrELCA algorithm in the next section.

4.2 PrELCA Algorithm
According to the probabilistic ELCA semantics (Equation 1)de-

fined in Section 2, a node with non-zero ELCA probability must
contain all the keywords in some possible worlds. Therefore, all
nodes in the keyword inverted lists and the ancestors of these nodes
constitute a candidate ELCA set. The idea of the PrELCA algo-
rithm is to mimic a postorder traversal of the original p-document
using only the inverted lists. This can be realized by maintaining
a stack. We choose to mimic postorder traversal, because it has
the feature that a parent node is always visited after all itschildren
have been visited. This feature exactly fits the idea on how tocom-
pute ELCA probability conceptually in Section 3. By scanning all
the inverted lists once, PrELCA algorithm can find all nodes with
non-zero ELCA probabilities without generating possible worlds.
Algorithm 1 gives the procedural steps. We first go through the
steps, and then give a running example to illustrate the algorithm.

PrELCA algorithm takes keyword inverted lists as input, andout-
puts all probabilistic ELCA nodes with their ELCA probabilities.
The memory cost is a stack. Each entry of the stack contains the
following information: (1) a visited nodev, including the last num-
ber ofv’s Dewey code (eg. 3 is recorded if 1.2.3 is the Dewey code

S
t
e
p
1
:

R
e
a
d

a
1
 S
t
e
p

2
:

R
e
a
d

a
 2
 S
t
e
p

3
:

R
e
a
d

b
 1

S
t
e
p

4
:

R
e
a
d

b
 2

(
a
1
,

(
0
,
1
,
0
,
0
)
,

(
0
,
1
,
0
,
0
)
)

(
X
2
,

(
1
,
0
,
0
,
0
)
,

(
1
,
0
,
0
,
0
)
)

(
I
N
D
1
,

(
1
,
0
,
0
,
0
)
,

(
1
,
0
,
0
,
0
)
)

(
r
,

(
1
,
0
,
0
,
0
)
,

(
1
,
0
,
0
,
0
)
)

(
a
1
,

(
0
,
1
,
0
,
0
)
,

(
0
,
1
,
0
,
0
)
)

(
X
2
,

(
1
,
0
,
0
,
0
)
,

(
1
,
0
,
0
,
0
)
)

(
I
N
D
1
,

(
1
,
0
,
0
,
0
)
,

(
1
,
0
,
0
,
0
)
)

(
r
,

(
1
,
0
,
0
,
0
)
,

(
1
,
0
,
0
,
0
)
)

(
a
2
,

(
0
.
4
,
0
.
6
,
0
,
0
)
,

(
0
.
4
,
0
.
6
,
0
,
0
)

)

(
I
N
D
2
,

(
1
,
0
,
0
,
0
)
,

(
1
,
0
,
0
,
0
)
)

(
x
1
,

(
1
,
0
,
0
,
0
)
,

(
1
,
0
,
0
,
0
)
)

(
X
2
,

(
0
,
1
,
0
,
0
)
,

(
0
,
1
,
0
,
0
)
)

(
I
N
D
1
,

(
1
,
0
,
0
,
0
)
,

(
1
,
0
,
0
,
0
)
)

(
r
,

(
1
,
0
,
0
,
0
)
,

(
1
,
0
,
0
,
0
)
)

(
a
2
,

(
0
.
4
,
0
.
6
,
0
,
0
)
,

(
0
.
4
,
0
.
6
,
0
,
0
)

)

(
I
N
D
2
,

(
1
,
0
,
0
,
0
)
,

(
1
,
0
,
0
,
0
)
)

(
x
1
,

(
1
,
0
,
0
,
0
)
,

(
1
,
0
,
0
,
0
)
)

(
X
2
,

(
0
,
1
,
0
,
0
)
,

(
0
,
1
,
0
,
0
)
)

(
I
N
D
1
,

(
1
,
0
,
0
,
0
)
,

(
1
,
0
,
0
,
0
)
)

(
r
,

(
1
,
0
,
0
,
0
)
,

(
1
,
0
,
0
,
0
)
)

(
b
1
,

(
0
.
3
,
0
,
0
.
7
,
0
)
,

(
0
.
3
,
0
,
0
.
7
,
0
)

)

(
I
N
D
2
,

(
0
.
4
,
0
.
6
,
0
,
0
)
,

(
0
.
4
,
0
.
6
,
0
,
0
)
)

(
x
1
,

(
1
,
0
,
0
,
0
)
,

(
1
,
0
,
0
,
0
)
)

(
X
2
,

(
0
,
1
,
0
,
0
)
,

(
0
,
1
,
0
,
0
)
)

(
I
N
D
1
,

(
1
,
0
,
0
,
0
)
,

(
1
,
0
,
0
,
0
)
)

(
r
,

(
1
,
0
,
0
,
0
)
,

(
1
,
0
,
0
,
0
)
)

(
b
1
,

(
0
.
3
,
0
,
0
.
7
,
0
)
,

(
0
.
3
,
0
,
0
.
7
,
0
)

)

(
I
N
D
2
,

(
0
.
4
,
0
.
6
,
0
,
0
)
,

(
0
.
4
,
0
.
6
,
0
,
0
)
)

(
x
1
,

(
1
,
0
,
0
,
0
)
,

(
1
,
0
,
0
,
0
)
)

(
X
2
,

(
0
,
1
,
0
,
0
)
,

(
0
,
1
,
0
,
0
)
)

(
I
N
D
1
,

(
1
,
0
,
0
,
0
)
,

(
1
,
0
,
0
,
0
)
)

(
r
,

(
1
,
0
,
0
,
0
)
,

(
1
,
0
,
0
,
0
)
)

(
I
N
D
2
,

(
0
.
1
2
,
0
.
1
8
,
0
.
2
8
,
0
.
4
2
)
,

(
0
.
1
2
,
0
.
1
8
,
0
.
2
8
,
0
.
4
2
)
)

(
x
1
,

(
1
,
0
,
0
,
0
)
,

(
1
,
0
,
0
,
0
)
)

(
X
2
,

(
0
,
1
,
0
,
0
)
,

(
0
,
1
,
0
,
0
)
)

(
I
N
D
1
,

(
1
,
0
,
0
,
0
)
,

(
1
,
0
,
0
,
0
)
)

(
r
,

(
1
,
0
,
0
,
0
)
,

(
1
,
0
,
0
,
0
)
)

(
X
1
,

(
0
.
1
2
,
0
.
1
8
,
0
.
2
8
,
0
.
4
2
)
,

(
0
.
1
2
,
0
.
1
8
,
0
.
2
8
,
0
.
4
2
)
)

(
X
2
,

(
0
,
1
,
0
,
0
)
,

(
0
,
1
,
0
,
0
)
)

(
I
N
D
1
,

(
1
,
0
,
0
,
0
)
,

(
1
,
0
,
0
,
0
)
)

(
r
,

(
1
,
0
,
0
,
0
)
,

(
1
,
0
,
0
,
0
)
)

(
b
2
,

(
0
,
0
,
1
,
0
)
,

(
0
,
0
,
1
,
0
)
)

(
X
2
,

(
0
,

0
.
3
,

0
,

0
.
7
)
,

(
0
,

0
.
7
2
,

0
,

0
.
2
8
)
)

(
I
N
D
1
,

(
1
,
0
,
0
,
0
)
,

(
1
,
0
,
0
,
0
)
)

(
r
,

(
1
,
0
,
0
,
0
)
,

(
1
,
0
,
0
,
0
)
)

n
o
d
e

(

{
}
,

{
k
1
}
,

{
k
2
}
,

{
k
1
,
k
2
}

)

i
n
t
e
r
m
e
d
i
a
t
e

k
e
y
w
o
r
d

d
i
s
t
r
i
b
u
t
i
o
n

t
a
b
l
e

i
n
t
e
r
m
e
d
i
a
t
e

E
L
C
A

p
r
o
b
a
b
i
l
i
t
y

t
a
b
l
e

(

{
}
,

{
k
1
}
,

{
k
2
}
,

{
k
1
,
k
2
}

)

Figure 5: Stack status for some steps of running PrELCA algorithm on the probabilistic XML tree in Fig.2 (b)

of v), the type of the nodev; (2) an intermediate keyword distri-
bution table ofv, denoted asdisT bl[]; (3) an intermediate ELCA
probability table ofv, denoted aselcaT bl[]. At the beginning, the
result set and the stack are initialized as empty (line 1 and 2). For
each new node read from the inverted list (line 3-20), the algorithm
will pop up some nodes whose descendant nodes will not be seen
in future and output their ELCA probabilities (line 6-13), and push
some new nodes into the stack (line 14-19). Line 5 is to calculate
how many nodes need to be popped from the stack by finding the
longest common prefix between the stack and the Dewey code of
the new node. Line 7-9 is to output a result. After that, the top entry
will be popped up (line 10), and its keyword distribution table will
be merged into the new top entry (which records the parent node of
the popped node) based on Equations 6 and 8 at line 11, and its new
top entry’s ELCA probability table will also be recalculated based
on Equation 13 at line 12. For each newly pushed node, its keyword
distribution tabledisT bl[] will be initialized using Equation 5 and
Equation 12 at line 15 and 16 respectively. Line 17 constructs a
stack entry and line 18 pushes the new entry into the stack. After
we finish reading the inverted lists, the remaining nodes in the stack
are popped and checked finally (line 21-23).

In Fig. 5, we show some snapshots for running PrELCA algo-
rithm on the probabilistic XML tree in Fig. 1(b). At the beginning
(step 1), the first keyword instancea1 is read. All the ancestors of
a1 are pushed into the stack, with the correspondingdisT bl[] and
elcaT bl[] fields initialized. In step 2,a2 is read according the or-
der of Dewey code. The longest common prefix between the stack
and the Dewey code ofa2 is r.IND1.x2. Soa1 is popped up, and
x2’s disT bl[] andelcaT bl[] are updated into (0, 1, 0, 0) and (0,
1, 0, 0) by merging witha1’s disT bl[]. Nodea1 is not a result,
because thea1’s elcaT bl[11] is 0. Then, nodes IND2 anda2 are
pushed into the stack. In step 3,b1 is read afterwards. Similar to
step 2,a2 is popped up with IND2’sdisT bl[] updated, and then
b1 is pushed into the stack. In step 4, we read a new nodeb2
from the inverted lists. In the stack, nodeb1 is first popped out

of the stack. IND2’s disTbl[] is updated into (0.12, 0.18, 0.28,
0.42) by mergingb1’s disT bl[] (0.3, 0, 0.7, 0) with IND2’s current
disT bl[] (0.4, 0.6, 0, 0). Readers may feel free to verify the com-
putation. Similarly,x1’s disT bl[] is updated as (0.12, 0.18, 0.28,
0.42) when IND2 is popped out.x1’s elcaT bl[] is set as IND2’s
elcaT bl[], because IND2 is a single child distributional node ofx1

and thus it does not screen keywords from contributing upwards.
(Recall Case 1 in Section 3.2). Whenx1 is popped out, we find
x1’s elcaT bl[11] is non-zero. Therefore,x1 has local ELCA prob-
ability, PrLelca(x1) = 0.42. The global ELCA probability forx1

can be obtained by multiplying 0.42 with the edge probabilities
along the path from the rootr to x1. In this example, the global
ELCA probabilityPrGelca(x1) = 0.42 ∗ 0.8. An interesting scene
takes place whenx1 is popped out of the stack,x2’s disT bl[] is
updated accordingly as (0, 0.3, 0, 0.7) andx2’s elcaT bl[] is up-
dated as (0, 0.72, 0, 0.28). For the first time during the process,
x2’s elcaT bl[] is updated into a different value from itsdisT bl[].
The reason is thatx1 has screened keyworda, b from contributing
upwards whenx1 itself has already contained both keywords. So
the local probability thatx2 contains both keywords, represented
by x2’s disT bl[11] is 0.7, but the local ELCA probability ofx2,
represented byx2’s elcaT bl[11] is only 0.28. At last,b2 is pushed
into the stack.

4.3 No Early Stop
In this subsection, we explain why we need to access all keyword

inverted list once, and it is not likely to develop an algorithm that
can stop earlier. We use an example to illustrate the idea shown
in Fig. 6. Reader can find that nodev indeed has the ELCA prob-
ability 1, i.e. nodev is 100% an ELCA node, but we are totally
unclear about this result when we are examining the previoussub-
treesT1, T2, etc. One may want to access the nodes in the order
of probability values, but it does not change the nature thatELCA
probability is always increasing according to Equation 13.Further-
more, that sort of algorithms may need to access the invertedlist

multiple times, which is not superior compared with the current
PrELCA algorithm.

T
1
 T
2
 a
n
 b
n

v

1
 1

0
.
9
 0
.
8

Figure 6: Node v is 100% an ELCA node, but cannot be dis-
covered until all children have been visited.

5. EXPERIMENTS
In this section, we report the performance of the PrELCA algo-

rithm in terms of effectiveness, time and space cost, and scalability.
All experiments are done on a laptop with 2.27GHz Intel Pentium
4 CPU and 3GB memory. The operation system is Windows 7, and
code is written in Java.

5.1 Datasets and Queries
Two real life datasets, DBLP1 and Mondial2, and one synthetic

benchmark dataset, XMark3 have been used. We also generate four
test datasets with sizes 10M, 20M, 40M, 80M for XMark data. The
three types of datasets are chosen due to the following typical fea-
tures: DBLP is a large shallow dataset; Modial is a deep, complex,
but small dataset; XMark is a balanced dataset, and users candefine
different depths and sizes to mimic various types of documents.

For each dataset, we generate a corresponding probabilistic XML
tree, using the same method in [17]. To be specific, we traverse the
original document in preorder, and for each visited nodev, we ran-
domly generate some distributional nodes with “IND” or “MUX”
types as children ofv. Then, for the original children ofv, we
choose some of them to be the children of the new generated distri-
butional nodes and assign random probability distributions to these
children with the restriction that the probability sum under a MUX
node is no greater than 1. For each dataset, the percentage ofthe
IND and MUX nodes are controlled around 30% of the total nodes
respectively. We also randomly select some terms and construct
five keyword queries for different datasets, shown in Table 1.

Table 1: Keyword Queries for Each Dataset
ID Keyword Query ID Keyword Query

X1 United States, Graduate X2 United States, Credit, Ship

X3 Check, Ship X4 Alexas, Ship

X5 Internationally, Ship

M1 Muslim, Multiparty M2 City, Area

M3 United States, Islands M4 Government, Area

M5 Chinese, Polish

D1 Information, Retrieval, DatabaseD2 XML, Keyword, Query

D3 Query, Relational, Database D4 probabilistic, Query

D5 stream, Query

In Section 5.2 and 5.3, we will compare PrELCA algorithm with
a counterpart algorithm, PrStack [11]. We refer PrStack as PrSLCA

1http://dblp.uni-trier.de/xml/
2http://www.dbis.informatik.uni-goettingen.de/Mondial/XML
3http://monetdb.cwi.nl/xml/

for the sake of antithesis. PrStack is an algorithm to find proba-
bilistic SLCA elements from a probabilistic XML document. In
Section 5.2, we will compare search result confidence (probabili-
ties) under the two semantics. In Section 5.3, we will reportthe
run-time performance of both algorithms.

5.2 Evaluation of Effectiveness

Table 2: Comparison of ELCA and SLCA
Queries@Mondial Max Min Avg Overlap

M1
ELCA 0.816 0.426 0.55

60%
SLCA 0.703 0.072 0.23

M2
ELCA 1.000 0.980 0.99

100%
SLCA 1.000 0.980 0.99

M3
ELCA 0.788 0.304 0.45

40%
SLCA 0.582 0.073 0.13

M4
ELCA 0.730 0.100 0.42

20%
SLCA 0.180 0.014 0.08

M5
ELCA 1.000 0.890 0.94

90%
SLCA 1.000 0.840 0.90

Queries@XMark Max Min Avg Overlap

X1
ELCA 0.560 0.165 0.27

20%
SLCA 0.209 0.054 0.15

X2
ELCA 0.789 0.353 0.54

50%
SLCA 0.697 0.153 0.22

X3
ELCA 0.970 0.553 0.62

30%
SLCA 0.750 0.370 0.51

X4
ELCA 0.716 0.212 0.34

20%
SLCA 0.236 0.014 0.13

X5
ELCA 0.735 0.525 0.62

0%
SLCA 0.163 0.044 0.08

Table 2 shows a comparison of probabilistic ELCA results and
probabilistic SLCA results when we run the queries over Mondial
dataset and XMark 20MB dataset. For each query and dataset pair,
we select top-10 results (with highest probabilities), andrecord the
maximum, the minimum, and average probabilities of the top-10
results. We also count how many results are shared among the re-
sults returned by different semantics.

For some queries, M2 and M5, ELCA results are almost the
same as SLCA results (see the Overlap column), but in most cases,
ELCA results and SLCA results are different. Query X5 on XMark
even returns totally different results for the two semantics. For
other queries, at least 20% results are shared by the two seman-
tics. After examining the returning results, we find that, most of
time, PrELCA algorithm will not miss high-ranked results returned
by PrSLCA. The reason is that, in an ordinary document, SLCAs
are also ELCAs, so probabilistic SLCAs are also probabilistic EL-
CAs. A node with high SLCA probability is likely to have ELCA
probability.

One interesting feature is that, compared with SLCA results,
ELCA results always have higher probabilities (except for some
queries returning similar results, like M2, M5). For queries M1,
M3, M4 on Mondial dataset, the average probability value of ELCA
ranges from 0.42 to 0.55, while that of SLCA is about 0.08 - 0.23.
On XMark dataset, we have a similar story, with average ELCA
probability from 0.27 to 0.62 and average SLCA probability from
0.08 - 0.51. ELCA results also have higher Max and Min val-
ues. Since the probability reflects the likelihood that a node exists
among all possible worlds as an ELCA or an SLCA, it is desirable
that returned results have higher probability (or we say confidence).

From this point of view, ELCA results are better that SLCA re-
sults, because they have higher existence probabilities. Moreover,
the Max probabilities of ELCA results are usually high, above 0.5
in all query cases, but for some queries, such as M4, X5, the Max
probabilities of SLCA results are below 0.2. If a user issue athresh-
old query asking results with probability higher than 0.4, there will
be no result using SLCA semantics, but ELCA semantics still gives
non-empty results. This could be a reason to use ELCA semantics
to return keyword query results.

For the DBLP dataset, we have not listed the results due to paper
space limitation, but it is not difficult to understand that probabilis-
tic ELCA results and probabilistic SLCA results are very similar
on the DBLP dataset, since it is a flat and shallow dataset.

5.3 Evaluation of Time Cost and Space Cost
Fig. 7 shows the time and space cost when we run the queries

X1-X5 on Doc2,M1-M5 on Doc5, andD1-D5 on Doc6. From
Fig. 7(a), 7(c), 7(e), we can see that both algorithms PrELCAand
PrSLCA are efficient. Although ELCA semantics is more com-
plex than SLCA semantics, PrELCA algorithm has a similar per-
formance as PrSLCA algorithm in terms of time cost. The reason
may be that both PrELCA and PrSLCA algorithms are stack-based
algorithms and access keyword inverted lists in a similar manner.
PrELCA algorithm is slightly slower than PrSLCA in most cases,
which is acceptable, because ELCA semantics is more complex
and needs more computation. The gap is not large, reflecting that
PrELCA algorithm is a competent algorithm if users would like to
know probabilistic ELCAs rather than probabilistic SLCAs.From
Fig. 7(b), 7(d) and 7(f), we can see that PrELCA consumes more
memory than PrSLCA. This is because besides the keyword dis-
tribution tables which are used in both algorithms, PrELCA has
to maintain some other intermediate results to compute the final
ELCA probabilities, such as the intermediate table mentioned in
Equation 12 and 13 in Section 3.2.

5.4 Evaluation of Scalability
In this section, we use XMark dataset to test the scalabilityof

the PrELCA algorithm. We test two queriesX1, X2 on the XMark
dataset ranging from 10M to 80M. Fig. 8(a) shows that the timecost
of both queries is going up moderately when the size of the dataset
increases. Fig. 8(b) shows that space cost has a similar trend as
the time cost, when document size is increasing. The experiment
shows that, for various keyword queries, PrELCA algorithm scales
well on different documents, although different queries may con-
sume different memories and run for different time, due to different
lengths of the inverted lists.

6. RELATED WORK
There are two streams of works related to our work: probabilis-

tic XML data management and keyword search on ordinary XML
documents.

Uncertain data management draws the attention of database re-
search community recently, including both structured and semi-
structured data. In the XML context, the first probabilisticXML
model is ProTDB [2]. In ProTDB, two new types of nodes are
added into a plain XML document. IND describes independent
children and MUX describes mutually-exclusive children. Corre-
spondingly, to answer a twig query on a probabilistic XML doc-
ument is to find a set of results matching the twig pattern but the
results will have existence probabilities. Hung et al. [3] modeled
probabilistic XML documents as directed acyclic graphs, explicitly
specifying probability distribution over child nodes. In [4], prob-
abilities are defined as intervals, not points. Keulen et al.[5] in-

0

20

40

60

80

100

120

140

160

180

X1
 X2
 X3
 X4
 X5

Keyword Queries

R
es

p
o

n
se

 T
im

e
m

s

PrSLCA

PrELCA

(a) Time vs. Query

0

5

10

15

20

25

30

35

X1
 X2
 X3
 X4
 X5

Keyword Queries

M
em

o
ry

 U
sa

g
e

M
B

PrSLCA

PrELCA

(b) Memory Usage vs. Query

0

20

40

60

80

100

120

140

M1
 M2
 M3
 M4
 M5

Keyword Queries

R
es

p
o

n
se

 T
im

e
m

s
 PrSLCA

PrELCA

(c) Time vs. Query

0

2

4

6

8

10

12

14

16

18

M1
 M2
 M3
 M4
 M5

Keyword Queries

M
em

o
ry

 U
sa

g
e

M
B

 PrSLCA

PrELCA

(d) Memory Usage vs. Query

0

5

10

15

20

25

30

35

D1
 D2
 D3
 D4
 D5

Keyword Queries

R
es

p
o

n
se

 T
im

e
se

co
n

d
s
 PrSLCA

PrELCA

(e) Time vs. Query

0

5

10

15

20

25

30

35

40

D1
 D2
 D3
 D4
 D5

Keyword Queries

M
em

o
ry

 U
sa

g
e

M
B

 PrSLCA

PrELCA

(f) Memory Usage vs. Query

Figure 7: Vary Query over Doc2, Doc5, Doc6

troduced how to use probabilistic XML in data integration. Their
model is a simple model, only considering mutually-exclusive sub-
elements. Abiteboul and Senellart [6] proposed a “fuzzy trees”
model, where the existence of the nodes in the probabilisticXML
document is defined by conjunctive events. They also gave a full
complexity analysis of querying and updating on the “fuzzy trees”
in [1]. In [7], Abiteboul et al. summarized all the probabilistic
XML models in one framework, and studied the expressivenessand
translations between different models. ProTDB is represented as
PrXML{ind,mux} using their framework. Cohen et al. [19] incor-
porated a set of constraints to express more complex dependencies
among the probabilistic data. They also proposed efficient algo-
rithms to solve the constraint-satisfaction, query evaluation, and
sampling problem under a set of constraints. On querying proba-
bilistic XML data, twig query evaluation without index (node lists)
and with index are considered in [20] and [10] respectively.Chang
et al. [9] addressed a more complex situation where result weight
is also considered. The most closest work to ours is [11]. Com-
pared to SLCA semantics in [11], we studied a more complex but
reasonable semantics, ELCA semantics.

Keyword search on ordinary XML documents has been exten-
sively investigated in the past few years. Keyword search results are
usually considered as fragments from the XML document. Most
works use LCA (lowest common ancestor) semantics to find a set
of fragments. Each fragment contains all the keywords. These se-
mantics include ELCA [12, 13, 14], SLCA [15, 16], MLCA [21]
and Interconnection Relationship [22]. Other LCA-based query re-

0

100

200

300

400

500

10M
 20M
 40M
 80M

Document size

R
es

p
o

n
se

 T
im

e
m

s

PrSLCA-X1
 PrELCA-X1

PrSLCA-X2
 PrELCA-X2

(a) Time vs. Doc. Size

0

5

10

15

20

25

30

35

40

10M
 20M
 40M
 80M

Document Size

M
em

o
ry

 U
sa

g
e

M
B

PrSLCA-X1
 PrELCA-X1

PrSLCA-X2
 PrELCA-X2

(b) Memory Usage vs. Doc.
Size

Figure 8: Vary Document Size

sult semantics rely more or less on SLCA or ELCA by either im-
posing further conditions on the LCA nodes [23] or refining the
subtrees rooted at the LCA nodes [24, 25, 26]. The works [27]
and [28] utilize statistics of the underlying XML data to identify
possible query results. All the above works consider determinis-
tic XML trees. Algorithms on deterministic documents cannot be
directly used on probabilistic documents, because, on probabilistic
XML documents, a node may or may not appear, as a result, a node
may be an LCA in one possible world, but not in another. How
to compute the LCA probability for a node also comes along as a
challenge.

7. CONCLUSIONS
In this paper, we have studied keyword search on probabilistic

XML documents. The probabilistic XML data follows a popu-
lar probabilistic XML model, PrXML{ind,mux}. We have defined
probabilistic ELCA semantics for a keyword query on a proba-
bilistic XML document in terms of possible world semantics.A
stacked-based algorithm, PrELCA, has been proposed to find prob-
abilistic ELCAs and their ELCA probabilities without generating
possible worlds. We have conducted extensive experiments to test
the performance of the PrELCA algorithm in terms of effectivenss,
time and space cost, and scalability. We have compared the re-
sults with a previous SLCA based algorithm. The experimentshave
shown that ELCA semantics gives better keyword queries results
with only slight performance sacrifice.

8. REFERENCES
[1] Pierre Senellart and Serge Abiteboul. On the complexityof

managing probabilistic xml data. InPODS, pages 283–292,
2007.

[2] Andrew Nierman and H. V. Jagadish. ProTDB: Probabilistic
data in xml. InVLDB, pages 646–657, 2002.

[3] Edward Hung, Lise Getoor, and V. S. Subrahmanian. Pxml:
A probabilistic semistructured data model and algebra. In
ICDE, pages 467–, 2003.

[4] Edward Hung, Lise Getoor, and V. S. Subrahmanian.
Probabilistic interval xml.ACM Trans. Comput. Log., 8(4),
2007.

[5] Maurice van Keulen, Ander de Keijzer, and Wouter Alink. A
probabilistic xml approach to data integration. InICDE,
pages 459–470, 2005.

[6] Serge Abiteboul and Pierre Senellart. Querying and updating
probabilistic information in xml. InEDBT, pages
1059–1068, 2006.

[7] Serge Abiteboul, Benny Kimelfeld, Yehoshua Sagiv, and
Pierre Senellart. On the expressiveness of probabilistic xml
models.VLDB J., 18(5):1041–1064, 2009.

[8] Benny Kimelfeld, Yuri Kosharovsky, and Yehoshua Sagiv.
Query evaluation over probabilistic xml.VLDB J.,
18(5):1117–1140, 2009.

[9] Lijun Chang, Jeffrey Xu Yu, and Lu Qin. Query ranking in
probabilistic xml data. InEDBT, pages 156–167, 2009.

[10] Bo Ning, Chengfei Liu, Jeffrey Xu Yu, Guoren Wang, and
Jianxin Li. Matching top-k answers of twig patterns in
probabilistic xml. InDASFAA (1), pages 125–139, 2010.

[11] Jianxin Li, Chengfei Liu, Rui Zhou, and Wei Wang. Top-k
keyword search over probabilistic xml data. InICDE, pages
673–684, 2011.

[12] Lin Guo, Feng Shao, Chavdar Botev, and Jayavel
Shanmugasundaram. XRANK: Ranked Keyword Search
over XML Documents. InSIGMOD Conference, pages
16–27, 2003.

[13] Yu Xu and Yannis Papakonstantinou. Efficient lca based
keyword search in xml data. InEDBT, pages 535–546, 2008.

[14] Rui Zhou, Chengfei Liu, and Jianxin Li. Fast elca
computation for keyword queries on xml data. InEDBT,
pages 549–560, 2010.

[15] Yu Xu and Yannis Papakonstantinou. Efficient Keyword
Search for Smallest LCAs in XML Databases. InSIGMOD
Conference, pages 537–538, 2005.

[16] Chong Sun, Chee Yong Chan, and Amit K. Goenka.
Multiway slca-based keyword search in xml data. InWWW,
pages 1043–1052, 2007.

[17] Benny Kimelfeld, Yuri Kosharovsky, and Yehoshua Sagiv.
Query efficiency in probabilistic xml models. InSIGMOD
Conference, pages 701–714, 2008.

[18] Igor Tatarinov, Stratis Viglas, Kevin S. Beyer, Jayavel
Shanmugasundaram, Eugene J. Shekita, and Chun Zhang.
Storing and querying ordered xml using a relational database
system. InSIGMOD Conference, pages 204–215, 2002.

[19] Sara Cohen, Benny Kimelfeld, and Yehoshua Sagiv.
Incorporating constraints in probabilistic xml.ACM Trans.
Database Syst., 34(3), 2009.

[20] Benny Kimelfeld and Yehoshua Sagiv. Matching twigs in
probabilistic xml. InVLDB, pages 27–38, 2007.

[21] Yunyao Li, Cong Yu, and H. V. Jagadish. Schema-Free
XQuery. InVLDB, pages 72–83, 2004.

[22] Sara Cohen, Jonathan Mamou, Yaron Kanza, and Yehoshua
Sagiv. XSEarch: A Semantic Search Engine for XML. In
VLDB, pages 45–56, 2003.

[23] Guoliang Li, Jianhua Feng, Jianyong Wang, and Lizhu Zhou.
Effective keyword search for valuable lcas over xml
documents. InCIKM, pages 31–40, 2007.

[24] Ziyang Liu and Yi Chen. Identifying meaningful return
information for xml keyword search. InSIGMOD
Conference, pages 329–340, 2007.

[25] Ziyang Liu and Yi Chen. Reasoning and identifying relevant
matches for xml keyword search.PVLDB, 1(1):921–932,
2008.

[26] Lingbo Kong, Rémi Gilleron, and Aurélien Lemay.
Retrieving meaningful relaxed tightest fragments for xml
keyword search. InEDBT, pages 815–826, 2009.

[27] Zhifeng Bao, Tok Wang Ling, Bo Chen, and Jiaheng Lu.
Effective xml keyword search with relevance oriented
ranking. InICDE, pages 517–528, 2009.

[28] Jianxin Li, Chengfei Liu, Rui Zhou, and Wei Wang.
Suggestion of promising result types for xml keyword
search. InEDBT, pages 561–572, 2010.

	1 Introduction
	2 Preliminaries
	2.1 ELCA Semantics on Deterministic XML
	2.2 ELCA Semantics on Probabilistic XML

	3 ELCA Probability Computation
	3.1 Keyword Distribution Probabilities
	3.1.1 Node v is an Ordinary node
	3.1.2 Node v is an MUX node
	3.1.3 Node v is an IND node

	3.2 ELCA Probability

	4 Algorithm
	4.1 Indexing Probabilistic XML Data
	4.2 PrELCA Algorithm
	4.3 No Early Stop

	5 Experiments
	5.1 Datasets and Queries
	5.2 Evaluation of Effectiveness
	5.3 Evaluation of Time Cost and Space Cost
	5.4 Evaluation of Scalability

	6 Related Work
	7 Conclusions
	8 References

