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their recent check-in behaviors. While some efforts have been made for this task, most of12

them do not capture the following properties: 1) The transition between consecutive POIs in13

user check-in sequences presents asymmetric property, however existing approaches usually14

assume the forward and backward transition probabilities between a POI pair are symmet-15

ric. 2) Users usually prefer different successive POIs at different time, but most existing16

studies do not consider this dynamic factor. To this end, in this paper, we propose a time-17

aware metric embedding approach with asymmetric projection (referred to as MEAP-T) for18

successive POI recommendation, which takes the above two properties into consideration.19

In addition, we exploit three latent Euclidean spaces to project the POI-POI, POI-user, and20

POI-time relationships. Finally, the experimental results on two real-world datasets show21

MEAP-T outperforms the state-of-the-art methods in terms of both precision and recall.22

Keywords Successive POI recommendation · Metric embedding ·23

Asymmetric projection · Temporal influence24

1 Introduction25

The increasing prevalence of smart mobile devices and the successful development of26

Location-based Social Networks (LBSNs), such as Gowalla, Foursquare, and Facebook27

Places, have greatly enhanced the life experience of users [11, 19, 33, 34]. In these plat-28

forms, users can check-in at Point-of-Interests (POIs) to show where and when they are,29

and share their personal experiences with others through comments. Taking Foursquare as30

an example, more than 10 billion check-ins have been generated by over 50 million users.131

With such a huge amount of check-in data, how to mine user preferences and recommend32

right POIs to right users has become an interesting topic, which helps users to explore inter-33

esting places and facilitate service providers to launch advertisements to potential target34

users. This task, known as POI recommendation, has attracted lots of efforts with various35

recommendation methods being proposed [8, 9, 13, 24, 29].36

As the easy collection of user context information (e.g., spatial and temporal information)37

under the mobile enviroment, successive POI recommendation, which recommends next38

POIs given a user and his/her current location, has become more pratical and emerging39

problem [2, 6, 14]. Figure 1 gives an intuitive example. We can observe that it is more40

rational to recommed recreation venue rather than fitness after user has a dinner. Further, we41

can analyze where the event (e.g., stampede and traffic jam) will happen in advance if we42

can predict the next POIs of users [20–22]. However this task is harder than traditional POI43

recommendation due to following reasons. First, although the interactions between users44

and POIs are very sparse, the successive check-in interactions are even sparser since one45

query (user, current location) may have tens of thousands of next candidate POIs. Second,46

the next POI is largely dependent on the current POI in addition to user preferences. For47

example, it is easy to imagine that users would prefer a dinner than shopping after hiking48

or other outdoor activities. Therefore, how to deal with the high sparsity and sequential49

information is the key to the success of successive POI recommendation.50

Recently, approaches have been proposed for successive POI recommendation by tack-51

ling the above challenges [2, 4, 16]. For example, Feng et al. [4] attempt to use metric52

1https://foursquare.com/about

https://foursquare.com/about
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Figure 1 An example of users’ check-in sequences

embedding to better model the highly sparse sequential transitions. To be more specific, 53

they project each POI to a point in a low-dimensional latent Euclidean space rather than an 54

independent vector in matrix factorization. However, several properties of check-in behav- 55

iors are not considered here: 1) Asymmetric property. They assume a consecutive POI-POI 56

transition is intrinsically symmetric, which means reverting previous and next POIs in the 57

latent space will get the same Euclidean distances. However, this assumption does not con- 58

sistently hold because the consecutive check-in data usually exhibits sequential order (i.e., 59

asymmetric property). For instance, the chance of coffee-office sequence is higher than that 60

of office-coffee. We will present more details in Section 3 to demonstrate this property. 2) 61

Temporal property. Check-in data exhibits temporal patterns, e.g., time-aware and peri- 62

odic. As we know, successive POI recommendation is a time-sensitive task, since different 63

POIs have different popularities at different time slots. For example, restaurants are always 64

checked-in during lunch or dinner time, while also show different popularities in weekdays 65

and weekends, i.e., periodicity. 66

In this paper, to justify the above observations, we first conduct empirical analysis on two 67

public real-world datasets. Specifically, we report successive POI check-in transition distri- 68

butions from coarse-grained category level to fine-grained POI level to show the existence 69

of asymmetry of POI transitions. Then, to address such asymmetric property, we propose a 70

new time-aware metric embedding approach with asymmetric projection to recommending 71

the most possible POIs for users given their current locations. In particular, two correspond- 72

ing left and right matrices are designed to project the current and next POI representations 73

into another latent space to differentiate the forward and backward transitions. Apart from 74

asymmetry, two temporal factors, namely periodicity and time interval, are also taken into 75

consideration. Finally, we utilize three types of latent Euclidean spaces (i.e., user preference 76

space, sequential transition space, and time specific space) to model POI-user, POI-POI, 77

and POI-time relationships, respectively. The strengths of all these relationships are fused 78

into a unified way by Euclidean distance in corresponding spaces. To conclude, the main 79

contributions of this paper lay as follows: 80

– We empirically verify the existence of asymmetric property in successive POI recom- 81

mendation from two perspectives: category level and POI level. 82

– We propose a time-aware metric embedding approach with asymmetric projection to 83

learning the representations of POIs, users, and time in latent Euclidean spaces. To 84

model asymmetric sequence information and temporal impacts, we jointly consider 85
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POI-POI transition, POI-user preference, and POI-time periodicity in three different86

latent spaces.87

– We conduct experiments on two real-world datasets to evaluate the effectiveness of our88

proposed model. Experimental results show our model outperforms four state-of-the-art89

methods for successive POI recommendation.90

The remainder of this paper is organized as follows. We first review the related work in91

Section 2. Section 3 reports our empirical analysis of check-in data. In Section 4, we intro-92

duce and elaborate our model in detail. Section 5 presents the experimental study, followed93

by conclusions in Section 6.94

2 Related work95

Comparing with traditional recommendation scenarios (e.g., movie recommendation), the96

task of POI recommendation faces with severer challenges: 1) The check-in data is implicit97

user feedback, which brings more noise for modeling user preference. 2) There are many98

types of contextual information to determine user check-in locations, e.g., social connec-99

tions, spatial-temporal influence, POI categories, sequential information and so on. In this100

section, we first introduce traditional POI recommendation and how to model sequential101

information for this task, and then review existing work on successive POI recommendation.102

Traditional point-of-interest recommendation With the rapid growth of accumulated103

check-in data, traditional POI recommendation, which focuses on recommending the right104

POIs to the right users, has received much attention in recent years [26–28]. Among the105

approaches proposed in previous work, matrix factorization is the most popular framework106

to solve this task. Lian et al. proposed the GeoMF model to seamlessly incorporate spatial107

clustering phenomenon into weighted matrix factorization [10]. To capture the geographi-108

cal phenomenon, GeoMF augments user and POI latent factors with activity area vectors109

of users and influence area vectors of POIs. However, this model cannot easily integrate110

context information. Based on this observation, Li et al. proposed a ranking based geograph-111

ical factorization method, namely Rank-GeoMF, which employs the OWPC loss metric to112

learn the model [9]. In particular, the authors assume that the check-in probability is deter-113

mined by the interactions between users and targeted POIs, and the ones between users114

and the neighboring POIs of targeted POIs. In addition to incorporating factors into tra-115

ditional collaborative filtering, generative graphical model is another mainstream method.116

Liu et al. proposed a geographical probabilistic factor analysis framework which strategi-117

cally considers multiple factors, including user preferences, geographical influence, and the118

user mobility pattern [12]. Yin et al. joint probabilistic matrix factorization and deep learn-119

ing model to solve the out-of-town and cold-start issues [29]. Moreover, some recent work120

starts to study sequential influence for POI recommendation [23, 35]. Wang et al. designed121

a sequential personalized spatial item recommendation framework which introduces a novel122

latent variable topic-region to learn and fuse sequential influence and personal interests in123

the latent and exponential space [23]. Conpared with this thread, we consider how to embed124

sequential information for a more challenging task, i.e., successive POI recommendation.125

Successive point-of-interest recommendation Sequential influence may help tradi-126

tional POI recommendation to some extent, but it is a significant factor for successive127

POI recommendation [15]. Different from traditional POI recommendation, successive128
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POI recommendation needs to provide a recommendation list based on a given user’s 129

recent check-ins, which requires not only the preference modeling from users but also the 130

correlations between POIs [32]. With the rapid rising of deep learning, some jobs have 131

introduced them to solve this task. Liu et al. extended Recurrent Neural Network and mod- 132

eled local temporal and spatial contexts in each layers [14]. In particular, they replaced the 133

single transition matrix in original RNN with time-specific and distance-specific transition 134

matrices. In addition, most of previous studies employed Markov chain property to model 135

POI-POI transition [2, 4, 6, 31]. Cheng et al. proposed a novel tensor factorization, namely 136

FPMC-LR, to incorporate two observed properties: personalized Markov chains and local- 137

ized regions [2]. Additionally, He et al. observed that human exhibit distinct latent transition 138

patterns under different contextual scenarios and proposed a unified tensor-based latent 139

model [6]. Feng et al. employed metric embedding to model sequential POI transition [4]. 140

Recently, Zhao et.al considers successive POI recommendation is a time-subtle task and 141

designs a time index scheme [32]. Different from previous work, our model mainly focus 142

on POI-POI asymmetric property in this paper, while they always assume the transition is 143

symmetric intrinsically. 144

3 Pattern analysis of real-world check-in datasets 145

Before presenting our approach in detail, we first introduce two real-world datasets used in 146

this paper and then show some important patterns of user behaviors that will be taken into 147

consideration in our model. 148

3.1 Data description 149

We use two publicly available check-in datasets collected from different real-world LBSN 150

applications: one is from Foursquare [25], and the other is from Gowalla [3]. The 151

Foursquare dataset includes user check-in data from April 12, 2012 to February 16, 2013 152

in New York City and we remove POIs which have been visited by no more than 5 users, 153

and filter users who have checked-in no more than 10 POIs. For the Gowalla dataset, we 154

first choose user check-in records in California using Bing Maps API according to POI lati- 155

tude and longitude. Then we keep POIs which have been visited by more than 15 users, and 156

choose users who have checked-in more than 20 POIs due to the higher data sparsity than 157

Foursquare. Some basic statistics of the two processed datasets are summarized in Table 1. 158

3.2 Patterns of user behaviors 159

Figure 2a and b report successive POI check-in transition probabilities at category level 160

in weekdays and weekends, respectively, where Y axis is the category of the current POI, 161

while X axis presents the category of the next POI. Note that here we only demonstrate the 162

category transition of Foursquare since Gowalla dataset misses the category information 163

Table 1 Statistics of datasets

Dataset #Users #POIs #Check-ins Density #Avg. check-ins per user

Foursquare 1078 2941 71,622 2.26% 66.44

Gowalla 2166 4047 100,986 1.15% 46.62
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Figure 2 Mobile patterns of user successive check-in behaviors. a and b show asymmetry property at cate-
gory level (C0: Arts & Entertainment, C1: College & University, C2: Food, C3: Nightlife Spot, C4: Outdoors
& Recreation, C5: Professional & Other Places, C6: Shop & Service, C7: Travel & Transport). c shows
asymmetry property at POI level. d is the statistical result of time intervals of successive check-in records

of locations. Moreover, in the preprocessing, we remove 6.7% of users’ check-ins whose164

category is home because the information is useless for our task. From these figures, we165

can see that category transition has asymmetric property on both weekdays and weekends.166

For example, the transition probability from C1 (College & University) to C4 (Outdoors &167

Recreation) is much higher than that from C4 to C1. This phenomenon can be easily inter-168

preted that students may go climbing after school but it is quite rare for them to go outdoors169

first and then be punctual for classes. We further discuss whether successive POI check-in170

transition probabilities are also asymmetric at POI level, through comparing the probabil-171

ities of observing the preceding POI and the next POI given the current one. As shown in172

Figure 2c, the probability that preceding and next POIs of a current POI are different is much173

higher than they are same in both Foursquare and Gowalla. Therefore, successive check-ins174

exhibit asymmetric property on both category level and POI level. However, existing mod-175

els usually assume the transitions of successive check-ins are symmetric. This observation176

triggers us to incorporate asymmetric transition into our model.177

Time interval is another significant factor of successive POI recommendation. Figure 2d178

shows how long users check two successive check-ins by calculating the cumulative dis-179

tribution function (CDF). We come to the same conclusion as in [16, 32] that consecutive180

check-ins have strong cooccurence rate: 30.9 and 36.6% of successive check-in records181

occur in less than 6 hours in Foursquare and Gowalla respectively. Meanwhile, 47.7 and182

43.7% of successive check-ins happen in more than one day. Intuitively, short time intervals183
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can better reveal why users go to the next POI from the current one. For more than 30% 184

of consecutive check-ins, the time intervals are larger than two days in both two datasets. 185

Therefore, a certain proportion of consecutive check-ins may not be influenced by the 186

current POIs, which will not be considered in our model. 187

4 Time-aware metric embedding with asymmetric projection 188

In this section, we present the details of our proposed model time-aware metric embedding 189

with asymmetric projection, referred to as MEAP-T, for successive POI recommendation. 190

We first introduce the problem formulation, and then present our model and optimization 191

method. 192

4.1 Problem formulation 193

Let U denote the set of users and L denote the set of locations, i.e., POIs. The check-in 194

records of user u is represented as Lu = {l1
u, . . . , l

ut−1
u }, where ut is the time step when 195

user t is going to visit the next POI and liu is the POI user u checked-in at time step i 196

(i ∈ {1, 2, . . . , ut − 1}). The goal of successive POI recommendation is to provide a set 197

of POIs for user u at time step t , given his/her historical check-in records Lu. Inspired 198

by the finding that in a short period of time, two successive POIs of a user exhibit strong 199

connections [2], we employ the Markov chain framework to model sequential influence 200

between POIs. Further, considering the complexity of nth-order Markov chain exponentially 201

increases with n and the experimental result shows first-order chain is better than higher- 202

order ones at Foursquare dataset [5], here we assume the probability of next POI only relies 203

on the current one [2, 4, 7]. Therefore, we focus on computing the probability that user u 204

will visit POI l given his current location lc: p(l|u, lc). 205

4.2 Metric embedding with asymmetric projection 206

Using the first-order Markov chain to learn POI-POI transition, one simple way is to convert 207

the successive check-in transition counts into transition probabilities and then use maximum 208

likelihood estimation to predict the next POI for user u, which is shown as follows: 209

p(l|u, lc) = Count(u, l, lc)

OCount(u, lc)
(1)

where Count(u, l, lc) and OCount(u, lc) denote the numbers of successive transitions 210

from POI l to lc in Lu and from lc to all next POIs in Lu, respectively. However, the check- 211

in dataset is very sparse as shown by the densities in Table 1 so it is hard to estimate p 212

precisely. 213

To overcome the above issue, a further improvement can be made by producing dis- 214

tributed representations for POIs or users. Metric embedding model has been proven a good 215

way to keep the coherent POI-POI or POI-user metric relationships in a latent space [1, 4]. 216

The key assumption of metric embedding is that each relationship is reflected by the 217

Euclidean distance through each latent low-dimensional space (i.e, d-dimensional in this 218

paper). In particular, each user u and POI l have latent positions XP (u) and XP (l) in the user 219

Preference space, respectively. The user-POI preference is related to the Euclidean distance 220

||XP (u) − XP (l)||2. Meanwhile, each POI l has a latent position XS(l) in the Sequential 221

transition space. Similarly, the POI-POI consecutive transition probability is reflected from 222
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the Euclidean distance ||XS(l)−XS(l′)||2. Note that the stronger a relationship is, the lower223

the corresponding Euclidean distance is. By combining these two kinds of metric relation-224

ships, the transition probability from current POI lc to a candidate POI l for user u can be225

defined as follows:226

p(l|u, lc) = e−(||XP (l)−XP (u)||22+||XS(l)−XS(lc)||22)
∑|L|

j=1e
−(||XP (lj )−XP (u)||22+||XS(lj )−XS(lc)||22)

(2)

The goal of successive POI recommendation is to provide a ranked POI list for a given227

user. Therefore, we can drop the normalization term in (2) and simplify it into a ranking228

task by calculating the two Euclidean distances [4]:229

Du,lc,l = ||XP (l) − XP (u)||22 + ||XS(l) − XS(lc)||22 (3)

After learning from training data, each POI and user is projected to a point in the latent230

space such that unobserved transitions from lc to l for user u are assigned meaningful values231

Du,lc,l . However, representing each POI in the sequential space with only one position will232

lead to flaws. For any two POIs li and lj , the metric distances from li to lj and from lj to li233

are the same (i.e., ||XS(li)−XS(lj )||22 = ||XS(lj )−XS(li)||22), which means the sequential234

transition is symmetric. However, recall that in Section 3, asymmetric property of successive235

check-ins has been demonstrated on both category and POI levels. Such symmetric property236

takes exactly the opposite point of view from data.237

To address the above limitation, an intuitive solution is to assign two distinct representa-238

tions to each POI, namely entry and exit vectors [1]. The entry vector models the transitions239

from previous POIs to the concerned POI, while the exit vector models the transitions from240

the concerned to next POIs. However, in LBSN scenarios, the data is always sparse so that it241

is very difficult to learn the two full representations simultaneously. Furthermore, each user242

only checks-in a few POIs and we cannot easily train the exit vectors for those unobserved243

POIs under the Bayesian Personalized Ranking (BPR) framework, which is a popular pair-244

wise optimization method in recommender systems for implicit feedback data [17]. Hence,245

we propose to learn two different small projections for current and next POIs, respectively,246

and the distance Du,lc,l is modified as follows:247

Du,lc,l = ||XP (l) − XP (u)||22 + ||LXS(l) − RXS(lc)||22 (4)

where L and R are two d × d matrices. We project the current and next POI representations248

into another space with the corresponding left and right matrices to meet the asymmetric249

property. The advantage of using matrix projection is that it will not bring much difficulty250

for training in spite of data sparsity.251

In addition to the asymmetric property, the temporal influence also plays an important252

role in user check-in behaviors. In this paper, we mainly consider the temporal influence in253

two-folds. (1) Periodicity [30, 32]. POIs usually have periodic check-in probabilities. For254

example, a bar may show a daily periodic pattern and is more likely to be visited at night,255

while a shopping mall may show a weekly periodic pattern and has higher probability to256

be visited at weekends. (2) Time interval of successive check-ins. In Section 3, we have257

observed that a certain proportion of consecutive check-ins exhibit long time spanning,258

which may indicate their irrelevance. To capture the first, we set a time-specific latent space259

and segment time into fixed-sized time periods. Similar to [30], after dividing each day into260

6 time periods and meanwhile discriminating weekdays and weekends, the total number |T |261

of time periods is equal to 12. After that, our model further considers Euclidean distance262

||XT (l)−XT (t)||22 between POI l and time period t in the Time specific space. The intuition263

is that if a POI is always checked-in at one or a few time periods then the distance between264
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them should be close. For the second characteristic, we assume if the time interval between 265

two POIs is larger than a threshold τ , the influence between the two adjacent POIs vanishes 266

[4]. Hence, our final model is specified by: 267

Du,lc,t,l =

⎧
⎪⎪⎨

⎪⎪⎩

||XP (l) − XP (u)||22 + ||XT (l) − XT (t)||22 + βl, if �(l, lc) > τ

||XP (l) − XP (u)||22 + ||LXS(l) − RXS(lc)||22
+||XT (l) − XT (t)||22 + βl, otherwise

(5)

where �(lc, l) represents the time interval between two consecutive POIs, and βl is the bias 268

of POI l. To sum up, we utilize three different latent spaces (i.e., user preference space, 269

sequential transition space and time specific space) to model user preference, POI-POI tran- 270

sition and POI-time relationship, respectively. Note that the number of dimensions of all 271

spaces is set to d for simplicity. 272

4.3 Model inference and learning 273

Our model aims to provide a ranked list of next POIs based on successive check-in probabil- 274

ities given a user’s current location. As we have mentioned, we care more about the ranking 275

order of candidate POIs rather than the probabilities. Following the BPR optimization crite- 276

rion in [17], we propose a pairwise ranking objective function. We assume that users prefer 277

observed next POIs to unobserved ones and define a ranking operator >u,lc,t over POIs: 278

li >u,lc,t lj ⇔ Du,lc,t,li < Du,lc,t,lj , (6)

where li is the observed next POI at time period t given user u and current POI lc while 279

lj is not observed. For each observation < u, lc, t, li > which means user u transfers from 280

current POI lc to next POI li at time period t , we can generate a pairwise preference order 281

li >u,lc,t lj where lj is an unobserved POI, i.e., lj �∈ Lu. After that, the training set Dtrain = 282

{(li , u, lc, t, lj )} can be obtained. We further assume the independence of the generated 283

pairwise orders. Then we estimate our model by using maximizing a posterior (MAP) and 284

use logistic function to approximate the likelihood of all the pairwise orders: 285

� = arg max
�

log
∏

(li ,u,lc,t,lj )∈Dtrain

P (li >u,lc,t lj |�)P (�)

= arg max
�

∑

(li ,u,lc,t,lj )∈Dtrain

log P(li >u,lc,t lj |�)P (�)

= arg max
�

∑

(li ,u,lc,t,lj )∈Dtrain

log(σ (Du,lc,t,lj − Du,lc,t,li ))

−λP (||XP (U)||2 + ||XP (L)||2) − λS ||XS(L)||2
−λT (||XT (L)||2 + ||XT (T )||2) − λβ ||β(L)||2
−λA(||L||2 + ||R||2), (7)

where � = {XP (U), XP (L),XS(L), L,R,XT (L),XT (T ), β(L)} is the set of parameters, 286

σ is the logistic function σ(x) = 1
1+e−x and λ = (λP , λP , λS, λA, λA, λT , λT , λβ)T is the 287

regularization parameter vector corresponding to �. We adopt stochastic gradient decent 288

(SGD) to learn the parameters for efficiency. The update procedure is carried out as follows: 289

� = � + α

(

(1 − σ(z))
∂z

∂�
− 2λ�

)

, (8)
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where α is the learning rate, z = Du,lc,t,lj − Du,lc,t,li and λ� = {λi�i |1 ≤ i ≤ |�|}, i.e.,290

scaling parameters � with regularization parameters in λ. Note that when learning, boot-291

strap sampling is exploited to sample the unobserved POI lj . The detailed leaning algorithm292

is described in Algorithm 1.293

294

Algorithm 1 Learning Procedure of MEAP-T

Input: check-in data , time threshold , learning rate , regularization vector ,
number of dimensions

Output: model parameters
1 Draw from Normal Distribution 0 0 01 except for and
2 Initialize and with unit diagonal matrix
3 repeat
4 shuffle the set of observations
5 for each observation do
6 Randomly draw an unobserved POI from
7 Update
8 Update
9 Update

10 if then
11 Update

12 until convergence
13 return

295

5 Experimental study296

In this section, we conduct an extensive experimental study to answer the following297

questions: i) How does our approach perform in comparison to baselines and other state-298

of-the-art models? ii) How does the time interval between consecutive POI check-ins299

influence successive POI recommendation? And iii) How do the parameters affect the model300

performance?301

5.1 Experimental setup and comparison methods302

To fully demonstrate the performance of our model, we perform experiments on two real-303

world datasets which have been introduced in Section 3. For both datasets, we split the304

sequential check-ins of each user into three parts: 80% of behavioral records are selected for305

training, 10% for validating, and 10% for testing according to the check-in time order. The306

model aims to recommend a list of next POIs for each user, given the user’s current location.307

We choose the next check-ins within successive τ seconds to evaluate model performance308

from test data. Recall that τ is vanishing threshold for temporal influence in (5). Then, as309

in prior work [2, 4, 14], we employ two widely used metrics, namely Precision@N and310

Recall@N, to measure model performance for successive POI recommendation, where N is311

the number of top-ranked recommendations and we will present the results of N = 5, 10,312

15, and 20 for each metric.313
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In the experiments, we compare our model with a series of state-of-the-art algorithms in 314

successive POI recommendation as follows: 315

– Popular. The top ranked POIs based on popularity in the training set are selected as 316

recommendation for each user. 317

– BPR. As check-in records can be treated as user implicit feedback, we introduce 318

BPR, a state-of-the-art algorithm for recommendation tasks based on implicit feed- 319

back. This method only takes user preference into consideration and we choose Matrix 320

Factorization as the underlying predictor [17]. 321

– FPMC. This method considers user preference and sequence information simultane- 322

ously through Canonical Decomposition. Specifically, it combines personalized matrix 323

factorization and non-personalized first-order Markov chains to provide the next basket 324

recommendation [18]. 325

– PRME. This method embeds POI presentation and user presentation into two spaces: 326

POI sequential transition space and user preference space for successive POI recom- 327

mendation. Since we only focus on the sequence transition, we do not consider the 328

location constraints in the comparison [4]. 329

– MEAP. This is our simplified algorithm without considering the temporal influence, 330

i.e., the distance is defined by (4). 331

– MEAP-T. This method further incorporates temporal influence into MEAP. Therefore, 332

three different latent spaces, namely personalized user preference, POI-POI sequential 333

transition, and POI-time relationship, are modeled through embedding learning. 334

Finally, we list some important hyperparameters for reproducibility. After tuning hyper- 335

parameters in the validation set, the regularization and number of dimensions of BPR and 336

FPMC are set to 0.001 and 100 on both datasets, respectively. We fix the number of dimen- 337

sions to 60, component weight to 0.2, and regularization term to 0.001 for PRME on both 338

datasets. For MEAP, the number of dimensions is set to 100 and regularizations are set as 339

λP = λβ = 10−6, λA = λS = 10−7 on both datasets. The number of dimensions in 340

MEAP-T is also 100 and regularizations are set as λP = λβ = 10−4, λA = λS = 10−5 on 341

both datasets, and regularization λT is set to be 10−3 on Foursquare and 0.005 on Gowalla, 342

respectively. The learning rate is set to 0.01 for all methods. 343

5.2 Comparison of performance 344

In Figure 3, we report the overall performance of all recommendation approaches with 345

τ = 21600 (sec.) on both Foursquare check-ins in New York City and Gowalla check- 346

ins in California, respectively. We can observe that Popular gets much lower precision 347

and recall than all other counterparts, indicating that this naive approach is insufficient for 348

successive POI recommendation. Moreover, FPMC and PRME consistently perform much 349

better than BPR. For example, FPMC improves BPR by 22.28 and 39.73% with Recall@5 350

on Foursquare and Gowalla, respectively. This is because BPR only considers personal- 351

ized user-POI preference in latent space, while FPMC and PRME combine user preference 352

and POI transition together. Therefore, sequential information is a significant factor for 353

successive POI recommendation tasks. On the other hand, PRME is better than FPMC in 354

most cases on Foursquare and is much better on Gowalla. Specifically, PRME outperforms 355

FPMC by 3.67 and 9.94% with Recall@10 on Foursquare and Gowalla, respectively, pos- 356

sibly because PRME embeds POIs and users as single points in latent spaces, while FPMC 357



AUTHOR'S PROOF JrnlID 11280 ArtID 596 Proof#1 - 29/05/2018

UNCORRECTED
PROOF

World Wide Web

Figure 3 Overall performance comparison on Foursquare and Gowalla

represents them as independent vectors. This enables PRME to capture latent relationships358

of POI-POI and user-POI more naturally and precisely [1, 4].359

Our proposed model MEAP performs much better than FPMC and PRME. Specifi-360

cally, MEAP improves (FPMC, PRME) by (6.57%, 5.71%) on Foursquare and by (18.73%,361

10.73%) on Gowalla with Precision@15. As we have discussed earlier in Section 3, suc-362

cessive POI check-in data possesses the characteristic of asymmetry property. Note that363

MEAP successfully models this property through metric embedding with asymmetric pro-364

jection, while PRME assumes the symmetric property. This result indicates that asymmetry365

property should be taken into consideration to improve performance during embedding366

learning. Finally, MEAP-T achieves the best performance on both datasets, although it is367

only slightly better than MEAP on Gowalla. This shows that temporal influence is beneficial368

for successive POI recommendation to some extent.369

5.3 The impacts of time interval370

To explore the impacts of time interval, i.e., τ , we demonstrate the performance of all meth-371

ods at different time intervals (i.e., 10,800 s., 21,600 s., 43,200 s.) in Figure 4. Due to372

the space constraint, we only show the results of Precision@15 and Recall@15, and the373

performances with different Ns are quite similar. Note that there is only one next POI as374

ground-truth given a user and his current POI in test data. Hence, Precision and Recall375

display the same trend.376
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Figure 4 The impacts of time interval τ on Foursquare and Gowalla

We can observe that Popular and BPR have similar performances at different time inter- 377

vals. This is because they do not consider sequential information at all. Likewise, FPMC 378

also presents similar results at various time intervals on both datasets. The reason may be 379

that FPMC utilizes all training data to train the model regardless of time intervals between 380

current and next POIs. The performances of PRME and MEAP decrease with the increase 381

of time interval, especially on Gowalla. This observation reveals that POI sequential tran- 382

sition becomes weaker with larger time interval. Surprisingly, MEAP performs better than 383

MEAP-T with τ = 10800. One possible reason is that our datasets are sparse and there is 384

not enough data to train MEAP-T when τ = 10800. With the increase of τ , MEAP-T out- 385

performs MEAP, which means that temporal factor improves the performance when τ is 386

selected reasonably. 387

5.4 The impacts of the number of latent dimensions 388

We further investigate the impacts of the number of latent dimensions d , which is an impor- 389

tant parameter when learning a latent ranking-based model. Figure 5 demonstrates the result 390

on Recall@15. When the number of dimensions is less than 40, the performance increases 391

fast, while it rises steadily from d > 40. This is because higher dimensionality can bet- 392

ter embed POI-POI, POI-user, and POI-time relationships. In the experiments, we set the 393

number of dimensions to 100 for the trade-off of recommendation quality and computation 394

cost. 395
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Figure 5 The impact of the number of latent dimensions on Foursquare and Gowalla under the metric of
Recall@15

6 Conclusions and future work396

In this paper, we studied the task of successive POI recommendation. We first demonstrated397

the existence of asymmetric property in successive check-in data. Then a novel time-aware398

metric embedding algorithm was developed, which incorporated asymmetric POI-POI tran-399

sition and temporal influence. In particular, we embedded user preference, asymmetric400

POI-POI transition, and POI-time relationship into three distinct Euclidean spaces. We401

conducted comprehensive experiments on two real-world datasets to evaluate the perfor-402

mance of our proposed model. The results have demonstrated the superiority of our model403

compared with baseline methods.404

Several issues need further investigations. First, given the observation that MEAP out-405

performs MEAP-T at low time interval τ , how to embed time influence more effectively for406

sparse data lies in our future study. Second, there are other types of contextual information,407

e.g., geography and category. It would be interesting to fuse these types of information to408

further improve the performance of successive POI recommendation.409
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