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Abstract The wide spread use of positioning and photographing devices gives
rise to a deluge of traffic trajectory data (e.g., vehicle passage records and taxi
trajectory data), with each record having at least three attributes: object ID, lo-
cation ID, and time-stamp. In this paper, we propose a novel mobility pattern
embedding model called MPE to shed the light on people’s mobility patterns in
traffic trajectory data from multiple aspects, including sequential, personal, and
temporal factors. MPE has two salient features: (1) it is capable of casting various
types of information (object, location and time) to an integrated low-dimensional
latent space; (2) it considers the effect of “phantom transitions” arising from road
networks in traffic trajectory data. This embedding model opens the door to a
wide range of applications such as next location prediction and visualization. Ex-
perimental results on two real-world datasets show that MPE is effective and
outperforms the state-of-the-art methods significantly in a variety of tasks.

Keywords Human Mobility Patterns · Embedding Learning · Traffic Trajectory
Data · Next Location Prediction

1 Introduction

The increasing prevalence of electronic dispatch systems and surveillance devices
has made it possible to collect a massive amount of traffic trajectory data. For
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(a) Electronic taxi dispatching system.
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(b) Traffic surveillance system.

Fig. 1 Traffic trajectory data.

example, as shown in Fig. 1(a), the mobile data terminals installed in each taxi
could typically provide information on GPS (Global Positioning System) localiza-
tion and taximeter state [1]. As another example, vehicles are photographed when
they pass by the surveillance cameras (as depicted in Fig. 1(b)), and structured ve-
hicle passage records (VPRs) are subsequently extracted from the pictures using
optical character recognition (OCR) [3, 4]. The data collected in both scenarios
contain at least three attributes: object ID, location ID, and time-stamp, which
provide an opportunity to deeply understand people’s mobility patterns.

While new technologies have made it possible to see where a vehicle has been,
it is still non-trivial to predict where it is going next in a real-world transportation
system. Among other potential applications, accurate prediction of next locations
can help improve the effectiveness of electronic taxi dispatching systems and city-
scale traffic management. For example, if the dispatchers know approximately
where their taxis will arrive next, they would be able to identify which taxi to
assign to each pickup request; if the transportation management system is aware
of where the vehicles will go next, it could adjust traffic signal timing dynamically
to help relieve traffic congestion.

Despite its great practical value, it is challenging to analyze and mine traffic
trajectory data to predict next locations, due in part to the following important
but often overlooked considerations:

1. Road network constraints. The routes of vehicles have to follow the road
networks. For example, as shown in Fig. 1(b), a vehicle could take a route
l1 → l2 → l3, while it would be impossible to observe that a vehicle moves
directly from l1 to l3 without passing l2 or l4, where l1, l2, l3 and l4 are
locations.

2. Personal tendencies. People have personal preferences including individual
interests, habits and behavioral patterns, which often contribute to their next
location choices during navigation.

3. Temporal factors. People tend to exhibit nonuniform and periodic moving
behaviors. For instance, people usually leave home in the morning and return in
the evening of weekdays. Therefore, temporal information may be of significant
importance and requires proper handling.

4. Relative importance of factors. Various factors (personal, sequential and
temporal information) may play different roles in affecting human mobility pat-
terns, e.g., sometimes a user’s personal preference is more important during
navigation, but sometimes the current location dominates the result. Simply ig-
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noring the difference may hinder capturing the real picture of people’s mobility
patterns.

Current methods mainly adopt Markov or Bayesian models to predict next
locations [2,10,22,27], in which the core idea is to compute the conditional prob-
ability of each possible next location given current observations (object, location,
and time slot) and select the one that has the highest probability as the predicted.
The drawbacks of these methods lie in two aspects. 1) Improper independence
assumption: methods based on Bayesian models assume that the attributes in
the trajectory data are mutually independent, which rarely holds in practice. 2)
Over-fitting: methods based on Markov models often suffer from the problem of
over-fitting as the number of training instances given the specific observation is
limited, e.g., each object appears in only 7 records on average in one day in our
VPR data.

We envision a solution that is able to not only jointly consider these factors
(including road network constraints, sequential patterns, personal tendencies and
temporal influences), but project objects, locations and time slots into the same
low-dimensional latent space, to effectively represent human mobility patterns.
This approach has at least three advantages: (1) we could map all the attributes
(objects, locations, time) into the same space, without the assumption of inde-
pendence; (2) for a given attribute, we could use all of the training instances
containing this attribute to adjust its position in the space, alleviating the prob-
lem of over-fitting; (3) we could compute the correlation between any two points in
the space with a distance metric, which would allow us to understand the relation-
ship between different objects (or time), e.g., for a particular object (time slot),
which objects (slots) may demonstrate a more similar behavior. In light of recent
advances in distributed representation [12, 19], we explore the use of embedding
methods and aim to accommodate these attributes in a latent space.

In fact, there have already been a few embedding methods that attempt to
model check-ins for POI (point of interest) recommendation [6, 29]. However, the
problem of POI recommendation is notably different from that of next location
prediction. For example, the methods modeling check-in POIs usually focus on
the activity at the individual POI instead of the visiting order of successive POIs,
whereas for predicting next locations, the preceding locations and the order of their
visits often play a vital role. Moreover, existing methods for POI recommendation
do not consider the restriction of road networks, which renders them unsuitable
to be applied to our problem directly.

Present work. We propose a novel Mobility Pattern Embedding (MPE)
method to effectively represent human mobility patterns. It considers the joint
action of different attributes, and leverages distributed representations to model
objects, locations, and time slots jointly. MPE is especially useful for the task
of predicting next locations, in that the next location is associated with an em-
bedding vector, and its conditional vector can be computed by summing up the
embedding vectors of the conditional attributes. Given a next location li+1, its
conditional attributes contain the object o, the current location li and the time t
that o arrives at li. The objective is to minimize the Euclidean distances between
the embedding vectors of the next locations and their conditional vectors in the
latent space. As a result, MPE is general and flexible to model these conditional
attributes in a unified way.
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Note that, we distinguish between the role of a next location and a current
location, and represent the same location using different vectors in the same space
depending on which role it takes, to eliminate the effect of phantom transitions in
trajectories. To illustrate this, consider the following sample scenario, where each
location is mapped to a single point in the embedding space, irrespective of its
role (current or next location). Given two transitions li → lj and lj → lk, if we
knew that both li and lk are close to lj in the space, then it would be of high
probability to predict li → lk. However, it is not likely to observe li → lk due to
the restriction of road networks, unless there exists a direct road between li and
lk. Our proposal helps solve this problem by mapping the same location lj to two
different points in the space according to its role.

We exploit the stochastic gradient descent method to estimate the parame-
ters, and conduct thorough experimental studies on two real datasets: the vehicle
passage records generated by over 18,000 vehicles from a traffic surveillance sys-
tem and the publicly available trajectory data of 442 taxis for a complete year.
We demonstrate the effectiveness of MPE on the task of next location prediction
and visualization of embedding vectors. The experimental results confirm the su-
periority of our model over alternative methods. The major contributions can be
summarized as follows.

– We propose a novel Mobility Pattern Embedding model by considering the
features of traffic trajectory data, i.e., “phantom transitions” usually do not
exist due to the restriction of road networks. To the best of our knowledge,
this is the first work that uses embedding method to model mobility patterns
from traffic trajectory data .

– We consider the sequential, personal and temporal information in a unified way
and project objects, time slots, current locations and next locations as points
in a low-dimensional latent space to better model human mobility patterns.
The availability of such embedding vectors could benefit a wide spectrum of
applications such as next location prediction and visualization.

– We conduct extensive experiments with real VPR data and taxi trajectory
data, and compare MPE with baselines on the task of next location prediction.
Further, we visualize the embedding vectors of objects and time, and the clear
patterns confirm the effectiveness of MPE.

The rest of this paper is organized as follows. Section 2 reviews the studies on
embedding learning, next location prediction and POI recommendation. Section 3
introduces the definition of some concepts and the problem solved in this paper.
Section 4 presents our mobility pattern embedding model. The experimental re-
sults are discussed in Section 5. Section 6 describes the concluding remarks.

2 Related Work

Trajectory data mining has been a hot research topic recently with the availability
of massive spatial trajectory data [3, 11, 31, 32, 35]. Zheng [32] conducts a system-
atic survey on this filed, including trajectory data preprocessing, trajectory data
management, and a variety of mining tasks. We focus on predicting the next lo-
cations of moving objects with embedding methods, so we first discuss the recent
progress of embedding learning methods and then review the studies on location
prediction and POI recommendation.
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2.1 Embedding Learning

Embedding objects from high-dimensional vectors into a lower-dimensional space
is an important operation in machine learning, and has been successfully exploited
in an array of applications including visualization and speech recognition [7,9]. Re-
cently, word2vec [17] has been proved to be an efficient method for learning high-
quality distributed vector representations of words. It models the words’ contex-
tual correlations in word sentences, achieving better performance in many natural
language processing tasks such as word analogy and machine translation. Mean-
while, similar methods [5, 8] have been proposed for learning distributed vector
representations for nodes in the network and POIs in the physical world. Feng et
al. [5] incorporate the geographical influence into a new latent representation model
POI2vec for predicting potential visitors for a given POI. Grover and Leskovec [8]
propose an algorithmic framework named node2vec for learning continuous feature
representations for nodes in networks.

2.2 Location Prediction

There exist an array of studies that use different methods (e.g., Markov mod-
els, frequent patterns) to mine mobility patterns from historical traffic trajectory
data to predict the next locations. For example, Monreale et al. [18] consider the
historical movements of all moving objects to build a T-pattern tree to make fu-
ture location prediction. Chen et al. [2, 3] propose to mine both individual and
collective movement patterns with an integrated variable-order Markov model to
predict next locations. Xue et al. [20] first decompose historical trajectories into
sub-trajectories and connect them into synthesised trajectories, and then use a
Markov model to predict the destination of an object.

In addition, there also exist methods that use the neural networks to model
human mobility patterns. For instance, De Brébisson et al. [1] introduce an almost
fully-automated neural network to predict the destination of a taxi based on both
the initial location of the trajectory and its associated meta-data. Liu et al. [15]
propose a novel method called Spatial Temporal Recurrent Neural Networks (ST-
RNN) which models local temporal and spatial contexts in each layer for mining
mobility patterns. ST-RNN focuses on storing statistical weights for long-term
transitions in a trajectory, whereas we aim at modeling the transitions from current
locations to next ones.

Pushing further from the historical trajectories, there are some studies that
improve prediction accuracy by taking external information (e.g., semantic infor-
mation, driving speed) into consideration. For example, Zhou et al. [33] train a
local model based on a small set of reference trajectories to predict the future
movement of the target object. Zhang et al. [28] extract the underlying correlation
between human mobility patterns and cellular call patterns and make location
prediction from temporal and spatial perspectives with it. However, the above
methods can only be applied to some specific trajectory data with these external
information.

In summary, the existing methods mainly model these attributes (object, con-
ditional location, and time slot) independently, and we cannot understand the
relationship between two objects (or time slots) with the discovered patterns. In



6 Meng Chen et al.

this study, we choose an angle different from these models, in which we embed
all the attributes into the same latent space, and measure the relationship by
computing the Euclidean distance of two points.

2.3 POI Recommendation

Some recent studies on POI recommendation in location-based social networks
are also related to our work, in which any unvisited POIs can be recommended
to users. For example, Zhao et al. [30] propose a spatial-temporal latent ranking
(STELLAR) method based on a ranking-based pairwise interaction tensor factor-
ization framework to make POI recommendation. Yuan et al. [25, 26] present a
probabilistic model W4 (short for Who+Where+When+What) to exploit short
text messages associated with geographic information, posting time, and user ids
to discover user mobility behaviors for POI recommendation. Yao et al. [21] pro-
pose to incorporate the degree of temporal matching between users and POIs when
making personalized POI recommendations. Lian et al. [14] incorporate the spa-
tial clustering phenomenon into weighted matrix factorization to help improve POI
recommendation performance. Yin et al. [23] propose a unified generative model to
simultaneously model the semantic, temporal and spatial patterns of users’ check-
in activities for POI recommendation. However, these methods do not have decent
performances in predicting next locations, as they fail to consider the just-passed
locations, which play pivotal roles in affecting people’s decision-making for next
locations.

The works [6, 29, 34] that focus on making POI recommendation with embed-
ding vectors are more related to ours. Zhou et al. [34] propose a Multi-Context
Trajectory Embedding Model (MC-TEM) for POI recommendation, which uses
the framework of word2vec directly, and takes various useful contextual features,
including user-level, trajectory-level, location-level and temporal contexts, into
consideration. Feng et al. [6] propose a personalized ranking metric embedding
method (PRME), which first embeds each POI into a sequential transition space,
and then projects each POI and user into a user preference space. As two compo-
nents contribute differently in POI recommendation, it uses a linear interpolation
to balance them. Zhao et al. [29] assume that the contextual check-in information
implies complementary knowledge of POIs, and propose a Geo-Temporal sequen-
tial embedding rank (Geo-Teaser) model for POI recommendation. Geo-Teaser
first encodes POIs with the framework of word2vec by treating each user as a
“document”, check-ins in a day as a “sentence”, and each POI as a “word”, and
then combines personal and temporal information. However, this method only
discriminates weekdays and weekends concerning the temporal factor, failing to
consider the subtle variation of different time slots in a day.

In order to highlight our contribution, we summarize the main difference be-
tween the proposed model MPE and the aforementioned methods. First, POI
recommendation pays little attention to the visiting order of POIs, and “phantom
transitions” indeed exist in the check-in data. For example, given observations of
frequent POI transitions Home → Subway (going from Home to Subway directly)
and Subway → Market, it is of high probability to observe Home → Market as
well; thus these methods represent the POIs with values in one vector set with-
out distinguishing the current POI and the next one, but this is inappropriate in
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our problem. Second, Geo-Teaser [29] and MC-TEM [34] adopt the framework of
word2vec directly, and model the correlation between one location and its context
(e.g., the previous K and the successive K locations), whereas our MPE directly
models the transition (from the current location to the next one), and defines
the novel objective function different from word2vec. Finally, PRME [6] models
the sequential and personal information independently, and does not consider the
temporal information. To the best of our knowledge, we are the first to model per-
sonal, sequential, and temporal factors simultaneously with the embedding method
for traffic trajectory data.

3 Preliminaries

We first define some concepts which are required for the subsequent discussion, and
introduce the intuitions behind our proposed model. Then we list the notations
and their descriptions in Table 1.

3.1 Concepts

Definition 1 (Record) Each record is represented as a triple r : (o, t, l), where
o refers to an object ID, l indicates a location ID, and t represents the time-stamp
o arrives at l.

Note that we discretize the time span into equi-sized buckets for simplicity,
and represent t with the time slot it belongs to. Further, the size of the time slot
is data-independent and can be determined experimentally. Given an object o, we
sort its records by time, and construct a quadruple c : (o, t, li, lj) for each record
r, where lj is the next location the user o will arrive at directly from the location
li in the time t.

Definition 2 (Transition) For a quadruple (o, t, li, lj), we define li → lj as a
transition, meaning an object could arrive at lj from li directly without passing
through any other location.

Specially, given a transition li → lj , we define li as the current location, and lj as
the next location.

Definition 3 (Sequence) For two transitions li → lj and lj → lk, we define
li → lj → lk as a sequence.

Definition 4 (Candidate Next Location) For a location li, we define a loca-
tion lj as a candidate next location of li if the transition li → lj exists.

Problem 1 (Mobility Pattern Embedding) Given the historical quadruples
C, Mobility Pattern Embedding aims at modeling the interactions of objects,
time slots, current locations and next locations in a unified way by embedding the
four attributes in a latent vector space.
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Table 1 Notations and descriptions.

Notations Descriptions

o an object (e.g., vehicle, taxi)

l a location

t a time slot

r a record containing o, l, t

c a quadruple containing r and its next location

O the set of objects

Lc the set of current locations

Ln the set of next locations

T the set of time slots

C the set of historical quadruples

D the embedding’s dimensionality

M the number of negative samples

O the distributed representations of objects

Lc the distributed representations of current locations

Ln the distributed representations of next locations

T the distributed representations of time slots

3.2 Intuitions

Sequential influence. It has been shown that people’s next movements depend
on the sequential correlations of successive locations [3], which can be caused by
personal navigation habits or the restriction of road networks. In addition, as the
movements of vehicles are subject to real road networks, the “phantom transitions”
rarely occur. That is, given two transitions li → lj and lj → lk, li → lk does not
exist unless there is a direct route from li to lk. To validate the transitivity, we
analyze two real datasets: VPR data and Taxi data (the detailed descriptions on
the data are listed in Section 5). For the VPR data, we obtain 1,704 transitions and
6,329 sequences, and only 7.46% of sequences have the characteristic of “phantom
transitions”; for the Taxi data, we obtain 11,645 transitions and 59,949 sequences,
and only 10.38% do. We thus need to avoid the “phantom transitions” in the
proposed embedding model.

Personal tendencies. Intuitively, the personal preference which reflects the
overall user interests, habits and behavioural patterns may affect the location
choices in trajectories. With the same current location, two objects are likely to ar-
rive at different next locations. For example, two persons living in the same apart-
ment might go to lunch in “McDonald’s” and “Pizza Hut” respectively. Therefore,
given the current location of an object, the predicted next location should not only
be related to the current location, but also capture the object’s preference.

Temporal influence. Different mobility patterns exist in different time slots,
e.g., Bob is going to leave home, and he is most likely to go to work at 8 am,
and have lunch at 11:30 am. To illustrate how time could affect people’s decisions
on next locations, we sample a location in the VPR data. Note that it has seven
candidate next locations, and the distributions over those locations do differ from
one period to another, as shown in Fig. 2. For instance, vehicles are most likely to
arrive at the fifth location during the period from 9:00 to 10:00, whereas the most
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Fig. 2 An example of time affecting next locations.

probable next location is the second for the period from 15:00 to 16:00. We thus
should differentiate hours of a day to reflect the temporal influence.

4 Mobility Pattern Embedding Model

In this section, we first present a Mobility Pattern Embedding (MPE) model, and
then introduce the parameter learning algorithm and its complexity analysis.

4.1 Model Description

We propose a novel Mobility Pattern Embedding (MPE) method to model the
combined action of sequential, personal and temporal influences on people’s mobil-
ity patterns. MPE embeds objects, time slots, current locations and next locations
together as points in a low-dimensional latent space. Specifically, O ∈ R|O|×D

is the object embedding matrix, T ∈ R|T |×D is the time embedding matrix,
Lc ∈ R|L

c|×D is the current location embedding matrix, Ln ∈ R|L
n|×D is the

next location embedding matrix, where D is the embedding’s dimensionality, O,
T , Lc and Ln are the sets of objects, time slots, current locations and next loca-
tions, respectively.

For a quadruple c : (o, t, li, lj) where r = (o, t, li), we define the conditional
vector Vc of the next location lj as the sum of three vectors Oo, Tt and Lc

li ,
i.e., Vc = Oo + Tt + Lc

li , where Oo is the embedding vector of the object o,
Tt is the embedding vector of the time slot t, and Lc

li is the embedding vector
of the current location li. Here we assume that the Euclidean distance between
the vector Ln

lj of the next location lj and its conditional vector Vc reflects the
transition probability of r to lj , and its value can be estimated as:

P̂ (lj |r) =
exp(−‖Ln

lj −Vc‖2)

Z(Vc)
, (1)

where Z(Vc) is the normalization term.

In order to compute P̂ (lj |r), we adopt the method of negative sampling [13,17],
and maximize P̂ (lj |r) for the observed next location lj while minimizing P̂ (l|r)
for the randomly sampled unobserved (negative) next location l. The objective of



10 Meng Chen et al.

MPE for a single tuple c : (r, lj) therefore becomes:

max

P̂ (lj |r)−
∑

lm∈NEG(r)

P̂ (lm|r)

 , (2)

where NEG(r) is the set of unobserved next locations for record r, lm ∈ NEG(r)
is the sampled next location, and the number of “negative” samples is M .

Actually, we are concerned only with their ranking, instead of estimating the
probability of each possible next location. For example, if tuple (r, lj) is observed
and (r, lm) is unobserved, we expect that the value of probability P̂ (lj |r) should
be higher than P̂ (lm|r). Accordingly, we can simplify the computation by keeping
only the Euclidean distance instead of applying the exponential function:

P̂ (lj |r) > P̂ (lm|r)

⇒ exp
(
−‖Ln

lj −Vc‖2
)
> exp

(
−‖Ln

lm −Vc‖2
)

⇒ ‖Ln
lm −Vc‖2 − ‖Ln

lj −Vc‖2 > 0.

(3)

Therefore, given a quadruple c : (r, lj), we randomly sampleM unobserved next
location lm ∈ NEG(r), and expect that P̂ (lj |r) should be higher than P̂ (lm|r).
We could redefine the objective with the maximum likelihood function:

max
∏

lm∈NEG(r)

P
(
P̂ (lj |r) > P̂ (lm|r)

)
⇒max

∏
lm∈NEG(r)

P
(
‖Ln

lm −Vc‖2 − ‖Ln
lj −Vc‖2 > 0

)
.

(4)

A sigmoid function has a domain of all real numbers with return value mono-
tonically increasing from 0 to 1 and is differentiable having a non-negative first
derivative. Using the sigmoid function σ(z) = (1 + exp(−z))−1 , the objective can
be further written as

max
∏

lm∈NEG(r)

σ
(
‖Ln

lm −Vc‖2 − ‖Ln
lj −Vc‖2

)
. (5)

Taking the log function on the objective, we have

max log
∏

lm∈NEG(r)

σ
(
‖Ln

lm −Vc‖2 − ‖Ln
lj −Vc‖2

)
⇒max

∑
lm∈NEG(r)

log σ
(
‖Ln

lm −Vc‖2 − ‖Ln
lj −Vc‖2

)
.

(6)

Finally, the objective ` of MPE for all the tuples can be described as:

max
∑

c=(r,lj)∈C

∑
lm∈NEG(r)

log σ
(
‖Ln

lm −Vc‖2 − ‖Ln
lj −Vc‖2

)
,

Vc = Oo + Tt + Lc
li .

(7)

The benefits of MPE are two-fold. (1) MPE distinguishes between the role
of a next location and a current location, and represent the same location using
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two different vectors (Lc and Ln) depending on which role it takes; therefore the
problem that arises from “phantom transitions” can be effectively avoided. That
is, given li → lj and lj → lk indicating two frequent transitions, both li and lk
can be close to the related lj in the latent space, but with MPE the distance
between li and lk can still be vast in the latent space, as the two locations lj are
represented with different vectors depending on their role. (2) We assume that
people’s movements reflect the combined action of three factors including object,
time, and the current location. Instead of manually setting a fixed weight to each
factor, MPE automatically estimates all parameters at the same time.

4.2 Parameter Learning

The variables in MPE are Θ = (O,T,Lc,Ln), which are parameterized by the
fixed |O| ×D, |T | ×D, |Lc| ×D and |Ln| ×D matrix respectively. We learn the
MPE using maximum a posterior (MAP):

Θ = arg max
∑

c=(r,lj)∈C

∑
lm∈NEG(r)

log σ
(
‖Ln

lm −Vc‖2 − ‖Ln
lj −Vc‖2

)
− λ‖Θ‖2,

(8)

where λ‖Θ‖2 is the regularization term.
Here we choose to use stochastic gradient descent to estimate the parameters.

Based on the historical data, we obtain a set of quadruples (o, t, li, lj), and then
randomly sample M unobserved next locations lm for each quadruple. Given a
training instance (o, t, li, lj , lm), the update procedure is as follows.

Oo ← Oo + 2γ
(
(1− σ(z)) (Ln

lj − Ln
lm)− λOo

)
Tt ← Tt + 2γ

(
(1− σ(z)) (Ln

lj − Ln
lm)− λTt

)
Lc

li ← Lc
li + 2γ

(
(1− σ(z)) (Ln

lj − Ln
lm)− λLc

li

)
Ln

lj ← Ln
lj + 2γ

(
(1− σ(z)) (Oo + Tt + Lc

li − Ln
lj )− λLn

lj

)
Ln

lm ← Ln
lm + 2γ ((1− σ(z)) (Ln

lm −Oo −Tt − Lc
li)− λLn

lm) ,

(9)

where z = ‖Ln
lm − (Oo + Tt + Lc

li)‖
2 −‖Ln

lj − (Oo + Tt + Lc
li)‖

2 and γ is the
learning rate.

The learning algorithm of MPE is depicted in Algorithm 1. We first initial-
ize the parameters with a Gaussian distribution (Line 1). For each quadruple
(o, t, li, lj), we then randomly sample M “negative” next locations, and update
these parameters based on Equation (9) (Line 3 - 10). We iterate this procedure
until the value of ` remains stable, and finally obtain the approximated optimal
parameters. The time complexity of MPE is O(MDI|C|), where I is the number of
iterations, |C| is the number of training quadruples, M is the number of “negative”
samples, and D is the embedding’s dimensionality.

5 Performance Evaluation

We first present experiments using two real datasets to evaluate our proposal
with the application of next location prediction, and then visualize the embedding
vectors to further confirm the effectiveness of MPE.
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Algorithm 1 Learning Algorithm for MPE
Require: training quadruples C, learning rate γ, regularization parameter λ, the number of

negative samples M , the embedding’s dimensionality D;
Ensure: model parameters O,T,Lc,Ln;
1: Initialize the parameters with a Gaussian distribution N(0, 0.01);
2: repeat
3: for c : (o, t, li, lj) ∈ C do
4: count=0;
5: while count < M do
6: randomly sample an unobserved next location lm ∈ NEG(r);
7: update O,T,Lc,Ln according to Equation (9);
8: count++;
9: end while

10: end for
11: until stopping criteria is met;
12: return O,T,Lc,Ln;

Table 2 Data statistics.

VPR data Taxi data

]objects 34,734 442

]locations 681 3,719

]transitions 1,704 11,645

]records 7,205,617 32,281,729

avg. ]records of each object 207.5 73035.6

density (loc/sq.km) 0.32 9.56

5.1 Datasets and Settings

In the experiments, we use two datasets: the VPR data and the publicly available
taxi trajectory data 1.

VPR data: We collect four weeks (04/01/2016 - 31/01/2016) of VPRs over
the traffic surveillance system in a major metropolitan city with an area of 2,119
sq.km. In our dataset, the accuracy of plate number recognition by OCR could
reach 97% in ideal weather/lighting conditions, and we only keep those captured
during the daytime (from 7:00 to 17:00) to ensure the data quality. The random
recognition errors may result in incomplete/erroneous sequences, and each of such
sequences has a low occurrence frequency. We remove such sequences by setting
an occurrence threshold of 30 (i.e., each sequence must occur at least 30 times
to be included in the dataset), and finally obtain 7,170,883 quadruples in total.
Note that, as a side effect of removing the above mentioned errors, we have also
removed all instances of rare transitions, as it is difficult to know whether these
rare transitions are errors or not.

Taxi data: The taxi data is composed of all the complete trajectories of 442
taxis running in the city of Porto (Portugal) of 389 sq.km for a complete year
(from 01/07/2013 to 30/06/2014). We discretize the region of interest into a grid
with equal-sized cells, and assign a cell index for each GPS location. After the
preprocessing, it generates 32,281,287 quadruples.

1 The detailed information about the data can be found here
https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/data
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Fig. 3 Characteristics of VPR and Taxi data.

The statistical properties on both data are shown in Table 2, where ]objects
represents the number of objects and avg. ]records is the average number of
records. We then conduct data analysis to better understand the traffic trajec-
tory data. The cumulative distribution functions (cdf) of the number of records
per object and the number of candidate next locations are shown in Fig. 3. It can
be seen from the figure: (1) for the Taxi data, about 97% of objects have more
than 20,000 records, and about 87% objects have less than 300 records for the
VPR data; (2) it has more candidate next locations on average in the Taxi data
than in the VPR data.

For both datasets, we randomly split the quadruples into three collections in
proportion of 8:1:1 as the training set, validation set, and test set, and perform
10 runs (with the same data split) to report the average of the results. All the
experiments are done on a 3.4GHz Intel Core i7 PC with 16GB main memory.
The default values for the number of iterations I, the regularization parameter λ,
the embedding’s dimensionality D, and the number of negative samples M are 10,
10−3, 100 and 1, and the learning rate γ is set at 10−3. We will evaluate the effect
of these parameters in the experiments.

5.2 Model Convergence and Running Time

We first validate whether our model’s objective achieves a stationary point when
iteratively performing these updates. The values of objective function ` with vary-
ing the number of iterations from 1 to 20 on both datasets are shown in Fig. 4.
Clearly, with the increase of the number of iterations, the values of ` increase
gradually, and remain stable after about 10 iterations. Hence we set the number
of iterations at 10 in the following experiments.

At each iteration, our model needs to update all the parameters, including
object embedding matrix O, current location embedding matrix Lc, next location
embedding matrix Ln, and time slot embedding matrix T. The size of these matri-
ces and the number of quadruples determine the runtime of each iteration. Table 3
shows the runtime of one iteration for both datasets with different embedding’s
dimensionality D. On one hand, as the Taxi dataset has more quadruples, its run-
time is larger than that with the VPR dataset for the same D; on the other hand,
the runtime increases gradually when we rise D. Note that, we could train MPE
offline in advance, and use the learned embeddings in the real-time applications.
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Fig. 4 Model Convergence.

Table 3 Runtime of One Iteration (unit: second)

number of vector dimensionality VPR data Taxi data

10 3.7 15.6

50 5.8 24.4

100 8.8 41.2

200 15.0 69.7

300 21.8 99.6

5.3 Evaluation on Next Location Prediction

Given a record r with object, current location and time, the task of next location
prediction is to predict the most likely successive location. With the proposed
MPE, we first build the conditional vector, and then compute P̂ (lj |r) based on
Equation (1) for each possible next location lj . Finally, we choose the location
with the maximum probability as the predicted next location.

5.3.1 Baselines

We compare with the following state-of-the-art methods for predicting next loca-
tions to evaluate the performance.

– MM: the Markov model [2], which mines the mobility patterns for each object
with its trajectories to predict next locations.

– Bayes: it computes the transition probability from r to lj using Bayes’ rules
under the assumption that the elements (object, location, and time) of r are
independent:

P (lj |r) = P (lj |o, li, t)
∝ P (o, li, t|lj)P (lj)

∝ P (o|lj)P (li|lj)P (t|lj)P (lj).

(10)

– PRME: the personalized ranking metric embedding method [6], which con-
siders both sequential information and user preference in training embedding
vectors.

– Geo-Teaser: the geo-temporal sequential embedding rank model [29], which
incorporates personal and temporal information into word2vec framework.

– MC-TEM: the multi-context trajectory embedding model [34], which takes
user-level, trajectory-level, location-level and temporal contexts into consider-
ation.
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Table 4 Results of methods on VPR data.

method
accuracy average precision

top-1 top-2 top-3 top-1 top-2 top-3

MM 0.543 0.635 0.660 0.543 0.589 0.597

Bayes 0.634 0.814 0.894 0.634 0.724 0.751

PRME 0.509 0.733 0.824 0.509 0.621 0.651

Geo-Teaser 0.539 0.734 0.822 0.539 0.636 0.666

MC-TEM 0.534 0.728 0.819 0.534 0.631 0.659

MPE-plain 0.593 0.794 0.885 0.593 0.694 0.724

MPE-object 0.633 0.828 0.903 0.633 0.732 0.754

MPE-time 0.618 0.816 0.893 0.618 0.714 0.739

MPE 0.645 0.837 0.914 0.645 0.741 0.766

– MPE-plain: the simplified MPE model, which just considers the sequential
information.

– MPE-object: the simplified MPE model, which considers the sequential and
personal information.

– MPE-time: the simplified MPE model, which considers the sequential and
temporal information.

Among the competing methods, MM and Bayes are the popular mobility pat-
tern mining models for next location prediction, which mainly compute the con-
ditional probability; PRME, Geo-Teaser and MC-TEM are relatively advanced
embedding models for POI recommendation by mining check-in data; MPE-plain,
MPE-object and MPE-time are the simplified versions of our proposed MPE, which
only consider part of the factors (sequential, personal and temporal information)
that affect people’s next locations.

5.3.2 Evaluation metrics

To evaluate the prediction performance, we exploit two well known metrics, namely,
accuracy and average precision. Accuracy is defined as

∑
P (l)/|Ct|, where |Ct| is

the number of quadruples in the test set, and P (l) is 1 if l is the true successive
location and 0 otherwise. Average precision is defined as

∑
(P (lw)/w)/|Ct|, where

w denotes the position in the predicted list, and P (lw) takes the value of 1 if lw is
the actual next location and 0 otherwise.

5.3.3 Experimental results

We compare MPE with the baselines using the optimal parameters on VPR data
and Taxi data and show the prediction performance in Table 4 and Table 5. The
best accuracies and average precisions are highlighted in boldface.

1. All the methods perform better on the VPR data than on the Taxi data, as the
routes taken by taxis are more diverse/random and they may arrive at more
candidate next locations (see Fig. 3(b)).

2. MM performs the worst on the VPR data due to the limited number of records
of each object (see Fig. 3(a)), but gets decent top-1 accuracy and average preci-
sion on the Taxi data, as it has sufficient records to capture individual mobility
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Table 5 Results of methods on Taxi data.

accuracy average precision

top-1 top-2 top-3 top-1 top-2 top-3

MM 0.392 0.610 0.739 0.392 0.501 0.544

Bayes 0.393 0.614 0.750 0.393 0.504 0.548

PRME 0.321 0.506 0.641 0.321 0.413 0.459

Geo-Teaser 0.336 0.525 0.651 0.336 0.431 0.472

MC-TEM 0.332 0.518 0.644 0.332 0.423 0.466

MPE-plain 0.379 0.603 0.732 0.379 0.483 0.524

MPE-object 0.391 0.619 0.756 0.391 0.502 0.547

MPE-time 0.386 0.611 0.745 0.386 0.497 0.538

MPE 0.397 0.633 0.768 0.397 0.507 0.556

patterns. Bayes takes objects, current locations and time slots into consider-
ation, and performs much better than MM. Our proposed MPE models the
same factors as Bayes, and it performs better, as MPE considers the combined
action of these factors instead of treating them independently.

3. PRME, Geo-Teaser and MC-TEM represent both current locations and next
locations with the same vector set based on the assumption of “phantom tran-
sitions”, which is not applicable to the traffic trajectory data, limiting their
prediction performance. Our proposed MPE outperforms them significantly, for
instance, compared with Geo-Teaser, which has the best performance among
the three methods, the top-3 accuracy and average precision improve by 11.2%
and 15.0% respectively on the VPR data, and by 18.0% and 17.8% on the Taxi
data. The reasons lie in two-fold: on one hand, MPE prevents the “phantom
transitions” by distinguishing current locations and next ones; on the other
hand, MPE is capable of learning the human mobility patterns by modeling
the interactions of personal, sequential and temporal influences in a unified
way.

4. MPE-plain, MPE-object and MPE-time just consider part of the factors in
modeling human mobility patterns, and they perform worse than MPE. Com-
pared with MPE-plain, MPE-object and MPE-time model the object and time
information respectively, and they obtain decent performances. Further, MPE-
object has higher prediction accuracies, indicating that personal information
plays a more important role in affecting people’s mobility patterns.

5.3.4 Parameter setting and tuning

Before applying MPE to our data, we need to map the time-stamp of each record
to the time slot it belongs to. We set the size of slot at 1, 5, 10, 15, 30, 60 and 120
minutes respectively and evaluate the performances. The optimal size of the slot is
30 minutes for the VPR data, and 15 minutes for the Taxi data. Then we measure
the effect of the parameters in MPE, including the regularization parameter λ, the
number of vector dimensionality D, and the number of negative samples M , and
tune them one by one on the validation set. The tuning results on both datasets
with top-3 accuracy and average precision are reported in Fig. 5, Fig. 6, and Fig. 7,
and the impacts of varying these parameters are discussed below.
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Fig. 5 Effect of the regularization parameter λ.
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Fig. 6 Effect of the embedding’s dimensionality D.
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Fig. 7 Effect of the number of negative samples M .

We first vary the regularization parameter λ from 10−1 to 10−6, which could
prevent over-fitting. As shown in Fig. 5, the accuracy and average precision im-
prove significantly when we decrease λ from 10−1 to 10−3, and keep stable as we
further decrease it.

Next we tune the embedding’s dimensionality D and the results are shown in
Fig. 6. We observe that on both datasets, the prediction performances improve as
D increases, and remain constant when D is greater than 250. Finally, we tune
the number of negative samples M from 1 to 20 and report the results in Fig. 7.
The accuracy and average precision improve for both datasets as the number of
negative samples M increases, and vary little after M = 15. Note that, it costs
more time to complete training with the increase of M .

5.4 Visualization of Embedding Vectors

MPE embeds objects, locations and time slots in a low-dimensional latent space,
which allows us to visually explore the relations among objects or time slots.
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(a) Object visualization (taxis are rep-
resented with green and private cars
are with yellow.)
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Fig. 8 Visualization of embedding vectors.

5.4.1 Object visualization

Since we all know that the movement patterns of taxis and private cars are quite
different, we would like to see whether they can be visually distinguished in a
projected space with MPE. We therefore randomly sample 2,000 taxis and 2,000
private cars from the VPR data, and obtain the embedding vectors of the corre-
sponding objects. Fig. 8(a) shows a 2D t-SNE [16] projection for these embedding
vectors (taxis are colored green and private cars are yellow). Two obvious classes
can be observed in the figure, explicitly proving that embedding vectors are effec-
tive features for object classification.

5.4.2 Time visualization

We use MPE to embed time slots in a latent space with the taxi trajectory data.
Fig. 8(b) shows the 2D t-SNE projection for the vectors of 96 time slots (the size
of slots is 15 minutes for the Taxi data based on the setting in Section 5.3.4). We
illustrate these time slots with gradient colors, and notice that: (1) the time slots
roughly scatter in a ring form and the adjacent ones are still close to each other,
which is in line with our common sense; (2) the distances between “symmetrical”
time slots in the ring are pretty large. For example, the positions of slots in the
morning are far from those in the afternoon. One likely reason is that there exist
different functional regions in a city [24], and vehicles often move in opposite
directions in the morning and in the afternoon (e.g., going to work vs. going
home); (3) the positions of time slots in the evening (i.e., the points in the upper
right corner of Fig. 8(b)) are relatively more concentrated, as human mobility
patterns are more random at night in contrast to showing clear tendencies during
the day.
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5.5 Discussion

Different from the traditional mobility pattern mining methods (e.g., Markov mod-
els, Bayes models), our proposed MPE sheds the light on modeling human move-
ment patterns with the traffic trajectory data from a novel angle. With the dis-
tributed embedding vectors, we are able to not only predict next locations, but
also compute the similarities between objects (or time slots) and visualize them,
which cannot be achieved by the traditional methods.

Furthermore, we pay much attention to the traffic trajectory data in a real-
world transportation system, which is different from the check-in data in the
location-based social network. Specifically, people’s driving trajectories are re-
stricted by the road network, and the characteristic of “phantom transitions”
does not exist; whereas people’s visiting order of POIs is relatively random, as
each POI represents an activity (e.g., eating in a restaurant, studying in a library)
and no external restrictions are imposed on the moving patterns. Therefore, the
existing embedding methods [6,29,34] modeling check-in data mainly focus on the
correlation of POIs within a trajectory, for the task of POI recommendation; our
proposed MPE devotes to modeling the transition of locations in a trajectory, for
the task of next location prediction.

6 Conclusion

In this paper, considering the unique characteristics of traffic trajectory data,
we have proposed a novel Mobility Pattern Embedding (MPE) method to learn
human mobility patterns by jointly modeling sequential, personal, and temporal
factors. Specifically, we project objects, time slots, current locations and next lo-
cations together as points in a low-dimensional latent space through MPE. Such
embedding vectors could be exploited in many tasks, such as next location predic-
tion and visualization. Finally, we evaluate the performances of MPE on two real
datasets, and experimental results show that the proposed method outperforms
state-of-the-art baselines significantly.

References
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