

Aalborg Universitet

Towards distributed node similarity search on graphs

Zhang, Tianming; Gao, Yunjun; Zheng, Baihua; Chen, Lu; Wen, Shiting; Guo, Wei

Published in:
World Wide Web

DOI (link to publication from Publisher):
10.1007/s11280-020-00819-6

Creative Commons License
CC BY-NC-ND 4.0

Publication date:
2020

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Zhang, T., Gao, Y., Zheng, B., Chen, L., Wen, S., & Guo, W. (2020). Towards distributed node similarity search
on graphs. World Wide Web, 23(6), 3025-3053. https://doi.org/10.1007/s11280-020-00819-6

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 01, 2024

https://doi.org/10.1007/s11280-020-00819-6
https://vbn.aau.dk/en/publications/1795e471-a970-49ab-9105-7545a4e5a75c
https://doi.org/10.1007/s11280-020-00819-6

World Wide Web
https://doi.org/10.1007/s11280-020-00819-6

Towards distributed node similarity search on graphs

Tianming Zhang1 ·YunjunGao1 ·Baihua Zheng2 · Lu Chen3 · ShitingWen4 ·WeiGuo1

Received: 1 October 2018 / Revised: 15 January 2020 / Accepted: 22 April 2020 /

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Node similarity search on graphs has wide applications in recommendation, link prediction,
to name just a few. However, existing studies are insufficient due to two reasons: (i) the
scale of the real-world graph is growing rapidly, and (ii) vertices are always associated with
complex attributes. In this paper, we propose an efficiently distributed framework to support
node similarity search on massive graphs, which considers both graph structure correla-
tion and node attribute similarity in metric spaces. The framework consists of preprocessing
stage and query stage. In the preprocessing stage, a parallel KD-tree construction (KDC)
algorithm is developed to form a newly defined graph so-called hybrid graph, in order to
integrate node attribute similarity into the original graph. To equally divide graph vertices
into subsets, KDC adopts the KD-tree partitioning after the pivot mapping. In addition,
two metric pruning rules and an optimized allocation strategy are presented to reduce com-
munication and computation costs. In the query stage, based on the formed hybrid graph,
we develop similarity search methods using random walk with restart (RWR) to measure
node similarity. To boost efficiency, we derive tight bounds to rapidly shrink the search
region. Extensive experiments with three real massive graphs are conducted to verify the
effectiveness, efficiency, and scalability of our proposed techniques.

Keywords Graph · Node similarity search · Distributed processing · Algorithm

1 Introduction

Graph has been applied in diverse domains such as social network, bioinformatics and
chemical datasets. Node similarity search on graphs has a wide application in recommenda-
tion [31], link prediction [11], etc. For instance, in a social network, node similarity search
is able to be used to recommend like-minded friends for users. In an academic collaboration
network, node similarity queries can be employed to find researchers’ preferred papers.

Nowadays, the scale of the real-world graph is growing rapidly, and nodes of graphs
are always associated with complex attributes such as image visual features, user profile,
and paper keywords. Different types of attributes need various distance metrics [8] (e.g.,

� Yunjun Gao
gaoyj@zju.edu.cn

Extended author information available on the last page of the article.

Published in World Wide Web, 2020 June

https://doi.org/10.1007/s11280-020-00819-6

This is a post-peer-review, pre-copyedit version of an article published in World Wide Web. The
final authenticated version is available online at:

Acc
ep

ted
 au

tho
r m

an
us

cri
pt

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-020-00819-6&domain=pdf
mailto: gaoyj@zju.edu.cn

World Wide Web

Minkowski distance, edit distance, Jaccard distance, etc.) to measure similarity. A large
number of existing efforts [15, 22, 24, 25, 34] only rely on graph structure to calculate node
similarity. However, to obtain high-quality answers, it is crucial to integrate node attribute
similarity into node similarity.

Example 1 Figure 1a depicts a directed citation network, where a node represents a paper
associated with keywords/attributes and any edge from pi to pj indicates pi cites pj .
Assume that a PhD student who is interested in paper p1 would like to look for top-2 papers
most relevant to p1. Without considering paper attributes, existing methods such as RWR
(restart probability c = 0.51) locate the results purely based on graph structure. According
to the similarity scores derived by RWR (listed in RWR column of Figure 1b), p5 and p4
are returned. Nonetheless, after checking, we could observe that p5 might not be the most
relevant paper to p1 as it does not share any common keyword with p1. This case shows that
node attributes play an important role in evaluating node similarity. On the other hand, we
can adopt Jaccard similarity to evaluate similarities between papers. As shown in the col-
umn entitled Jac. of Figure 1b, paper p2 with the highest Jaccard similarity score is the most
relevant to p1. According to our manual evaluation, p2 is more relevant to p1, compared
with p5 returned by RWR. In other words, similarity search on graphs shall encompass both
node attribute similarity and graph structure correlation, and a ranking that balances these
two aspects is more desirable. Users are able to set different values of a balanced factor α in
order to achieve satisfying results based on their own needs. If α = 0.5, the scores listed in
the last column of Figure 1 are the combination of both RWR scores that capture the graph
structure correlation and Jaccard similarity scores that capture the node attribute similarity.
Considering both scores, {p2, p4} is returned as the top-2 result.

In this paper, we aim at developing a unified and scalable framework to evaluate node
similarity, not only using graph structure but also considering complex attributes of nodes
in generic metric spaces so as to accommodate broad distance metrics. Given the fact that
node similarity search based on graph structure or attribute values can be supported by exist-
ing approaches, a naı̈ve solution is to compute metric scores using node attributes as well
as calculate graph similarity scores (e.g., RWR scores) using the graph structure between
all vertices and the query vertex, and then rank vertices based on the combined scores. Nev-
ertheless, this method is inefficient due to a large number of unnecessary metric and RWR
similarity computations.

In order to enable seamless search on graphs that considers both graph structure and node
attributes, the challenge is how to combine efficiently structure similarity with attribute sim-
ilarity by a small number of similarity calculations. We present an efficiently distributed
framework. The key idea of the framework is to integrate important node attribute simi-
larity into the original graph, and then perform node similarity search with pruning. The
framework consists of preprocessing stage and query stage. In the preprocessing stage, we
propose a newly defined graph so-called hybrid graph which integrates node attribute simi-
larity into the original graph. To be more specific, node na in a hybrid graph is connected to
another node nb via an edge e because nodes na and nb are physically connected or share

1As suggested in [13], restart probability c is empirically set as 0.5.

Acc
ep

ted
 au

tho
r m

an
us

cri
pt

World Wide Web

Figure 1 Example of a citation graph

similar attributes, and the weight of the edge e indicates not only the structure similarity
between two nodes but also the similarity between their attributes. Whereas, for a massive
graph containing millions or even billions of nodes, it is impractical and unnecessary to find
the attribute similarity between each pair of nodes. Consequently, the hybrid graph aims to
capture similarities between important nodes (i.e., those highly similar nodes) only. In other
words, hybrid graphs ignore the similarity between unimportant nodes (i.e., those highly un-
similar nodes) for efficiency reason. In our work, we adopt tNN graph [36] as a similarity
graph that captures the attribute similarities between pairs of similar nodes. Although tNN
graph is not a new concept, the challenge is how to design a distributed and scalable tNN
graph construction algorithm in metric spaces. We present a KD-tree based Construction (
KDC) algorithm, which is able to form tNN graphs efficiently. We also develop two met-
ric pruning lemmas based on the triangle inequality and an optimized allocation strategy to
further reduce communication and computation costs.

In the query stage, the challenge is how to improve the search efficiency. Based on the
hybrid graph with edge weights capturing both the structure correlation and attribute simi-
larity between nodes, we propose a RWR-related algorithm for supporting node similarity
search on the hybrid graph, implemented within Apache Giraph, an open source project of
Pregel system [20]. To boost efficiency, new tight bounds are derived to rapidly reduce the
number of potential nodes we have to evaluate during search. In brief, the key contributions
of this paper are summarized as follows:

– We identify the limitations of node similarity search on graphs that are only based on
graph structure, and suggest to integrate attribute similarity into the search.

– We propose a new graph structure, i.e., hybrid graph, which captures both graph struc-
ture correlation and attribute similarity between nodes in the graph, together with an
efficient construction algorithm with good scalability.

– We present a distributed algorithm on top of hybrid graphs for answering node similar-
ity search. To boost efficiency, new tight bounds are derived to rapidly shrink the search
region.

– We conduct extensive experiments using three real massive graphs to evaluate the per-
formance of our methods, and the results demonstrate the effectiveness, efficiency, and
scalability of our proposed techniques.

The rest of the paper is organized as follows. Section 2 reviews related work. Section 3
formalizes our studied problem. Section 4 elaborates our distributed framework. Sections 5
and 6 detail a tNN graph construction algorithm and a node similarity search algorithm,
respectively. Section 7 reports experimental results and our findings. Finally, Section 8
concludes the paper with some directions for future work.

Acc
ep

ted
 au

tho
r m

an
us

cri
pt

World Wide Web

2 Related work

In this section, we overview the related work on t nearest neighbor (tNN) graph, ran-
dom walk with restart (RWR) computation, and distributed graph processing systems,
respectively.

2.1 tNN graph

To integrate node attribute similarity into an original graph, an attribute augmented graph,
which inserts a set of attributed vertices and edges into the original graph, is used in graph
clustering [7, 37]. Nonetheless, (i) the largest dataset used in [7] only has 84,170 nodes,
while we focus on massive graphs with millions or even billions of nodes. (ii) The methods
they proposed are just suitable for specific attribute graphs, and thus cannot be extended
to general metric spaces. Therefore, we first aim to build a similarity graph based on node
attribute similarity. As pointed out in [18], tNN graph tends to perform well empirically.

tNN graph can be formed by Nearest Neighbor (NN) search [4], with complexity of
O(|V |2). Obviously, this approach is impractical when it is applied to massive datasets. To
reduce complexity, a number of algorithms have been proposed. For example, algorithms
GBA and IPA [5] utilize dynamic disk-based metric indexes to find all-t-nearest-neighbor.
Approximate tNN graph construction methods using techniques such as local search [10],
RMMH [29] and LSH [36] trade in the accuracy for efficiency. KIFF [3] iteratively refines
the tNN approximation of every vertex with ranked candidate sets. Although these meth-
ods improve performance, they are mostly approximation based and thus cannot guarantee
accuracy. In addition, a distributed approach DKNNG is presented in [23]. Nonetheless, it
does not scale well, as demonstrated in Section 7. Consequently, new efficient tNN graph
construction algorithms for massive graphs are required.

2.2 Randomwalk with restart computation

Among significant proximity metrics [15, 21, 22, 24, 25, 34, 35], RWR is the most pop-
ular one. It assumes a random surfer which starts at a query node v, and at each step of
random walk, current node either restarts from v with a probability c or randomly selects
an outgoing edge with probability (1 − c). Existing approaches for computing RWR can be
classified into three categories, namely, initiative iterative method and its variants, matrix-
based approaches, and approximation algorithms based on Monte Carlo method. Power
iteration method is advanced but time-consuming due to multiple iterations. To speed up
convergence, several variations are proposed, including (i) fast local search (FLoS) [30], an
approach to accelerate the computation for the top-k query using path-based metrics [16];
(ii) matrix-based approaches that utilize the technique factorizing probability transitive
matrix into canonical form; and (iii) approaches based on triangular factorization, SVD,
LU, QR decomposition, and schur complement computation [12, 19, 27], etc.

To sum up, initiative iterative methods are time-consuming due to multiple iterations,
matrix-based approaches are prohibitive for large graphs, and approximation algorithms
cannot guarantee accuracy. In a distributed environment, the representative method pre-
sented in [16] utilizes path-based relevance metrics to detect the emergence of the top-k
items without ranking. However, in this paper, we focus on node similarity search with exact
node ranking. Hence, the method in [16] cannot be directly applied in our studied prob-
lem. We develop PBNN which integrates top-k result ranking into the approach proposed
in [16]. Nonetheless, PBNN is inefficient, as confirmed in Section 7. In view of this, we

Acc
ep

ted
 au

tho
r m

an
us

cri
pt

World Wide Web

aim to derive tight bounds to reduce iterations, and develop efficient node similarity search
approaches based on RWR in answering similarity search over massive graphs.

2.3 Distributed graph processing systems

Batarfi et al. [1] provide a comprehensive survey of the state-of-the-art large-scale
graph processing platforms, including MapReduce [9], Pregel [20], Giraph++ [28],
GraphLab [17], Trinity [26], Spark [33], GraphX [14], etc. MapReduce [9] has been
adopted by corporations for big data processing. Pregel [20], which is based on bulk syn-
chronous parallel model, is introduced by Google to process graph applications. Apache
Giraph2 is an open source implementation of the Pregel system. Giraph++ [28] is built
on top of Giraph, and it shifts from a node-centric to a graph-centric computing system.
GraphLab [17] initiates a family of related systems as an open-source project. Trinity [26]
and Spark [33] are memory-based distributed processing systems. GraphX [14] is built on
Spark for graph-parallel computation.

We design our algorithms based on the Pregel-like systems, because they were shown to
be more suitable for iterative graph query processing. Pregel-like systems first distribute ver-
tices of the input graph across a group of workers. Then, computation tasks are performed
in a series of supersteps. During a superstep, each active vertex invokes a user-defined func-
tion, compute(), and vertices communicate with each other between supersteps. Program
terminates when all vertices vote to halt, and there is no message in transmit. Moreover,
Pregel-like systems support aggregators which enable global computation.

3 Problem statement

In this section, we first define the input graph G. Next, we introduce a newly defined graph
structure so-called hybrid graph to support node similarity queries efficiently. Finally, we
transform the problem of node similarity search on G into that defined on the hybrid graph.
Table 1 summarizes the symbols used frequently throughout this paper.

Definition 1 Input Graph. An input graph (studied in our work) is denoted as
G(V,E,A, d, w), where V is a set of vertices, E is a set of edges, A is a set of metric
attributes associated with the vertices in V , w is an edge weight function, and d is a met-
ric distance function which satisfies four properties: (1) symmetry, (2) non-negativity, (3)
identity, and (4) triangle inequality.

In this paper, given an input graph G(V,E, A, d,w) and a query node, we aim to find
similar nodes to the specified query node considering both graph structure correlation and
node attribute similarity in metric spaces. As mentioned in Section 1, a naı̈ve method is to
compute RWR score T score and metric score Ascore based on graph structure and node
attributes respectively, and then get the final score Escore = δ × α × T score + (1 − α) ×
Ascore. Here, δ denotes a normalization factor to unify T score and Ascore into the same
metric space, and α ∈ [0, 1] is a balanced factor to accommodate the influence between
graph structure correlation and node attribute similarity. Unfortunately, this approach is
inefficient on account of many superfluous computation. Consequently, we introduce a new

2Giraph is available at http://giraph.apache.org/.

Acc
ep

ted
 au

tho
r m

an
us

cri
pt

http://giraph.apache.org/

World Wide Web

Table 1 Symbols and description

Annotation Description

Gh(V,Eh,wh) a hybrid graph Gh with a set V of vertices, a set Eh of edges, and an edge weight

function wh

G(V,E,A, d,w) a given graph G with a set V of vertices, a set E of edges, a set A of attributes, a metric

distance function d, and an edge weight function w

|V | or |E| the number of vertices or edges

u or v a vertex

(u, v) or e an edge

m[u, v] the transition probability from node v to node u

M a |V | × |V | column normalized adjacent matrix for Gh

Nin[u] or No[u] the set of u’s in-neighbors or out-neighbors

�q a |V | × 1 query vertex vector where
∑

q[v] = 1

�s a |V | × 1 RWR vector where its element s[u] denotes the RWR score of the vertex u

in V

si [u] or si [u] the lower or upper bound of s[u] in the ith iteration

Mmax[u] the maximum probability incident to vertex u in the matrix M

c a restart probability in the range of (0, 1)

v.tNN the t nearest neighbors of vertex v

v.dt the distance from v to its t th nearest neighbor

BB(Pi) a bounding box for partition Pi

MBB(Pi) a minimum bounding box for partition Pi

v.SR the search region of vertex v

Pi .SR the search region of partition Pi

kNN(q, k) the result set of a k nearest neighbour (kNN) query on the hybrid graph w.r.t. q

graph structure, called hybrid graph, which incorporates attribute similarity between nodes
into the original graph to boost search efficiency. Before introducing hybrid graph, we
present the definition of tNN graph below.

Definition 2 tNNGraph [36]. Given a vertex set V , a distance function d, and an integer t ,
a tNN graph is a directed weighted graph Gt(V,Et , wt) that links each vertex v ∈ V to its
t nearest neighbors according to the distance function d, i.e., Et = ∪∀v∈V,vi∈Nt (v,V)(v, vi)

and wt(v, vi) = d(v, vi). Here, Nt(v, V) represents the t nodes in (V − v) which are most
similar to v.

Definition 3 Hybrid Graph. Given an input graph G = (V ,E,A, d,w) and a tNN graph
Gt(V,Et , wt) constructed based on the vertex set V and the metric distance function d, a
hybrid graph, denoted as Gh(V,Eh,wh), is a directed graph based on the original vertex
set V , where Eh = E ∪ Et , and weight function wh defined in (1) captures graph structure
correlation and attribute similarity between nodes.

wh(e) =
⎧
⎨

⎩

α × w(e) e ∈ (E − Et)

δ × (1 − α) × wt̃ (e) e ∈ (Et − E)

δ × (1 − α) × wt̃ (e) + α × w(e) e ∈ (E ∧ Et)

(1)

Acc
ep

ted
 au

tho
r m

an
us

cri
pt

World Wide Web

In (1), δ is a normalization factor to make sure w(e) and wt̃ (e) are in the same order of
magnitude. Parameter α ∈ [0, 1] indicates the importance of structure correlation vs. that of
attribute similarity. wt̃ is a re-weight function, defined below.

∀(u, v) ∈ Et , wt̃ (u, v) =
∑

s∈No[u] wt(u, s)

wt (u, v)
(2)

In (2), No[u] is a set of u’s out-neighbors. The reason why we re-weight is that, the
weight wt(u, v) captures the metric distance from a node u to one of its tNN nodes v. The
shorter the metric distance is, the more similar the two nodes are. Nonetheless, when we
perform RWR calculation, the weight of an edge indicates the proximity of two nodes. The
larger the weight is, the closer proximity the two nodes have. Thus, we define wt̃ by (2),
and use it in (1) such that weights of edges in the tNN graph are consistent with weights of
edges in the original graph.

Note that, hybrid graph Gh(V,Eh,wh) is a virtual graph that does not need construc-
tion or physical storage. In other words, given an original graph G and its tNN graph, the
corresponding hybrid graph can be generated dynamically if necessary. Based on the hybrid
graph, the problem of node similarity search on G can be transformed into that defined on
Gh. Next, we give the definition of k Nearest Neighbor (k NN) query on Gh.

Definition 4 (k Nearest Neighbor (kNN) Query on Hybrid Graph). Given a hybrid graph
Gh = (V ,Eh,wh), a restart probability parameter c, an integer k, and a query node q, a
k NN query on Gh finds k nodes that have the highest similarity scores w.r.t. q, sorted in
descending order of their similarity scores, i.e., kNN(q, k) = {R | R ⊆ V ∧|R| = k∧∀v ∈
R, ∀o ∈ V − R, s[o] ≤ s[v]}, and let R = {v1, v2, · · · , vk}, ∀vi ∈ R, ∀vj ∈ R, if i > j ,
then s[vi] ≤ s[vj]. s[v] is the RWR score of a vertex v.

It is worth mentioning that, in this paper, we focus on designing kNN query algorithms on
Gh but ignoring range query algorithms. Nevertheless, our proposed kNN query algorithm
can be easily extended to handle range queries.

4 Node similarity search framework

We present a distributed framework, as illustrated in Figure 2. Specifically, our proposed
distributed framework consists of two stages, i.e., preprocessing stage and query stage,
which are summarized below.

Preprocessing stage At this stage, we propose hybrid graph, which integrates attribute
similarity between nodes into the original graph. The generation can be divided into two
steps.

Figure 2 Our distributed framework

Acc
ep

ted
 au

tho
r m

an
us

cri
pt

World Wide Web

(i) Given an input graph G = (V , E, A, d, w), we construct a tNN graph Gt(V,Et , wt),
which captures the attribute similarities between pairs of similar nodes based on ver-
tex information (V ,A, d). In this paper, a KD-tree based construction method, which
adopts the KD-tree technique after the pivot mapping to equally partition graph nodes
into subsets, is presented for tNN graph construction.

(ii) Given a parameter α, the hybrid graph Gh can be created based on the tNN graph Gt

and the input graph G. First, we re-weight each edge (u, v) in Gt according to (2).

Then, a hybrid graph Gh(V,Eh, wh) is generated by combining the re-weighted tNN
graph and the original edge part (E,w). As mentioned in Section 3, Gh is a virtual graph
that does not need construction or physical storage. Hence, the second step is triggered
if necessary. The first step (i.e., tNN graph construction) is the key step, which will be
described in Section 5.

Query stage In the query stage, based on the formed hybrid graph Gh, we present a Pregel
based kNN query algorithm by using RWR to support kNN queries in Pregel. To accelerate
search, we derive tight similarity bounds. The query method will be elaborated in Section 6.

5 tNN graph construction

Existing sequential algorithms for tNN graph construction either are specific to certain
similarity measures, or are mostly approximate and thus cannot guarantee accuracy. The
representative distributed algorithm is DKNNG [23].

DKNNG proceeds through three steps. (i) It partitions the whole data set into clusters
using k-means, and then assigns each cluster to one processor. (ii) Each processor computes
partial kNN results by constructing and querying sequential kNN data structures. (iii) Each
processor gathers partial results from other processors, and then performs kNN queries for
each vertex in the data set. Although DKNNG could exploit kNN data structure to reduce
computation cost, it is still inefficient and has limited scalability, as to be confirmed in
Section 7. The clustering result of DKNNG might be screwed (i.e., some clusters contain
most of vertices), which causes load imbalance, and thus weakens the overall performance
significantly. To this end, we propose a KD-tree based Construction (KDC) algorithm to
guarantee load balancing. The basic idea of KDC is to perform KD-tree partitioning on a
vertex set V to obtain evenly balanced partitions, find local tNN result for each vertex within
partition and across partitions, and locate global tNN result by merging local tNN results.
Moreover, two metric pruning lemmas and an optimized allocation strategy are presented
to further reduce communication and computation costs. The value of t is an input for tNN
graph construction, which has an impact on the queries we would like to perform on top
of the hybrid graph. Theoretically, the larger the t value is, the more the nearest neighbors
of each node are captured, but suffer from prohibitive computation cost. The setting of t

is to be further verified in Section 7. In the following, we first describe KDC algorithm in
detail. Then, we discuss how KDC is able to support dynamic update. Finally, we analyze
the complexity of KDC.

5.1 KDC algorithm

In this subsection, we present KDC algorithm. Figure 3 shows its framework, which consists
of one partitioning step and three MapReduce jobs.

Acc
ep

ted
 au

tho
r m

an
us

cri
pt

World Wide Web

Partition Information (PI)

Partitioning Job1

Input1

Output1

Output2
vid Attribute
1

2

...

n

A(v1)

A(v2)

...

A(vn)

Job2
Output1

Output2

Vertex Information (VI)

Job3
Update

Vertex Information (VI)

vid tNN d
1
2
...
n

v2 d(v1, v2)
vn d(v2, vn)
... ...
v1 d(vn, v1)

Final output

tNN graph w.r.t. VVertices

MBB(Pi)
MBB(P1)
MBB(P2)

...
MBB(Pm)

pid
1
2
...
m

Partition Information (PI)

n

vid
1

2

...

pid
1

1

...

m

Attribute
A(v1)

A(v2)

...

A(vn)

Mapped Vector

...

1()v
2

()v

()nv

MBB(Pi)
MBB(P1)
MBB(P2)

...
MBB(Pm)

pid
1
2
...
m

Pi.SR
P1.SR
P2.SR

...
Pm.SR

n

vid
1

2

...

pid
1

1

...

m

Attribute
A(v1)

A(v2)

...

A(vn)

Mapped Vector

...
2()v

()nv
...

vn.dt

vi.dt
v1.dt
v2.dt

vi.tNN
v1.tNN

v2.tNN

...

vn.tNN

...

vn.SR

vi.SR
v1.SR
v2.SR

1()v

Figure 3 Illustration of KDC framework

5.1.1 Partitioning

Given an input graph G(V,E,A, d,w), a good partitioning of V , where vertices are
distributed uniformly, is crucial to achieve load balancing. To do this, KDC first
selects l(|V |) vertices to form a pivot set Sp = {sp1 , sp2 , . . . , spl

}. Then, ∀v ∈
V , KDC maps v to a vector in a l-dimensional vector space, denoted as φ(v) =
〈d(v, sp1), d(v, sp2), . . . , d(v, spl

)〉, based on its metric distances to pivots. Thereafter,
given an integer m, KDC divides the vector space into m partitions using KD-tree partition-
ing technique to uniformly distribute vertices. Every partition Pi(1 ≤ i ≤ m) is bounded by
a bounding box BB(Pi) and each vertex is located into one bounding box.

Example 2 Figure 4 depicts an example to illustrate the partitioning process. Note that,
every point vi(1 ≤ i ≤ 15) in Figure 4 represents the mapped vector φ(vi) but not the
original vertex. Using the KD-tree partitioning technique, each time we choose a dimension
with the maximum variance, and divide vertices into two disjoint partitions according to the
median value. Considering that we target at massive graphs, the number of vertices could be
huge (e.g., 2 × 107 in our experiments). To guarantee the efficiency of dimension selection,
we adopt sampling method. Let S = {v2, v4, v6, v8, v9, v12, v13} be the sample set of our

Figure 4 Illustration of KD-tree partitioning

Acc
ep

ted
 au

tho
r m

an
us

cri
pt

World Wide Web

running example. By calculation, x-dimension has its variance of 6.82 while y-dimension
has its variance of 4.86. Hence, the space is first partitioned by x-dimensional median (i.e.,
5), and then, it is partitioned by y-dimensional median (i.e., 4 and 2) to generate four par-
titions P1, P2, P3, and P4. Each red-line rectangle in Figure 4a denotes a bounding box
BB(Pi). Based on BB(Pi) that a vertex locates into, each vertex is associated with a parti-
tion Pi , and thus,bave P1 = {v1, v2, v3}, P2 = {v5, v6, v7, v15}, P3 = {v4, v8, v9, v10}, and
P4 = {v11, v12, v13, v14}. For every partition Pi , we can get a tight minimum bounding box
MBB(Pi) = {[minj , maxj] | j ∈ [1, n]}. As an example, shadow rectangles in Figure 4b
represent the minimum bounding boxes, e.g., MBB(P1) = {[2, 5], [5, 8]}.

After KD-tree partitioning, we maintain two output tables, i.e., partition information
table PI and vertex information table V I , as depicted in Figure 3. Assume that there are m

partitions in total, denoted as P = ∪1≤i≤mPi . Specifically, the information of each partition
Pi ∈ P maintained by PI includes a partition id pid of Pi , and the minimum bounding box
MBB(Pi) of Pi . The information of each vertex vi ∈ V captured by V I contains a vertex
id vid of vi , the corresponding partition id pid , the attribute A(vi) of vi , and the mapped
vector φ(vi).

5.1.2 The first MapReduce job

The main task of each reducer is to derive the similarity between each pair of vertices in the
same partition according to a metric distance function d and to find the local tNN result for
each vertex v ∈ Pi . When this job completes, V I appends v.tNN, v.dt , and v.SR to every
vertex v ∈ Pi . Here, v.tNN represents the t nearest neighbors of v. v.dt denotes the distance
from v to its t th nearest neighbor. v.SR = {[d(v, spj

) − v.dt , d(v, spj
) + v.dt] | j ∈ [1, n]}

represents the search region of v, and it bounds the search region for potential vertices that
may update v.tNN. In addition, by considering the search regions for all the vertices in a
partition Pi , the search region of Pi , denoted as Pi .SR = ∪v∈Pi

v.SR ∪MBB(Pi), has been
captured by PI . Pi .SR bounds the search region for potential vertices which could update
∪v∈Pi

v.tNN. For instance, the blue dotted rectangle in Figure 4b denotes the search region
of P1, i.e., P1.SR = {[0, 7], [3, 10]}.

5.1.3 The secondMapReduce job

Once the local tNN computation is finished, the second MapReduce job is launched to
perform tNN computation across partitions. Then, v.tNN is updated when a vertex vj /∈
(v.tNN∪v) having d(v, vj) < v.dt is found. To enable tNN search across partitions, the
mapper needs to distribute partition Pi to partition Pj if Pi has a vertex that might be one
potential tNN for any vertex in Pj . A brute-force method is to distribute Pi to all the other
partitions that are different from Pi , but it is costly. In order to reduce communication and
computation costs, we present an optimized allocation strategy. Specifically, for a partition
Pi , it is sent to partition Pj based on the strategy defined in (3).

j ∈
{

(i, �m/2
 + i) i ≤ �m/2

[1, i − �m/2
] ∨ (i, m] i > �m/2
 (3)

In (3), m is the number of partitions. If i ≤ �m/2
, partition Pi is sent to partition Pj

where j > i and j − �m/2
 < i. Otherwise, partition Pi is sent to partition Pj where

Acc
ep

ted
 au

tho
r m

an
us

cri
pt

World Wide Web

j > i or j + �m/2
 ≤ i. This guarantees that (i) metric distance computation between
each pair of vertices is considered. (ii) The whole communication and computation costs
are reduced by 50%, compared with the above brute-force approach. Also, we develop
two lemmas to enable metric pruning, which can avoid allocating unqualified vertices to
partitions.

Lemma 1 Given a partition Pi and a vertex vj /∈ Pi , if φ(vj) locates outside Pi’s search
region Pi .SR, then vj /∈ Pi .tNN, in which Pi .tNN = ∪v∈Pi

v.tNN.

Proof If φ(vj) locates outside Pi .SR, then ∃spk
∈ Sp,∀v ∈ Pi, d(vj , spk

) > d(v, spk
) +

v.dt or d(vj , spk
) < d(v, spk

) − v.dt , i.e., ∀v ∈ Pi, |d(vj , spk
) − d(v, spk

)| > v.dt . Based
on the triangle inequality, ∀v ∈ Pi, d(vj , v) ≥ |d(vj , spk

) − d(v, spk
)| > v.dt . Therefore,

for any v ∈ Pi , vj /∈ v.tNN, i.e., vj /∈ Pi .tNN. The proof completes.

Back to the example shown in Figure 4b. P1.SR = {[0, 7], [3, 10]} and MBB(P4) ∩
P1.SR = ∅, i.e., ∀vj ∈ P4, φ(vj) locates outside P1.SR. Hence, none of vertices in P4
could be a tNN for any vertex in P1 by Lemma 1.

Lemma 2 Given a partition Pi and a vertex v /∈ Pi , if MBB(Pi) ∩ v.SR = ∅, then
∀vk ∈ Pi, vk /∈ v.tNN.

Proof MBB(Pi) = {minj , maxj | j ∈ [1, n]} is the minimum bounding box of Pi , then,
∀vk ∈ Pi , ∀spj

∈ Sp , minj ≤ d(vk, spj
) ≤ maxj . For vertex v, v.SR = {[d(v, spj

) −
v.dt , d(v, spj

) + v.dt] | spj
∈ sp}. If MBB(Pi) ∩ v.SR = ∅, then ∀spj

∈ Sp, d(v, spj
) −

v.dt > maxj or d(v, spj
)+v.dt < minj . Therefore, d(vk, spj

) ≤ maxj < d(v, spj
)−v.dt ,

or d(v, spj
) + v.dt < minj ≤ d(vk, spj

), i.e., |d(v, spj
) − d(vk, spj

)| > v.dt . Based on the
triangle inequality, ∀vk ∈ Pi, d(v, vk) ≥ |d(v, spj

) − d(vk, spj
)| > v.dt , i.e., vk /∈ v.tNN.

The proof completes.

5.1.4 The third MapReduce job

After the second MapReduce job, v ∈ Pi has multiple tNN results, produced by evaluating
vertices in different partitions. In order to guarantee that v.tNN eventually maintains the
real t nearest neighbors of v, we launch the third MapReduce job to merge the multiple tNN
results corresponding to the vertex v and to generate the final tNN result.

5.1.5 The summary of KDC

Based on one partitioning step and three MapReduce steps, we present KDC algorithm with
its pseudo-code shown in Algorithm 1. Initially, KDC maps original vertices to the vector
space, and adopts KD-tree technique for partitioning. (line 1). Then, for every partition
Pi , it computes each vertex v’s local t nearest neighbors (v.tNN), v.dt , v.SR, and Pi .SR

(lines 2-5). Next, KDC distributes qualified v to partitions based on (3) (lines 6-12), and
Lemmas 1 and 2 using Assign KDC function (lines 23-27). Thereafter, KDC updates v.tNN
using vj .SR for pruning (lines 13-21). Finally, the tNN graph w.r.t. V is returned (line 22).

Acc
ep

ted
 au

tho
r m

an
us

cri
pt

World Wide Web

5.2 Dynamic update

As graphs might be changed dynamically, tNN graph construction algorithms should be
able to support dynamic update. Since the update of edges has zero impact on the tNN
graph, we only discuss the update of vertices (including vertex insertion, vertex deletion,
and the update of vertex attributes).

Acc
ep

ted
 au

tho
r m

an
us

cri
pt

World Wide Web

Vertex insertion When a new vertex w is inserted into a vertex set V , we need to compute
w.tNN, and judge whether w may update tNN result of any existing vertex v in V . The
process of updating can be done by two MapReduce jobs. In the first MapReduce job, to
update v.tNN and to form w’s local tNN results, we assign w to every partition and then
derive the metric distances between w and all the vertices v in each partition in parallel.
Note that, lemmas presented previously can be employed to avoid unnecessary evaluation.
In the second MapReduce job, local tNN results of w are aggregated into a reducer to form
the final global tNN result of w.

Vertex deletion Given a vertex u ∈ V to be removed from V , we have to delete u and u’s
outgoing edges from the tNN graph. In addition, each incoming edge of u, denoted as (v, u),
indicates that u is one of v’s tNN result. Hence, we need to replace (v, u) with another edge
(v, v′), i.e., vertex v′ ∈ (V − v.tNN−v) is promoted to be one of v’s tNN result after u

is removed. Specifically, for each u’s incoming edge (v, u), u’s replacement for a specified
vertex v can be identified via the two MapReduce jobs explained earlier, i.e., taking v as a
newly inserted vertex with t = 1 and V = V − v.tNN.

The update of vertex attributes When the attributes of a vertex u are changed, we need
to update u.tNN and judge whether u may update tNN result of any existing vertex. The
process can be done by two operations. First, we delete u with old attributes from V ,
and then, the tNN result of each vertex in (V − u) is computed. Second, we insert u

with new attributes, and then, the new tNN result of every vertex in V are computed or
updated.

5.3 Complexity analysis

In this subsection, we analyze the complexity of KDC in terms of total computation cost
and communication cost.

Lemma 3 The total computation cost of KDC is O(|S| × (l + log |S| × log m) +
max1≤i≤m |Pi |2 + max1≤i≤m(|Pi | × |Ai |)), where l is the number of pivots, |S| is the size
of the sample set, m is the number of partitions, |Pi | is the cardinality of the vertex sub-
set in partition Pi , and |Ai | is the number of the qualified vertices that are mapped to the
corresponding partition Pi .

Proof Let l be the number of pivots, |S| be the size of sample set, and m be the number of
partitions. For KD-tree partitioning, it needs O(|S| × l) to perform the pivot mapping, and
O(|S| × log |S| × log m) to split the whole space into m equal parts. Therefore, the time
complexity of KD-tree partitioning is O(|S| × (l + log |S| × log m)).

For the first MapReduce job, each reducer computes the similarity between every pair of
vertices in the same partition Pi , Let |Pi | be the cardinality of the vertex subset in partition
Pi , the time complexity of the first MapReduce job is O(max1≤i≤m |Pi |2).

For the second MapReduce job, each reducer performs tNN computation across parti-
tions. Thus, the time complexity of the second MapReduce job is O(max1≤i≤m(|Pi |×|Ai |)),

Acc
ep

ted
 au

tho
r m

an
us

cri
pt

World Wide Web

where |Ai | is the number of the qualified vertices that are mapped to the corresponding
partition Pi .

The third MapReduce job is to merge the multiple tNN sets corresponding to the vertex
v, there is almost no computation.

To sum up, the total computation cost of KDC is O(|S| × (l + log |S| × log m) +
max1≤i≤m |Pi |2 + max1≤i≤m(|Pi | × |Ai |)). The proof completes.

Lemma 4 The total communication cost of KDC is O(
∑

1≤i≤m (|Ai ||R| + |Ai |)), in which
|R| is the size of the one record of v including v′s id, the attribute of v, φ(v), v.tNN, and
v.SR.

Proof For the first MapReduce job, KDC has no communication cost. For the second
MapReduce job, the mapper needs to distribute qualified vertices to each partition. Let
|Ai | be the number of the qualified vertices that are mapped to the corresponding par-
tition Pi and |R| be the size of the one record of v including v′s id, the attribute of
v, d(v, ci), φ(v), v.tNN, and v.SR. The communication cost of the second MapRe-
duce job is O(

∑
1≤i≤m |Ai ||R|). The third MapReduce job is to merge the multiple

tNN sets corresponding to the vertex v, and thus, the communication cost of the third
MapReduce job is O(

∑
1≤i≤m |Ai |). Hence, the total communication cost of KDC is

O(
∑

1≤i≤m (|Ai ||R| + |Ai |)). The proof completes.

6 Node similarity search

In this section, we propose Pregel based k NN query (PNN) algorithm, to support kNN
queries in Pregel, based on RWR. Note that, to make a trade-off between the partitioning
cost and the querying overhead, we adopt system-provided hash partitioning in the query
stage. The KD-tree partitioning is used for tNN graph construction. Both KD-tree partition-
ing and hash partitioning are balanced partitioning methods. Balanced partitioning is crucial
for efficiently constructing tNN graph and querying because it can ensure load balancing,
which evenly distributes the vertices across all nodes in the cluster to avoid overloading or
completely no work in others.

6.1 PNN algorithm

A kNN query on a hybrid graph finds k vertices with the highest similarity scores s[u] w.r.t.
a query node q, sorted in descending order of s[u]. Here, s[u] is the RWR score of a vertex
u ∈ V w.r.t. q. The recursive RWR iteration keeps computing �s until convergence, with the
score computed by (4) [22].

�s(i) =
{

(1 − c)M�s(i−1) + c�q i > 0
c�q i = 0

(4)

where superscript i represents the number of iterations, M is a column normalized adja-
cent matrix, and �q denotes a query vertex vector. If u is not a query node, q[u] = 0.

Acc
ep

ted
 au

tho
r m

an
us

cri
pt

World Wide Web

Otherwise, q[u] = 1. To improve the efficiency of the above computation, we utilize
pi[u] [13], the random walk probability of length i that starts at a query node and ends at a
node u. For a specified hybrid graph Gh, pi[u] is computed as:

pi[u] =
{

q[u] i = 0∑
v∈Nin[u] m[u, v]pi−1[v] i �= 0

(5)

In (5), Nin[u] is the set of u’s in-neighbors. Based on pi[u], we derive tight lower and
upper bounds of s[u], as presented in (6) and (7), respectively. In (7), Mmax[u] is the max-
imum probability incident to node u in the matrix M, i.e., Mmax[u] = max{m[u, v]|v ∈
V }.

si[u] =
{

cpi[u] i = 0
si−1[u] + c(1 − c)ipi[u] i �= 0

(6)

si[u] = si[u] + c(1 − c)i+1
∑

v∈Nin(u)

m[u, v]pi[v] + (1 − c)i+2Mmax[u] (7)

As a kNN query is performed via iterations, symbol θk
i denotes the kth highest lower

bound si[u] among all nodes in the ith iteration. Hence, Lemmas 5 and 6 are developed to
enable pruning based on upper and lower bounds of similarity scores.

Lemma 5 ∀u ∈ V , si[u] ≥ s[u] ≥ si[u] holds in all iterations.

Proof s[u] ≥ si[u] can be proved similarly as Lemma 1 in [13], hence we omit it due to
space limitation. Next, we prove that ∀u ∈ V, si[u] ≥ s[u].

�s = (1 − c)M�s + c�q = c(I − (1 − c)M)−1 �q

As shown in (6) defined in [13],

�s = c

∞∑

j=0

((1 − c)M)j �q

Next, in the ith iteration, it has

s[u] = si[u] + (c(1 − c)i+1Mi+1 �q)[u] + c
∞∑

j=i+2
(((1 − c)M)j �q)[u]

≤ si[u] + (c(1 − c)i+1Mi+1 �q)[u] + c
∞∑

j=i+2
(1 − c)jMmax[u](‖ M ‖j−1

1 ‖ �q ‖1)

Acc
ep

ted
 au

tho
r m

an
us

cri
pt

World Wide Web

Here, M is a column normalized matrix, then ‖ M ‖1= 1; and as ‖ �q ‖1= 1,

s[u] ≤ si[u] + (c(1 − c)i+1Mi+1 �q)[u] + c

∞∑

j=i+2

(1 − c)jMmax[u]

Note that, c
∑∞

j=i+2 (1 − c)jMmax[u] is an infinite geometric series, in which the first

term is given by a1 = c(1 − c)i+2Mmax[u], and the common ratio is (1 − c) = 0.5. Since
the common ratio has value between −1 and 1, the series will converge to a1

1−(1−c)
, i.e.,

c
∑∞

j=i+2 (1 − c)jMmax[u] = (1 − c)i+2Mmax[u], and thus,

s[u] ≤ si[u] + c(1 − c)i+1
∑

v∈Nin(u)

m[u, v]pi[v] + (1 − c)i+2Mmax[u]

Hence, s[u] ≤ si[u]. The proof completes.

Lemma 6 In the ith iteration, if si[u] ≤ θk
i , u can be pruned.

Proof According to Lemma 5, s[u] ≤ si[u]. If si[u] ≤ θk
i , s[u] ≤ θk

i holds, i.e. the exact
similarity score of vertex u cannot be more than the kth highest lower similarity bound, and
thus, u can be pruned safely. The proof completes.

To ensure that (i) lower and upper bounds have monotonic increasing and decreas-
ing property, respectively; and (ii) lower and upper bounds could converge to the exact
similarities for all vertices, Lemma 7 and Lemma 8 are proposed.

Lemma 7 ∀u ∈ V, si[u] ≥ si−1[u] and si[u] ≤ si−1[u] hold in the ith iteration.

Proof ∀u ∈ V, si[u] ≥ si−1[u] is obviously true by (6). Here, we prove that si[u] ≤
si−1[u] holds in the ith iteration.

si[u] − si−1[u]
= si[u] + c(1 − c)i+1 ∑

v∈Nin(u)

m[u, v]pi[v] + (1 − c)i+2Mmax[u]
−(si−1[u] + c(1 − c)i

∑

v∈Nin(u)

m[u, v]pi−1[v] + (1 − c)i+1Mmax[u])
= c(1 − c)i+1pi[u] − (1 − c)i+1cMmax[u]
= c(1 − c)i+1(pi[u] − Mmax[u])

According to (5) and (17) defined in [13], pi[u] = ∑
v∈Nin[u] m[u, v]pi−1[u] ≤ Mmax[u].

Therefore, si[u] ≤ si−1[u]. The proof completes.

Lemma 8 The lower and upper bounds converge to the exact similarity scores, i.e., ∀u ∈
V, s∞[u] = s∞[u] = s[u].

Proof Since s∞[u] = s[u] can be proved similarly as [13], here we only prove s∞[u] =
s[u]. From (7), s∞[u] = s∞[u]+(1−c)∞Mmax[u]. As (1−c)∞ = 0 and 0 ≤ Mmax[u] ≤ 1,
(1 − c)∞Mmax[u] = 0. Thus, s∞[u] = s∞[u] = s[u]. The proof completes.

Acc
ep

ted
 au

tho
r m

an
us

cri
pt

World Wide Web

Acc
ep

ted
 au

tho
r m

an
us

cri
pt

World Wide Web

Based on these, we present PNN, Algorithm 2 and Algorithm 3 depict its pseudo-codes.
In general, PNN evaluates kNN(q, k) in two steps as follows.

(i) Initialization. First, superstep = 0. Let No[v] ⊂ V be the set of v’s out-neighbors,
and ∪s∈No[v](v, s) be the set of v’s outgoing edges. For a vertex v ∈ V , the edge
weight w(v, s)(s ∈ No[v]) is normalized so that

∑
s∈No[v] w(v, s) = 1. Thus, M

becomes a column normalized matrix. Then, PNN sends normalized edge weight to
v’s out-neighbors (lines 3-4 of Algorithm 2). Next, superstep = 1. PNN initializes
parameters v.f lag and i to 0. Counter i denotes the number of iterations, and label
v.f lag indicates whether v is a result vertex. v.f lag has three possible values, with 0
indicating v being a potential result vertex of kNN(q, k), −1 meaning v not belong-
ing to kNN(q, k), and 1 indicating v belonging to kNN(q, k). Then, PNN computes
Mmax[v], s0[v], s0[v], p0[v], inserts s0[v] into an aggregator KLb, and sends updated
p[v] to all v’s out-neighbors. Note that, KLb is used to aggregate vertices’ k lower
bounds which will be reported to the master so that master can compute θk

i (lines 5-7
of Algorithm 2). Thereafter, superstep= 2. PNN computes p1[v], initializes potential
result vertices by Lemma 6, and sends p1[v] to v’s out-neighbors (lines 8-15 of Algo-
rithm 2). Note that, to avoid excessive aggregation cost, PNN only counts the number
of potential result vertices num.

(ii) Iterative computation. Each iteration of PNN includes two supersteps, one updates
bounds if superstep %2 = 1, and the other computes potential result vertices if super-
step %2 = 0. Specifically, if superstep %2 = 0, PNN computes pi+2[v] and updates
potential result set Se (lines 16-22 of Algorithm 2). Note that, the value of num could
be very big initially, and its value becomes smaller as tighter bounds of vertices’ RWR
scores are derived iteration by iteration (lines 20-21 of Algorithm 2). Once if num ≤ k,
kNN result vertices as well as the lower and upper bounds of their RWR scores shall
be aggregated to compute rankings on the master. Aggregators Sl and Su preserve
lower and upper bounds of kNN result vertices’ RWR scores respectively (lines 18-19
of Algorithm 2). Otherwise (i.e., superstep %2 = 1), potential result vertex v updates
bounds using (6) and (7) (lines 23-28 of Algorithm 2).

Master performs centralized computation between supersteps, with its pseudo-code
shown in Algorithm 3. If superstep %2 = 1, master computes θk

i (lines 1-2 of Algorithm 3).
Otherwise, if num ≤ k and Se is not empty, master ranks vertices in Se. For each vertex

Acc
ep

ted
 au

tho
r m

an
us

cri
pt

World Wide Web

u ∈ Se, if u satisfies ∀v(�= u) ∈ Se, si[u] > si[v] or si[u] < si[v] [13], the ranking of u can
be confirmed. Hence, u is added to the result set kNN(q, k) (lines 4-8 of Algorithm 3). If
|kNN(q, k)| reaches k, kNN search has been completed, and then, master terminates com-
putation (lines 9-10 of Algorithm 3). Otherwise, a new iteration is performed (lines 8-28 of
Algorithm 2). During the new iteration, the lower and upper bounds of s[v] are updated, and
the value of num, the content of Se, and kNN(q, k) could be updated accordingly. PNN
updates its out-neighbors with new p[v] to complete this iteration.

Example 3 Take the hybrid graph with its transition probability matrix shown in Figure 5a
as an example. Suppose a query vertex is v1 and k = 4.

At superstep 0, for every vertex v, PNN normalizes the edge weights w(v, s)(s ∈ No[v]),
and obtains the column normalized matrix M, which is depicted in Figure 5b.

Figure 5 Example of a 4NN (k = 4) query

Acc
ep

ted
 au

tho
r m

an
us

cri
pt

World Wide Web

At superstep 1, each vertex vi receives messages from its in-neighbors. PNN computes
Mmax[vi], s0[vi], s0[vi], and p0[vi], and sets vi .f lag as 0. Master computes θ4

0 = 0, which
is the 4th highest lower bound among all the vertices.

At superstep 2, PNN first computes p1[v] for every vertex v. For instance, p1[v2] =
p0[v1] × m[v1, v2] + p0[v6] × m[v6, v2] = 0.17. Then, according to Lemma 6, PNN
computes num(= 6) since the upper bounds of all vertices’ RWR scores are larger than θ4

0 .
The intermediate result is depicted in Figure 5a.

At superstep 3, PNN first computes p2[v]. For example, p2[v1] = p1[v1] × m[v1, v2] +
p1[v3]×m[v1, v3]+p1[v4]×m[v1, v4] = 0.17 × 1

5 + 0.17 × 1
2 + 0.67 × 4

5 = 0.655. Then,
PNN updates lower and upper bounds of vertices’ RWR scores as plotted in Figure 5b. For
instance, s1[v1] = s0[v1] + c × (1 − c) × p1[v1] = 0.5, and s1[v1] = s1[v1] + c(1 −
c)2p2[v1]+ (1 − c)3Mmax[v1] = 0.5 + 0.53 × 0.655 + 0.53 × 0.8 = 0.68. Master computes
θ4

1 = 0.04. The algorithm repeats the iterations until k (= 4) ranked result vertices are
found.

At superstep 8, θ4
3 = 0.052, s3[v5] < θ4

3 , and s3[v6] < θ4
3 , then v5 and v6 are

pruned, and Se ={v1, v2, v3, v4}. Master performs sorting, with v1 ranked the first and
v4 ranked the second. Next, we have Se = {v2, v3} and kNN(v1, 4) = {v1, v4}, as
shown in Figure 5f. The process proceeds until |kNN(v1, 4)| = 4, with the final result
kNN(v1, 4) = {v1, v4, v2, v3} depicted in Figure 5e.

6.2 Complexity analysis

In this subsection, we analyze the complexity of PNN.

Communication cost Let �supersteps be the number of supersteps, and |Eh| be the edge
number of Gh, the total communication cost of PNN is O(

|Eh|×(�supersteps+3)
2), because

when superstep ≤ 2, there is 3|Eh| communication cost. When superstep > 2, two cases
need to be considered: (i) Superstep %2 = 1, PNN updates bounds of vertices and sends
messages, resulting in |Eh|×(�supersteps−3)

2 communication cost. (ii) Superstep %2 = 0,
PNN updates Se or result set, without pumping messages.

Computation cost The total computation cost for PNN is O(|V | × �supersteps), which
is the inevitable cost due to the Pregel model.

7 Experimental evaluation

In this section, we conduct extensive performance studies to evaluate the efficiency, scal-
ability, and effectiveness of our proposed hybrid graph based node similarity search
approaches.

Our experiments employ three real datasets, viz., Flickr, DBLP, and Check-in. Table 2
summarizes the statistics of the datasets used, where |Eh| is the edge number of the cor-

Table 2 Statistics of the datasets used

Graph |V | |E| Dim. |Eh| d

Flickr 20M 376,708,131 12 1,153,324,626 L2-norm

DBLP 10M 9,047,001 3 ∼ 70 209,044,633 Jaccard distance

Check-in 3,680,126 561,465,540 2 1,187,956,508 L1-norm

Acc
ep

ted
 au

tho
r m

an
us

cri
pt

World Wide Web

responding hybrid graph. (i) Flickr, in which, for each image, we extract Color Layout [2]
information associated with 12-dimensional visual features. If two images are tagged by the
same user, we add an edge between them. L2-norm is used to compare image features. (ii)
DBLP is a citation network, which provides a list of research papers. Two papers are con-
nected if one references another. Jaccard distance is employed to measure similarity. (iii)
Check-in [32] is collected from Foursquare, where venues are extracted as nodes and two
venues are linked via an edge if they are checked in by the same user. L1-norm is utilized
for Check-in.

We investigate the efficiency of tNN graph construction and the performance of node
similarity search algorithms under various parameters listed in Table 3, where s+ is the
maximal similarity score between any two vertices, and bold values denote the defaults.
In every experiment, we vary one parameter, and fix others to their defaults. As reported
in [13], c = 0.5 is recommended. All tNN graph construction algorithms are implemented
in MapReduce, and all query algorithms are implemented in Pregel. For every dataset,
we generate 50 queries by selecting query node randomly, and the average query time is
reported. Our experiments are conducted on a 18-node Dell cluster, in which one serves as
the master node and others serve as the worker nodes. Each node has two processors with
12 cores, 128GB RAM, and 3TB disk.

7.1 tNN graph construction and update costs

The first set of experiments verifies the performance of KDC.
We report the time required to construct the tNN graph, the number of distance compu-

tations (Compdists for short), and distance pruning rate defined as (1 − Compdists
T otaldists

) where
T otaldists = |V | × (|V | − 1)/2. We focus on exact tNN graph construction algorithm,
and thus, we implemented the representative exact method DKNNG [23] (as described at
the beginning of Section 5) based on MapReduce as a comparison, and also implemented
ADKNNG, which integrates the allocation strategy presented in Section 5.1.3 with DKNNG
to further improve performance, as another comparison.

We follow existing studies to set t as 20 because (i) it is pointed out in [18] that a small
value of t performs well in practice. (ii) The accuracy of query algorithms under t = 20 is
reasonably high. (iii) When t ≥ 20, tNN graph construction cost increases significantly and
the hybrid graph becomes bigger, resulting in more expensive query cost. Nonetheless, the
accuracy has no clear improvement. These can be confirmed in the following experiments.

We report the result corresponding to the 20NN (t = 20) graph, which is listed in Table 4.
Note that, we follow existing work [6] to set the partitioning number m = 500 and sampling
size S = 4000, and “−” denotes that the actual t ime is more than 7 days. It is observed that,
KDC outperforms DKNNG and ADKNNG significantly. The reason is that, KDC enables
equal-size partition, and its pruning power is stronger (as can be seen from the column
entitled Pruning of Table 4), contributed by Lemma 1 and Lemma 2. As an example, for

Table 3 Parameter settings

Parameter Range

The number k of objects requested 10, 20, 30, 40, 50, 70, 100

Balance factor α 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1

t 5, 10, 20, 40, 60

The number of cluster nodes 3, 6, 9, 12, 15, 18

Acc
ep

ted
 au

tho
r m

an
us

cri
pt

World Wide Web

Ta
bl
e
4

20
N

N
(t

=
20

)
gr

ap
h

co
ns

tr
uc

tio
n

co
st

(t
im

e:
m

in
ut

es
)

A
lg

or
ith

m
s

Fl
ic

kr
D

B
L

P
C

he
ck

-i
n

T
im

e
C

om
pd

is
ts

Pr
un

in
g

T
im

e
C

om
pd

is
ts

Pr
un

in
g

T
im

e
C

om
pd

is
ts

Pr
un

in
g

D
K
N
N
G

—
—

—
—

—
—

8.
08

3
73

,4
65

,2
34

,3
17

98
.9

15
%

A
D
K
N
N
G

43
50

.9
18

3,
90

2,
84

0,
06

1,
29

0
8.

05
%

—
—

—
7.

36
7

39
,6

24
,0

32
,5

63
99

.4
15

%

K
D

C
11
87
.3
2

12
,4
31
,9
25
,8
21
,5
35

93
.7
8%

72
2.
43

49
,9
99
,7
87
,3
85
,1
59

0.
00
04
2%

5.
46
7

48
7,
33
9,
91
8

99
.9
93
%

Acc
ep

ted
 au

tho
r m

an
us

cri
pt

World Wide Web

Figure 6 tNN graph construction cost vs. t

Flickr, algorithm DKNNG cannot run within 7 days, ADKNNG requires 4350.9 minutes,
while KDC only requires 1187.32 minutes to complete 12 trillion of distance computation.

The results under different t values on Check-in and DBLP are plotted in Figure 6. It is
observed that, as t grows, the number of the edges in the tNN graph increases with higher
construction cost. Again, KDC still exceeds others. In addition to the construction cost of
the tNN graph, we also evaluate update performance when new vertices are inserted into
the graph and old vertices are deleted from the graph. Table 5 lists the average update costs
of inserting and deleting 10 random vertices. As observed, the update is effective because it
can complete within a few minutes.

7.2 Search performance

Evaluating PNN The second set of experiments verifies the performance of PNN for
supporting kNN queries, compared with PBNN and INN, which are implemented based
on [16] and initiative iterative approach, respectively (as stated in RWR Computation of
Section 2). The results under different k values is depicted in Figure 7. Note that, we exclude
those results with the running time beyond 14,000 seconds. The first observation is that, for
PNN and PBNN, as k increases, more vertices require evaluation, incurring longer search
time and more communication cost. INN is not sensitive to k since the similarities of all
vertices must be computed until convergence in the initiative iterative approach. The second
observation is that, PNN exceeds PBNN and INN by 10 times and 4 times respectively
on average, and INN performs much better than PBNN on Flickr and DBLP, contributed
by two main reasons below. First, even though the communication cost of PBNN is less
than INN, PBNN needs to update candidate vertices at every iteration, which requires using
persistent aggregators. The overhead for maintaining the aggregators is high since candidate
vertices keep changing. This is extremely costly when an input graph is huge. Second, our
derived bound is much tighter than the bound used in [16].

Table 5 Update cost of KDC

Check-in DBLP Flickr

Insertion (seconds) 131.5 153 156.4

Deletion (seconds) 183 212 332.8

Acc
ep

ted
 au

tho
r m

an
us

cri
pt

World Wide Web

Figure 7 kNN query performance vs. k

Effect of cluster nodes The third set of experiments aims to explore the impact of cluster
nodes on search performance. We vary the number of cluster nodes from 3 to 18, and illus-
trate the results on Check-in in Figure 8. As expected, the query cost first drops and then
stays stable or ascends when the number of cluster nodes grows. This is because, both com-
putational power and communication cost increases with more cluster nodes. Again, PNN
exceeds PBNN and INN.

Figure 8 Query time vs. the
number of cluster nodes

Acc
ep

ted
 au

tho
r m

an
us

cri
pt

World Wide Web

Effect of α The fourth set of experiments studies the impact of parameter α on the perfor-
mance of PNN. Figure 9 plots the results. It is observed that, varying α from 0 to 1 causes
slight fluctuations in running time. This is because, edge weight changes with the growth of
α, which affects computation. In particular, when α = 0 or 1, input graph has much fewer
edges, which helps to reduce computation cost.

Effect of t on search efficiency Next, we investigate the impact of t on search performance,
with the results depicted in Figure 10. It is observed that, query cost becomes more expen-
sive as t grows. This is because, t decides the number of the edges maintained by each vertex
in the tNN graph and the |Eh| value of the hybrid graph accordingly. When the hybrid graph
contains more edges, it needs longer time in completing a search.

Effect of t on search accuracy Parameter t affects not only search performance but also the
accuracy of the returned results. Note that t determines the number of the nearest neighbors
maintained by each node in the tNN graph, which represents the knowledge of attribute
similarity between vertices. Although RWR performs random walk that enables the transi-
tion of nodes’ similarity scores, we believe the selection of t still affects the accuracy of
returned results. We take the query results returned by the naı̈ve search method presented
at the beginning of Section 3 as the accurate results, and report the percentage of accurate
results returned by PNN as accuracy in Table 6. It is observed that, for kNN query, given
a value of t , the accuracy first goes up and then drops with k increases. This is because,
there is nearly no similar paper to a given one when k > 50 by our manual checking,
hence either naı̈ve search method or PNN returns kth (k > 50) paper randomly, incurring
result difference. Given the improvement on search efficiency brought by PNN, we claim
that the accuracy of PNN under t = 20 is reasonably high. It also justifies that using the
hybrid graph to support node similarity search is feasible. It guarantees search performance
even when the input graph is massive, and meanwhile, it is able to achieve relatively high
accuracy. (e.g., near 80% in most of the cases).

7.3 Case study

To verify the effectiveness of our proposed methods, we conduct a case study on DBLP. We
perform 20NN (k = 20) search via RWR and PNN respectively under different values of
α. We present the top-5 papers that are most related to paper p0 in Table 8 but ignore the
remaining 15 papers because it is enough for us to verify the effectiveness of our approaches.
The original paper titles are listed in Table 7. It is observed that RWR returns {pi | (1 ≤ i ≤
5)} as the result. However, papers p1, p4, and p5 do not share any common keyword with
p0. As expected, our approach is much more flexible. Users can obtain preferred results by
tuning parameter α. As an example, when α = 0.7, the result is {p2, p1, p6, p7, p8}, which

Figure 9 Query time vs. α

Acc
ep

ted
 au

tho
r m

an
us

cri
pt

World Wide Web

Figure 10 Search performance
vs. t

Table 6 kNN query accuracy on DBLP

10 20 30 40 50 70 100

5 0.55 0.7 0.761 0.633 0.532 0.423 0.322

10 0.47 0.64 0.773 0.718 0.634 0.511 0.39

20 0.36 0.47 0.718 0.805 0.768 0.676 0.555

40 0.3 0.29 0.479 0.663 0.792 0.835 0.685

60 0.28 0.25 0.392 0.58 0.684 0.838 0.789

Table 7 Information of original papers

Paper Title

p0 an efficient k means clustering algorithm

p1 maximum certainty data partitioning

p2 bayesian ying yang machine clustering and number of clusters

p3 parametric and non parametric unsupervised cluster analysis

p4 comparative analysis of statistical pattern recognition methods

p5 lecture notes in computer science

p6 an efficient k means clustering algorithm based on influence factors

p7 an efficient pso based clustering algorithm

p8 an efficient clustering algorithm based on local optimality of k means

p9 an efficient line symmetry based k means algorithm

p10 the global k means clustering algorithm

Acc
ep

ted
 au

tho
r m

an
us

cri
pt

World Wide Web

Table 8 Case study on DBLP

Query RWR PNN

paper (α = 1) (α = 0.7) (α = 0.5) (α = 0.3) (α = 0)

p0

p1 p1 p2 p6 p6 p6

p2 p2 p1 p7 p7 p9

p3 p3 p6 p8 p8 p8

p4 p4 p7 p9 p9 p7

p5 p5 p8 p10 p10 p10

explicitly considers both graph structure relevance and node attribute similarity. When α =
1, PNN returns the same result as RWR since it only considers the graph structure. When
α = 0, PNN returns the top-k papers with the highest attribute similarity scores (as p0).
This case study confirms that considering both graph structure relevance and vertex attribute
correlation in node similarity search is significant, and offers users more flexible search
options (Table 8).

8 Conclusions

In this paper, we propose an efficiently distributed framework to support node similar-
ity search on massive graphs, which consider both graph structure correlation and node
attribute similarity in metric spaces. The framework consists of preprocessing stage and
query stage. In the preprocessing stage, a new parallel algorithm KDC is presented for
forming a hybrid graph, using efficient metric pruning techniques and allocation strategies
to avoid unnecessary communication and computation costs. In the query stage, based on
the formed hybrid graph, we present PNN using RWR for answering kNN queries. Tight
similarity bounds are derived to rapidly shrink the search region. Extensive experimental
evaluation on three real data sets demonstrates the effectiveness, scalability, and efficiency
of our proposed approaches. In the future, we intend to explore how to further reduce the
number of supersteps in order to improve the efficiency of node similarity search on massive
graphs.

Acknowledgments This work was supported in part by the National Key R&D Program of China under
Grant No. 2018YFB1004003, the NSFC under Grants No. 61972338 and 61802344, the NSFC-Zhejiang
Joint Fund under Grant No. U1609217, and the ZJU-Hikvision Joint Project. Yunjun Gao is the corresponding
author of the work.

References

1. Batarfi, O., Shawi, R.E., Fayoumi, A.G., Nouri, R., Beheshti, S., Barnawi, A., Sakr, S.: Large scale graph
processing systems: Survey and an experimental evaluation. Clust. Comput. 18(3), 1189–1213 (2015)

2. Batko, M., Kohoutková, P., Novak, D.: Cophir image collection under the microscope. In: SISAP,
pp. 47–54 (2009)

3. Boutet, A., Kermarrec, A., Mittal, N., Taı̈ani, F.: Being prepared in a sparse world: The case of KNN
graph construction. In: ICDE, pp. 241–252 (2016)

4. Chen, L., Gao, Y., Li, X., Jensen, C.S., Chen, G.: Efficient metric indexing for similarity search. In:
ICDE, pp. 591–602 (2015)

Acc
ep

ted
 au

tho
r m

an
us

cri
pt

World Wide Web

5. Chen, L., Gao, Y., Chen, G., Zhang, H.: Metric all-k-nearest-neighbor search. IEEE Trans. Knowl. Data
Eng. 28(1), 98–112 (2016)

6. Chen, G., Yang, K., Chen, L., Gao, Y., Zheng, B., Chen, C.: Metric similarity joins using mapreduce.
IEEE Trans. Knowl. Data Eng. 29(3), 656–669 (2017)

7. Cheng, H., Zhou, Y., Yu, J.X.: Clustering large attributed graphs: A balance between structural and
attribute similarities. TKDD 5(2), 12:1–12:33 (2011)

8. Cohen, S., Kimelfeld, B., Koutrika, G.: A survey on proximity measures for social networks. In: Search
Computing - Broadening Web Search, pp. 191–206 (2012)

9. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. Commun. ACM 51(1),
107–113 (2008)

10. Dong, W., Charikar, M., Li, K.: Efficient k-nearest neighbor graph construction for generic similarity
measures. In: WWW, pp. 577–586 (2011)

11. Dong, Y., Zhang, J., Tang, J., Chawla, N.V., Wang, B.: Coupledlp: Link prediction in coupled networks.
In: SIGKDD, pp. 199–208 (2015)

12. Fujiwara, Y., Nakatsuji, M., Onizuka, M., Kitsuregawa, M.: Fast and exact top-k search for random walk
with restart. PVLDB 5(5), 442–453 (2012)

13. Fujiwara, Y., Nakatsuji, M., Shiokawa, H., Mishima, T., Onizuka, M.: Efficient ad-hoc search for
personalized pagerank. In: SIGMOD, pp. 445–456 (2013)

14. Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.: GraphX: Graph processing
in a distributed dataflow framework. In: OSDI, pp. 599–613 (2014)

15. Jeh, G., Widom, J.: Simrank: A measure of structural-context similarity. In: SIGKDD, pp. 538–543
(2002)

16. Khemmarat, S., Gao, L.: Fast top-k path-based relevance query on massive graphs. IEEE Trans. Knowl.
Data Eng. 28(5), 1189–1202 (2016)

17. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.M.: Distributed graphlab: A
framework for machine learning in the cloud. PVLDB 5(8), 716–727 (2012)

18. Ma, H., Zhu, J., Lyu, M.R., King, I.: Bridging the semantic gap between image contents and tags. IEEE
Trans. Multimedia 12(5), 462–473 (2010)

19. Maehara, T., Akiba, T., Iwata, Y., Kawarabayashi, K.: Computing personalized pagerank quickly by
exploiting graph structures. PVLDB 7(12), 1023–1034 (2014)

20. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.: Pregel: A
system for large-scale graph processing. In: SIGMOD, pp. 135–146 (2010)

21. Meng, F., Rui, X., Wang, Z., Xing, Y., Cao, L.: Coupled node similarity learning for community detection
in attributed networks. Entropy 20(6), 471 (2018)

22. Pan, J., Yang, H., Faloutsos, C., Duygulu, P.: Automatic multimedia cross-modal correlation discovery.
In: SIGKDD, pp. 653–658 (2004)

23. Plaku, E., Kavraki, L.E.: Distributed computation of the knn graph for large high-dimensional point sets.
J. Parallel Distrib. Comput. 67(3), 346–359 (2007)

24. Sarkar, P., Moore, A.W.: Fast nearest-neighbor search in disk-resident graphs. In: SIGKDD, pp. 513–522
(2010)

25. Sarkar, P., Moore, A.W.: A tractable approach to finding closest truncated-commute-time neighbors in
large graphs. arXiv:1206.5259 (2012)

26. Shao, B., Wang, H., Li, Y.: Trinity: A distributed graph engine on a memory cloud. In: SIGMOD,
pp. 505–516 (2013)

27. Shin, K., Jung, J., Sael, L., Kang, U.: Bear: Block elimination approach for random walk with restart on
large graphs. In: SIGMOD, pp. 1571–1585 (2015)

28. Tian, Y., Balmin, A., Corsten, S.A., Tatikonda, S., McPherson, J.: From “think like a vertex” to “think
like a graph”. PVLDB 7(3), 193–204 (2013)

29. Trad, M.R., Joly, A., Boujemaa, N.: Distributed kNN-graph approximation via hashing. In: ICMR, p. 43
(2012)

30. Wu, Y., Jin, R., Zhang, X.: Fast and unified local search for random walk based k-nearest-neighbor query
in large graphs. In: SIGMOD, pp. 1139–1150 (2014)

31. Xu, G., Fu, B., Gu, Y.: Point-of-interest recommendations via a supervised random walk algorithm. IEEE
Intell. Syst. 31(1), 15–23 (2016)

32. Yang, D., Zhang, D., Qu, B.: Participatory cultural mapping based on collective behavior data in location-
based social networks. ACM TIST 7(3), 30 (2016)

33. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., Franklin, M.J., Shenker, S., Stoica,
I.: Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In: NSDI,
pp. 15–28 (2012)

Acc
ep

ted
 au

tho
r m

an
us

cri
pt

https://arxiv.org/abs/1206.5259

World Wide Web

34. Zhang, C., Shou, L., Chen, K., Chen, G., Bei, Y.: Evaluating geo-social influence in location-based social
networks. In: CIKM, pp. 1442–1451 (2012)

35. Zhang, Q., Li, M., Deng, Y., Mahadevan, S.: Measure the similarity of nodes in the complex networks.
arXiv:1502.00780 (2015)

36. Zhang, Y., Huang, K., Geng, G., Liu, C.: Fast kNN graph construction with locality sensitive hashing.
In: PKDD, pp. 660–674 (2013)

37. Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute similarities. PVLDB 2(1),
718–729 (2009)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Tianming Zhang1 ·YunjunGao1 ·Baihua Zheng2 · Lu Chen3 · ShitingWen4 ·WeiGuo1

Tianming Zhang
tianmingzhang@zju.edu.cn

Baihua Zheng
bhzheng@smu.edu.sg

Lu Chen
lchen@cs.aau.dk

Shiting Wen
wensht@nit.zju.edu.cn

Wei Guo
weiguo@zju.edu.cn

1 College of Computer Science and Software Engineering, Zhejiang University of Technology,
Hangzhou, China

2 School of Information Systems, Singapore Management University, Singapore, Singapore
3 Department of Computer Science, Aalborg University, Aalborg, Denmark
4 The Ningbo Institute of Technology, Zhejiang University, Ningbo, China

Acc
ep

ted
 au

tho
r m

an
us

cri
pt

https://arxiv.org/abs/1502.00780
mailto: tianmingzhang@zju.edu.cn
mailto: bhzheng@smu.edu.sg
mailto: lchen@cs.aau.dk
mailto: wensht@nit.zju.edu.cn
mailto: weiguo@zju.edu.cn

	Towards distributed node similarity search on graphs
	Citation
	Author

	Towards distributed node similarity search on graphs
	Abstract
	Introduction
	Related work
	tNN graph
	Random walk with restart computation
	Distributed graph processing systems

	Problem statement
	Node similarity search framework
	Preprocessing stage
	Query stage

	tNN graph construction
	KDC algorithm
	Partitioning
	The first MapReduce job
	The second MapReduce job
	The third MapReduce job
	The summary of KDC

	Dynamic update
	Vertex insertion
	Vertex deletion
	The update of vertex attributes

	Complexity analysis

	Node similarity search
	PNN algorithm
	Complexity analysis
	Communication cost
	Computation cost

	Experimental evaluation
	tNN graph construction and update costs
	Search performance
	Evaluating PNN
	Effect of cluster nodes
	Effect of
	Effect of t on search efficiency
	Effect of t on search accuracy

	Case study

	Conclusions
	References
	Affiliations

