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Abstract Micro-videos, a new form of videos that are constrained in duration, gain
significant popularity in recent years. The volume and rate of online micro-videos
urgently calls for effective recommendation algorithms to help users find their in-
terested ones. Although some previous works have investigated how to model users’
historical behaviors to predict the click-through rate of micro-videos, they are gen-
erally based on positive feedback only but overlook the negative which can help
understand user preference at a finer granularity. The positive and negative feed-
back jointly imply the user’s different sentiments on different aspects, where each
aspect is one component of a micro-video such as video_scene and video_subject.
To this end, we propose an aspect-level sentiment capsule network(ASCap) for
micro-video click-through rate prediction by aggregating both positive and negative
feedback, with an attempt to make the prediction more explainable. More specifi-
cally, an aspect-specific gating mechanism is firstly utilized to extract the aspect-level
features from the target micro-video and the user’s positive and negative feedback.
Then, in the following sentiment capsule network, the aspect-level features of the tar-
get micro-video are paired with those of positive and negative feedback respectively
to identify their sentiments and form the sentiment capsules. Finally, the prediction
layer is employed to calculate the overall click probability based on the sentiment
capsules. Experimental results on two real-world micro-video datasets demonstrate
that the proposed method significantly outperforms the state-of-the-art methods.
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Fig. 1 An example of a user expressing different sentiments on different aspects of a micro-
video.
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1 Introduction

Micro-videos, a new form of user-generated time-constrained(usually tens of seconds)
videos, have become increasingly popular recently. Such bite-sized videos can be con-
veniently shot and shared by smartphones without the need for professional devices
and skills, making the number of them growing exponentially in the online shar-
ing platforms, such as Kuaishou1, TikTok2, and Vine3. Taking Kuaishou in China
as an example, as of January 2020, there are more than 10 million daily uploaded
new micro-videos and 300 million daily active users. Micro-videos also have many
commercial potentials, such as brand promotion and online marketing. Hence, the
micro-video sharing platforms must urgently build effective recommender systems to
enhance the user experience, engagement, and retention.

In the last few years, personalized video recommendation has been well stud-
ied. The proposed algorithms can be categorized into three groups: collaborative
filtering[3, 14], content-based filtering[7, 24, 42], and hybrid methods[4, 8, 35, 39].
However, micro-videos have a shorter length and low-quality descriptive text, and
a user can interact with many relevant micro-videos in a short period, making the
interaction sequence much longer. Thus, the micro-video recommendation is a more
challenging task and has received increasing attention from the academic field in
recent years. For example, Wei et al. [31] fused multi-modal features of micro-videos
by graph convolution networks to better capture user preferences for personalized
recommendation. Chen et al. [6] adopted hierarchical attention at an item- and
category-level to model user behaviors for micro-video click-through rate prediction.

Although achieving promising results, the aforementioned methods are generally
based on positive feedback only(i.e., “click” behaviors) but overlook the negative,
such as the “unclick” behaviors. Here, the “unclick” behavior in micro-video shar-
ing platforms means that a user previews the thumbnail, yet no “click” behavior
occurs, which may indicate what a user dislikes to a certain extent[25]. Some pre-
vious works have investigated to aggregate various types of feedback together to
better understand user preference for recommendation[26, 40, 25, 19]. For example,
in the most recent work, Li et al. [19] developed a unified framework to characterize

1 https://www.kuaishou.com
2 https://www.tiktok.com
3 https://www.vine.co.
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Aspect-level Sentiment Capsule Network for Micro-Video CTR Prediction 3

users’ interested and uninterested micro-videos from “click” and “unclick” behavior
sequences respectively, where each sequence is modeled by a temporal graph-based
LSTM network. However, they modeled the user preference on the micro-videos at
the item level and aggregated the interested and uninterested cues via a primitive
weighted summation operation, which cannot well distinguish their impacts on user
preference. Actually, a micro-video consists of several components, and the posi-
tive and negative feedback jointly imply the user’s different sentiments on different
components. As illustrated in Figure 1, each micro-video consists of three compo-
nents {video_scene, video_subject, video_emotion}. From the “click” and “unclick”
behavior sequences, we can see that the user expresses more positive attitude to
beauty-related video_subject and positive video_emotion, more negative attitude to
animals-related video_subject and negative video_emotion, and neutral attitude to
video_scene which is present in both sequences. Whether the user will click the tar-
get micro-video depends on the mixture of all aspect sentiments. Hence, it is essential
to model user preference at a finer level of granularity by taking both positive and
negative feedback into consideration, which can make predictions with explanations.

To this end, in this paper, we propose an aspect-level sentiment capsule net-
work(ASCap) for micro-video click-through rate prediction by aggregating both
positive and negative feedback, where each aspect is one component of a micro-
video. Since there is no explicit labeled data indicating which aspects a user likes
or dislikes, we exploit the implicit sentiment information provided by the “click”
and “unclick” behaviors to guarantee the proper sentiment modeling. Intuitively,
a user expresses positive sentiments to most aspects of a clicked micro-video, and
negative attitudes to most aspects of an unclicked micro-video. Based on this, we
delicately extract the aspect features with positive sentiment and those with nega-
tive sentiments from “click” and “unclick” behaviors, respectively. In addition, some
aspect features which are frequently present in both “click” and “unclick” behaviors
bear neutral sentiment. We argue that neutral sentiment also plays some role in
understanding user preference, especially for some users, the positive and negative
sentiment towards the micro-video is not obvious. To be more specific, ASCap firstly
utilizes an aspect-specific gating mechanism to extract the aspect-level features from
the target micro-video and the user’s positive and negative behaviors. In the follow-
ing sentiment capsule network, aspect-level features of the target micro-video pair
with those of positive and negative feedback respectively to identify their sentiments
and form the sentiment capsules. Finally, the prediction layer calculates the overall
click probability based on all sentiment capsules. Experimental results on two real-
world micro-video datasets demonstrate that ASCap significantly outperforms the
state-of-the-art methods.

The main contributions of this work are summarized as follows:

– We propose an aspect-level sentiment capsule network based on gating mecha-
nisms and capsule networks for micro-video click-through rate prediction at a
finer level of granularity, with an attempt to make prediction more explainable.

– We introduce a capsule network-based architecture to derive and identify users’
sentiment towards each aspect according to positive and negative feedback and
further make improvements to the dynamic routing algorithm to make sure it
can better identify the aspect sentiments.
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– We perform extensive experiments on two public micro-video datasets to demon-
strate that our proposed model significantly outperforms the state-of-the-art
micro-video click-through rate prediction methods.

The remainder of the paper is organized as follows. Section 2 reviews the related
works. Section 3 presents the details of the proposed model. Section 4 reports the
experimental settings and gives the analysis of results. Section 5 concludes the work
and plans the future work.

2 Related Work

In this section, we briefly review the studies related to our research work: micro-video
understanding and capsule networks.

2.1 Micro-video Understanding

In recent years, as a new form of user-generated content, micro-videos have gained in-
creasing popularity in public. Meanwhile, micro-video content analysis has attracted
extensive research efforts from the academic field, such as popularity prediction [5],
venue categorization [36], hashtag recommendation [30], and micro-video recommen-
dation [13, 6, 19, 23, 21, 20, 22]. For example, Chen et al. [5] proposed a transductive
model to find the optimal latent common space, unifying and preserving information
from different modalities, for predicting micro-video popularity. Zhang et al. [36] built
a tree-guided multi-task multi-modal learning model to jointly learn a common space
from multi-modalities and leverage the predefined Foursquare hierarchical structure
to regularize the relatedness among venue categories. Wei et al. [30] leveraged GCNs
to model the complicated interactions among <users, hashtags, micro-videos> and
learn their representations to recommend hashtags for micro-videos.

Specific to the micro-video recommendation, the previous works mainly focus on
multi-modal features and sequential user behaviors. For instance, Huang and Luo
[13] proposed a personalized micro-video recommendation method using hierarchical
user interest modeling based on multi-modal features, including visual, acoustic,
textual, emotional, and social features. Ma et al. [23] simultaneously incorporated
multi-source content data of items and multi-networks of users to learn user and
item representations for recommendation. Liu et al. [21] proposed a user-video co-
attention network to learn multi-modal information from both user and micro-video
sides using an attention mechanism. Liu and Chen [20] employed self-attention to
capture multi-modal features of different importance and made use of multi-head
attention to learn users’ preference from historical records to perform the next micro-
video recommendation. Chen et al. [6] proposed a Temporal Hierarchical Attention at
Category- and Item-Level (THACIL) network for user behavior modeling to predict
the user’s click-through rate of micro-videos.

Though promising performance improvement is achieved by these efforts, they
are based on positive feedback only but overlook the negative. Li et al. [19] is the
most relevant work with ours which jointly characterized users’ interested and un-
interested history records by temporal graph-based LSTM networks. However, they
made the item-level analysis of user preference on the micro-videos and aggregated
the interested and uninterested cues via a primitive weighted summation operation,
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which cannot well distinguish their impacts on user preference. Therefore, we propose
an aspect-level sentiment capsule network for micro-video click-through rate predic-
tion at a finer level of granularity in consideration of a user emphasizing different
aspects with different sentiments of a micro-video.

2.2 Capsule Networks

The capsule network is proposed as a hierarchical architecture to model the complex
relations among latent features, which helps improve the representational limita-
tions of CNNs and RNNs [11]. A capsule is a group of neurons whose activity vector
represents the instantiation parameters of a specific type of entity such as an ob-
ject or an object part [28]. Sabour et al. [28] firstly applied vector-output capsules
with dynamic routing to recognize highly overlapping digits and it achieved impres-
sive performance. The dynamic routing mechanism ensures that low-level features
can be selectively aggregated to form high-level ones. Then a number of methods
were proposed to improve the performance of capsule networks [2, 12, 18, 29], such
as Hinton et al. [12] proposed a new iterative routing procedure based on the EM
algorithm, which measures the compatibility between matrix capsules by clustering
them through Gaussian distributions.

In addition, capsule networks have also been applied to some NLP tasks, in-
cluding text classification [38], relation extraction [37], zero-shot user intent detec-
tion [33], and multi-task learning [34]. Recently, some researchers have applied it to
recommendation tasks [16, 17]. For example, Li et al. [16] utilized capsule networks
to model the multiple interests from users’ historical behaviors, where each output
capsule encodes an interest. Li et al. [17] proposed a sentiment capsule architecture
with a novel routing by a bi-agreement mechanism to identify the informative logic
unit and the sentiment-based representations in user-item level for rating prediction.
Inspired by [17], we exploit capsule network architectures to identify the aspect-level
sentiments for micro-video click-through rate prediction.

3 Our Proposed Model

We propose an aspect-level sentiment capsule network for the micro-video click-
through rate prediction. The overall architecture is shown in Figure 2. It mainly
consists of four components: sequence encoding layer, aspect extraction layer, senti-
ment capsule layer, and prediction layer. The sequence encoding layer encodes the
long user behavior sequence into a short one with a temporal window. The aspect
extraction layer extracts aspect-related features with an aspect-specific gating mech-
anism. The sentiment capsule layer derives and identifies the sentiment of each aspect
and outputs the sentiment capsules for the prediction layer. The prediction layer cal-
culates click probability for each sentiment capsule and aggregates them to produce
the overall click probability.

3.1 Problem Formulation

The task of micro-video click-through rate prediction is to build a model to estimate
the probability of a user clicking on a specific micro-video. A user’s historical records
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Fig. 2 The overall architecture of ASCap.

can be presented as an ordered sequence of micro-videos U = {(u, xpj )}
l
j=1, where

p ∈ {+,−} respectively represents “click” and “unclick” behaviours, xj is the identity
of j-th micro-video, and l is the length of the sequence. The whole sequence can be
segmented into two sub-sequences, namely “click” sequence U+ = {(u, x+j )}

l+
j=1, and

“unclick” sequence U− = {(u, x−j )}
l−
j=1. As such, the micro-video click-through rate

prediction problem can be formally defined as:

– Input: The user’s “click” and “unclick” historical behavior sequences U+, U−,
and the new micro-video xnew.

– Output: The click probability of the user u on the new micro-video xnew.

Considering that micro-videos are short of auxiliary information (tags, descrip-
tions, etc.) in general [6], we use only visual information from the thumbnail to
represent a micro-video in our work. This is reasonable because the thumbnail is
the most representative snapshot, capturing the essence of a video and providing
the first impression to the viewers. Besides, it can also alleviate the severe cold-start
problem in micro-video click-through rate prediction. The mathematical notations
used in this paper are summarized in Table 1.

3.2 Sequence Encoding

For a user, the click interaction sequence U+ can be represented as X+ = [x+
1 , · · · ,x+

l+
],

where x+
j ∈ Rd is the dense visual feature vector extracted from its cover picture,

and d is the embedding size. As the shorter length of micro-videos, a user can interact
with many videos in a short time, making the interaction sequence much longer than
that of traditional videos. So we split the long sequence X+ into m blocks using a
temporal window of width w based on the consideration that a user presses stable
interest patterns in a short time, which means that the videos in a block mostly have
the similar aspect features (i.e., videos with the animals-related subject).
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Table 1 Notations

Notations Definitions and Descriptions
l+ The length of the click sequence
l− The length of the unclick sequence
M The number of aspects
w The temporal window size
m The number of blocks
U User interaction micro-video id sequence
U+ User clicked micro-video id sequence
U− User unclicked micro-video id sequence
x+
j The j-th micro-video id in click sequence, 1 ≤ j ≤ l+

x−
j The j-th micro-video id in unclick sequence, 1 ≤ j ≤ l−

xnew The given new micro-video id
x+
j The j-th micro-video embedding in click sequence, 1 ≤ j ≤ l+

x−
j The j-th micro-video embedding in unclick sequence, 1 ≤ j ≤ l−

xnew The new micro-video embedding
X+ The visual embedding of click sequence, 1 ≤ j ≤ l+

X− The visual embedding of unclick sequence, 1 ≤ j ≤ l−

s+k The k-th block embedding of click sequence, 1 ≤ k ≤ m

s−k The k-th block embedding of unclick sequence, 1 ≤ k ≤ m

qi The embedding of i-th aspect, 1 ≤ i ≤ M

p+
i The i-th aspect feature of click sequence, 1 ≤ i ≤ M

p−
i The i-th aspect feature of unclick sequence, 1 ≤ i ≤ M

pnew
i The i-th aspect feature of the new micro-video, 1 ≤ i ≤ M

u+
i the i-th activation unit from click sequence, 1 ≤ i ≤ M

u−
i the i-th activation unit from unclick sequence, 1 ≤ i ≤ M

vpos the positive sentiment capsule
vneg the negative sentiment capsule
vneu the neutral sentiment capsule

In each block, we apply sum pooling operation to aggregate the local information
as follows:

s+k =
∑w(k+1)

j=wk
x+
j (1)

In this way, s+k can encode the short-term preference within k-th block. Note that the
last block will be padded to the same length as others if it contains less than w micro-
videos. With the same procedure, we can get the “unclick” block representation s−k .
Although aggregating the videos in the same block may lose some information, the
essential part will be preserved, which will be used to extract the aspect-level features
and help identify the aspect sentiments of the given micro-video in the sentiment
capsules network.

The block size is a hyper-parameter, which can be decided according to the
characteristics of the micro-video platforms. In experiments, we set w = 30, which
can achieve the best performance. It may be because a user can interact with about
30 micro-videos in a short time and express stable interest patterns on the micro-
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video sharing platforms. The 30 micro-videos in a block are similar in some way,
and we can accurately aggregate the information in each block, which benefits the
model performance. The method is simple and proved efficient in our experiments,
and is also a trade-off between efficiency and effectiveness. Besides, we have tried
LSTM and attention methods to model the historical interactions in a sequential
manner in each block, with no improvement. A possible reason is that the sequence
data is noisy due to the rapid interaction behavior and presents no strong sequential
pattern. Special structures may be needed to model such data in a sequence way.
We leave it for future research.

3.3 Aspect Extraction

As discussed in Section 3.1, we present a micro-video using its visual embedding ex-
tracted from the thumbnail, and the fine-grained aspects are components of the video,
such as video_scene, video_subject, and video_emotion. We use a shared aspect-
specific gating mechanism to extract the aspect-level features relevant to the i-th
aspect from k-th block as follows:

p+
i,k = s+k ⊙ σ(Wi,1s

+
k +Wi,2qi + bi) (2)

where Wi,1, Wi,2 ∈ Rd×d are transform matrices relevant to i-th aspect, bi ∈ Rd

is bias vector for the i-th aspect, σ is the sigmoid activation function and ⊙ is the
element-wise product operation. s+k is the k-th block embedding in “click” sequence.
And qi is the embedding of i-th aspect shared for all users, which is trained out
by model optimization. The number of aspects M is a hyper-parameter and it can
be determined by cross-validation. And then average pooling is applied to aggregate
features with regard to the i-th aspect as follows:

p+
i =

1

m

∑m

k=1
p+
i,k (3)

where m is the number of blocks. Finally, we can get M feature vectors p+
i from

click and p−
i from unclick sequence, respectively. For the target micro-video xnew,

we can also get M aspect feature vectors pnew
i , where i ∈ {1, · · · ,M}.

The aspect gate is shared by target micro-videos, “click” and “unclick” behav-
iors, which is to extract the features relevant to the specific aspect. For the severe
cold-start problem, in some cases, the target micro-video may have new aspect fea-
tures (e.g., a new video_style) that are present in neither positive nor negative
feedback, this aspect is dismissed and will not contribute to the final prediction. In
our experiments, we set the number of aspects M as 5. More analysis can be found
in Section 4.6.1. Note that, although only visual information is used in this work,
multi-modal features can be easily employed if given, for example, each modality can
be regarded as an aspect.

3.4 Sentiment Capsule

For a given micro-video, we predict a user’s click probability by identifying his sen-
timents towards all aspects. To this end, we propose a capsule network with three
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output capsules(i.e., positive, negative, and neutral) to fulfill this task. That is to
say, the aspects of a new micro-video will be “clustered” into three sentiment groups.
Since there is no explicit labeled data to indicate which aspects a user likes or dis-
likes, we exploit the implicit sentiment information provided by the “click” and
“unclick” behaviors to guarantee the proper sentiment modeling. Intuitively, a user
expresses positive sentiments to most aspects of a clicked micro-video, and negative
attitudes to most aspects of an unclicked micro-video. Based on this, we delicately ex-
tract the aspect features with positive sentiment and those with negative sentiments
from “click” and “unclick” behaviors, respectively. In addition, some aspect features
which are frequently present in both “click” and “unclick” behaviors bear neutral
sentiment. We argue that neutral sentiment also plays some role in understanding
user preference, especially for some users, the positive and negative sentiment to-
wards the micro-video is not obvious. The feature extraction process is guided by
the operations in sentiment transformation in Equation. 6 and the margin loss in
Equation. 15.

Firstly, we pair aspect features of the given micro-video with those from “click”
and “unclick” sequence respectively to form activation units. The activation units of
“click” behaviors can be obtained as follows:

u+
i = g(pnew

i ⊙ p+
i ) (4)

where pnew
i is the i-th aspect feature vector of the new micro-video, p+

i is the i-th
aspect feature vector of the “click” sequence, ⊙ is the element-wise product operation,
and g is the non-linear squash function through the entire vector used in [28], which
can be shown as:

ui =
||hi||2

||hi||2 + 1

hi

||hi||
(5)

where || · || denotes the length of a vector and hi is the input capsule vector. It
encodes the relevance between the aspects of new micro-video and corresponding
ones from “click” sequence. In a similar way, we can get the activation units formed
with aspects of new micro-video and corresponding ones from “unclick” sequence.

Then, the sentiment features are derived from activation units of “click” sequence
as follows:

û+
s|i = H+

i,su
+
i (6)

where s ∈ {pos, neu}, H+
i,s ∈ Rd×d is the sentiment transform matrix between i-

th positive activation unit to s output capsule, which can derive the positive and
neutral sentiment features from “click” sequence. The positive output capsule vpos

is a weighted sum over the corresponding sentiment features û+
pos|i as follows:

vpos = g(
M∑
i

c+pos|iû
+
pos|i)) (7)

where g is the non-linear squash function and c+
pos|i ∈ [0, 1] is coupling coefficients

as in Equation. 10 that are determined by the iterative dynamic routing process.
Similarly, we can obtain the negative output capsule vneg as follows:

vneg = g(
M∑
i

c−neg|iû
−
neg|i)) (8)
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10 Yuqiang Han et al.

The neutral capsule vneu is a weighted sum over features derived from both “click”
and “unclick” behaviors (neutral sentiments are present in both of them) as follows:

vneu = g(
1

2

∑
i

c+neu|iû
+
neu|i +

1

2

∑
i

c−neu|iû
−
neu|i) (9)

To make the sentiment capsules more distinguishing, we make two improvements
to guarantee that the dynamic routing method can better cluster the aspect senti-
ments. The improved routing-by-agreement algorithm is summarized in Algorithm 1.

– Softmax with temperature. We explore the softmax with temperature [10]
in the place of standard softmax while updating connection strength between
capsules in two layers:

ĉp
s|i =

exp(bp
s|i/τ)∑

i exp(b
p
s|i/τ)

) (10)

where p ∈ {+,−}, s ∈ {pos, neg, neu}, bp
s|i is the logits of coupling coefficients

that coupling input capsule i to output capsule s and generally initialized to 0,
and τ is a temperature coefficient to tune. For a low temperature (τ → 0+),
an activation unit tends to concentrate on a single sentiment capsule, while for
a high temperature (τ → ∞), it tends to concentrate on all sentiment capsules
with nearly the same probability. In experiments, we set τ = 0.8 to make each
activation unit concentrate on a single sentiment, which can produce the best
performance. It is because in this setting the model can make each activation unit
concentrate on a specific sentiment capsule in a proper way, which contributes
to the predictions.

– Coefficients Amendment. The length of activation unit vector indicates the
probability of activation of the target aspect. So we attempt to employ it to
iteratively amend the connection strength inspired by [38] as follows:

cp
s|i = âpi · ĉp

s|i (11)

where âti = ||ut
i|| is the length of activation unit vector, p ∈ {+,−}, and s ∈

{pos, neg, neu}.

3.5 Prediction Layer

Given the sentiment capsule vs, we calculate the probability the user would click the
given micro-video xnew as follows:

ys = WT
s (tanh(Hsvs + bs,1)) + bs,2 (12)

where s ∈ {pos, neg, neu}, Hs ∈ Rd×d and WT
s ∈ Rd×1 are sentiment transform

matrices, bs,1 ∈ Rd is the bias vector, and bs,2 is the scalar bias. Then the overall
click probability can be calculated based on three probabilities as follows:

ŷ = σ(ypos · ||vpos||+ yneu · ||vneu||+ yneg · ||vneg||+ bu) (13)

where σ is the sigmoid function, bu is the user bias, and ||v|| is the length of sentiment
capsule vector, which indicates the confidence of prediction.
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Algorithm 1: Improved Routing-by-Agreement Algorithm
Input: ûp

s|i â
p
i , r, l, where p ∈ {+,−}, s ∈ {pos, neg, neu}

Output: vs

1 Initialize the logits of coupling coefficients bp
s|i = 0

2 for r iteration do
3 for all capsule i in layer l and capsule s in layer l+ 1:

cp
s|i = âpi · softmax(bp

s|i/τ)

/* Update the sentiment capsule */
4 vpos = g(

∑
i c

+
pos|iû

+
pos|i)

5 vneg = g(
∑

i c
−
neg|iû

−
neg|i)

6 vneu = g(12
∑

i c
+
neu|iû

+
neu|i +

1
2

∑
i c

−
neu|iû

−
neu|i)

7 for all capsule i in layer l and capsule s in layer l+ 1:

bp
s|i = bp

s|i + ûp
s|i · vs

8 end
9 return vs

3.6 Model Optimization

We use sigmoid cross-entropy loss to guide the parameter learning for model opti-
mization:

L(y, ŷ) = −(y log σ(ŷ) + (1− y) log(1− σ(ŷ)) (14)

where y ∈ {0, 1} is the ground truth indicating whether the user clicks the target
micro-video, and σ is the sigmoid function.

To insure the capsules can correctly reflect fine-grained sentiments, we use a
separate margin loss [28] for sentiment capsule network as a regularization:

Lstm =
1

|O|
∑

(max(0, ϵ− ||vs||)

+ λmax(0, ||v¬s|| − 1 + ϵ))

+ λmax(0, ||vneu|| − 1 + ϵ))

(15)

where O denotes the set of observed user-item pairs, ϵ = 0.8 and λ = 0.5, empirically.
When the ground truth y = 1, vs = vpos ; otherwise, vs = vneg. ¬s denotes the
opposite of sentiment s.

In addition, we introduce a disagreement regularization to explicitly encourage
the diversity among multiple aspects as follows:

Lasp = −
1

M2

M∑
i=1

M∑
j=1

qi

||qi||
qj

||qj ||
(16)

where M is the number of aspects.
So, the final loss can be represented as follows:

L = L(y, ŷ) + λsLstm + λaLasp (17)
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12 Yuqiang Han et al.

where the regularization weights λs = 0.1 and λa = 0.1 in our experiments. We use
Adam[15] for parameters update in an end-to-end fashion.

4 Experiments

In this section, we conduct experiments on two real-world micro-video datasets to
verify the effectiveness of our proposed method for micro-video click-through rate
prediction.

4.1 Dataset

The experimental datasets are from two popular micro-video sharing platforms.
– Kuaishou-3.2M. The original version of the dataset is released by the Kuaishou

Competition4 in ChinaMM 2018 conference. In our experiments, we used the
sampled dataset constructed by [19], which consists of randomly selected 10, 000
users and their 13, 661, 383 interactions with 3, 239, 534 micro-videos. The inter-
action types include “click”, “unclick”, “like”, and “follow”. Each micro-video’s
visual features are represented by a 2, 048-d embedding vector of the thumbnail.
Each user’s historical interactions are sorted in chronological order. We set the
first 80% of a user’s historical interactions as the training set and the rest 20%
as the test set following the method in [19]. Furthermore, in the training set, we
take the first 90% interactions of each sequence for training and the last 10% for
validation.

– MicroVideo-1.7M. This dataset is constructed by [6], which consists of 10, 986
users and their 12, 737, 619 interactions with 1, 704, 880 micro-videos. The inter-
action types include “click” and “unclick”. Each micro-video is represented by
a 512-d visual embedding vector of its thumbnail. Each user’s historical inter-
actions are sorted in chronological order. We divide the micro-videos into two
disjoint sets and divide the interactions according to micro-videos into two sets,
one for training and the other for the test following the method in [6]. More-
over, for each sequence in the training set, the first 90% interactions are used for
training and the last 10% for validation.
The statistics of two experimental datasets are shown in Table 2. Particularly,

in both datasets, “unclick” behavior means the user does not click the
micro-video after previewing its thumbnail, which is recorded by the
micro-video sharing platforms. In addition, we also adopted the Principal Com-
ponent Analysis (PCA)[32] to reduce the micro-video’s visual embedding to 64 di-
mension following the method in [19].

4.2 Evaluation Metrics

To evaluate the effectiveness of different methods, we use Area Under Curve (AUC)
as the primary metric, which is also widely used in other related works.

AUC =
1

|U|
∑
u∈U

1

|I+
u ||I−

u |

∑
i∈I+

u

∑
j∈I−

u

δ(ŷu,vi − ŷu,vj ) (18)

4 https://www.kuaishou.com/activity/uimc
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Table 2 Statistics of the two datasets.

Statistics Kuaishou-3.2M MicroVideo-1.7M
# Users 10,000 10,986
# Items 3,239,534 1,704,880
# Interactions 13,661,383 12,737,619
# Interaction types 4 2
# Interactions per user 1366.14 1159.44
# Interactions per item 4.28 7.47
# Clicked items per user 277 218
# Training - Interactions 9,833,373 8,508,406
# Validation - Interactions 1,097,719 900,917
# Test - Interactions 2,730,291 3,767,309

where ŷu,vi is the predicted probability that a user u may click a given micro-video
i in the test set, U is the set of all users, I+

u and I−
u respectively represent the set of

micro-videos that the user u actually clicked and unclicked, and δ(·) is the indicator
function.

In addition, we also employ Precision, Recall, and F-score to further evaluate
the model performance from different angles. Given the top-K recommendation list
computed based on the predicted click probability, P@K indicates the percentage
of actually clicked micro-videos in the list, R@K means the percentage of retrieved
clicked micro-videos, and F@K is the harmonic average of precision and recall. The
statistical significance test is conducted by performing the paired t-test.

4.3 Comparison Methods

To demonstrate the effectiveness of our model for micro-video click-through rate pre-
diction, we compare it to the following representative and state-of-the-art methods.
– BPR[27]: Bayesian personalized ranking is a popular pairwise ranking frame-

work, which is to model the relative preferences of users by a pairwise loss func-
tion.

– CNN-R: This method utilizes the 1-D CNN structure to model user behavior
sequences. Explicitly, the kernel size varies from 1 to 10, and the number of filters
under each kernel size is 32.

– LSTM-R: This model utilizes the LSTM network to extract the sequential pat-
tern from the user’s behavior sequence. It generates the preference representation
by feeding the hidden states in each step into a fully connected layer, followed
by an MLP layer to predict the click probability.

– ATRank[41]: This is an attention-based user behavior modeling framework,
which projects all types of behaviors into multiple latent semantic spaces and
makes the influence among different behaviors via self-attention.

– NCF[9]: This is a collaborative filtering based recommendation framework, which
learns latent features of users and items with a shallow network, and leverages a
multi-layer perceptron to learn the user-item interaction function.

– THACIL[6]: This is a personalized micro-video recommendation method by
modeling user’s historical behaviors, which leverages category- and item-level
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14 Yuqiang Han et al.

attention mechanisms to model the diverse and fine-grained interests respectively,
and adopts forward multi-head self-attention to capture the long-term correlation
within user behaviors.

– ALPINE[19]: This is a personalized micro-video recommendation method con-
sidering the diverse and dynamic interest, multi-level interest, and true negative
samples. It utilizes a temporal graph-based LSTM network to model users’ dy-
namic and diverse interests from click sequence, and capture uninterested infor-
mation from the true negative sample. Beyond that, it introduces a user matrix
to enhance user interest modeling by incorporating multiple types of interactions.

Note that, for CNN-R, LSTM-R, BPR, and NCF, we fed the user representation
and the target micro-video embedding into an MLP layer to predict the final click
probability.

4.4 Parameters Setup

For all compared baseline methods, we set the parameters as used in [19], which
are selected by applying grid search based on the setting strategies reported in their
papers. For Kuaishou-3.2M, we use the 64-d visual embedding to represent the micro-
video. For MicroVideo-1.7M, we take the concatenation of the 64-d visual embedding
and the 64-d category embedding as micro-video embedding for baselines, where the
category embedding is trained, but only 64-d visual embedding is used in our method.
For BPR and NCF, user embedding is initialized as a 128-d vector and is learned out.
The maximum length of users’ historical sequence is set to 300. If it has more items
than 300, we truncate it to 300; otherwise, we pad all-zero vectors that are masked in
the network to augment. In addition, for our proposed model, the temporal window
size is set to 30, iteration of dynamic routing r is set to 2, the temperature τ in
softmax is 0.8, the number of aspects M is 5, and the aspect embedding size and
sentiment capsule vector size are both 64. The parameters are optimized using Adam
with an initial learning rate 0.001 and mini-batch size 512. All weight matrices are
initialized by sampling from the normal distribution N (0, 0.12), and all biases are
set to zeros. The final performances of all methods are reported over five runs with
the same hyper-parameters to exclude the impact of random parameter initialization.
The model is defined and trained in TensorFlow[1] on a GeForce GTX 1080 Ti GPU.
The code will be released soon.

4.5 Performance Evaluation

A summary of the results of all methods under the metric of AUC, P@50, R@50,
and F@50 over the two datasets are reported in Table 3. Several observations can be
made from the results:

(1) The sequential methods LSTM-R and CNN-R surpass the non-sequential method
BPR, demonstrating that the sequential information plays a role in capturing
users’ interests. Moreover, the self-attention based models, i.e., ATRank and
THACIL, outperform CNN-R and LSTM-R, revealing that more delicate struc-
tures are needed to accurately capture the user preference from a long user be-
havior sequence, so as to focus on the key interest information. ALPINE further
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Table 3 Performance comparison over two datasets. The best and the second best results
are highlighted in boldface and underline respectively. † indicates the ASCap significantly
outperforms the best baseline over AUC at p = 0.05 level by t-test.

Methods Kuaishou-3.2M MicroVideo-1.7M
AUC P@50 R@50 F@50 AUC P@50 R@50 F@50

BPR 0.595 0.290 0.387 0.331 0.583 0.241 0.181 0.206
LSTM-R 0.713 0.316 0.420 0.360 0.641 0.277 0.205 0.236
CNN-R 0.719 0.312 0.413 0.356 0.650 0.287 0.214 0.245
ATRank 0.722 0.322 0.426 0.367 0.660 0.297 0.221 0.253
NCF 0.724 0.320 0.420 0.364 0.672 0.316 0.225 0.262
THACIL 0.727 0.325 0.429 0.369 0.684 0.324 0.234 0.269
ALPINE 0.739 0.331 0.436 0.376 0.713 0.300 0.460 0.362
ASCap 0.742† 0.338 0.443 0.383 0.725† 0.314 0.473 0.377
Improv. 0.41% 2.11% 1.61% 1.86% 1.68% -3.09% 2.83% 4.14%
ASCap-RA 0.740 0.336 0.441 0.381 0.724 0.313 0.472 0.376

improves the recommendation performance by characterizing the user’s unin-
terested cues in addition to the interested and multi-level interest information,
suggesting that different types of feedback can help better understand user pref-
erence.

(2) Although not modeling the sequential information from the user’s behavior se-
quence, NCF achieves better performance than BPR and sequential models. It
mainly contributes to its high expressiveness by fusing the linear MF and non-
linear MLP models. Therefore NCF can better model the relationship between
users and items and produce better user embeddings.

(3) Our proposed model ASCap achieves the best performance generally, which sug-
gests its efficacy for the task of micro-video click-through rate prediction. Particu-
larly, ASCap presents improvements over ALPINE, which captures the interested
and uninterested information from “click” and “unclick” historical interactions at
item-level, verifying that the fine-grained user preference model can bring more
performance improvements. Note that ASCap performs a little worse than the
best baseline at P@50 over MicroVideo-1.7M, which may be because of only
visual information used in our method.

To justify the robustness of our proposed model from different views, we also
report the performances of all methods by varying the number of returned micro-
videos K from 10 to 50 in Figure 3. From the results we can see that:

(1) The performance of all methods over Recall and F value upgrades with the num-
ber of returned items K increasing. At the same time, our proposed model ASCap
consistently performs better than all baselines.

(2) Besides, the performance of all methods over Precision value degrades as in-
creasing the number of returned items K. Meanwhile, our model can consis-
tently outperform others on Kuaishou-3.2M and achieve competitive results on
MicroVideo-1.7M.

All observations verify the robustness and capabilities of ASCap for the task of
micro-video click-through prediction.
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(b) P@K on MicroVideo-1.7M
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(c) R@K on Kuaishou-3.2M
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(d) R@K on MicroVideo-1.7M
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(e) F@K on Kuaishou-3.2M
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Fig. 3 Performance versus the number of returned micro-videos K.

4.6 Analysis of ASCap

We further make a detailed analysis of two primary components of ASCap (i.e.,
dynamic routing and aspect extraction) to give an in-depth understanding of the
working process over on MicroVideo-1.7M (results of Kuaishou-3.2M showing sim-
ilar patterns are omitted). We fix the other parameters to the values described in
Section 4.4.
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Fig. 4 Analysis results of aspects.

4.6.1 Influence of Aspect Number

The M value specifies the number of aspects extracted from each micro-video, which
can be determined by cross-validation. To investigate the influence of M , we report
the performance patterns of ASCap by tuning M amongst {1, 3, 5, 7, 9} in Fig-
ure 4(a). We can see that ASCap with multiple aspects achieves better performance
than a single one, suggesting it is beneficial to model user preference in a fine-grained
manner. Given the performance variation is small when M >= 5, we choose to use
M = 5 in our experiments on two datasets.

To have an in-depth understanding of the learned aspects, we visualize the em-
bedding of 5 aspects trained in our experiment in Figure 4(b), where each colored
point represents one aspect. We can clearly see that all aspects separate from each
other, ensuring that they can be used to extract different features from a micro-video,
such as the video_scene, video_subject, and video_emotion illustrated in Figure 1.

4.6.2 Influence of Dynamic Routing

We report the results of model with standard route-by-agreement algorithm as used
in [28] in the last row of Table 3. Although ASCap-RA achieves competitive per-
formance, ASCap algorithm performs better, demonstrating the efficacy of softmax
with temperature and coefficients amendment in the improved routing-by-agreement
algorithm.

Furthermore, we randomly select four examples to explore the details of sentiment
capsules. And we also choose one aspect from each case to show how it is routed to
the corresponding capsule. From the results shown in Table 4, we can see that:

(1) For the first example, the length of positive sentiment capsule is larger than
negative, i.e., ||vpos|| > ||vneg||, so the positive sentiment dominants the negative,
and the predicted click probability ŷ = 0.687 is consistent with ground truth
y = 1. As to the chosen aspect, the coefficients of the positive activation unit
c+
pos|1 = 0.435 is much larger than c+

neu|1 = 0.095, and those of the negative
activation units c−

neg|1 = 0.053 and c−
neu|1 = 0.045 are very small, meaning that

the user express positive sentiment towards this aspect of the target micro-video
and this aspect is routed to the positive capsule.

(2) For the second example, the length of negative sentiment capsule is larger than
positive, i.e., ||vneg|| > ||vpos||, so the negative sentiment dominants, and the
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Table 4 Example study of two users from MicroVideo-1.7M.

y ŷ ||vpos|| ||vneg|| ||vneu|| c+
pos|1 c+

neu|1 c−
neg|1 c−

neu|1

1 0.687 0.729 0.591 0.056 0.435 0.095 0.053 0.045

0 0.098 0.382 0.829 0.230 0.093 0.103 0.502 0.110

0 0.056 0.468 0.755 0.572 0.188 0.483 0.087 0.133

0 0.142 0.322 0.735 0.258 0.057 0.054 0.050 0.061

predicted click probability ŷ = 0.098 is consistent with ground truth y = 0. As
to the chosen aspect, the coefficients of the negative activation unit c−

neg|1 = 0.502

is much larger than c−
neu|1 = 0.110 and the coefficients of the positive activation

units c+
pos|1 = 0.093 and c+

neu|1 = 0.103 are small, expressing that the user express
negative sentiment towards this aspect of the target micro-video and this aspect
is routed to the negative capsule.

(3) In the third example, although the overall negative sentiments dominate the
positive, specific to the chosen aspect, we can see that c+

neu|1 > c+
pos|1 and c−

neu|1 >

c−
neg|1, indicating that the features of the aspect are present in both positive

and negative feedback. So it indicates that the user expresses neutral sentiment
towards this aspect and it will be routed to the neutral capsule.

(4) In the fourth case where the overall negative sentiments dominate the positive,
the 4 coefficients of the chosen aspect are all very small, meaning that this aspect
contains new features such as new video_style that is present in neither “click”
nor “unclick” behaviors. Therefore, the model can extract few features from it
and it will be dismissed when making predictions.

The above analysis results suggest that the sentiment capsule network can effec-
tively derive aspect features with sentiments, cluster the aspects of a given micro-
video into three sentiment groups, and make accurate click-through rate prediction.

5 Conclusion and future work

In this paper, we proposed an aspect-level sentiment capsule network based on gat-
ing mechanisms and capsule networks for micro-video click-through rate prediction
at a finer level of granularity by aggregating positive and negative feedback. We in-
troduced a capsule network-based architecture to identify a user’ sentiment towards
each aspect and further made improvements to the dynamic routing algorithm to
better identify the aspect sentiments. We performed extensive experiments on two
public micro-video datasets to demonstrate that our proposed model ASCap sig-
nificantly outperforms the state-of-the-art micro-video click-through rate prediction
methods.

In future work, we plan to extend the model with multi-modal features, such
as acoustic and textual modality, to better model user preference. Also, we plan
to investigate more user-video interaction types, e.g., “like” and “follow”, to better
model users’ sentiment towards micro-videos.
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