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Abstract
Nowadays, the scale of various graphs soars rapidly, which imposes a serious challenge to
develop processing and analytic algorithms. Among them, graph pattern matching is the
one of the most primitive tasks that find a wide spectrum of applications, the performance
of which is yet often affected by the size and dynamicity of graphs. In order to handle large
dynamic graphs, incremental pattern matching is proposed to avoid re-computing matches
of patterns over the entire data graph, hence reducing the matching time and improving
the overall execution performance. Due to the complexity of the problem, little work has
been reported so far to solve the problem, and most of them only solve the graph pattern
matching problem under the scenario of the data graph varying alone. In this article, we are
devoted to a more complicated but very practical graph pattern matching problem, continu-
ous matching of evolving patterns over dynamic graph data, and the investigation presents
a novel algorithm CEPDG for continuously pattern matching along with changes of both
pattern graph and data graph. Specifically, we propose a concise representation TreeMat of
partial matching solutions, which can help to avoid re-computing matches of the pattern
and speed up subsequent matching process. In order to enable the updates of data graph
and pattern graph, we propose an incremental maintenance strategy, to efficiently maintain
the intermediate results. Moreover, we conceive an effective model for estimating step-wise
cost of pattern evaluation to drive the matching process. Extensive experiments verify the
superiority of CEPDG.
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1 Introduction

In recent years, graph analysis plays an increasingly important role in the area of data ana-
lytics [14, 15]. Graph pattern matching is one of the most fundamental problems in graph
analytics. Given a pattern graph P and a large data graph G, graph pattern matching is to
find all subgraph isomorphic of P in G, which has a wide range of applications such as
fraud detection and cyber security.

However, graphs are dynamic in nature [11], which continuously evolve over the time.
A dynamic graph is defined by an initial graph and a graph update stream of edge inser-
tions and edge deletions. Identifying and monitoring critical patterns in a dynamic graph
is important in various application domains [6] such as fraud detection, cyber security, and
emergency response, etc. For example, cyber security applications should detect cyber intru-
sions and attacks in computer network traffic as soon as they appear in the data graph[3].
Most of the previous works only solve the subgraph matching problem under the scenario
of the data graph varying alone. But it is common that pattern graph will also evolve along
with the time when data graph is updated. For example, in cyberthreats surveillance, one
could predict upcoming malicious activities and determine the ultimate goal of an adversary
by concealing and supplementing selective edges of attacking patterns, respectively [16].

The aforementioned two update scenarios motivate us to investigate a new prob-
lem, continuous matching of evolving patterns over dynamic graph data. Formally,
given an initial data graph G0, an initial pattern graph P0, a graph update stream
(Δg1,Δg2,Δp3,Δp4, · · · ) consisting of edge insertions and deletions of the data graph and
pattern graph, Gi = Gi−1 ⊕ Δgi (resp. Pi = Pi−1 ⊕ Δpi), and M(P, G) denotes the set of
subgraph matching results between G and P . Here, ⊕ means that Δgi (resp. Δpi) is applied
to Gi−1 (resp. Pi−1). Then the continuous matching of evolving patterns over dynamic
graph data problem is to report M(Pi−1 ⊕ Δpi,Gi−1) (resp. M(Pi−1, Gi−1 ⊕ Δgi)) when
each update operation Δpi (resp. Δgi) occurs. A naı̈ve method to solve this problem is to
repetitively execute pattern matching for each update to the data graph and pattern graph.
Nonetheless, this can be prohibitively costly due to the extensive involvement of expensive
subgraph isomorphism tests [8].

To address the challenge, efforts to support incremental graph pattern matching for
dynamic data graph seemed to enjoy some success. In [5], INCISOMAT extracts the subgraph
of data graph that can be affected by each update operation and conducts subgraph matching
for the extracted subgraph to get the new matches by performing the set difference. Graph-
Flow [9] applies a worst-case optimal join algorithm called Generic Join to incrementally
evaluate subgraph matching for each update. SJ-TREE [2] uses a left-deep tree, where an
internal node in SJ-TREE corresponds to a subgraph containing more than two connected
query vertices, and a leaf node corresponds to a subgraph containing two adjacent query
vertices. TurboFlux is the state-of-the-art algorithm for continuous subgraph matching [10],
which employs a data-centric indicate representation of intermediate results, namely, DCG,
in the sense that the query pattern P is embedded into the data graph G. TurboFlux can
obtain a higher performance than above algorithms. However, it only considers the update
operations of data graph and is no longer applicable on both update scenarios; to put it in
our context, TurboFlux has to re-compute DCG when the updates occur on the pattern graph,
which can be detrimental.

These problem of existing methods motivated us to develop a fully-fledged framework,
namely, CEPDG, to achieve fast pattern matching under the variations of both data graph
and pattern graph. To the best of our knowledge, this is among the first attempts to conduct

722 World Wide Web (2021) 24:721–745



pattern matching under the situation of data graph and pattern graph varying simultaneously.
In summary, we make the following contributions:

– We introduce a concise representation TreeMat of partial solutions, which can help to
avoid executing subgraph pattern matching repeatedly for edge updates on the data
graph and pattern graph;

– In order to enable frequent updates on the data graph, we propose a vertex state
transition strategy, to efficiently maintain the intermediate results.

– We devise an execution model to efficiently and incrementally maintain the representa-
tion during edge updates on the pattern graph, which are compatible with the algorithm
proposed for data graph very well.

– We conceive an effective cost model for estimating step-wise cost of pattern matching.

Comprehensive empirical study verifies the efficiency of the proposed algorithm and
techniques.

Organization Section 2 formulates the problem, and presents the overview of the proposed
framework. Section 3 introduces a novel representation of intermediate results called the
TreeMat and proposes the incremental maintenance strategy. Section 4 explains the algo-
rithms of CEPDG in detail. Experimental results and analyses are reported in Section 5. A
brief overview of related work follows immediately in Section 6. Section 7 concludes the
paper.

2 Preliminaries and framework

In this section, we first introduce several essential notions and formalize the continuous
matching of evolving patterns over dynamic graph data problem. Then, we overview the
proposed solution.

2.1 Preliminaries

We focus on a labeled undirected graph g = (V ,E,L). Here, V is the set of vertices,
E ∈ V × V is the set of edges, and L is a labeling function that assigns a label l to each
v ∈ V . Each vertex has only one label, representing the attribute of the node. Note that, our
techniques can be readily extended to handle directed graphs.

Definition 1 (Graph update stream) A graph update stream Δo is a sequence of update
operations (Δo1,Δo2, · · · ), where Δoi is a triple

〈
op, vi, vj

〉
such that op = {I,D} is the

type of operations, with I and D representing edge insertion and deletion of an edge 〈vi, vj 〉.

A dynamic graph abstracts an initial graph g and an update stream Δo. g transforms to g′
after applying Δo to g. Here, g represents a data graph or pattern graph. Note that, insertion
of a vertex can be represented by a set of edge insertions, similarly, deletion of a vertex can
be considered as a set of edge deletions.

Definition 2 (Subgraph isomorphism) Given a pattern graph P = (VP ,EP ,

LP ), a data graph G = (UG,EG, LG), P is isomorphism to G if there is a bijective function
between them, such that: (1) ∀v ∈ VP , LP (v) = LG(f (v)); and (2) ∀(vi, vj ) ∈ EP ,
(f (vi), f (vj )) ∈ EG, where f (v) is the vertex in G to which v is mapped.
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Definition 3 (Problem statement) Given a pattern graph P = (VP ,EP ,LP ), a data graph
G = (UG, EG,LG), and a graph update stream Δo, the continuous matching of evolving
patterns over dynamic graph data problem is to continuously return occurrences of P in G

when the updates in Δo occur on the pattern graph P or data graph G.

Frequently used notations are summarized in Table 1.

2.2 Overview of solution

In this subsection, we overview the proposed solution, which is referred as
CEPDG(Continuous matching of Evolving Patterns over Dynamic Graph data). Specially,
we are to address two technical challenges:

– Update operation needs to be efficient such that the intermediate results can be
maintained incrementally.

– Pattern matching needs to be efficient such that the number of intermediate results is
minimized.

The former corresponds to update handling phase, while the latter challenge corresponds to
the query evaluation phase.

Algorithm 1 shows the outline of CEPDG, which takes an initial pattern graph P0, an
initial data graph G0 and a graph update stream Δo as input, and find the matching results
of P in G when necessary. We first select a root vertex vr (Line 1). Then we extract from
the pattern graph P0 a structural tree PT based on vr , walking a spanning tree by breadth-
first search, and removing non-tree edges from P0.(Line 2). The purpose is to execute fast
query evaluation by leveraging tree structure [8], i.e., we handle the edges in the query tree
first, and then, the non-tree edges.

In particular, to perform continuous subgraph matching, we construct an auxiliary data
structure, namely, TreeMat, based on PT to store the matching results of the structural tree,

Table 1 Notations

Notations Description

P and G Pattern graph and data graph

VP / EP The vertex set / the edge set of P

UG / EG The vertex set / the edge set of G

u / v A vertex in G / a vertex in P

Δo The graph update stream

Δp / Δg Updates for P / updates for G

PT A generated spanning tree of P

vr The root vertex of PT

match(v) The set of vertices {u} that map to v in some embedding to PT

cand(v) The candidates of v

N
vp
v (u) The set of vertices {u′} in cand(v) such that 〈u′, u〉 matches 〈vp, v〉

N(v) / deg(v) The set of visited neighbors of v in PT / the total degree of v

Mi The set of embedding for the subgraph of P induced by (v1, ..., vi )

ri The non-tree edges that connect vi

d
j
i The vertices in match(vi ) joinable with an embedding in Mi−1
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which is able to provide guidance to generate answers with light computation overhead
(Line 3). During a graph update stream, when an update comes, we amend the auxiliary
data structure first, and then calculate the matching results if necessary (Lines 4–13). For
example, on update o of data graph, we first match o to corresponding edges in PT , and
then incrementally maintain the intermediate results in TreeMat (Lines 6–9). On update o of
pattern graph, we incrementally maintain TreeMat directly (Lines 10–12). After that, we call
subgraphSearch to obtain the matching results if output requested (Line 13). The design and
rationale for auxiliary data structure maintenance is given, as well as the algorithm details
are given in the subsequent sections, respectively.

Root Vertex Selection Intuitively, we favor the root vertex to have a small number of can-
didates and to have a large degree; fewer candidates means fewer partial embeddings being
generated, while larger degree means more chance to prune partial embeddings at early
stages. In order to minimize the number of matching data vertices for root vertex vr , choose-
RootVertex first selects a pattern edge 〈v, v′〉 which has the smallest number of matching
data edges. Between v and v′, chooseRootVertex chooses a pattern vertex that has a smaller
number of matching data vertices. Finally, if there is a tie, chooseRootVertex chooses a
pattern vertex having a larger degree.

3 Incremental maintenance of intermediate results

The central idea of update handling is to employ a delicate data structure to store and
incrementally maintain partial solutions.

3.1 A concise representation

There has been a long tradition in graph community to harness a tree structure for fast
pattern matching/search [1, 8]. We also follow this tradition, and conceive a succinct data
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structure for keeping partial solutions. PT is constructed by removing the edges that are
not in the spanning tree, i.e., non-tree edges, if P contains cycles. The vertices in P are
partitioned according to their levels in the spanning tree where the level of a vertex in PT is
its depth compared to the root vertex of PT .

To keep partial solutions, we offer a concise representation named TreeMat, which com-
prises matching vertices to those of PT in topology graph G. Given a vertex v in PT , its
matching vertices in TreeMat are arranged into

– match(·): the set of vertices {u} in G that map to v in some solutions to PT ; and
– stree(·): the set of vertices {u} in G such that 1) the subtree residing at v matches the

corresponding subtree at u via subgraph homomorphism [10], and 2) there does not
exist a solution to PT that map v to u.

Here, subgraph homomorphism can be obtained by just removing the injectivity con-
straint. It can be seen that the two sets are mutually exclusive, and we use a general
designation candidates of v i.e., cand(v) to refer the vertices in either match(v) or stree(v).
As a consequence, the structure of TreeMat is defined as follows.

– It is a tree-like structure, and for each query vertex v in PT , there is a node containing
the candidates of v, which is constituted of two sets match(v) and stree(v); and

– there is an edge between u ∈ cand(v) and u′ ∈ cand(v′) for adjacent query vertices v

and v′ in TreeMat, if and only if edge 〈u, u′〉 ∈ G.

It is noted that stree(vr ) of the root vertex vr in PT is empty, since PT is also a subtree
residing at vr .

Example 1 Figure 4b shows the TreeMat for PT (Figure 4a) and initial data graph G0. Given
a vertex v in T , the orange square in cand(v) represents a data vertex u ∈ stree(v); and the
black square in cand(v) represents a data vertex u ∈ match(v). Furthermore, we can see
that the root vertex v1 of PT only has the set match(·).

Remark As pointed out in [10], existing work on continuous subgraph matching caches
either a set of partial solutions or a set of candidate vertices for each query vertex. These
paradigms incur not only great memory overhead but also large computational cost. In
contrast, our model takes a more eager strategy, and proposes to keep complete solutions
(in match(·)) as well as solution-likely-to-be’s (in stree(·)). In this way, we save TreeMat
from filling up the main memory while offering guidance to efficiently derive affected
answers.

3.2 Data graph change-oriented rationale of maintenance

In this subsection, we propose a vertex state transition strategy (denoted as VST) to
efficiently maintain the intermediate results.

When an edge update operation 〈u, u′〉 arrives, we try to match it with an edge 〈v, v′〉 in
PT . Here, the level of v is deemed to be smaller than the level of v′. Then, we use VST to
maintain the TreeMat. We set the data vertex u ∈ NULL if u /∈ cand(v). Figure 1 shows the
state transition diagram, consisting of three states and six transition rules (Transitions 1–6),
which demonstrates how one state is transited to another. Here, Transition 1–3 are triggered
by edge insertion, and Transition 4–6 are triggered by edge deletion.
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Figure 1 Conceptual Model of Maintenance

3.2.1 Handling edge insertion

Consider an edge 〈u, u′〉 inserted into G0, to which 〈v, v′〉 is matched in PT . Let v be the
parent vertex of v′.

From NULL to match. Suppose that u ∈ match(v) and u′ ∈ NULL. If v′ is a leaf
vertex, then we add u′ into match(v′).

Suppose that v is the root vertex in PT , u′ ∈ cand(v′) and u ∈ NULL. For each child
vertex vc of v except v′, if vc is a leaf vertex, we check if there is an edge 〈u, uc〉 matching
〈v, vc〉; else we further check if uc ∈ cand(vc). If so, we add vertex u into match(v). In
specific, if vc is a leaf vertex and uc ∈ NULL, we should also add vertex uc into match(vc).

From NULL to stree. Suppose that u ∈ NULL and u′ ∈ cand(v′). Here, v is not the
root vertex in PT . For each child vertex vc of v except v′, if vc is a leaf vertex, we check if
there is an edge 〈u, uc〉 matching 〈v, vc〉; else we further check if uc ∈ cand(vc). If so, we
add vertex u into stree(v). In specific, if vc is a leaf vertex and uc ∈ NULL, we should also
add vertex uc into stree(vc).

Suppose that the data vertex u is added into stree(v). For each up ∈ NULL that is adjacent
to u, if 〈u, up〉 matches 〈v, vp〉 where vp is the parent vertex v′′ of v, we further check
whether up can be added into stree(vp) with a similar manner (Fig. 2).

From stree to match. Suppose that u′ ∈ stree(v′) and u ∈ match(v). Then we
remove u′ from stree(v′) to match(v′).

Suppose that the data vertex u is added into match(v). For each child vertex vc of v, if
there is a vertex uc in stree(vc) that is adjacent to u in TreeMat, then we remove uc from
stree(vc) to match(vc).

Figure 2 Example of edge insertions of on the data graph
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Example 2 Figure 2c–h give the examples of vertex state transition strategy for edge inser-
tion, where Figure 2c–d show the strategy , Figure 2e–f show the strategy , and
Figure 2g–h show the strategy . In Figure 2c, the edge insertion Δo1 matches 〈v4, v7〉
where u6 ∈ match(v4). Since v7 is a leaf vertex in PT , we add u17 to match(v7). In
Figure 2d, the edge insertion Δo2 matches 〈v1, v2〉 where u2 ∈ match(v2). Since v1 is the
root vertex in PT and 〈u18, u4〉 matches 〈v1, v3〉 with u4 ∈ match(v3), we add u18 into
match(v1). In Figure 2e, the edge insertion Δo3 matches 〈v4, v7〉 where u14 ∈ stree(v7).
Since v4 has no child vertex exclude v7, we add u19 into stree(v4). In Figure 2f, there is
a neighbor u20 of u19 that satisfies 〈u19, u20〉 matches 〈v4, v2〉. Since 〈u20, u9〉 matches
〈v2, v5〉, we further add u20 into stree(v2). In Figure 2g, the edge insertion Δo4 matches
〈v4, v2〉 where u2 ∈ match(v2) and u7 ∈ stree(v4). We then remove u7 from stree(v4) to
match(v4). In Figure 2h, we further check the data vertices in stree(v7) where v7 is the child
vertex of v4. Since u13 and u14 are the neighbors of u7 in stree(v7), we remove u13 and u14
from stree(v7) to match(v7).

3.2.2 Handling edge deletion

Consider an edge 〈u, u′〉 deleted from G0, to which 〈v, v′〉 is matched in PT . Let v be the
parent vertex of v′.

From match to NULL. Suppose that u ∈ match(v) and u′ ∈ match(v′). If there is
no data vertex in match(v′) that is adjacent to u except u′, we delete u from match(v). In
specific, if v′ is a leaf vertex, and there is no other data vertex in cand(v) that is adjacent to
u′, we delete u′ from match(v′).

Suppose that u is deleted from match(v). For each neighbor up of u in match(vp) where
vp is the parent of v, if there is no other data vertex in match(v) that is adjacent to up, then
we delete up from match(vp).

From match to stree. Suppose that u ∈ match(v) and u′ ∈ match(v′). If there is
no other data vertex in match(v) that is adjacent to u′, then we remove u′ from match(v′)
to stree(v′). In specific, if v′ is a leaf vertex, we need further check if there is a vertex in
stree(v) that is adjacent to u′; if so, remove u′ from match(v′) to stree(v′).

From stree to NULL. Suppose that u ∈ stree(v) and u′ ∈ cand(v′). If there is no other
data vertex in cand(v′) that is adjacent to u, we then delete u from stree(v). In specific, if
v′ is a leaf vertex in PT and u′ ∈ stree(v′), we need further check whether there is a data
vertex in stree(v) that is adjacent to u′. If not, we delete u′ from stree(v′).

Suppose that the vertex u is deleted from stree(v). For each neighbor up of u in stree(vp)

where vp is the parent of v, if there is no other data vertex in cand(v) that is adjacent to up ,
then we delete up from stree(vp).

3.3 Pattern graph change-oriented rationale of maintenance

It can be seen that if inserted (or deleted) edge is a non-tree edge, we do not update TreeMat,
since it has no impact on TreeMat. Thus, the following exposition concentrates on tree edges.

Handling edge insertion Consider a tree edge 〈v, v′〉 inserted into PT , where v′ is the
vertex newly introduced. Under this scenario, candidate vertices are only to be excluded
from match(·) or stree(·), back to NULL state, but not vice versa. To identify affected can-
didates, we check, for each vertex u in match(v), whether there is an edge 〈u, u′〉 with
u′ ∈ NULL matching 〈v, v′〉. If not, we delete u from match(v); otherwise, we add vertex u′
into match(v′) if u ∈ match(v). stree(v) or stree(v′) can be updated in a similar fashion.
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Figure 3 Example of edge updates on the pattern graph

Moreover, when vertex u is excluded from the candidates of v, such update needs to be
propagated upwards in TreeMat till the root vertex. Consider the parent vertex vp of v, if up

is the neighbor of u in match(vp), and there is no vertex in match(v) that is adjacent to up

in TreeMat, we exclude up from match(vp).

Handling edge deletion We discuss edge deletion in two cases based on whether the
deletion involves a leaf vertex of PT .

Case 1 Consider tree edge 〈v, v′〉 with v′ as a leaf vertex. Note that in this case, NULL
vertices only are to be included into match(·) or stree(·), but not vice versa. Intuitively, a
vertex u of G0 is added into stree(v), only if for each child vertex vc of v exclude v′, there
is a vertex uc that is candidate to vc such that 〈u, uc〉 matches 〈v, vc〉.

Then, update needs to be propagated upwards to the root of TreeMat. Suppose that vertex
u is added into stree(v). For each vertex up that is adjacent to u and 〈up, u〉 matches 〈vp, v〉,
if up ∈ NULL, we check whether up can be added into stree(vp) in a similar manner; else if
up ∈ match(vp), we move u from stree(v) to match(v). In the other situation when vertex
u is added into match(v), we examine, for each child vertex vc of v, whether there is vertex
uc in stree(vc) that is adjacent to u in TreeMat; if so, remove data vertex uc to match(vc).

Case 2 Consider a tree edge 〈v, v′〉 not involving any leaf vertex. This type of edge deletion
will break the connectivity of PT but not P 1. Thus, a non-tree edge that connects v′ with
an arbitrary vertex will become a tree edge. By intuition, we choose, among all the non-tree
edges, that one v′′ that connects v′ to a vertex closer to the root and has smaller match(·) set.

Then, for each vertex u′′ ∈ stree(v′′), we check whether there is a candidate u′ of v′ such
that 〈u′′, u′〉 matches 〈v′′, v′〉; if not, we exclude u′′ from stree(v′′), and further check the
vertices in stree(vp), where vp is the parent of v′′. The update is propagated upwards till
the root.

Example 3 Figure 3d–h give the examples of updating process for edge insertions and
deletion of the pattern graph. In Figure 3d, since 〈v4, v5〉 is a non-tree edge, we only
add edge 〈v6, v10〉 into PT . In Figure 3e, since there is no vertex u′ that is adjacent to

1A pattern graph seldom loses connectivity for threats surveillance.
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u11 such that 〈u11, u
′〉 matches 〈v6, v10〉, we remove u11 from stree(v6). Accordingly, we

remove the parent vertex u5 of u11 from stree(v3). What’s more, since u10 ∈ match(v6),
and there are two vertices u17 and u18 that are adjacent to u10 such that edges 〈u10, u17〉
and 〈u10, u18〉 match 〈v6, v10〉, we add u17 and u18 into match(v10). Figure 3f gives
the updated TreeMat with edge insertion Δg2. When the edge Δp1 is deleted from P ,
there are two non-tree edges 〈v5, v6〉 and 〈v6, v8〉 that can be translated into tree edges.
Here, we translate 〈v5, v6〉 into tree edge, since |match(v5)| = |match(v8)| and v5 is
closer to the root vertex v1. The updated PT and TreeMat are given in Figures 3g and h,
respectively.
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4 CEPDG algorithms

In this section, we present detailed algorithms for CEPDG. We develop efficient techniques
for constructing TreeMat. While we update the TreeMat, we need only apply necessary tran-
sition rules. This motivated us to develop an enhanced version of the maintenance algorithm
for the TreeMat. Then we conceive an effective cost model for estimating the step-wise cost
of query pattern matching.

4.1 TreeMat construction

To construct TreeMat, constructTreeMat (Line 3 of Algorithm 1) (1) first generates cand(v)

(candidates of v) for each query vertex v in PT ; (2) then constructs the adjacent lists corre-
sponding to query vertices and their parent vertices; and (3) finally divides the cand(v) into
stree(v) and match(v).

In the forward processing, we mark all the leaf vertices of PT as visited and then pro-
cess the query vertices level-by-level in a bottom-up fashion (Lines 1–20). In processing
an unvisited vertex v, let N(v) denotes the set of visited neighbors of v in PT (Line 13).
Intuitively, a data vertex u is in cand(v) only if for each v′ ∈ N(v), there is a data ver-
tex u′ ∈ cand(v′) such that 〈u, u′〉 matches 〈v, v′〉. In specific, in above process, if v′ is a
leaf vertex, we need only verify whether there is a data vertex u′ such that 〈u, u′〉 matches
〈v, v′〉. To achieve this, we maintain a counter V (u) for each data vertex in G0 to count
the number of visited query neighbors of v that have a candidate u′ adjacent to u such that
〈u, u′〉 matches 〈v, v′〉. V (u) is updated at Lines 8–10. The candidate cand(v) is the set of
vertices satisfying N(v) = V (u) (Lines 14–15). After generating cand(v), we will further
generate cand(v′) if v′ is a leaf vertex. That is, u′ is added to v′ if there is a data vertex
u ∈ match(v) such that 〈u, u′〉 matches 〈v, v′〉 (Lines 16–18).

At the same time, we construct the adjacency lists corresponding to vertex v and its
parent vertex vp in PT (Line 19). The adjacency lists corresponding to an edge 〈vp, v〉 is
constructed. That is, for each data vertex u ∈ cand(vp), an adjacency list N

vp
v (u) is con-

structed, which is the set of data vertices {u′} in cand(v) such that 〈u′, u〉 matches 〈vp, v〉.
Then, we mark v as visited, reset V (u) to be 0 for every vertex u that has a positive count
(Line 18).

In the backward processing, we reprocess the query vertices of PT in a top–down man-
ner to divide cand(v) into match(v) and stree(v) for each query vertex v. Firstly, we set
match(vr ) = cand(vr ) for the root vertex vr , since TEQ is also a subtree residing at vr .
Then, we process vertices downwards according to their levels. In processing a query ver-
tex v, let vp denote the parent vertex of v. For each data vertex u in cand(v), we check if
there is a data vertex up in match(vp) that is adjacent to u. If so, we move u to match(v);
otherwise we move u to stree(v) (Lines 24–26).

Lemma 1 The worst storage complexity of TreeMat is O(|EG0 | × |VPT
|).

Proof The TreeMat stores at most |EG0 | edges for each pattern vertex in PT and thus, its
worst storage complexity is O(|EG0 | × |VPT

|).

Lemma 2 The worst time complexity of constructTreeMat is O(|EG0 | × |EPT
|).

Proof In the worst case, constructTreeMat is called for every query vertex v and every data
vertex u. We show that in the forward process for a special v take time O(|EG0 | × |N(v)|).
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In particular, for each data vertex u′ ∈ cand(v′), it takes O(deg(u′)) time to check whether
〈u, u′〉 matches 〈v, v′〉 where deg(u′) is the degree of u′; thus, for all vertices in cand(v′), the
checking processes take O(

∑
u′∈cand(v′) deg(u′)) = O(|EG0 |). Similarly, in the backward

process for a special v takes time O(|EG0 |) time. Thus, the total time for a special v is
O(|EG0 | × (|N(v)| + 1)) = O(|EG0 | × deg(v)) where deg(v) is the degree of v in PT ,
and the total running time of constructTreeMat is O(

∑
v∈PT

|EG0 |× deg(v)) = O(|EG0 |×
|E(PT )|).

4.2 Edge updates on the data graph

Now, we explain G-insertEval (Algorithm 3), which is invoked for each edge insertion
〈u, u′〉. The main idea of G-insertEval is explained as follows: we try to match 〈u, u′〉 with
tree edges in PT and then update the TreeMat through the vertex position transition strategy.
Note that there may be more than one query edge in PT to which 〈u, u′〉 matches, and not all
matching situations can cause the update of TreeMat. For this purpose, we should exclude
the invalid matching situations.

In order to exclude invalid matching situations, we first obtain the query edges in PT

with the same edge label as 〈u, u′〉. Let v be the parent of v′. Then, for each matched query
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edge 〈v, v′〉, we check whether u′ ∈ cand(v′); if not, it will not cause the update of TreeMat
and will be ignored (Line 1–3). For each valid matching situation, we execute chooseVST to
check whether 〈u, u′〉 can cause the update of TreeMat (Line 5). If so, chooseVST chooses
the corresponding transition rule and updates the states of u and u′. What’s more, choo-
seVST will also check whether the update caused by 〈u, u′〉 needs to be propagated upwards
or downwards. If so, we set TreeMat.getTransition(〈u, u′〉)=true and update TreeMat by call-
ing updateTreeMat (Algorithm 4) recursively (Lines 6–8). Here, updateTreeMat decides the
update propagation direction (i.e., upwards or downwards) for current iteration and executes
corresponding transition rule. Algorithms for edge deletions on the data graph are similar to
those for edge insertions except that they use the transitions 4–6, instead of transitions 1–3;
Omitted in the interest of space, the algorithm G-deleteEval (Line 9 of Algorithm 1) is not
described here.
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4.3 Edge updates on the pattern graph

In this subsection, we introduce P-deleteEval (Algorithm 5), which is invoked for each edge
deletion 〈v, v′〉.

We first check whether 〈v, v′〉 is a non-tree edge; if so, it will not cause the update of
TreeMat (Line 2–3). In other case, if v′ is a leaf vertex, some NULL vertices may be added
into stree(v) under this situation. In detail, if a vertex u satisfies: (1) u has the same label
as v; (2) u /∈ cand(v); and (3) for each child vertex vc of v except v′, there is a data vertex
uc ∈ cand(vc) that is adjacent to u, then we add u into stree(v) (Lines 4–16). Note that, if
vc is a leaf vertex, we should further check whether there is an edge 〈u, uc〉 matching 〈v, vc〉
and uc ∈ NULL; if so, add uc into stree(vc) (Line 17). After that, we call updateTreeMat
(Algorithm 4) recursively to update the TreeMat based on the status of u (Line 18). What’s
more, if v′ is not a leaf vertex, we should translate the non-tree edge with an endpoint of v′ to
tree edge. We also set the status of all the candidates of v′ and the descendants of v′ as stree
at this condition (Line 20). Next, we update stree(v) in a similar way as Lines 5–18. Adding
a non-tree edge into PT will cause some candidate vertices to be executed. As a result, we
should further check for each vertex u′′ ∈ cand(v′′), if there is a vertex in cand(v′) that is
adjacent to v′′. If not, remove u′′ from cand(v′′); else we call updateTreeMat (Algorithm 4)
recursively to update the TreeMat based on the status of u′′ (Lines 22–26). The update is
propagated upwards till the root vertex(Line 27).

Algorithms for edge insertions on the pattern graph are similar to those for edge deletions
under the situation that v′ is not a leaf vertex. Omitted in the interest of space, the algorithm
P-insertEval (Line 11 of Algorithm 1) is not described here.

4.4 Cost-driven pattern matching

Pattern evaluation phase is to harvest complete solutions to pattern graphs by leveraging
TreeMat. We are in quest of boosting performance by conducting exploration on TreeMat.

Standard backtracking is viable but inefficient, which neglects the matching order that
may greatly affect the performance. A classic models for generic graph patten matching [1,
12] is as follows. Assume the total cost is proportional to the number of comparisons for
determining whether a vertex (or an edge) matches. Given an arbitrary order of vertices
(v1, v2, . . . , vn) for P , the number of comparisons performed in a backtracking algorithm is

Tiso � T|VP | = |M1| +
|VP |∑

i=2

|Mi−1|∑

j=1

|dj
i | · (ri + 1), (1)

where Mi represents the set of intermediate results for the subgraph of P induced by
(v1, v2, . . . , vi), d

j
i is the vertices in match(vi) joinable with an intermediate result in Mi−1,

and ri is the number of non-tree edges between vi and vertices before vi in the matching
order.

Nonetheless, ri largely depends on the actual order. The total number of configurations of
ri is exponential in O(|VP |!), and thus, it is prohibitively expensive to optimize Tiso online.
In response, we choose to minimize Tiso greedily, i.e., every time choose the vertex of the
minimum cost on the basis of current intermediate results. Then, to match vertex vi , the

number of comparisons concerning vi can be expressed by T ′(vi) = ∑|Mi−1|
j=1 |dj

i |(ri + 1).
In addition, we unveil that the advantage of harnessing TreeMat also comes from the

derivation of d
j
i given Mj , which is inaccessible in pattern matching. Recall that a likelihood
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estimated over entire topology graph is used to delegate d
j
i [1, 12], which can be inaccurate.

Lastly, to select the first vertex, we choose the one with minimum |match(v)|
deg(v)

, where deg(v)

is the total degree of v.
The estimation above only considers the cost thus far (i.e., current cost), but ignores

the cost from the vertices to be accessed (i.e., future cost). It is contended that combining
current and future costs may provide rewarding guidance for future steps. However, it is
non-trivial to precisely compute the actual intermediate results after mapping ui . To this
end, we heuristically estimate the number of intermediate results as

|Mi | =
|Mi−1|∑

j=1

|dj
i | ·

n−1∏

j=0

pi
j , (2)

where pi
j is the likelihood of a vertex in d

j
i has an edge satisfying the restriction of the

j -th non-tree edge of vi connecting to a vertex that has been accessed. Then, we estimate
the number of intermediate results for each vertex that has not been accessed. Let vk be
an unvisited vertex, the number of intermediate results predicted for vk is |match(vk)| ×∏n−1

j=0 pk
j . Thus, the summation becomes the total number of intermediate results predicted

for all the vertices that have not been accessed. Then, the future cost of mapping vertex vi

can be expressed by

T ′′(vi) = |Mi | ·
∑

⎡

⎣|match(vk)| ×
n−1∏

j=0

pk
j

⎤

⎦ (rk + 1), (3)

where rk represents the number of vertices that has been accessed except the parent of vi

that has edges connected to unaccessed vertices.
In overall, the cost of mapping ui can be estimated by T ′(vi)+T ′′(vi). Experiments show

that it provides better guidance to the matching processing, in comparison with alternative
strategies.

Example 4 Consider the pattern graph and the match(·) set of TreeMat in Figure 4. v1 is set
as the root vertex since match(v1)

2 is minimum. Suppose that the vertices v1 and v3 have been
matched. At this time, the number of intermediate results is 2, and we are going to choose
the next vertex. If we choose v5, the number of comparisons is 1 + 2 = 3; if we choose
v2, the number of comparisons is 8 × 2 = 16. According to the greedy selection that only
consider the current matching cost, we will choose v5 as the next vertex, and the current

Figure 4 Sample pattern graph and match(·) set of TreeMat
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total number of comparisons is 1 + 2 + 3 + 12 × 2 + 1 = 31. However, if we take the future
matching cost into account, we will choose v2 as the next vertex, and the total number of
comparisons is 1 + 2 + 8 × 2 + 1 + 1 = 21 that is smaller than 31.

Correctness and complexity Based on the discussion, we can implement a procedure for
choosing the next vertex for matching. Note that, f we use the new cost model may bring
fewer cost. While the details of the procedure is omitted in the interest of space, it can
be seen that the procedure runs in O (|EG∗ | × |VP ∗ | × |EP ∗ |), where G∗ and P ∗ are the
updated data graph and updated pattern graph, respectively.

Remark In comparison with existing cost models for pattern matching and order selection,
the proposed model and algorithm are advantageous in the sense that

– As identified by existing work [1], TurboFlux [10] fails to be applicable to large and
complex query patterns; in contrast, CEPDG lends itself to large and complex queries
against the more difficult matching criteria of subgraph isomorphism;

– Compared with QuickSI [12], which merely concentrate on a local cost with a greedy
strategy, our proposed cost model generates a more effective matching order, which
takes both existing and future costs into account, and hence, reduces a large number of
unpromising intermediate results;

– In comparison with CFL [1], which implements a path-based cost model, our model
chooses an edge-based cost most, and thus, is more flexible and less computationally
expensive, while retaining the quality of order selection.

It can be seen that the cost-driven matching algorithm heavily relies on a good estimation
of cand(·), and the more accurate estimation, the better guidance for matching ordering. In
the sequel, we strive to offer a good estimation of candidates by levering an online saturation
strategy with index support.

5 Experiments

In this section, we evaluate the performance of CEPDG against the state-of-the-art con-
tinuous subgraph matching methods, TurboFlux [10], and GraphFlow [9] on two real-life
datasets. The source code of TurboFlux was obtained from its authors. The source code
of GraphFlow was downloaded from github 2. Then, we report experimental results and
analyses.

5.1 Experiment setup

The proposed algorithms were implemented using C++, running on a Linux machine with
two Core Intel Xeon CPU 2.2Ghz and 32GB main memory.

Datasets/Queries We used two datasets referred as Yago3 and Netflow4. Yago is a dataset
that extracts facts from Wikipedia and integrates them with the WordNet thesaurus. This

2https://github.com/graphflow/graphflow
3http://www.mpi-inf.mpg.de/yago-naga/yago/
4https://data.caida.org/datasets/passive-2014.
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dataset consists of an initial graph G0 and a graph update stream Δg. G0 contains
12,375,749 triples while Δg consists of insertions of 1,124,302 triples and deletions of
1,027,828 triples. Netflow contains anonymized passive traffic traces monitored from high-
speed internet backbone links. In this dataset, G0 contains 14,378,113 triples and Δg

consists of insertions 1,236,412 triples and deletions of 1,107,635 triples.
As the dataset does not come with patterns, we comprehensively generated various pat-

terns as follows. We first make 4 pattern categories (A1 ∼ A4), and then, extract for each
category 20 patterns by randomly traversing the topology graph. The size of patterns in A1,
A2, A3 and A4 is 15, 20, 25 and 30, respectively. Then, for each graph pattern, to generate
the update stream, every time we (1)randomly removed an existing edge while keeping the
pattern graph connected; and (2) randomly added an edge between two disconnected ver-
tices with a random edge label conforming uniform distribution. Note that, the size of edge
insertions/deletions of each pattern graph did not exceed half of the pattern size (≤ 50%);
otherwise, fundamental characteristics of the pattern disappear.

Algorithms Since there is no existing research directly targeting our problem, two state-
of-the-art algorithms were adapted and involved for comparison: 1) TurboFlux [10] is an
algorithm for pattern matching over dynamic graph; to deal with evolving pattern graph,
it has to recompute its auxiliary data structure during update. 2) GraphFlow [9] is an
incremental algorithm without maintaining intermediate results. 3) our proposed algorithm
CEPDG.

Unless specified otherwise, values in boldface in Table 2 are used as default parameters
in the experiments.

5.2 Evaluation of data graph updates

We use two measures, the average elapsed time and the size of intermediate results. Note
that, for fair comparison, we exclude the elapsed time for updating the data graph. That is,
we set the average elapsed time of CEPDG as the difference between the time for processing
the graph update stream with and without continuous query answering, and measure the
time of the competitors for query processing only. What’s more, we conduct experiments by
inserting/deleting edges in batches of 10K (= 10×103). Inserting/deleting edges in batches
means that we need only calculate matching results when all the edges have added into or
removed from the data graph. We set a 1-hour timeout for each query.

5.2.1 Varying pattern size

Figure 5 shows the performance results in Yago dataset. Here, we set edge inser-
tions/deletions as 500K (= 500 × 103) and vary the query size from 15 to 30. Figure 5(1)

Table 2 Parameters used in the experiments

Parameters Values Used

Datasets Yago, Netflow

Query size 15, 20, 25, 30

Dataset size 0.2, 0.4, 0.6, 0.8, 1 (Yago)

Insertion/deletion size (data graph) 250K, 500K, 750K, 1000K

Insertion/deletion size (pattern graph) 3, 6, 9, 12
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Figure 5 Performance for varying pattern size in Yago

shows the average elapsed time. CEPDG behaves better than its competitors regardless
of pattern size. Specially, CEPDG outperforms TurboFlux by 2.28 ∼ 3.13 times, and
GraphFlow by 36.67 ∼ 44.28 times. The reason is that GraphFlow does not maintain any
intermediate results and it will generate a much larger number of partial solutions than
CEPDG and TurboFlux. CEPDG only needs to update partial intermediate results for an edge
update operation. So even |E(P )| is big, CEPDG can also achieve a better performance.
Moreover, CEPDG can significant reduce the time cost based on the cost model in the pat-
tern matching process. Figure 5(2) shows the average number of intermediate results. Since
GraphFlow does not maintain any intermediate results, we only compare CEPDG with Tur-
boFlux. Specially, the average size of intermediate results of TurboFlux is larger than that
of CEPDG by 1.28 ∼ 1.54 times. It means that the representation by CEPDG (TreeMat) is
more concise than that by TurboFlux.

Figure 6 shows the performance results in Netflow dataset. CEPDG behaves better than its
competitors in both of average elapsed time and average size of intermediate results regard-
less of pattern size. Specially, in Figure 6(1), CEPDG outperforms TurboFlux by up to 2.86
times, and GraphFlow by up to 90.72 times; in Figure 6(2), the average size of intermediate
results of TurboFlux is larger than that of CEPDG by up to 1.47 times. This is because Net-
flow has only eight edge labels and no vertex label. Hence, the size of intermediate results
is enormous, and time costs in TurboFlux and GraphFlow are very expensive.
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Figure 6 Performance for varying pattern size on Netflow
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Figure 7 Performance for varying edge insertion size on Yago

5.2.2 Varying edge insertion size

In this subsection, we evaluate the impact of edge insertions of data graph on the perfor-
mance of CEPDG and its competitors. Here, we fixed patterns in A3 and varied the number
of newly-inserted edges from 250K (= 250 × 103) to 1000K in 250K increments on Yago.
Thus, the number of total update operations also increases accordingly. Figure 7(1) shows
the processing time for each algorithm. We see that CEPDG has consistently better perfor-
mance than it competitors. What’s more, the figure reads a non-exponential increase as edge
insertion size grows. Specially, CEPDG outperforms TurboFlux by up to 2.44 times, and
GraphFlow by up to 46.78 times at edge insertion size 1000K. CEPDG also outperforms its
competitors in terms of the size of intermediate results as shown in Figure 7(2). Specially,
the size of intermediate results of TurboFlux is larger than that of CEPDG by up to 1.43
times when the insertion size is 1000K.

5.2.3 Varying edge deletion size

In this subsection, we evaluate the impact of edge deletions of data graph on the performance
of CEPDG and its competitors. Here, we fixed patterns in A3 and varied the number of
deleted edges from 250K (= 250×103) to 1000K in 250K increments on Yago. Figure 8(1)
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Figure 8 Performance for varying edge deletion size on Yago
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shows the processing time for each algorithm. Note that the gap between the performance of
CEPDG and TurboFlux is larger than that in Figure 7(1). This is because deletion of an edge
(u, u′) could affect all subtrees of u′ in TurboFlux. However, in CEPDG, we need only main
the affected vertices in TreeMat, which relatively small. Note also that the processing Graph-
Flow slightly decreases when the size of edge insertions decrease. This is because, the edge
deletions reduce the input data size of GraphFlow directly. Specially, CEPDG outperforms
TurboFlux by up to 3.16 times, and GraphFlow by up to 74.51 times. CEPDG also outper-
forms its competitors in terms of the size of intermediate results as shown in Figure 8(2).
Specially, the size of intermediate results of TurboFlux is larger than that of CEPDG by up
to 1.25 times when the insertion size is 1000K.

5.2.4 Varying the data size

In this testing, we evaluate the performance results of CEPDG against existing algorithms
regarding the scalability by using Yago for varying dataset size. Here, we fixed patterns in
A3, set edge insertions/deletions as 500K (= 500×103), and randomly sampled about 20%
to 100% from the Yago dataset so that the data and result distribution remain approximately
the same with the whole dataset. Then, we plot the total processing time and the size of
intermediate in Figure 9.

It is revealed that CEPDG consistently outperforms its competitors regardless of the
dataset size. In generally, CEPDG and TurboFlux show similar performance for all sizes of
datasets. This can be attributed to the proposed pruning and validation technique, which
dramatically reduces the required sample size and maintains the intermediate results incre-
mentally. The scalability suggest that CEPDG and TurboFlux can handle reasonably large
real-life graphs as those existing algorithms for deterministic graphs. Specially, CEPDG out-
performs TurboFlux by up to 2.14 times, and GraphFlow by up to 37.57 times. Figure 9(2)
shows similar scalability of intermediate result sizes for CEPDG and TurboFlux. The size of
intermediate results of TurboFlux is larger than that of CEPDG by up to 1.64 times.

5.2.5 Evaluating the effectiveness of the cost model

In this subsection, we evaluate the effectiveness of our proposed cost model. We compare
the time cost in pattern matching with the state-of-the-art algorithm CFL [1] over Yago
and Netflow dataset, respectively. Since the size of candidates is also a key factor affecting
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the running time despite matching order, for a fair comparison, we choose to use the same
candidate set for every pattern vertex in both solutions. Here, we use the match(·) set of
TreeMat as candidates and plot the running time in Figure 10.

It is revealed that our proposed cost model never perform worse than that in CFL. In
specific, it can help lower the time cost by a factor of 10. The reason is that CFL implements
a path-based cost model. The path selected each time is that with minimal growth in result
size, and after dealing with this path, a new growing path will be selected. Compared with
CFL, our cost model does not estimate the cost for each path, but analyses the cost for each
edge and considers the cost of next and current steps. Adjusting the cost model is more
flexible after joining an edge than joining a path. The result can also prove that our cost
model is close to the real cost of the join process. Otherwise, the new join strategy will not
work well and may choose an awful edge in some steps, which results in the cost of the join
process being high.

5.3 Evaluation of pattern graph updates

In this section, we measure the average elapsed time and the size of intermediate results of
CEPDG and TurboFlux.

5.3.1 Comparison of different matching orderings

In this set of experiments, we ran CEPDG using patterns in A3, and measured the average
elapsed time for unit insertion/deletion, but applied three different ordering strategies—
randomly choose an order, greedily choose as per the current cost , and greedily choose
as per the estimated overall cost (our method). The results are within expectation that our
proposed strategy outperforms the first strategy by 20.12x/23.74x, and the second strategy
by 7.26x/8.12x for each edge insertion/deletion.

5.3.2 Varying pattern size

In this set of experiments, we demonstrate the advantage of CEPDG regarding update. We
used two measures—average elapsed time for unit insertion/deletion and size of partial
solutions. Figure 11 shows the comparison against edge insertion, where we varied pattern
size from 15 to 30 (A1 ∼ A4). Note that the matching cost does not always increase as the
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Figure 11 Efficiency against edge insertion

pattern size increases. Specially, in Figure 11(1), CEPDG outperforms TurboFlux by up to
4.36 times. Note that TurboFlux has to recompute the auxiliary data structure, which is not
rewarding under this setting. Figure 11(2) shows the size of partial solutions, which reads
that the size of partial results of CEPDG is smaller than that of TurboFlux. This is intuitive,
the representation by CEPDG (TreeMat) is more concise than that by TurboFlux.

Figure 12 shows the comparison against edge deletion, and similar trends are observed as
from Figure 8. Figure 12(1) shows the average elapsed time by the two algorithms. CEPDG
significantly outperforms TurboFlux in all cases. Specially, CEPDG outperforms TurboFlux
by up to 3.43 times. Further, the average elapsed time for a deletion is much longer than
that for an insertion, which suggests deleting an edge from the pattern graph may be more
computationally expensive. Figure 12(2) shows the average size of partial solutions. The
average size by TreeMat is significantly smaller than that of TurboFlux by up to 1.14 times.

5.3.3 Varying edge update volume

In this set of experiments, we evaluate the impact of the number of edge updates on the
performance of CEPDG (and its alternatives). We fixed patterns in A3 and varied edge
updates from 3 to 12 in 3 increments. Figure 13 shows the average elapsed time for each
algorithm. We see that CEPDG has a better performance than others. In Figure 13(1), it
witnesses a non-exponential increase as insertions grows, and CEPDG beats TurboFlux by
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Figure 13 Performance for varying edge update volume

up to 26.12 times. In Figure 13(2), for edge deletion, the performance gap is slightly larger
than that for edge insertion, and CEPDG is more efficient than TurboFlux by up to 29.82
times.

6 Related work

This section categorizes related work on graph pattern matching into two streams: static and
dynamic.

Graph pattern matching Graph pattern matching is typically defined in terms of sub-
graph isomorphism [4], which has been studied extensively since 1976. A key issue of
subgraph isomorphism is to reduce the number of unpromising intermediate results when
iteratively mapping vertices one by one from a pattern graph to a data graph. VF2 [4] and
QuickSI [12] propose to enforce the connectivity to prune the candidates. TurboISO [8]
proposes to merge together the nodes in a pattern graph with the same labels and the same
neighborhoods to further reduce unpromising candidates. Another key issue is to generate
an effective matching order. QuickSI [12] proposes to generate a matching order based on
the infrequent-labels first strategy. SPath [17] proposes to generate a matching order based
on the infrequent-paths first strategy, but the efficiency will get lower when the size of a
patten graph get larger. Bi et al. [1] develops a new framework that decomposes a pattern
graph into a core and a forest for graph pattern matching. They showed that the core-forest-
leaf ordering effectively reduces redundant Cartesian products. Han et al. [7] proposes novel
techniques for subgraph matching: dynamic programming between a DAG and a graph,
adaptive matching order with DAG ordering, and pruning by failing sets. These methods
work well on static graphs. However, substantial work is needed to support dynamic graphs.

Dynamic graph pattern matching As graphs are dynamic in nature in real-life applica-
tions, pattern matching over a large dynamic graph attracts more attention. INCISOMAT [5]
identifies the the nodes of data graph that may produce new matches according to the
changes of data graph. But the number of these nodes will get larger when the pattern
graph gets larger and the efficiency will decrease dramatically. GraphFlow [9] applies
a worst-case optimal join algorithm called Generic Join to incrementally evaluate sub-
graph matching for each update without maintaining intermediate results. For each query
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edge (v, v′) that matches an updated edge (u, u′), Graphflow evaluates subgraph match-
ing starting from a partial solution {(v, u), (v′, u′)}. SJ-TREE [2] decomposes the main
pattern graph based on the selectivity of vertice attributes, the highly selective sub-pattern
is evaluated first, and the remaining sub-patterns are evaluated only when new results
are found in sub-patterns evaluated previously. Thus, a lot of unnecessary computational
cost is avoided. But the decomposition features are simple, lots of intermediate results
will be produced when the pattern graph gets larger. The pattern decomposition approach
of the work in [6] is based on identifying optimal sub-DAGs (directed acyclic graph)
in the pattern graph. The DAGs’ are then traversed to identify source and sink vertices
to define message transition rules in the Giraph framework. This approach is on dis-
tributed implementation and it is not suitable for all types of patterns. TurboFlux [10] is the
state-of-the-art algorithm for continuous subgraph matching, which employs a data-centric
representation of intermediate results, in the sense that the query pattern P is embedded
into the data graph G and its execution model allows fast incremental maintenance. Wang
and Chen [13] also deals with continuous subgraph matching for evolving graphs. How-
ever, this method produces approximate results only, while our approach generates exact
results.

Above algorithms only solve the graph pattern matching problem under the scenario
of the data graph updating alone. In this paper, we propose to investigate a new problem,
continuous matching of evolving patterns over dynamic graph data, to report matches for
each update operation in the graph update stream continuously.

7 Conclusion

In this paper, we are devoted to a more complicated but very practical graph pattern match-
ing problem, continuous matching of evolving patterns over dynamic graph data, and the
investigation presents a novel algorithm CEPDG for continuously pattern matching along
with changes of both pattern graph and data graph We showed that CEPDG solved the prob-
lems of existing methods and efficiently processed continuous subgraph matching for each
update operation on the data graph and pattern graph.

We first proposed a concise representation TreeMat based on the spanning tree of the
initial pattern graph for storing partial solutions. We then proposed the vertex state transition
strategy, which efficiently identifies which update operation on the data graph can affect the
current partial solutions and maintain TreeMat accordingly. We next presented an execution
model to efficiently and incrementally maintain the representation during edge updates on
the pattern graph, which are compatible with the algorithm proposed for data graph very
well. Finally, we conceived an effective cost model for estimating step-wise cost of pattern
matching.

Extensive experiments showed that CEPDG outperformed existing competitors by
up to orders of magnitude. Overall, we believe our continuous subgraph match-
ing solution provides comprehensive insight and a substantial framework for future
research.

Acknowledgements This work is supported by the National key research and development program under
Grant Nos. 2018YFB1800203 and 2018YFE0207600.

744 World Wide Web (2021) 24:721–745



Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bi, F., Chang, L., Lin, X., Qin, L., Zhang, W.: Efficient subgraph matching by postponing cartesian
products. In: SIGMOD’ 16, San Francisco, CA, USA, June 26 - July 01, 2016, pp. 1199–1214 (2016)

2. Choudhury, S., Holder, L.B. Jr.., Agarwal, G.C.K., Feo, J.: A selectivity based approach to continuous
pattern detection in streaming graphs. In: EDBT’ 15, Brussels, Belgium, March 23-27, 2015, pp. 157–
168 (2015)

3. Choudhury, S., Holder, L.B. Jr., Ray, G.C., Beus, A., Feo, S.J.: Streamworks: A system for dynamic
graph search. In: Ross, K.A., Srivastava, D., Papadias, D. (eds.) Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27,
2013, pp. 1101–1104. ACM (2013)

4. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algorithm for matching
large graphs. IEEE Trans. Pattern Anal. Mach. Intell 26(10), 1367–1372 (2004)

5. Fan, W., Li, J., Luo, J., Tan, Z., Wang, X., Wu, Y.: Incremental graph pattern matching. In: SIGMOD’11,
Athens, Greece, June 12-16, 2011, pp. 925–936 (2011)

6. Gao, J., Zhou, C., Yu, J.X.: Toward continuous pattern detection over evolving large graph with snapshot
isolation. VLDB J. 25(2), 269–290 (2016)

7. Han, M., Kim, H., Gu, G., Park, K., Han, W.: Efficient subgraph matching: Harmonizing dynamic pro-
gramming, adaptive matching order, and failing set together. In: Proceedings of the 2019 International
Conference on Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June
30 - July 5, 2019, pp. 1429–1446 (2019)

8. Han, W., Lee, J., Lee, J.: Turboiso: Towards ultrafast and robust subgraph isomorphism search in large
graph databases. In: SIGMOD’13, New York, USA, June 22-27, 2013, pp. 337–348 (2013)

9. Kankanamge, C., Sahu, S., Mhedbhi, A., Chen, J., Salihoglu, S.: Graphflow: An active graph database.
In: SIGMOD’17, Chicago, IL, USA, May 14-19, 2017, pp. 1695–1698 (2017)

10. Kim, K., Seo, I., Han, W., Lee, J., Hong, S., Chafi, H., Shin, H., Jeong, G.: Turboflux: A fast continuous
subgraph matching system for streaming graph data. In: SIGMOD’18, Houston, TX, USA, June 10-15,
2018, pp. 411–426 (2018)

11. Ouyang, D., Yuan, L., Qin, L., Chang, L., Zhang, Y., Lin, X.: Efficient shortest path index maintenance
on dynamic road networks with theoretical guarantees. Proc. VLDB Endow. 13(5), 602–615 (2020)

12. Shang, H., Zhang, Y., Lin, X., Yu, J.X.: Taming verification hardness: An efficient algorithm for testing
subgraph isomorphism. PVLDB 1(1), 364–375 (2008)

13. Wang, C., Chen, L.: Continuous subgraph pattern search over graph streams. In: ICDE’09, Shanghai,
China, March 29 - April 2, 2009, pp. 393–404 (2009)

14. Yuan, L., Qin, L., Lin, X., Chang, L., Zhang, W.: Diversified top-k clique search. VLDB J. 25(2), 171–
196 (2016)

15. Yuan, L., Qin, L., Zhang, W., Chang, L., Yang, J.: Index-based densest clique percolation community
search in networks. IEEE Trans. Knowl. Data Eng. 30(5), 922–935 (2018)

16. Zhang, Q., Guo, D., Zhao, X., Guo, A.: On continuously matching of evolving graph patterns. In: Pro-
ceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM
2019, Beijing, China, November 3-7, 2019, pp. 2237–2240 (2019)

17. Zhao, P., Han, J.: On graph query optimization in large networks. PVLDB 3(1), 340–351 (2010)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

745World Wide Web (2021) 24:721–745

http://creativecommons.org/licenses/by/4.0/

	Continuous matching of evolving patterns over dynamic graph data
	Abstract
	Introduction
	Organization

	Preliminaries and framework
	Preliminaries
	Overview of solution
	Root Vertex Selection


	Incremental maintenance of intermediate results
	A concise representation
	Data graph change-oriented rationale of maintenance
	Handling edge insertion
	Handling edge deletion

	Pattern graph change-oriented rationale of maintenance
	Handling edge insertion
	Handling edge deletion



	CEPDG algorithms
	TreeMat construction
	Edge updates on the data graph
	Edge updates on the pattern graph
	Cost-driven pattern matching
	Correctness and complexity


	Experiments
	Experiment setup
	Datasets/Queries
	Algorithms


	Evaluation of data graph updates
	Varying pattern size
	Varying edge insertion size
	Varying edge deletion size
	Varying the data size
	Evaluating the effectiveness of the cost model

	Evaluation of pattern graph updates
	Comparison of different matching orderings
	Varying pattern size
	Varying edge update volume


	Related work
	Graph pattern matching
	Dynamic graph pattern matching


	Conclusion
	References


