
Knowledge and Information Systems manuscript No.
(will be inserted by the editor)

Efficient Trajectory Compression and Range Query
Processing

Hongbo Yin* · � Hong Gao* · Binghao
Wang* · Sirui Li* · Jianzhong Li*

Received: date / Accepted: date

Abstract Nowadays, there are ubiquitousness of GPS sensors in various de-
vices collecting, transmitting and storing tremendous trajectory data. How-
ever, such an unprecedented scale of GPS data has posed an urgent demand
for not only an effective storage mechanism but also an efficient query mecha-
nism. Line simplification in online mode, searving as a mainstream trajectory
compression method, plays an important role to attack this issue. But for the
existing algorithms, either their time cost is extremely high, or the accuracy
loss after the compression is completely unacceptable. To attack this issue, we
propose ε Region based Online trajectory Compression with Error bounded
(ROCE for short), which makes the best balance among the accuracy loss, the
time cost and the compression rate. The range query serves as a primitive, yet
quite essential operation on analyzing trajectories. Each trajectory is usually
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seen as a sequence of discrete points, and in most previous work, a trajectory
is judged to be overlapped with the query region R iff there is at least one
point in this trajectory falling in R. But this traditional criteria is not suitable
when the queried trajectories are compressed, because there may be hundreds
of points discarded between each two adjacent points and the points in each
compressed trajectory are quite sparse. And many trajectories could be miss-
ing in the result set. To address this, in this paper, a new criteria based on the
probability and an efficient Range Query processing algorithm on Compressed
trajectories RQC are proposed. In addition, an efficient index ASP tree and
lots of novel techniques are also presented to accelerate the processing of tra-
jectory compression and range queries obviously. Extensive experiments have
been done on multiple real datasets, and the results demonstrate superior
performance of our methods.

Keywords trajectory compression · range query · compressed trajectories ·
accuracy loss metric

1 Introduction

With the unprecedented growth of GPS-equipped devices, such as smart-
phones, vehicles and wearable smart devices, massive and increasing volumes
of trajectories recording the movements of humans, vehicles, or animals, are
being generated for location based services, trajectory mining, wildlife track-
ing or other useful applications. For example, DiDi Chuxing is China’s largest
online ridesharing platform. It needs to process up to fifty million trip requests
in a single day1, i.e., up to thousands of requests in a rush second. This also
suggests that thousands or even tens of thousands of trajectories are gener-
ated per second. However, such an increasing amount of the trajectory data
collected brings a great deal of hardship on not only storing but also querying.

As an effective solution to solve the problem, line simplification, a main-
stream lossy trajectory compression method, uses a sequence of consecutive
line segments with much smaller size to approximately represent the trajec-
tories and has drawn wide attention. The existing line simplification methods
fall into two categories, i.e. batch mode and online mode. For each trajectory,
algorithms in batch mode, such as Douglas-Peucker[9], SP[5], Intersect[5] and
Error-Search[22], require that all points in this trajectory must be loaded in
the local buffer before compression, which means that the local buffer must
be large enough to hold the entire trajectory at least. Thus, the space com-
plexities of these algorithms are at least O(N), or even O(N2), where N is the
number of input trajectory points. Such high space complexities limit the ap-
plication of these algorithms in resource-constrained environments, such as the
tiny tracking devices on flying foxes, whose RAM barely reaches 4 KBytes[19].
Therefore, more work focuses on the other kind of compression methods, al-
gorithms in online mode, which only need a limited and quite small size of

1 https://tech.sina.com.cn/roll/2020-08-26/doc-iivhvpwy3125825.shtml
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Table 1 The time cost and accuracy loss of some compression algorithms in online mode

Compression Algorithm BQS[19, 20] FBQS[19, 20] Angular[15] Interval[16] OPERB[18]
Execution Time per Point (µs) 500.91 405.38 0.20 0.28 0.97

The Maximum PED Error 38.23 36.63 1532.65 1889.81 306.20

local buffer to compress trajectories in an online processing manner. Thus
there are much more application scenarios where algorithms in online mode
can be used, such as compressing streaming data. For these algorithms, there
is a tradeoff among the execution time, the accuracy loss and the compression
rate, which are the three indicators used to measure their performance. And
the key issue is how to reach a good balance. As reported in Table 1, part
of the experimental results[33], for existing compression algorithms, either the
time cost is extremely high, such as BQS and FBQS, or the accuracy loss
of the compressed trajectories is totally intolerable, such as Angular, Interval
and OPERB. So for algorithms in online mode, it is still a great challenge to
compress trajectories with less execution time and less accuracy loss.

To attack this issue, we propose a new online line simplification compression
algorithm ROCE with only O(N) time complexity and O(1) space complexity,
which makes the best balance among the accuracy loss, the time cost and
the compression rate. Among the fastest algorithms, the accuracy loss of the
compressed trajectories generated by ROCE is always the smallest, and among
algorithms with the smallest accuracy loss, ROCE is always the fastest.

Compressing trajectories can reduce not only the cost of storage and trans-
mission, but also the cost of queries greatly. Large trajectory data facilitates
various real-world applications, such as trajectory pattern mining, route plan-
ing and travel time prediction. For these various applications, there is a type
of trajectory queries named range queries, serving as a primitive, yet essen-
tial operation. The previous work related to range queries, such as [8, 32, 33],
usually see each trajectory as a sequence of discrete points, and a trajectory
is regarded to be overlapped with the query region R iff there exist one point
in this trajectory falls in R. However, this traditional criteria is completely
unsuitable for range quering on compressed trajectories, and many trajecto-
ries will be missing in the result set. Because there may be hundreds of points
discarded between each two adjacent points in compressed trajectories and the
points in each compressed trajectory are extremely sparse. If some points in
a trajectory fall in the query region, but these points are discarded after the
compression, such as the situation shown in Figure 1, then in the final result
set of the range query, such a trajectory is missing. To solve this problem,
we propose a specially designed criteria about range queries on compressed
trajectories and an effective algorithm about how to process range queries on
compressed trajectories with just a little additional information. And the dif-
ference between the range query result on compressed trajectories and that on
the corresponding raw trajectories can be reduced greatly.

The main contributions of our work are listed as follows:
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Fig. 1 The discarded points p3 falls in query region R

– Point-to-Segment Euclidean Distance (PSED), a more reasonable accuracy
loss metric, is defined to measure the degree of the accuracy loss after a
trajectory is compressed.

– Based on PSED, we propose a new online line simplification compression
algorithm ROCE with only O(N) time complexity and O(1) space com-
plexity, which achieves the best balance among the accuracy loss, the time
cost and the compression rate.

– For range queries on compressed trajectories, a new criteria based on the
probability and a new range query processing algorithm RQC is proposed
to reduce the difference between the query results on compressed trajecto-
ries and on the corresponding raw trajectories greatly. An efficient index
ASP tree is also presented to accelerate the processing of range queries
greatly.

– Extensive comparison experiments were conducted on real-life trajectory
datasets, and the results demonstrate the superior performance of our
methods.

The rest of this paper is organized as follows. We present a new accuracy
loss metric PSED and the compression algorithm ROCE in Section 2. The in-
dex ASP tree and the range query processing algorithm RQC are introducted
in Section 3. Section 4 shows the detailed experimental results and the corre-
sponding analysis. Section 5 reviews the related works, and Section 6 concludes
our work.

2 ROCE Compression Algorithm

In this section, a more reasonable accuracy loss metric PSED is proposed first.
Then based on PSED, a new compression algorithm ROCE, which makes the
best balance among the accuracy loss, the time cost and the compression rate,
is introduced in detail.

2.1 Basic Concepts and Notations

Definition 1 (Trajectory T ): A trajectory T can be expressed as a sequence of
discrete points {p1, p2, ..., pN}, where T [i] = pi(x, y, t) means that the moving
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object was located at longitude x and latitude y at time t. And ∀1 ≤ i ≤ j ≤ N ,
pi.t < pj .t.

Given a trajectory T = {p1, p2, ..., pN}, ∀i, j(1 ≤ i < j ≤ N), T [i : j] =
{pi, pi+1, ..., pj} represents a trajectory segment with (j − i + 1) consecutive
points. And the line segment pipj can approximately represent such a tra-
jectory segment, i.e., pipj is the compressed form of T [i : j]. pi+1. pi+2, ...,
pj−1 are called the discarded points, and pipj is called the corresponding line
segments of pi, pi+1, ..., pj .

For a trajectory T , a compression algorithm is to divide T into a sequence
of consecutive trajectory segments {T [i1 : i2], T [i2 : i3], ..., T [in−1 : in]}(i1 =
1, in = N), and each trajectory segment T [ik : ik+1] is approximately rep-
resented by the line segment pikpik+1

. Then the corresponding compressed
trajectory T ′ of T consists of a sequence of n − 1 consecutive line segments
pi1pi2 , pi2pi3 , ..., pin−1

pin , and T ′ is denoted as {pi1 , pi2 , ..., pin}(i1 = 1, in = N)
to simplify the representation. These consecutive line segments approximately
describe the movement of the moving object. In order to distinguish an un-
compressed trajectory from its corresponding compressed trajectory, we call
it a raw trajectory in the following.

Definition 2 (Compression Rate): Given a compressed trajectory, T ′ = {pi1 ,
pi2 , ..., pin}(i1 = 1, in = N) with n− 1 consecutive line segments, and its cor-
responding raw trajectory T = {p1, p2, ..., pN} with N points, the compression
rate is defined as:

r =
N

n
.

2.2 Accuracy Loss Metric

After compression, a set of consecutive line segments is used to approximately
represent a raw trajectory. When the compression rate is fixed, for a compres-
sion algorithm, the smaller accuracy loss of compressed trajectories, the better.
And how to measure the accuracy loss calls for a reasonable enough metric.
Usually, the accuracy loss of a compressed trajectory is calculated based on the
deviation between each discarded point and its corresponding line segment.

Perpendicular Euclidean Distance (PED for short), an accuracy loss metric
adopted by most line simplification methods[18], e.g. OPW[17], OPW-TR[23],
BQS[19, 20] and OPERB[18], is formally defined as:

Definition 3 (PED): Given a trajectory segment T [s : e](s < e) and the line
segment pspe, the compressed form of T [s : e](s < e), for any discarded point
pm(s < m < e) in T [s : e], the PED of pm is calculated as:

PED(pm) =
||−−−→pspm ×−−→pspe||
||−−→pspe||

where × and || || are respectively to calculate the results of cross product and
the length of a vector.
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Fig. 2 An example shows how to calculate PED and PSED

PED measures the deviation between each discarded point and its cor-
responding line segment by using the shortest Euclidean distance from the
discarded point to the straight line on which the corresponding line segment
lies. However, PED can hardly describe the deviation accurately when the
moving direction changes sharply. For example, it is a quite common situation
that active tracked animals or wandering tourists always change their moving
direction sharply. Figure 2 illustrates the tracked object makes a U-turn, and
the line segment p1p6 approximately represents the trajectory segment T [1 : 6]
after the compression. The accuracy losses of p2 and p3 in PED are respec-
tively 0 and |p3p′3|. But in fact, p2 is obviously far away from the line segment
p1p6 and the distance between p3 and the p1p6 is also far more than |p3p′3|.
The reason for these is that PED(p2) and PED(p3) are both calculated based
on the perpendicular distance between the discarded points and the extension
line of p1p6. Thus the compressed trajectories, which are generated by the
compression algorithms whose accuracy loss metric is PED, are not able to
reflect the real movement patterns.

To attack this issue, we define a more reasonable accuracy loss metric
PSED to measure the accuracy loss after the compression. The key difference
between PSED and PED is that PSED adopts the shortest Euclidean distance
from a point to its corresponding line segment, rather than the straight line on
which the corresponding line segment lies. PSED is formally defined as follows:

Definition 4 (PSED): Given a trajectory segment T [s : e](s < e) and the
line segment pspe, the compressed form of T [s : e](s < e), for any discarded
point pm(s < m < e) in T [s : e], the PSED of pm is calculated according to
the following cases:

PSED(pm) =

 ||−−−→pspm×−−→pspe||
||−−→pspe|| ,

−−−→pspm · −−→pspe ≥ 0 and −−−→pmpe · −−→pspe ≥ 0

min(||−−−→pspm||, ||−−−→pmpe||), otherwise

where × and · are respectively to calculate the results of cross product and
dot product.

In Definition 4, that both −−−→pspm · −−→pspe ≥ 0 and −−−→pmpe · −−→pspe ≥ 0 are sat-
isfied means that the perpendicular point of pm falls on the line segment
pspe. In Figure 2, since the perpendicular points of p2 and p3 both fall on
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the extension line of p1p6, PSED(p2) = min(|p1p2|, |p2p6|) = |p1p2| and
PSED(p3) = min(|p1p3|, |p3p6|) = |p1p3|. For p4 and p5, whose corresponding
perpendicular points are both on the line segment p1p6, PSED(p4) = |p4p′4|
and PSED(p5) = 0.

Based on PSED, the ε-error-bounded compressed trajectory is defined as
follows:

Definition 5 (ε-error-bounded Compressed Trajectory): Given a threshold
value ε, a compressed trajectory T ′ = {pi1 , pi2 , ..., pin}(pi1 = p1, pin = pN ) and
its corresponding raw trajectory T = {p1, p2, ..., pN}. If ∀pm ∈ T , PSED(pm) ≤
ε, then T ′ is ε-error-bounded, and ε is an upper bound of PSED.

2.3 Algorithm ROCE

In this part, a new compression algorithm in online mode named ROCE, which
makes the best balance among the accuracy loss, the time cost and the com-
pression rate, is presented. Given a raw trajectory T = {p1, p2, ..., pN} and
the upper bound of PSED ε, by adopting a greedy strategy, ROCE is to com-
press T into an ε-error-bounded compressed trajectory T ′, which consists of a
sequence of consecutive line segments.

In order to determine whether a compressed trajectory is ε-error-bounded
or not much more conveniently, we define a new concept ε Region as below:

Definition 6 (ε Region Ci): Given a raw trajectory point pi and the upper
bound of PSED ε, the circle region Ci, whose center and radius are respectively
pi and ε, is called the ε Region of pi.

Then, it is quite easy to get the following property about ε Region:

Lemma 1 A trajectory segment T [s : e](s < e) is compressed into a line seg-
ment pspe. For any discarded point pm(s < m < e) in T [s : e], PSED(pm) ≤ ε,
where ε is the upper bound of PSED, iff pspe intersects Cm. pspe is ε-error-
bounded iff pspe intersects all ε Regions of discarded points, i.e. Cs+1, Cs+2,
..., Ce−1.

As shown in Figure 3, the raw trajectory T = {p1, p2, ..., p8} is compressed
into T ′, which consists of two line segments, i.e. p1p6 and p6p8. For any dis-
carded point in the trajectory segment T [1 : 6], p1p6 intersects its correspond-
ing ε Region. Thus, p1p6 is clearly ε-error-bounded. It is obvious that the line
segment p6p8 does not intersect the corresponding ε Region of p7, i.e. C7, and
PSED(p7) > ε. Thus neither p6p8 nor T ′ is ε-error-bounded.

Given the upper bound of PSED ε and a raw trajectory T = {p1, p2, ..., pN},
an optimal compression is to compress T into an ε-error-bounded trajectory
T ′ consisting of the smallest number of consecutive line segments. T can be di-
vided into 2N−1 different sets of consecutive trajectory segments, which means
that there are up to 2N−1 different compressed strategies and the search space
is exponential. By adopting a greedy strategy and some effective tricks, ROCE,
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Fig. 3 T ′ = {p1, p6, p8} is a compressed trajectory of T = {p1, p2, ..., p8}

an efficient approximate algorithm, compresses trajectories in an online pro-
cessing manner. The first thing, ROCE anchors the start point ps of a tra-
jectory segment to be compressed. pf , where f is a variable and initialized
to (s + 2), is selected as the current float point. Then by using ps and pf a
trajectory segment T [s : f ] is defined. pf+1 is assigned as the new float point
and (f + 1) is assigned as f , if ∀pm(s < m < f) ∈ T [s : f ], PSED(pm) ≤ ε.
Otherwise, T [s : f − 1] is compressed into a line segment pspf−1, and the
anchor point of the next trajectory segment to be compressed is set to pf−1.

Each time ROCE checks whether the last float point pf−1 is the final
end point of the current trajectory segment or not, each point pm(s < m < f)
needs to be scanned to calculate the corresponding PSED to verify whether the
line segment pspf is ε-error-bounded. So each point needs to be scanned many
times during the compression, and lots of execution time is wasted here. To
attack this issue, the candidate region is adopted by ROCE, and each point just
needs to be scanned only once. (ps, pf ) Region and T [s : f ] CandidateRegion
are formally defined as follows:

Definition 7 ((ps, pf ) Region): Given a trajectory segment T [s : f ](s < f
and |pspf | > ε) and the upper bound of PSED ε. Then ps is outside the
ε Region Cf of pf , and two tangent rays of Cf starting from ps named trs,f
and tr′s,f can be gotten. The minor sector enclosed by trs,f and tr′s,f , excluding
the circular region, whose center and radius are ps and |pspf | respectively, is
called (ps, pf ) Region.

Definition 8 (T [s : f ] CandidateRegion): Given a trajectory segment T [s :
f ](s < f and |pspf | > ε) and the upper bound of PSED ε. T [s : f ] CandidateRegion
= (ps, ps+1) Region

⋂
(ps, ps+2) Region

⋂
...

⋂
(ps, pf ) Region, i.e., T [s :

f ] CandidateRegion = T [s : f − 1] CandidateRegion
⋂

(ps, pf ) Region if
s < (f − 1).

During the procedure of finding which is the final end point of the current
trajectory segment starting from ps to be compressed, if the float point pf+1

falls in T [s : f ] CandidateRegion, then ∀pm(s < m < f +1), PSED(pm) ≤ ε.
So by using the candidate region in ROCE, PSED no longer needs to be calcu-
lated any more, and each point just needs to be scanned only once to update
the current candidate region. Figure 4 gives us an example to show how to
update the candidate region. Since p1 is outside the ε Region C2 of p2, we
can get two tangent rays tr1,2 and tr′1,2 of C2. Both (p1, p2) Region and T [1 :
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Fig. 4 An example shows how to update the candidate region

2] CandidateRegion are the region in blue. p3 falls in T [1 : 2] CandidateRegion.
Similarly, (p1, p3) Region is the region in green. Then T [1 : 3] CandidateRegion
is the overlapping region of T [1 : 2] CandidateRegion and (p1, p3) Region.
According to Lemma 1, the line segment p1p4 is ε-error-bounded iff the next
point p4 falls in T [1 : 3] CandidateRegion, because the line segment p1p4 must
intersect all ε Regions of discarded points, i.e., C2 and C3.

The pseudo code of ROCE is formally introduced in Algorithm 1. Starting
from the first point, points in the trajectory are scanned one by one. In each
iteration, ROCE tries to find which is the final end point of the current tra-
jectory segment to be compressed, and this trajectory segment is compressed
into a line segment by ROCE (Line 3-12). For the following points of the start
point, if none of their distances to the start point are more than ε, for any line
segment starting from the start point, it must intersect all their corresponding
ε Regions. Thus according to Lemma 1, their restrictions no longer need to be
thought about (Line 6-7).

Algorithm 1 : ROCE Algorithm
Input: a raw trajectory T = {p1, p2, ..., pN} and the upper bound of PSED ε
Output: an ε-error-bounded compressed trajectory T ′ of T

1: i← 1, T ′ ← [T [1]]
2: while i ≤ N do
3: StartPoint← T [i]
4: CandidateRegion.initialize(StartPoint)
5: i← i+ 1
6: while (dist(StartPoint, T [i]) ≤ ε) and (i ≤ N) do
7: i← i+ 1

8: while (T [i] in CandidateRegion) and (i ≤ N) do
9: CandidateRegion.update(T [i], ε)

10: i← i+ 1

11: i← i− 1
12: T ′.append(T [i])

return T ′

By using the candidate region, ROCE is a one-pass error bounded trajec-
tory compression algorithm, since each point just needs to be scanned onle
once to update the current candidate region. So the time complexity of ROCE
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Fig. 5 The trajectory segment T [1 : 5] is compressed into a line segment p1p5

is O(N). The space complexity of ROCE is only O(1), since only constant and
small space is needed by ROCE, no matter how many points to be compressed
into a line segment.

3 Range Query Processing

In most previous work[8, 32, 33], each raw trajectory is usually regarded as
a sequence of discrete points, and a raw trajectory is determined to be over-
lapped with the query region R iff at least one point in this trajectory falls in
R. But this traditional criteria is not suitable for range queries on compressed
trajectories, since it will lead to many trajectories are missing in the result set
as discussed in Section 1. To address this, we propose a new criteria based on
the probability about range queries on compressed trajectories and an effective
algorithm about how to process range queries on compressed trajectories. The
new criteria is formally defined as:

Definition 9 (Range Query on Compressed Trajectories): Given a query re-
gion R, a compressed trajectory dataset T′ and a probability threshold value
p, the range query result Qr(R,T′, p) consists of all such compressed trajec-
tories in T′, the probabilities P of whose corresponding raw trajectories are
overlapped with R are all larger than p, i.e.

Qr(R,T′, p) = {T ′ ∈ T′|P (∃pi ∈ RawTrajectory(T ′), s.t. pi ∈ R) > p}

Though query regions are considered as two-dimensional rectangles for sim-
plicity, our method can be easily adapted to handling query regions in arbitrary
shapes. As shown in Figure 5, the trajectory segment T [1 : 5] is compressed into
a line segment p1p5 by ROCE algorithm with the upper bound of PSED ε. The
only certainty is that there are 3 points discarded between p1 and p5, and these
3 discarded points are all within the green region, named ε Bounding Region
(ε BR for short), which is formally defined as:

Definition 10 (ε BR(pipj)): Given a line segment pipj and the upper bound
of PSED ε, ε BR(pipj) is the region consists of all points, whose PSEDs to
the line segment pipj are all less than or equal to ε.
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For a compressed trajectories, based on the positional relationship between
the ε BR of each line segment and the query region R, the probability of the
corresponding raw trajectories overlapped with R can be calculated, which
will be introduced more detailedly in Section 3.2.

However, there are multiple consecutive line segments in each compressed
trajectory, and for a range query, it will cost too much to judge the relation-
ship between the query region R and the ε BR of each line segment in all
compressed trajectories. To address this, we find that for a line segment af-
ter compression, if its corresponding ε BR and the query region R are not
overlapped, then any discarded point approximately represented by this line
segment must not fall in R. And based on this, RQC follows a filtering-and-
verification framework. The filtering step can prune most invalid trajecto-
ries at quite low computation cost. In Section 3.1, Adaptive Spatial Partition
quadtree like index (ASP tree for short), a high efficient index, is proposed
to accelerate the filtering step greatly. Then in Section 3.2, the processing
procedure of RQC is described in detail.

3.1 Trajectory Index ASP tree

The root node of ASP tree represents all compressed trajectories falling in the
entire region. If there are more than ξ endpoints of all line segments falling
in the corresponding region of each node in ASP tree, where ξ is a threshold
value estimated through experiments, then this node is a non-leaf node with
4 child nodes. Otherwise, this node serves as a leaf node. So ξ controls the
height of ASP tree.

To reduce the space overhead of ASP tree, the detailed information of com-
pressed trajectories is only stored in leaf nodes in the form of ChildRegion ChildPointer,
where ChildRegion ChildPointer refers to the corresponding regions and ad-
dresses of its 4 child nodes. Each leaf node in ASP tree stores information
in the form of ID LineSegments. ID LineSegments refers to some consecu-
tive line segments of a compressed trajectory whose identifier is ID, and the
corresponding ε BRs of these line segments are all overlapped with the corre-
sponding region of this leaf node. So for a compressed trajectory, it may be
split into multiple sets of consecutive line segments and stored in different leaf
nodes.

In a traditional quadtree, if a node is a father node with 4 child nodes, then
the corresponding region represented by the father node is evenly divided into
four disjoint regions, which are respectively assigned to these 4 child nodes.
But this may make the index inclined greatly, which affects the efficiency of
the range query processing, because trajectories are not evenly distributed.
Thus, it is not suitable to do so. To attack this issue, a data adaptive strategy
is adopted in ASP tree. As shown in Figure 6, there are totally two ways
to divide the corresponding region of a father node. For line segments whose
corresponding ε BRs are overlapped with this region, we first get all endpoints
of these line segments falling in this region, and then get the median of all
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𝑜𝑜𝑜𝑜

① ②

𝑅𝑅1

𝑅𝑅1

𝑅𝑅2

𝑅𝑅2

Fig. 6 An example shows how to divide the corresponding region of a father node among
its 4 child nodes

𝑝𝑝𝑖𝑖 𝑝𝑝𝑗𝑗
𝑟𝑟𝑑𝑑

Fig. 7 The trajectory segment T [i : j] is compressed into a line segment pipj

their x dimensions (y dimensions). The median is used to draw a vertical
(horizontal) line, which divides this region into two regions named R1 and R2.
After that, the medians of all y dimensions (x dimensions) of all endpoints
falling in R1 and R2 are respectively used to further divide these two regions
into four smaller disjoint regions. For these two ways, the way with fewer
repeated line segments whose corresponding ε BRs are overlapped with the
four smaller regions will be chosen. The purpose of doing these is to make
ASP tree balanced, which is verified by the experimental results on real-life
compressed trajectories in Section 4.

When a region is to be divided into 2 disjoint regions, there may be a
special case. For all line segments whose corresponding ε BRs are overlapped
with this region, none of their endpoints fall in this region. In such a case, this
region will be divided evenly into 2 smaller regions.

3.2 Range Query Processing Algorithm

To answer a range query on compressed trajectories, the essential question is
how to calculate the probablity of that at least one point in the corresponding
raw trajectory of a compressed trajectory falls in the given query region R.
For each line segment of compressed trajectories, the additional information
we can get is how many points are discarded between the two endpoints and
that these discarded points are all within the corresponding ε BR of this line
segment. First of all, we should know what is the probability of that there
exists at least one discarded point of its corresponding line segment falls in R.

To address this, we propose Algorithm 2. After our analysis on lots of
real-life compressed trajectories, it is quite clear that for a line segment of a
compressed trajectory, its corresponding discarded points are not uniformly
distributed in their corresponding ε BR, but gather near this line segment.
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Algorithm 2 : Calculating the probablity
Input: a line segment pipj , the query region R, the upper bound of PSED ε, the standard

variance σ of the Gaussian distribution, the number of sampling points ns, the discarded
point number nd between pi and pj
Output: the probablity of that at least one discarded point of its corresponding line

segment pipj falls in R

1: PointsNumInR← 0
2: for loop← 1; loop ≤ ns; loop← loop+ 1 do
3: do
4: rd← |generateGaussianDistribution(0, σ)|
5: while rd > ε
6: SinglePoint← samplingOnCurve(pi, pj , rd)
7: if SinglePoint.isInQueryRegion(R) then
8: PointsNumInR← PointsNumInR+ 1

9: rate← PointsNumInR/ns

return 1− (1− rate)nd

For example, for the compressed trajectories whose compression rate is 200,
more than 90% of the PSEDs of discarded points are less than 0.5ε with ε
being the upper bound of PSED. So for all compressed trajectories, we choose
to use a Gaussian distribution to simulate the distributions of discarded points
in all ε BRs. The mean of the Gaussian distribution is set 0, and the standard
variance σ can be got and saved when trajectories are being compressed. As
shown in Figure 7, rd is the absolute value of the PSED randomly generated
by using the Gaussian distribution, and we should make sure that rd ≤ ε
(Line 3-5). For any point on the curve in blue, its PSED to the line segment
pipj is rd. On this curve, a point is randomly selected as a representative of
discarded points (Line 6). After ns points are sampled, the probability of that
there exists at least one discarded point of its corresponding line segment falls
in R can be estimated.

Then based on Algorithm 2, Algorithm 3 shows the pseudo code of Range
Query processing algorithm on Compressed trajectories RQC. To get the range
query result set Qr(R,T′, p), RQC is performed in four steps:

First (Line 1-8), traverse the index ASP tree, and only all ID LineSegments
stored in leaf nodes, whose corresponding regions are overlapped with the
query region, are left. So by doing this, RQC prunes most invalid compressed
trajectories to form a candidate set Sc, which consists of multiple sequences
of consecutive line segments.

Second (Line 9), some efficient pruning strategies based on the MBR (short
for the Minimal Bounding Rectangle) are utilized to further reduce the size of
the candidate set Sc, and Sc1, a much smaller candidate set, and Sf1, a part
of the final result set consisting of multiple IDs of compressed trajectories,
can be gotten. For a sequence of consecutive line segments in a compressed
trajectory, its corresponding MBR is the smallest rectangle which contains
all ε BRs of these line segments. It is clear that if the MBR and the query
region R do not overlap, the corresponding points in the corresponding raw
trajectory must not fall in R. And if the MBR is completely contained in
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Algorithm 3 : RQC Algorithm

Input: the query region R, the compressed trajectory dataset T′, ASP tree of T′ and the
probability threshold value p
Output: the range query result set Qr(R,T′, p)

1: PQ← createPriorityQueue()
2: PQ.push(ASP tree.root.FourChildNodes())
3: while PQ 6= φ do
4: Node← PQ.pop()
5: if Node.isOverlap(R) and !(Node.isLeaf()) then
6: PQ.push(Node.FourChildNodes())

7: if Node.isOverlap(R) and Node.isLeaf() then
8: Sc.append(Node.allID LineSegments())

9: (Sf1, Sc1)← Sc.P runingBasedOnMBR()
10: (Sf2, Sc2)← Sc1.verifyByEndpoints()
11: Sf3 ← Sc2.verifyByε BRs(p)

return (merge(Sf1, Sf2, Sf3)).getTrajectories(T′)

R, then there must be at least a point in the corresponding raw trajectory
falling in R, and this corresponding compressed trajectory must be in the final
result set of this range query. By using these two properties, most relationships
between sequences of consecutive line segments and the query region R can
be determined one by one.

Third (Line 10), for each sequence of consecutive line segments in the
candidate set Sc1, whether there exist an endpoint falling in the query region
R is determined one by one. And if the answer is yes, then the corresponding
raw trajectory must be overlapped with R and the corresponding compressed
trajectories must be in the range query result set Qr(R,T′, p). Then the final
candidate set Sc2 and a part of the final result set Sf2 can be gotten.

Last (Line 11), for Sc2, the final candidate set, Algorithm 2 is used to
measure the probablity of that at least one corresponding discarded point of
each line segment falls in the query region R. For a compressed trajectories
T ′ = {pi1 , pi2 , ..., pin}(i1 = 1, in = N), supposing that the probablities of its
line segments are r1, r2, ..., rn−1 respectively, then P (T ′), the probablity of
the corresponding raw trajectories overlapped with the query region R, can
be calculated as:

P (T ′) = 1−
n−1∏
i=1

(1− ri)

And if P (T ′) > p where p is the given probability threshold value, then the
ID of T ′ is put in the final result set Sf3

4 Experimental Evalution

In this section, the performances of our compression algorithm ROCE, and
range query processing algorithm RQC on compressed trajectories are evaluate
in detail.
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4.1 Experiment Setup

4.1.1 Datasets

The experiments were conducted on three real-life datasets. The dataset named
Animal2[12] records the migrations of 8 young white storks originating from
8 different populations. Because of the tiny tracking devices on these young
whites, the sampling rates of these trajectories are relatively low. The dataset
named Indoor3[2] records the trajectories of visitors in a shopping center,
and the points were sampled very frequently. With a quite large size, the
dataset named Planet4 consists of lots of trajectories distributed all over the
globe. The movement modes of these trajectories are also pretty rich. These
trajectories are sparsely distributed on the Earth, but mainly gather in a
large rectangular region, which is about 3.9 ∗ 105km2 in area. All trajectories
completely contained in such a large region were selected as a raw dataset
called Planet I. The trajectories with less than 1000 points were all removed,
since this dataset was to be compressed. In Planet I, there are 96279 raw
trajectories and 0.3 billion points in total. The experiments in Section 4.3
were all performed on Planet I and its corresponding compressed datasets
compressed by ROCE with different compression rates.

Some baseline algorithms are found to be too time-consuming to run on
the entire datasets when comparing the execution time of different compres-
sion algorithms. So we had to randomly sampled some long trajectories from
Animal, Indoor and Planet I. Then we got 3 subsets called Animal II, Indoor
II and Planet II with 120, 90 and 47 long trajectories respectively. In these
three subsets, there are all about 2 million points in total.

4.1.2 Experimental Environment

All experiments were conducted on a linux machine with 32GB memory and
a 64-bit, 8-core, 3.6GHz Intel(R) Core (TM) i9-9900K CPU. All algorithms
were implemented in C++ on Ubuntu 18.04. Each experiment was repeated
over 3 times, and the average is reported below.

4.2 Performance Evaluation for Compression Algorithms

Our compression algorithm ROCE was compared with 4 existing compression
algorithms in online mode using PED as their error metric, i.e. OPW(BOPW)[17,
23], BQS[19, 20], FBQS[19, 20] and OPERB[18]. For DOTS[3], though its er-
ror metric is LISSED but not PED, it was still compared with ROCE, because
it was demonstrated to have stable superiority against other compression al-
gorithms in online mode on some indicators[33]. The performances of these

2 http://dx.doi.org/10.5441/001/1.78152p3q
3 https://irc.atr.jp/crest2010 HRI/ATC dataset/
4 https://wiki.openstreetmap.org/wiki/Planet.gpx
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compression algorithms were measured by the execution time of compression
and the accuracy loss of the generated compressed trajectories.
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(a) Animal II
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(b) Indoor II
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(c) Planet II
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(d) Planet I

Fig. 8 Efficiency evaluation: varying the compression rate

4.2.1 Execution Time

We first evaluate the execution times of these 6 algorithms w.r.t. varying the
compression rate, and the results are reported in Figure 8. ROCE, OPW and
OPERB are obviously faster than BQS, FBQS and DOTS. During each loop
iteration to compress a trajectory segment into a line segment, BQS and FBQS
both need much more time than other algorithms at the beginning. Quite a
bit of memory and time are needed by DOTS to handle the situations where
the tracked object stays at the same place for a long time. And on Planet
II, DOTS was too time-consuming to continue when the compression rate is
close to 100, so we chose to stop the experiment. Only OPERB, OPW and
ROCE were chosen to run on Planet I, since BQS, FBQS and DOTS are too
slow to run on Planet I. On Planet I, the execution times of OPERB and
ROCE are nearly the same, and both become shorter with the increase of the
compression rate, because fewer trajectory segments need to be compressed
into line segments. OPW needs more execution time with the increase of the
compression rate, since the time complexity of OPW is O(N2). And when the
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compression rate is more than 100, ROCE is faster than OPW. To conclude,
ROCE is faster than many other compression algorithms.

To evaluate the impact of the size of each raw trajectory (i.e. the num-
ber of points in each raw trajectory) on the execution time of compression,
20 trajectories with the largest sizes were chosen from Animal, Indoor and
Planet respectively, and the size of each trajectory was varied from 5000 to
20000 while the compression rates were all fixed as 50. The results are shown
in Figure 9. The y-coordinates are the time rates of the execution time of
compression to the one of compressing trajectories whose sizes are all 5000.
Only two algorithms ROCE and OPERB always scale well with the increase
of the size of each trajectory on all datasets, and show nearly linear running
time. But other algorithms do not, and much more execution time is needed
to compress trajectories with larger sizes, especially for DOTS.
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(b) Indoor II
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(c) Planet II

Fig. 9 Efficiency evaluation: varying the size of trajectories

4.2.2 Accuracy Loss

For these compression algorithms, in order to compare the accuracy loss of
the generated compressed trajectories the maximum and the average PSED
of these compressed trajectories are evaluated w.r.t. varying the compression
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(d) Animal II
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(e) Indoor II
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(f) Planet II

Fig. 10 Evaluation of the maximum and the average PSED: varying the compression rate

rate, and the results are reported in Figure 10. For all algorithms, both the
maximum and the average PSED increase with the increase of the compres-
sion rate. In terms of execution time, ROCE performs similarly with OPERB
and OPW, but ROCE always performs much better than OPERB and OPW
on the maximum PSED. ROCE, BQS and FBQS always perform similarly on
the maximum PSED, but both BQS and FBQS need much more execution
time than ROCE. ROCE always performs much better than most other algo-
rithms on the average PSED. So with much less exection time, the compressed
trajectories generated by ROCE maintain much less accuracy loss than those
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generated by most other algorithms. So, it is quite clear that ROCE makes the
best balance among the accuracy loss, the time cost and the compression rate.
Among the fastest algorithms, the accuracy loss of the compressed trajectories
generated by ROCE is always the smallest, and among algorithms with the
smallest accuracy loss, ROCE is always the fastest.

4.3 Performance Evaluation for RQC Algorithm

The range query serves as a primitive, yet essential operation. In the previous
work related to range queries, such as [8, 32, 33], each trajectory is usually seen
as a sequence of discrete points, and a trajectory is regarded to be overlapped
with the query region R iff at least one point in this trajectory falls in R.
However, this traditional criteria is completely unsuitable for range quering
on compressed trajectories, and many trajectories will be missing in the result
set. To solve this problem, we propose the new criteria defined in Definition 9
and the efficient RQC algorithm for range queries on compressed trajectories.
On compressed trajectories, whether the traditional or the new criteria is used
results in quite different range query results. In the first following experiment,
we evaluate the deviation between the range query results on raw trajectories
and the corresponding compressed trajectories based on different criteria. The
impacts of the size of each query region, the number ns of sampling points,
the probality threshold value p, ASP tree are also respectively studied.

4.3.1 Range Queries on Compressed Trajectories Based on the Traditional or
the New Criteria

To measure the deviation between the range query results on the raw trajec-
tories and those on the corresponding compressed trajectories, 3 evaluation
metrics are defined and used here. Given a range query, the query result set
on the raw trajectories based on the traditional criteria is denoted by QR.
And QC represents the query result set on compressed trajectories. The pre-
cision rate Pre and the recall rate Rec of a range query result on compressed
trajectories are respectively defined as:

Pre =
|QR ∩QC |
|QC |

Rec =
|QR ∩QC |
|QR|

F1-Measure, a comprehensive evaluation metric, is defined as:

1

F1
=

1

2
∗ (

1

Pre
+

1

Rec
)

For 1000 randomly generated range queries on compressed trajectories, we
evaluate the average Pre, Rec and F1 of the query results w.r.t. varying the
compression rate, and the results are shown in Figure 11. When querying on
compressed trajectories based on the traditional criteria, the average Pre is
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always 1, since all points in each compressed trajectory must be in the corre-
sponding raw trajectors. But with the increase of the compression rate, Rec
declines sharply, which shows that up to 45.8% of the corresponding raw tra-
jectories overlapped with the query regions are not discovered. When querying
on compressed trajectories based on the new criteria, though at most 13.4%
of the corresponding raw trajectories not overlapped with the query regions
appear in the result set, much more corresponding raw trajectories (i.e. at
least 84.2%) overlapped with the query regions can be found out. The average
F1, the comprehensive metric of Pre and Rec, also demonstrates the stable
superiority of the new criteria. In summary, it is far more suitable to answer
range queries on compressed trajectories based on the new criteria.
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Fig. 11 Evaluation of the average Pre, Rec and F1 of range query results on compressed
trajectories: varying the compression rate

4.3.2 Impacts of the Sizes of Query Regions

For range queries, the size of the query regions may have impact on the size
of range query results and the execution time. 1000 randomly generated range
queries were executed on the compressed trajectories whose compression rate
is 200, and the size of each query region was varied from 5km2 to 30km2 in
area. The results are shown in Figure 12 and Figure 13. We can see that with
the increase of the size of each query region, though the average size of query
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results on compressed trajectories grows nearly linearly, the execution time
needed by our RQC algorithm does not vary much. Thus RQC algorithm can
easily support range queries with much larger query regions without needing
more execution time. And RQC algorithm is quite efficient and a range query
on more than 90000 compressed trajectories can be processed just within 2ms.
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Fig. 12 Evaluation of the average size of
range query results on compressed trajecto-
ries: varying the size of each query region
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Fig. 13 Efficiency evaluation: varying the
size of each query region

4.3.3 Impacts of the Number ns of Sampling Points

To process a range query on compressed trajectories, ns points are sampled to
calculate the approximate probablity of that there exists a discarded point of
its corresponding line segment falling in the query region R. We evaluate the
execution time, the average precision rate Pre, the average recall rate Rec and
the average F1 of query results of 1000 randomly generated range queries on the
compressed trajectories whose compression rate is 200 w.r.t. varying ns from
10 to 1280, and the results are reported in Figure 14. As ns increases, which
means that more points are sampled to calculate the approximate probablity,
obviously more execution time is needed. On one hand, the average Pre gets a
little smaller since a little more compressed trajectories, whose corresponding
raw trajectories are not overlapped with the query region, are determined to
be in the range query result set. On the other hand, the average Rec gets a
little larger because a little more compressed trajectories, whose corresponding
raw trajectories are overlapped with the query region, can be found by our
RQC algorithm. And the average F1, a comprehensive evaluation metric, does
not change much. In order to make a good balance between the execution time
and the quality of range query result on compressed trajectories, ns is set to
15 as the default value in other experiments.
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Fig. 14 Evaluation of the execution time,
the average Pre, Rec and F1: varying the
value of ns
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Fig. 15 Evaluation of the average Pre, Rec
and F1: varying the value of p

4.3.4 Impacts of the Probability Threshold Value p

For a compressed trajectory, only when the calculated probability of its cor-
responding raw trajectory overlapped with query region R is larger than p,
can this compressed trajectory be in the range query result set. We evaluate
the average precision rate Pre, the average recall rate Rec and the average F1

of query results of 1000 randomly generated range queries on the compressed
trajectories whose compression rate is 200 w.r.t. varying p from 0.5 to 0.99,
and the results are shown in Figure 15. With the increase of p, we can see
that for the average precision rate Pre and the average recall rate Rec, espe-
cially the average F1, they do not change much, which shows that changing
the value of p has quite limited influence on the quality of range query results
on compressed trajectories.

4.3.5 Impacts of ASP tree

How much ASP tree index can accelerate the range query processing is studied
first. The execution time of 1000 randomly generated range queries is evaluated
w.r.t. varying the compression rate, and the results are reported in Figure 16.
By using ASP tree, the range query processing can be accelerated extremely.
At least 99.98% of the execution time can be easily saved, and the acceleration
gets more obvious with the decrease of the compression rate of the queried
trajectories.

For each node in ASP tree, if there are more than ξ endpoints of all line
segments falling in the corresponding region of this node, then this node is
a non-leaf node with 4 child nodes. So the threshold value ξ controls the av-
erage height of ASP tree. The average height of ASP tree is defined as the
average height of all leaf nodes, and the height of the root node is defined as
1. We evaluate the average height of ASP tree and the execution time of 1000
randomly generated range queries on the compressed trajectories whose com-
pression rate is 200 w.r.t. varying ξ, and the results are reported in Figure 17.
The heights of all leaf nodes are always the same, which means that ASP tree
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Fig. 16 Efficiency evaluation: ASP tree in-
dex when varying the compression rate
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Fig. 17 Evaluation of the execution time
and the average height of ASP tree: varying
the value of ξ in ASP tree

is always well balanced, our region partitioning strategy dose work, and data
skew is perfectly avoided. We can see that ξ controls the average height of
ASP tree, and the average height declines with the increase of ξ. The average
height has direct impact on the execution time of range queries. Less execution
time is needed by these range queries with the increase of the average height
of ASP tree, because much more compressed trajectories not in the final result
set are directly filtered out by searching ASP tree.

5 Related Work

Trajectory Compression algorithms in online mode. Able to be applied
in much more application scenarios, some trajectory compression algorithms in
online mode based on different accuracy loss metrics have been proposed and
attract people’s attention. PED, SED, DAD and LISSED are 4 frequently-used
accuracy loss metrics, which measure the degree of the accuracy loss after a
trajectory is compressed. There is no clear evidence that there exists an accu-
racy loss metric superior to all the others in the literature. On one hand, DAD,
a direction-based distance, is defined based on the greatest angular difference
between two directions. Since DAD does not provide any error guarantee on the
distance, for the compressed trajectories generated by compression algorithms
based on DAD[5, 15, 16, 22], the main weakness is that a discarded point may
be too far away from its corresponding line segment. So such a discarded point
can not be approximately represented by its corresponding line segment well.
On the other hand, PED, SED, LISSED and PSED are all position-based
distances, which are defined based on the Euclidean distance between each
discarded point and its ”mapped” position on the compressed trajectory. But
they do not provide any error guarantee on the direction information[5]. For
SED[23–26] and LISSED[3, 4], the time attribute of each discarded point is
used to find its synchronized point on the corresponding line segment. Intro-
duced in Section 2.2, PED[9, 13, 17–20, 23] is adopted by most existing line
simplification methods[18], and there are mainly 4 most popular trajectory
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compression algorithms in online mode using PED as their error metric, i.e.
OPW[17, 23], BQS[19, 20], FBQS[19, 20] and OPERB[18]. Among them, OPW
is proposed the most early and it compresses a trajectory segment as long as
possible into an ε-error-bounded line segment, with ε being the upper bound
of PED value. During each loop iteration to compress a trajectory segment
into a line segment, BQS builds a virtual coordinate system centered at the
starting point at the beginning. In each of four quadrants, BQS establishes
a rectangular bounding box and two bounding lines so that in some cases,
a point can be quickly decided for removal or preservation without needing
expensive error calculation. For FBQS, a fast version of BQS, a raw trajec-
tory point is directly reserved when error calculation is needed in BQS. So
error calculation is no longer needed in FBQS. So, FBQS is a little faster than
BQS at the expense of the larger size of the generated compressed trajecto-
ries. OPERB is based on a novel distance checking method and a directed line
segment is used to approximate the buffered points. For BQS and FBQS, the
accuracy loss of the compressed trajectories is relatively small, but their time
costs are both extremely high. For OPERB and OPW, relatively less execution
time is needed, but at the expense of the extremely high accuracy loss of the
compressed trajectories. So ROCE, which makes the best balance among the
accuracy loss, the time cost and the compression rate, is badly needed.

Query on trajectories. Large trajectory data facilitates various real-world
applications, such as route planing, trajectory pattern mining and travel time
prediction, and lots of attention has been drawn in queries on trajectories, such
as [1, 10, 27, 30, 31]. For example, by analyzing large amounts of historical
trajectories, Dai et al. [7] and Dai et al. [6] study how to provide better navi-
gation services for a driver on considering time cost, fuel consumption and the
preference of the driver. In trajectories generated by the same person, there
must be some common features hidden. And Wu et al. [29] and Jin et al. [14]
investigate the potential for historical trajectories accumulated from different
sources to be linked so as to reconstruct a larger trajectory of a single person.
Detecting anomalous trajectories (i.e. detours) has become an important and
fundamental concern in many real-world applications. Liu et al. [21] proposes
a novel deep generative model to solve the problem of online anomalous tra-
jectory detection. Real-time co-movement pattern mining for trajectories is
to discover co-moving objects that satisfy specific spatio-temporal constraints
in real time, and it serves a range of real-world applications, such as traf-
fic monitoring and management. Targeting the visualization and interaction
with such co-movement detection on streaming trajectories, Fang et al. [11]
proposes a real-time co-movement pattern mining system to handle streaming
trajectories. As more and more trajectories are being generated, the amount of
trajectories to be queried usually exceeds the storage and processing capability
of a single machine. But the situations, where the queried and analyzed trajec-
tories are too much to be queried or they are all compressed trajectories, are
considered in none of these works. To address these, Shang et al. [28] adopts
a different strategy from us, and proposes a distributed in-memory trajec-
tory analytics system to support large-scale trajectory analytics in distributed



Efficient Trajectory Compression and Range Query Processing 25

environments. This strategy and our queries on compressed trajectories are
orthogonal to each other, and may be combined with each other to further
improve the efficiency of queris on trajectory.

6 Conclusions

For existing trajectory compression algorithms in online mode, either too much
execution time is needed, or the accuracy loss of the compressed trajectories
is not tolerable. To address this, this paper has presented ROCE, an efficient
compression algorithm. A range query serves as a primitive, yet essential oper-
ation on trajectories. Using the traditional criteria on compressed trajectories
will lead to that many trajectories will be missing in the result set. To solve this
problem, we propose a new criteria based on the probability and an efficient
range query processing algorithm RQC. An efficient index ASP tree and lots
of novel techniques are also presented to accelerate the processing of trajectory
compression and range queries. Extensive experiments have been conducted
using real-life trajectory datasets. The results demonstrate that ROCE makes
the best balance among the accuracy loss, the time cost and the compression
rate, and the difference between range query results on compressed trajectories
and those on the corresponding raw trajectories is reduced greatly by using
our RQC algorithm.

In the future, we consider to propose an optimal compression algorithm
based on PSED, which can compress a trajectory into an ε-error-bounded com-
pressed trajectory with the smallest number of consecutive line segments. And
this compression algorithm should also be of high-efficiency. On compressed
trajectories, more kinds of queries should be also well studied to reduce the
difference between the query results on compressed trajectories and those on
the corresponding raw trajectories.
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