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Abstract 
With the widespread popularity of online social networks (OSNs), the number of users has also increased 
exponentially in recent years. At the same time, Social bots, i.e. accounts that controlled by program, are 
also on the rise. Service providers of OSNs often use them to keep social networks active. Meanwhile, 
some social bots are also registered for malicious purposes. It is necessary to detect these malicious social 
bots to present a real public opinion environment. We propose BotFinder, a framework to detect 
malicious social bots in OSNs. Specifically, it combines machine learning and graph methods so that the 
potential features of social bots can be effectively extracted. Regarding the feature engineering, we 
generate second order features and use coding methods to encode variables that have high cardinality. 
These features make full use of both labelled and unlabeled samples. With respect to the graphs, we 
firstly generate node vectors through embedding method, following which the similarity between vectors 
of humans and bots can be further calculated; Then, we use an unsupervised method to diffuse labels and 
thus the performance can be improved again. To valid the performance of the proposed method, we 
conduct extensive experiments on the dataset provided by an artificial intelligence contest which is 
composed of over eight million records of users. Results show that our approach reaches a F1-score of 
0.8850, which is much better compared to the state of the art. 

Keywords—Online Social Networks, Social Bots, Feature Engineering, Community Detection, 
Graph Embedding. 
1 Introduction 

Over the past few decades, Online Social Networks (OSNs) have played an increasingly important 
role in our daily life, by the aid of which human beings can communicate with each other in real time 
and maintain their social relationships more conveniently and efficiently. There exist many world-wide 
popular social platforms that connect users all over the globe, such as Facebook, Twitter and etc. 
Furthermore, OSNs have also become the most popular channel for individuals to obtain social news 
compared with traditional medias, such as newspaper.  
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Social bots, i.e., accounts controlled by program may be used for keeping social networks active.  
Although there are beneficial social bots in OSNs, the emergence of some malicious social bots has 
harmful effect. For example, some people can register a large number of accounts for various purposes, 
such as increasing the number of fans or likes maliciously. These malicious behaviors have become an 
important information security problem which threatens the healthy development of social network 
platforms [1-2]. Therefore, it is necessary to detect those malicious social bots, which are also referred 
to as social bots detection. In particular, majority of current studies deal with Twitter and other foreign 
platforms, whereas few studies are conducted to investigate OSNs in China. 

Hence, various scholars devote to study the problem of social bots detection. The current works 
related to social bots detection are mainly divided into two categories, i.e. machine learning approaches 
and graph-based approaches. However, there still exists some challenges for this topic: 

1) In general, most methods rely on a single algorithm to identify social bots, which might not be 
desirable options due to the diversity of the dataset. 

2) In practice, most of the data is unlabeled, which indicates that the numbers of labels are usually 
very small. Hence, it is a great challenge to effectively exploit the unlabeled data. 

Aiming to tackle the above challenges, we here consider the users’ profiles, behaviors and 
relationships among them jointly. Furthermore, we proposed an integrated mechanism BotFinder through 
combining feature engineering and graph methods to detect social bots. Firstly, feature engineering is 
conducted on the dataset to extract global information. Then, we generate node vectors through 
embedding methods. After that, we calculate the similarity between the vectors for humans and bots. 
Finally, we adopt unsupervised method (here, community detection algorithm is considered) in order to 
further improve the performance. With the proposed algorithms, we can easily detect those machine 
accounts. 

The contributions of this paper are summarized as follows. 
1) Firstly, graph algorithm may not perform well when there are many isolated nodes. Whereas 

machine learning method is suffering from the incapability of learning topological structure. Hence, we 
combine machine learning method and graph approach to overcome these problems. 

2) Secondly, in feature engineering, we try to obtain second order features and adopt coding methods 
to encode variables that have high cardinality, or in other words, that contain a large number of distinct 
values. In terms of graphs, we generate node vectors through embeddings methods. Then, we exploit 
unsupervised method to diffuse labels to improve the performance. These approaches make full use of 
both labelled and unlabeled samples. 

The rest of this paper is organized as follows. In Section 2, we review some related works. In Section 
3, we present the proposed framework BotFinder. Then, in Section 4, we describe the studied dataset in 
detail and experiments are conducted with sufficient analysis. Eventually, we conclude our research in 
Section 5. 
2 Related works 

In this section, we review the recent research on social bots detection in OSN: machine learning 
approaches and graph-based approaches. 
2.1 machine learning approaches 

Among the machine learning approaches, supervised ones are widely investigated. Early anti-
cheating algorithms only utilize user profiles or user behaviors to build models. Breno et al. [3] proposed 
a methodology using Artificial neural networks with data preprocessing and mining. Chang et al. [4] 
proposed a feature selection method followed by decision trees to detect bots. Ganji et al. [5] applied K-
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nearest Neighbors (KNN) in credit card fraud detection. Ferrara et al. [6-7] utilized machine learning and 
cognitive behavioral modeling techniques to analyze social bots in 2017 French presidential election and 
2017 Catalan referendum for independence. Denis et al. [8] proposed an ensemble learning method for 
detecting bots on Twitter. 

With the development of deep learning method (LSTM, CNN, etc.), researchers also try to develop 
new methods in order to detect social bots aiming to further improve the detecting accuracy. Through 
viewing user content as temporal text data, Cai et al. [9] proposed BeDM method for bot detection. 
Kudugunta et al. [10] extracted user metadata and tweet text and these data are regarded as the inputs to 
the LSTM deep nets. In practice, most of the real-world data is unlabeled, while unsupervised learning 
methods are widely investigated, which usually relies on the common feature of social bots. Cresci et al. 
[11-12] proposed a revised approach based on DNA-inspired techniques in order to model online user 
behavior. Chen et al. [13] proposed an unsupervised approach to detect Twitter spam campaigns in real-
time. Jiang et al. [14] proposed CATCHSYNC to detect suspicious nodes using only the topology without 
label. Su et al. [15] proposed IoT-RU. Mazza et al. [16] converted the retweet time series into feature 
vectors and then cluster. 
2.2 Graph-based approaches 

Machine learning approaches only consider the features of nodes. Whereas, the relationships among 
nodes also contain valuable and useful information. With the development of deep learning and graph 
algorithm, topology information of graphs is necessary to be considered for further improvement. 

Social bots have the characteristics of aggregation in graph. While community detection is used to 
discover community structures in network, which can also be viewed as a generalized clustering 
algorithm. Thus, community detection algorithms might be applicable to detect social bots. Many 
researchers have devoted endless efforts to the study of this topic. Guillaume et al. [17] proposed a 
heuristic method based on modularity optimization. Li et al. [18] proposed WCD algorithm based on a 
deep sparse autoencoder. For samples with rich features, it is hard to fully mine the information existing 
in the features. Then, new methods are proposed which first convert the topology information of nodes 
into feature vector, and then use machine learning algorithms to train and infer. For instance, Pytorch-
BigGraph proposed by Lerer et al. [19], NetWalk proposed by Yu et al. [20], Node2Vec proposed by 
Grover et al. [21] and Bot2Vec proposed by Pham et al. [22]. Moreover, Kipf et al. [23] proposed Graph 
Convolutional Networks (GCN) which models the features of nodes and network topology, and Aljohani 
et al. [24] apply GCN to detect bots on Twitter. Li et al. [25] proposed BPD-DMP algorithm for network 
immunization. Nie et al. [26] considered the social network and posted content; then, they proposed 
DCIM algorithm. Gao et al. [27] characterized dynamic behaviors and proposed a network-based model. 
Zhu et al. [28] investigated the epidemic spreading process on multi-layer networks. Su et al. [29] 
proposed IDES to detect malicious nodes in the vehicular network. 

Most methods rely on a single algorithm to identify social bots. In terms of both accuracy and other 
relevant evaluation metrics, the previous identification methods still have significant limitations. 
3 Our Proposed Method: BotFinder 

In this section, we mainly illustrate BotFinder which mainly consists of three steps: 1) we represent 
feature engineering techniques on tabular data; 2) we derive node embeddings, and then measure the 
similarity between humans and bots; 3) we applied community detection algorithm to further improve 
performance.  

3.1 Overview 



4 

 

 Figure 1 illustrates the steps in detail. Step1, we exploit feature engineering techniques to generate 
feature matrix. Step2, we use graph embedding method to generate similarity matrix, and then merge 
these two matrixes. After that, we adopt LightGBM [30] to train the merged matrix and infer temporary 
results. Step3, we apply community detection method to generate partial results, and use these results to 
correct the results of LightGBM. 

 

FIGURE 1. The Framework of BotFinder 
3.2 Step1: Feature Engineering 

Here, we try to obtain the second order features, time interval feature, count encoding and k-folds 
target encoding. Then, we apply the LightGBM to train the obtained features and infer temporary results.  

Second order feature: To represent combinations of categorical variable in table, we assume the 
second order feature is represented as (𝐶𝑂𝑈𝑁𝑇, 𝑁𝑈𝑁𝐼𝑄𝑈𝐸, 𝑅𝐴𝑇𝐼𝑂).  

Here, 𝐶𝑂𝑈𝑁𝑇 reflects the degree of activity. Specifically, we select a pair of variables (i.e., 𝑉1 and 𝑉2) and we are anticipated to record the number of times this pair occurs in dataset. We abbreviate it to 𝐶𝑂𝑈𝑁𝑇(𝑉1, 𝑉2). For example, a user gives a thumb-up to someone using the combination of device type 
(𝑉1) iPhone12,1 and app version (𝑉2) 126.7.0, and this combination appears k times in the dataset. Then, 
the users who use iPhone12,1 and 126.7.0 will get a 𝐶𝑂𝑈𝑁𝑇 value of k.  

While 𝑁𝑈𝑁𝐼𝑄𝑈𝐸 indicates the diversity in a given extent. We use a variable (𝑉1) as the primary 
key, and record number of unique categories in the other variable ( 𝑉2 ). We abbreviate it to 𝑁𝑈𝑁𝐼𝑄𝑈𝐸(𝑉1)[𝑉2]. For example, for the users who use device type (𝑉1) iPhone12,1, there are k different 
app versions in the dataset. Then, the users who use iPhone12,1 will get a 𝑁𝑈𝑁𝐼𝑄𝑈𝐸 value of k. 

 𝑅𝐴𝑇𝐼𝑂  describes the proportion of count. It is calculated as 𝐶𝑂𝑈𝑁𝑇(𝑉1, 𝑉2)/𝐶𝑂𝑈𝑁𝑇(𝑉1) . For 
example, the combination of device type (𝑉1) iPhone12,1 and app version (𝑉2) 126.7.0 appears k times, 
and device type (𝑉1) iPhone12 appears for v times in the dataset. Then, all the users who use iPhone12,1 
and 126.7.0 will get a 𝑅𝐴𝑇𝐼𝑂 value of k/v. 

Time interval feature: The request time interval varies for different user. Here, we mainly consider 
max, min, median and sum of the time interval. 

Count encoding: Count encoding is conducted through replacing categories with their counts 
computed on the dataset. However, count may be the same for some variables, which may result in the 
collision that two categories might be encoded as the same value. This will lead to a degradation in the 
performance of model. Hence, we here introduce a target encoding technique. 
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K-folds target encoding (or likelihood encoding, impact encoding, mean encoding): Target 
encoding is numeration of categorical variables via target (label). Here, we replace each category of the 
categorical variable with corresponding probability of the target. To reduce target leak, we apply k-folds 
target encoding. This is implemented as follows: (a) Split the training data into 10-folds. (b) Regard the 
mean of the folds #2-10 target as the coding value of the fold #1, and calculate the coding value of #2~#10 
similarly. (c) Use the target of training data to determine the coding value of testing data. 
3.3 Step2: Similarity Calculation 

 Here, we adopt the Node2vec [21] to obtain the node embeddings (vectors) of users, and then 
calculate the cosine similarity of embeddings between a user and a labeled one. The similarity value 
indicates the probability of having the same label for the two users; for example, if the cosine similarity 
between user1 and user2 is relatively large, then they are likely to have the same label with a high 
probability. 
 For example, 𝑨 and 𝑩 denotes two node vectors for users/accounts. The cosine similarity between 
two vectors is calculated as 𝑆(𝑨, 𝑩) = 𝑨 ∙ 𝑩|𝑨||𝑩| = ∑ 𝐴𝑖𝐵𝑖𝑛𝑖=1√∑ 𝐴𝑖2𝑛𝑖=1 √∑ 𝐵𝑖2𝑛𝑖=1 (1) 

where Ai and Bi denote the element of vector 𝑨 and 𝑩, respectively. 
Then, for each node vector 𝑪 in training set and testing set, we calculate it’s max and mean cosine 

similarity between bots and humans, which is represented as a vector [𝑆𝑚𝑎𝑥1, 𝑆𝑚𝑒𝑎𝑛1, 𝑆𝑚𝑎𝑥0, 𝑆𝑚𝑒𝑎𝑛0] as follows: 𝑆𝑚𝑎𝑥1 = 𝑚𝑎𝑥(𝑆(𝑪, 𝑫𝒊)), 𝑫𝒊 ∈ 𝑏𝑜𝑡𝑠 𝑎𝑛𝑑 𝑪 ≠ 𝑫𝒊 (2) 𝑆𝑚𝑒𝑎𝑛1 = 𝑚𝑒𝑎𝑛(𝑆(𝑪, 𝑫𝒊)), 𝑫𝒊 ∈ 𝑏𝑜𝑡𝑠 𝑎𝑛𝑑 𝑪 ≠ 𝑫𝒊 (3) 𝑆𝑚𝑎𝑥0 = 𝑚𝑎𝑥(𝑆(𝑪, 𝑬𝒊)), 𝑬𝒊 ∈ ℎ𝑢𝑚𝑎𝑛𝑠 𝑎𝑛𝑑 𝑪 ≠ 𝑬𝒊 (4) 𝑆𝑚𝑒𝑎𝑛0 = 𝑚𝑒𝑎𝑛(𝑆(𝑪, 𝑬𝒊)), 𝑬𝒊 ∈ ℎ𝑢𝑚𝑎𝑛𝑠 𝑎𝑛𝑑 𝑪 ≠ 𝑬𝒊 (5) 

where 𝑫𝒊 and 𝑬𝒊 represents a node vector.  

The process is illustrated as follows: 

 

FIGURE 2. Presentation of The Similarity Calculation Process 

3.4 Step3: community detection  

For community detection, we adopt the typical Louvain Method [17] which divides the constructed 
graph into communities. After that, we will label communities with rules as follows: 

1) All users in the community are supposed to be of the same label if the users with labels belongs to 
the same community. 

2) If the users in a community do not have any label, or if the users are of different labels, we will 
not make prediction. 
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However, prediction may not cover all users. So, performance in this rule is limited. But the result of 
this rule is more accurate than LightGBM. Through combining the above two steps, performance can be 
further improved. 
4 Experiment 

In order to evaluate the performance of the proposed mechanism, we collect a dataset from an 
artificial intelligence contest (https://security.bytedance.com/fe/ai-challenge#/sec-
project?id=2&active=1). It contains over eight million records consisting of user profiles and user 
requests (follow or like someone). Basic information of the dataset is shown in Table 1 and Table 2: Table 
1 shows the users' personal information (profile), while Table 2 illustrates the users' behavior (request), 
including the device and the app version used to initiate the request at that time. 

The task is described as follows:  

Given user profiles and their requests. Only a small percentage of users are labeled. Hence, we have 
to build a reasonable, explanatory and effective model to detect malicious bots from users.  

Variable name Sample Description 

user 653fb3fab452eeb99711c27b0c98811d unique user id 

user_name Q2Fsb882bbacf6ccf335a4= mask 

user_profile 8f00b204e9800998 mask 

user_register_time 40003200 mask 

user_register_type 0 mask 

user_register_app 16 mask 

user_least_login_time 132969600 mask 

user_least_login_app 16 mask 

user_fans_num 30  

user_follow_num 3550  

user_post_num 20  

user_post_like_num 50  

user_freq_ip 447.509.456.453 mask 

TABLE 1. User Profiles 

Variable name Sample Description 

request_id e4c5045ef7382cbd3bdb0381130fc95c unique request id 

request_time 4153460 mask 

user 1b004c3c48ee0f2cc3e89a6e2d5ebe9a unique user id 

Request_device_id f38f442e41bc96c7293bb211021f3177 unique device id 

request_ip 533.541.443.535 mask 

request_target c0772f5bb13fc57824aa69376e8a31fb follow/like 

request_device_type iPhone12,1  

request_app_version 126.7.0  

request_app_channel App Store  

TABLE 2. User Requests 

Then, we perform a simple statistical analysis in Table 3. Request with label 1 indicates that this 
request is blocked and corresponding user is a bot. We find that the number of bots is significantly less 
than the number of humans.  

Types Number 

Total users 4417182 
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User with label 0 99565 

User with label 1 9905 

Total request 8227327 

Request with label 0 167782 

Request with label 1 243890 

Users in testing data 151117 

TABLE 3. Label Distribution 

4.1. Evaluation Metric 

To evaluate the performance, we need to take Recall and Precision into consideration 
comprehensively, while we are anticipated to excavate bots as many as possible (to improve Recall). 
Meanwhile, we are supposed to make accurate prediction without harming normal users (to improve 
Precision). Hence, the traditional F1 score is adopted as the evaluation metric. F1 Score = 2 ∗ Precⅈsⅈon ∗ RecallPrecⅈsⅈon + Recal (6) 
4.2 Data processing 

 In this section, we describe the data processing in detail. Overall, we merge user profiles matrix to 
user requests matrix on variable ‘user’, and make prediction for user requests. If any request is predicted 
as 1, then this user is labeled as 1. 
 For Feature Engineering, the process on different variables is presented in Table 4. After the operation, 
we obtain the feature engineering matrix.  

Dataset Applied method Variables 

User requests Second order feature [user, request_device_id, request_ip, request_target, 
request_device_type, request_app_version, 
request_app_channel] 

Count encoding [user,request_device_id, request_ip, request_target, 
request_device_type, request_app_version, 
request_app_channel] 

10-folds target encoding [request_device_type, request_app_version, 
request_app_channel] 

User profiles Second order feature [user_name, user_profile, user_register_type, 
user_register_app, user_least_login_app, user_freq_ip] 

Count encoding [user_name, user_profile, user_freq_ip] 
TABLE 4. The Process in Step 1 

 For Similarity Calculation, we exploit 3 kinds of relationships to derive the graphs; and then we 
calculate similarity. We obtain graphs by using ‘request_ip, ‘request_device_id’ and ‘request_target’ 
relationships. For example, there will be an edge between two users if they use the same IP, or follow the 
same target, or share the same device. 

1) Constructing the graph by using ‘request_ip’: Here, we analyze the number of users associated 
with each IP while corresponding results are provided in Table 5. We find that for most scenarios, each 
IP is associated with only one user. However, the constructed graph may not cover all users. 

Percentiles 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% Max 

Number 1 1 1 1 1 1 1 1 2 2 320000 

TABLE 5. Original Percentiles 
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 Hence, we are anticipated to exclude the IP with only 1 user. Furthermore, there also exists some IPs 
with more than 1000 users which may be public IPs. The existence of such public IPs will lead to a large 
number of edges in the constructed graph, which weaken the association between users. Hence, we also 
exclude the IPs with more than 1000 users for simplicity. Table 6 shows the quantile of the number of 
users associated with each IP after exclusion. There are 26,836,730 edges and 1,953,559 nodes, 
accounting for 44.23% of all users. 

Percentiles 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% Max 

Number 2 2 2 2 2 2 2 3 3 5 820 

TABLE 6. Percentiles After Exclusion 

2) Constructing graph by using ‘request_device_id’: This correlation is much stronger than IP; 
however, corresponding graph is much smaller. For the constructed graph, there exists only 17,193 nodes 
and 5,432,432 edges. 

3) Constructing graph by using ‘request_target’: If we use the full data, there will be 60,544,191 
edges and 2408,814 nodes; however, this will incur the requirement of high computing resources to 
address such data. Similar to IP association, if a target is liked/followed by lots of users, this indicates 
the target might be a celebrity. Therefore, we exclude targets that are associated with more than 20 users' 
likes. After the operation, we obtained a graph with 5121,010 edges and 1317,012 nodes. 

Figure 3 shows the number of edges and nodes in different graphs. The number of edges in IP Graph 
is much higher than that of the other two graphs. 

 

FIGURE 3. Number of Edges and Nodes 

Figure 4 represents our graphing solution. We generate a vector [𝑆𝑚𝑎𝑥1, 𝑆𝑚𝑒𝑎𝑛1, 𝑆𝑚𝑎𝑥0, 𝑆𝑚𝑒𝑎𝑛0]  by using ‘request_ip, ‘request_device_id’ and ‘request_target’ 
relationships, namely, merging these 3 kinds of edges. Similarly, we utilize ‘request_ip’ and 
‘request_device_id’ relationships to do the same process and eventually obtain [_𝑆𝑚𝑎𝑥1, _𝑆𝑚𝑒𝑎𝑛1, _𝑆𝑚𝑎𝑥0, _𝑆𝑚𝑒𝑎𝑛0]. 
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FIGURE 4. Similarity Calculation 

For Community Detection, we only apply the community detection algorithm to address the device 
graph obtained in the above step. 
4.3 Result analysis 

In order to valid the superiority of the proposed model, extensive experiments are conducted on the 
considered data. For comparison, we also implement several baseline models using raw data, including 
Decision Tree [31], AdaBoost [32], XGBoost [33], Random Forest [34], CatBoost [35] and LightGBM 
[30]. Corresponding results are provided in Table 7; as indicated, BotFinder is of the best performance 
indicated by the largest F1-score. 

Implemented Models F1 score 

Decision Tree 0.7031 

AdaBoost 0.7616 

 XGBoost 0.8002 

Random Forest 0.8187 

CatBoost 0.8292 

LightGBM 0.8398 

BotFinder 0.8850 

TABLE 7. Results of the Classification Model 
 As presented in Figure 5, results are provided to verify the validity of different steps indicated by the 
obtained F1-score. As indicated, we can find that the F1-score can be improved by a large extent with 
the consideration of step 2; while step 3 can only slightly improve the F1-score. 
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FIGURE 5. F1 Score Obtained for the Testing Set 
Figure 6 shows the feature importance generated in step1 and step2. The score of target encoding 

of device types seems to be high, indicating that social bots tend to use fixed types of device. Furthermore, 
the personal information of users such as login time and register time also has a high score.   

 

FIGURE 6. Feature Importance 

 To visually show the differentiation between positive and negative samples in different variables, we 
apply Kernel Density Estimation (KDE) In Figure 7. We find that social bots show the characteristics of 
aggregation, that is, they are tend to register or login at a fixed time.  
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FIGURE 7. Feature Histogram in User Side 
For variable ‘request_time’ in Figure 8, In addition to the characteristics of aggregation, we also find 

that the request time of bots shows obvious periodicity, that is, bots are programmed regularly. 

 

FIGURE 8. Feature Histogram in Request Side 

 For second order features in Figure 9 and similarity features in Figure 10, there also exists obvious 
differentiation between the positive and negative samples. We find that some bots may use special 
devices, resulting in a low 𝑁𝑈𝑁𝐼𝑄𝑈𝐸 and high 𝑅𝐴𝑇𝐼𝑂 in app_version. 
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FIGURE 9. Second Order Feature Histogram

 

FIGURE 10. Similarity Feature Histogram 

5. Conclusions 
We propose a social bots detection method, BotFinder, in this paper. In order to valid the performance 

of the developed approach, we collected a dataset with more than eight million records of users. 
Meanwhile, machine learning and graph methods are applied to extract potential features of social bots 
from such dataset. In particular, for feature engineering, we generate second order features and use coding 
methods to encode high-cardinal variables. In terms of graphs, we generated node vectors for accounts 
and then exploit unsupervised method (here we utilize community detection) to diffuse labels in order to 
further improve the performance. Through experiments conducted on the collected dataset, the 
effectiveness of the proposed integrated mechanism is guaranteed by a relatively large F1-score of 0.8850. 
The performance is super compared with existing methods. 
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