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Abstract

Trajectory prediction of vehicles is of great importance to various
smart city applications ranging from transportation scheduling, vehi-
cle navigation, to location-based advertisements. Existing methods
all focus on modeling spatiotemporal relations with explicit contex-
tual semantics from labeled trajectory data, and rarely consider the
effective use of large amounts of available unlabeled trajectory data
with the assistance of contrastive learning and pre-training tech-
niques. To this end, we develop a novel Pretrained-based Contrastive
Learning Network (PreCLN) for vehicle trajectory prediction. Specifi-
cally, we propose a dual-view trajectory contrastive learning framework
to achieve self-supervised pre-training. A Transformer-based trajectory
encoder is designed to effectively capture the long-term spatiotemporal
dependencies in trajectories to embed input trajectories into fixed-
length representation vectors. Moreover, three auxiliary pre-training
tasks, i.e., trajectory imputation, trajectory destination prediction,
and trajectory-user linking, are used to assist the training of Pre-
CLN with the dual-view trajectory contrastive learning framework.
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2 Pretrained-based Contrastive Learning Network for Trajectory Prediction

After pre-training, the result trajectory encoder is used to generate
trajectory representations for future trajectory prediction. Extensive
experiments on two real-world large-scale trajectory datasets demon-
strate the significant superiority of PreCLN against state-of-the-art
trajectory prediction baselines in terms of all evaluation metrics.

Keywords: Trajectory Prediction, Trajectory Representation, Contrastive
Learning, Pre-training, GPS Trajectory

1 Introduction

With the rapid growth of location-based services and the wide spread of
GPS-equipped devices, the availability of large-scale trajectory data has been
increasing in recent years, including taxi trajectories, human check-ins, traf-
fic camera surveillance data, and more. Therefore, mining spatiotemporal
trajectory data has been extensively studied, such as predicting future trajec-
tories [1, 2], estimating arrival times [3, 4], traffic prediction [5–7], and route
planning [8–12]. Among these researches, trajectory prediction has attracted a
great amount of attention, which is of crucial importance for varieties of smart
city applications, such as transportation scheduling, location-based recom-
mendations, and autonomous driving. For example, trajectory prediction can
assist traffic managers in predicting possible impending congestion and travel
delays, and executing corresponding traffic control and scheduling strategies.
If the driving path of the vehicle can be accurately predicted, the intelligent
transportation system can provide the driver with personalized assistance or
recommendations, such as dynamic re-routing, personalized risk assessment
and prompts, speed suggestions, etc. Additionally, based on trajectory pre-
diction, customized location-based advertisements can also be developed for
those most likely to pass through certain commercial stores. Nonetheless, due
to the complexity of the road network and the dynamics of urban traffic, as
well as the uncertainty of the driving conditions, effective vehicle trajectory
prediction faces many challenges.

Early methods towards this goal, have made significant efforts on trajec-
tory prediction and next location prediction based on Markov model [13–15] or
Recurrent Neural Network (RNN) model [16–19]. Based on the great success
of RNN model in sequence modeling, a handful of RNN model-based location
prediction or recommendation studies have been developed. LSTPM [17] is
proposed to use a geo-dilated RNN to exploit the geographical relations among
non-consecutive locations to conquer the limitation of RNNs in short-term
user preference modeling. Li et al. [20] design a multi-layer LSTM encoder-
decoder model that leverages temporal attention mechanism to enhance model
sequence learning ability. STKG [19] is developed to incorporate knowledge
graph embedding and Graph Convolution Network (GCN) into RNN-based
models for better capturing the sequential transition patterns. In recent years,
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self-attention models have been extensively applied to temporal location mod-
eling [21, 22]. The recent state-of-the-art works [22–24] feed time interval, user,
and location into self-attention based models to explicitly learn spatiotemporal
dependencies in trajectories, and stack extra modules [17, 24, 25] to integrate
contextual information.

Despite the effectiveness of existing trajectory prediction methods [2, 14,
19, 22–24, 26, 27], these works have three key limitations. First, RNN-based
models can hardly capture the long-term dependencies among the long trajec-
tory sequences as RNNs have a certain degree of forgetfulness in processing
long-sequence data [28]. Second, most works do not adequately exploit the
potential of pre-training techniques for trajectory prediction on the available
large-scale trajectory data. Recent spatiotemporal data mining works [24, 26]
prove that pre-trained models effectively improve model performance. Third,
most works do not consider strengthening the trajectory prediction ability
with the assistance of a large number of auxiliary tasks, for example, enhanc-
ing the model’s ability to capture long-term dependencies through destination
prediction, and enhancing the model’s ability to learn user preferences through
trajectory-user linking.

To tackle the aforementioned challenges, we develop a novel Pretrained-
based Contrastive Learning Network for vehicle trajectory prediction, named
PreCLN. To be more specific, we design a dual-view trajectory contrastive
learning framework, which is to achieve self-supervised pre-training. Two tra-
jectory representations of an input trajectory learned from two different views
(i.e., hierarchical map gridding and road network mapping), respectively, are
regarded as the query and the positive sample; Trajectory representations
learned from other trajectories in the same batch are treated as negative sam-
ples with respect to the query. To generate more trajectory samples from
the original trajectory data, we employ three different trajectory data aug-
mentation strategies for pre-training. To effectively capture the long-term
spatiotemporal correlations in trajectories, we develop a Transformer-based
trajectory encoder to embed the input trajectory sequences into fixed-length
representations. Moreover, we leverage three auxiliary pre-training tasks, i.e.,
trajectory imputation, trajectory destination prediction, and trajectory-user
linking, to assist the training of the trajectory encoder. After the pre-training,
the result trajectory encoder is used to generate trajectory representations
for vehicle trajectory prediction. We conduct extensive experiments on two
real-world large-scale trajectory datasets, and experimental results demon-
strate that our PreCLN model can obtain significant performance improvement
compared with state-of-the-art trajectory prediction techniques.

We summarize the contributions of this paper as follows:

• We propose PreCLN model, a novel pre-trained spatiotemporal contrastive
learning network, to make fully effective use of context-aware geographical
information and road network for vehicle trajectory prediction.
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• We develop a dual-view trajectory contrastive learning framework that
effectively captures long-term spatiotemporal dependencies in trajecto-
ries through a Transformer-based trajectory encoder with three auxiliary
pre-training tasks.

• Extensive experiments on two real-world large-scale GPS trajectory datasets
verify the superiority of our proposed model in vehicle trajectory prediction
when competing with state-of-the-art baselines.

2 Related Work

In this section, we mainly discuss related works, including next location
prediction and trajectory prediction.

2.1 Next Location Prediction

RNN models are widely used in modeling sequential forecasting in most exist-
ing next location prediction works [19, 29–31]. Liu et al. [29] propose STRNN
model that inputs temporal and spatial intervals between every two consec-
utive visits as additional auxiliary information into RNN model to improve
prediction performance. Yao et al. [30] use a recurrent model to jointly learn
user temporal preference and semantic contexts for next location prediction.
Feng et al. [32] develop DeepMove model, which learns both long-term peri-
odicities and short-term sequential regularities from correlated trajectories by
combining an attention layer and a recurrent layer. Zhu et al. [33] propose
Time-LSTM model that adds time gates into the LSTM network to capture
the time factor to improve the spatiotemporal effect. To capture the spa-
tiotemporal dependencies, Li et al. [34] further add spatiotemporal gates to
the LSTM structure to capture the spatio-temporal relationships between suc-
cessive check-ins. Huang et al. [18] propose ATST-LSTM model that leverages
an attention mechanism to learn weights for each check-in in an LSTM net-
work. Sun et al. [17] develop LSTPM model consisting of a nonlocal network
for long-term preference modeling and a geo-dilated RNN for short-term pref-
erence learning. Rao et al. [19] propose Graph-Flashback that incorporates
the learned POI transition graph into RNN-based models for better captur-
ing the sequential transition patterns. Recently, Lian et al. [23] propose a
self-attention based location recommendation model GeoSAN that considers
point-to-point interaction within the trajectory. To aggregate all relevant vis-
its from user trajectory, Luo et al. [22] further propose a Spatio-Temporal
Attention Network (STAN), which allows a point-to-point interaction between
non-adjacent locations and non-consecutive check-ins with explicit spatio-
temporal effect. Nonetheless, previous location prediction approaches mainly
consider capturing correlations between locations from observed mobility data,
but neglect to use pre-training techniques to learn non-trivial spatiotempo-
ral dependencies between locations from large-scale trajectory data to improve
model performance.
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2.2 Trajectory Prediction

In the early days, people generally used traditional mathematical models
or machine learning methods to address the trajectory prediction problem,
including Markov models, hidden Markov models, and Bayesian models. Asa-
hara et al. [13] propose a hybrid Markov chain model for pedestrian trajectory
prediction, which considers the relationship between the individual and the
whole. Gambs et al. [15] use an extended Markov chain model to personalize
the prediction of the subsequent location. Zhao et al. [35] use a Bayesian n-
gram model to learn the spatiotemporal dependencies of location sequences.
Mo et al. [14] develop a hidden Markov-based model to solve the problem
of individual mobility prediction. However, these traditional methods cannot
effectively simulate the complex dependencies of spatiotemporal trajectory data.

Deep learning models have been proven to better model spatiotemporal
characteristics of trajectory sequences [5, 6, 36]. Among them, RNN-based
models are representative and have achieved satisfactory performance on a
variety of prediction tasks [37]. Park et al. [27] propose an LSTM-based
encoder-decoder model to predict the next location of the vehicle trajectory on
the map grid. Li et al. [20] develop a multi-layer LSTM encoder-decoder model
in which the temporal attention mechanism is used to enhance the sequence
learning ability for human mobility prediction. Capobianco et al. [38] lever-
age the attention mechanism to enhance the recurrent network model, which
is applied to vessel trajectory prediction. CNN-based models are also used for
mobility sequence prediction and trajectory prediction [39, 40]. Nonetheless,
these RNN models (e.g., LSTM) can hardly capture long-term dependencies in
trajectory data [28], and can not run in parallel.

Challenged by the flaws of RNN-based models, self-attention models thrive
to replace them due to the advantages of better performance, fewer parame-
ters, and parallel operation. Self-attention models are first applied to sequential
recommendations [41, 42] and then widely used for location sequence predic-
tion [22, 23, 43]. Lin et al. [24] propose CTLE that is a pre-trained model and
applies a Transformer encoder to calculate contextual embeddings for next
location prediction. In the follow-up work [26], they further propose a TALE
pre-training method based on the CBOW framework, which is able to incor-
porate temporal information into the learned embedding vectors of locations.
Shao et al. [2] use attention fusion dynamic GCN to obtain trajectory represen-
tation for trajectory prediction, and use two auxiliary tasks (i.e., arrival time
estimation and ranking of similarity weights) to optimize the model. However,
these models do not adequately exploit the potential of pre-training techniques
and contrastive learning for trajectory prediction on large-scale trajectory data.

3 Problem Definition

In this section, we first introduce the basic concepts used in this work, and
then formally define the studied problem.
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Definition 1 (Road Network). A road network is defined as a directed graph
G = (V, E), where V is the collection of vertices, each representing an inter-
section, and E is the collection of edges between vertices, i.e., the collection of
road segments. Each edge ei,j ∈ E denotes the road segment from vertex vi to
vertex vj.

Definition 2 (Vehicle Trajectory). A trajectory of a vehicle ui is
defined as a sequence of location points in chronological order Tri =
⟨(t1, p1), (t2, p2), . . . , (tn, pn)⟩, where n is the number of location points in Tri,
and pi represents the geographic coordinates of the i-th location point, i.e.,
latitude and longitude.

We use TRi and TR to denote the set of all trajectories of vehicle ui and
the set of all trajectories of all vehicles, respectively.

Problem (Vehicle Trajectory Prediction). Given all trajecto-
ries of all vehicles TR and the road network G, our goal is to
learn a model f̂ to predict future vehicle trajectory of the next τ

time steps for any given vehicle: ⟨(t1, p1), (t2, p2), . . . , (tn, pn)⟩
f̂−→

⟨(tn+1, pn+1), (tn+2, pn+2), . . . , (tn+τ , pn+τ )⟩.

The main notations used in this work are summarized in Table 1.

Table 1: Main notations and their definitions.

Notation Definition

G = (V, E) the road network
ei,j the road segment ei,j
Tri a trajectory of vehicle ui

n the number of location points in a trajectory
TRi the set of all trajectory of vehicle ui

TR the set of all trajectory of all vehicles
u, t, p the user, time, and location in trajectories
xu
i the embedding of user ui

xt
j , x

p
j the embeddings of time and location for j-th location

X the embedding matrix of location sequences
Hg the trajectory representation matrix based on gridding
Hr the trajectory representation matrix based on road network
M the mask matrix

H
p
imp,H

r
imp the imputed trajectory representation matrix

Zp

des
, Zr

des
the grid code of predicted trajectory destination

U
p

tul
,Ur

tul
the user matrix of trajectories

Ŷ(n+1):(n+τ) the predicted future trajectory matrix
Π/Ω the number of trajectories in training/testing set
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Fig. 1: The overall architecture of the proposed PreCLN.

4 Methodology

In this section, we present the details of our proposed PreCLN, which consists
of four major components: (1) a multimodal embedding module that learns the
dense embedding vectors of users, locations, and time steps in vehicle trajecto-
ries; (2) a dual-view contrastive learning network that uses Transformer-based
encoders to generate dual-view representation vectors of input trajectory for
both auxiliary pre-training tasks and main task; (3) a multi-auxiliary task
pre-training module that utilizes pre-training techniques with three auxiliary
tasks to enhance the representation learning ability of the model to improve
the performance of main task; (4) a trajectory prediction layer that uses an
attention-based predictor to estimate future location sequences using learned
trajectory representations. The overall architecture of the proposed PreCLN
is shown in Figure 1.

4.1 Multi-modal Embedding Module

This module contains two sub-modules: trajectory data augmentation and user
and time aware location embedding layer.

4.1.1 Trajectory Data Augmentation

In contrastive learning models, data augmentation is an essential step, and
positive samples are obtained through data augmentation. Nevertheless, in
our model, the purpose of data augmentation is to obtain a larger amount
of more diverse pre-training trajectory samples. Therefore, trajectory data
augmentation not only needs to preserve the travel semantics of trajectories,
but also needs to consider the differences between different samples.

Based on the above analysis, we explore the following three different
trajectory augmentation strategies:
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• Multi-hop Augmentation. Multi-hop enhancement is to sample a multi-
hop sub-trajectory from the original trajectory according to the given
number of hops. For example, when the hop count is set to 2, a 2-hop
sub-trajectory is sampled, i.e., ⟨(t1, p1), (t3, p3), . . . , (t2⌊n/2⌋+1, p2⌊n/2⌋+1)⟩
or ⟨(t2, p2), (t4, p4), . . . , (t2⌊n/2⌋, p2⌊n/2⌋)⟩ are sampled for original trajectory
Tri = ⟨(t1, p1), (t2, p2), . . . , (tn, pn)⟩.

• Downsampling/Missing Augmentation. Downsampling enhancement is to
randomly sample a sub-trajectory from the original trajectory according
to a given sampling ratio. For example, when the sampling ratio is set to
50%, the probability of each location point being sampled is 50%. Missing
Augmentation is to use different mask matrices to hide some location points
in trajectories to form the missing trajectories. Both methods can get sub-
trajectories with the same effect.

• Segmentation Augmentation. Segmentation augmentation is to truncate the
long trajectory according to a certain proportion to obtain multiple sub-
trajectory segments. Give a trajectory Tri = ⟨(t1, p1), (t2, p2), . . . , (tn, pn)⟩,
we can get sub-trajectory segments Tr1i = ⟨(t1, p1), (t2, p2), . . . , (tj , pj)⟩,
Tr2i = ⟨(tj+1, pj+1), (tj+2, pj+2), . . . , (tn, pn)⟩ through segmentation aug-
mentation.

4.1.2 User and Time Aware Location Embedding Layer

This layer is used to encode user, time, and location and fuse them into dense
embedding vectors.
User and Time Embedding. Many previous studies have shown that user
and temporal information of trajectories have an important impact on tra-
jectory sequence prediction tasks [22, 23]. User information reflects users’
spatiotemporal preferences and is beneficial for personalized modeling. For
example, some users have to commute between home and the workplace every
day. Meanwhile, the time dimension contains the specific day, week, hour, and
minute information of each trajectory location, reflecting the periodicity of
trajectory data. Therefore, we consider the user information in our model and
learn the embedded user representation through:

xu
i = tanh (ui ·Wu + bu) (1)

where ui is the one-hot encoding of the i-th user, and Wu and bu are learnable
parameters.

Similarly, we first encode time information into time vector tj =
[twj , t

d
j , t

h
j , t

m
j , tsj ] where twj , t

d
j , t

h
j , t

m
j and tsj are the week, day, hour, minute,

and second respectively, and then obtain the embedded time representation
through:

xt
j = tanh (tj ·Wt + bt) (2)

where Wt and bt are learnable parameters.
Location Embedding. Location information is of great significance for tra-
jectory representation learning, and effective location embedding is beneficial
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to obtain a superior trajectory representation as it captures spatial correlations
effectively. The exact locations of vehicle trajectories are usually described
by GPS coordinates, i.e., latitude and longitude. Though they are continu-
ous, they are difficult to directly be applied to deep learning models since
GPS coordinates have poor discreteness. On the other hand, vehicle trajectory
data is constrained by the road network, and considering the road network
information can better characterize the representation of the trajectory [44].

To this end, we present two location encoding methods that embed the
exact coordinates of location into the unique id:

• Location encoding based on hierarchical map gridding: following [23], we
first use a hierarchical map gridding method to map latitude and longitude
into a grid. Specifically, each geographic area can be divided into four sub-
areas according to a cross, and the four sub-areas are respectively encoded
with 0, 1, 2, and 3 according to a fixed rule. Each sub-area can be recursively
divided into four sub-areas and encoded again. Hence, any GPS coordinate
can be mapped to a grid with a quadkey code. For example, if the gridding
level is set to 3, the length of the quadkey code for each grid is 3, and the
i-th digit indicates the grid code of the i-th lever where the GPS coordinate
is located.

• Location encoding based on road network mapping: we use the Fast Map
Matching (FMM)1 algorithm [45] to map vehicle trajectories to the road
network, and use road network node sequence to represent each trajec-
tory. Given a trajectory Tri = ⟨p1, p2, . . . , pn⟩, we can get a node sequence
TrRi = ⟨v1, v2, . . . , vm⟩ using FMM. To consider spatial correlation, we
further encode road network nodes through:

xv
i =

K
∑

j=1

1

|ei,j |
v⃗j + v⃗i, (3)

where |ei,j | represents the length of road segment ei,j , K is the number of
nodes connected to node vi, and v⃗i and v⃗j are the one-hot vectors of nodes
vi and vj , respectively.

Embedding Fusion. To incorporate user and time information, we further
use a fusion layer to obtain user and time aware location embeddings:

xp
j = tanh([xu

i ·Wu
f + buf ; x

t
j ·Wt

f + btf ; pj ·Wp
f + bpf ]), (4)

where pj can be the location code based on hierarchical map gridding or road
network mapping, and Wu

f ,W
t
f ,W

p
f , b

u
f , b

t
f , and bpf are learnable parameters.

1https://github.com/cyang-kth/fmm

https://github.com/cyang-kth/fmm
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4.2 Dual-view Contrastive Learning Network

In this section, we propose a dual-view trajectory contrastive learning frame-
work that leverages trajectory representations learned from two different views
for contrastive learning across auxiliary tasks.

4.2.1 Dual-view Trajectory Contrastive Learning Framework

Target Trajectory

Another Trajectory

Transformer-

based 

Trajectory 

Encoder

…

…

Maximize 

Similarity

Minimize 

Similarity

Hierarchical 

Map Gridding

Hierarchical 

Map Gridding

Road Network 

Mapping

Road Network 

Mapping

𝐇𝑖𝑔

𝐇𝑗𝑔(𝑗 ≠ 𝑖)
𝐇𝑖𝑟

𝐇𝑗𝑟(𝑗 ≠ 𝑖)
…

…

Pre-

training

Task

𝐎𝑖𝑔
𝐎𝑖𝑟

𝐎𝑗𝑔(𝑗 ≠ 𝑖)
𝐎𝑗𝑟(𝑗 ≠ 𝑖)

Fig. 2: Dual-view trajectory contrastive learning framework

Inspired by [46], we design a dual-view trajectory contrastive learning
framework. As shown in Figure 2, the framework aims to achieve self-
supervised pre-training. For an input trajectory, two trajectory representations
are learned from two different views (i.e., hierarchical map gridding and road
network mapping), respectively, and then fed into the same task to expect the
same result (i.e., maximize the similarity of outputs Og

i and O
g
i ). That is, one

view representation is regarded as the query, and the other view is regarded
as the positive sample. On the other hand, learned representations of other
trajectories in the same batch are treated as negative samples with respect to
the query, i.e., minimize the similarity of outputs (Og

i and O
g
j , O

g
i and Or

j)
between them. To effectively model the long-term spatiotemporal correlations
in trajectories, we build a Transformer-based trajectory encoder to embed the
input trajectory sequences into fixed-length representation vectors. The auxil-
iary pre-training tasks are then applied to guide the training of the trajectory
encoder. After the pre-training, the result trajectory encoder can be used to
generate vehicle trajectories’ representations for trajectory prediction.

4.2.2 Transformer-based Trajectory Encoder

In this section, we develop a Transformer-based trajectory encoder to capture
the long-term dependencies in trajectory sequences. The Transformer-based
trajectory encoder stacks multiple self-attention blocks, each consisting of a
self-attention layer and a point-wise Feed-Forward Network (FFN). In partic-
ular, the self-attention layer takes the embedding matrix X of the location
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sequence as input and feeds them into an attention module after converting it
through three weight matrices WQ,WK ,WV :

S = self att(X+P) = att((X+P)WQ, (X+P)WK , (X+P)WV ) (5)

where P is the positional embedding matrix.
The attention module, i.e., att(·, ·, ·), is the scaled dot-product attention:

att(Q,K,V) = softmax(
QKT

√
d

)V. (6)

The FFN is used to non-linearize the output of the self-attention layer and
transform dimensions, which is a two-layer network, and the formula is defined
as follows:

H = ffn(S) = max(0,S ·Wffn
1 + bffn1 ) ·Wffn

2 + bffn2 . (7)

Residual connection and layer normalization are applied in the FFN and
self-attention layers to stabilize and speed up the training process when
stacking multiple self-attention blocks.

Notice that we use Hg and Hr to denote the trajectory representation
matrix obtained from hierarchical gridding location encoding and road network
mapping location encoding, respectively.

4.3 Multi-Auxiliary Task Pre-training

In this section, we present three auxiliary pre-training tasks employed in
our model, i.e., trajectory imputation, trajectory destination prediction, and
trajectory-user linking.

4.3.1 Trajectory Imputation Task

The trajectory imputation task mainly predicts random hidden location points
through trajectory context semantics, which has a strong correlation with the
main task of trajectory prediction, significantly increasing the training sample
space. Specifically, we first obtain a random mask matrix M for input trajec-
tories according to a certain proportion, and then predict the missing location
points through the learned trajectory representations.

The hidden operation using the mask matrix is:

TR
′

= TR⊙M (8)

where ⊙ is Hadamard product. TR
′

is the input of the task and TR is the
prediction target.
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In this task, we employ a two-layer fully connected layer to map the learned
trajectory representations to the target trajectory representations:

H
g
imp = g1(H

g) = max(0,Hg ·Wimp
1 + bimp

1 ) ·Wimp
2 + bimp

2 , (9)

Hr
imp = g′1(H

r) = max(0,Hr ·Wimp
3 + bimp

3 ) ·Wimp
4 + bimp

4 , (10)

where Hg and Hr are learned trajectory representations from two different
views, and H

g
imp and Hr

imp are the two corresponding imputed trajectory
representations.

4.3.2 Trajectory Destination Prediction Task

To enhance the ability of long-term trajectory sequence prediction, we intro-
duce a trajectory destination prediction pre-training task. The historical
trajectory data is used as the model input, and the last location point of each
trajectory is used as the destination. The grid code of the destination location
can be obtained through a two-layer FFN:

Zg
des = g2(H

g) = max(0,Hg ·Wdes
1 + bdes1 ) ·Wdes

2 + bdes2 , (11)

Zr
des = g′2(H

r) = max(0,Hr ·Wdes
3 + bdes3 ) ·Wdes

4 + bdes4 , (12)

where Zg
des and Zr

des are the two destination grid codes learned by the model.

4.3.3 Trajectory-User Linking Task

The trajectory-user linking task enables the model to identify the correlation
between trajectories and their users, which facilitates our model to capture user
trajectory preferences in a personalized manner. All trajectory data is used
as model input, and the users of the trajectory are used as training targets.
We obtain the probability that each trajectory belongs to the user through a
classifier:

U
g
tul = g3(H

g) = softmax(max(0,Hg ·Wtul
1 + btul1 ) ·Wtul

2 + btul2 ), (13)

Ur
tul = g′3(H

r) = softmax(max(0,Hr ·Wtul
3 + btul3 ) ·Wtul

4 + btul4 ), (14)

where U
g
tul and Ur

tul are the probability matrices of users.

4.4 Trajectory Prediction Layer

To consider the user and temporal information of the target trajectory when
predicting future trajectory, we design an attention-based predictor:

Z = predictor(Hg|xu
i , x

t
i) = att(f(xu

i , x
t
i),H

g ·WP ,Hg) (15)

where f(xu
i , x

t
i) = tanh([xu

i · Wu + bu; xt
i · Wt + bt]), att(·, ·, ·) is defined as

Eq. (6), and WP is the learnable weight matrix.
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Finally we use a linear layer to map Z to the future location sequence:

Ŷ(n+1):(n+τ) = Linear(Z) = Z ·Wl + bl. (16)

where τ is the number of future time steps, and Wl and bl are the learnable
parameters.

Notice that we can realize multiple transformations from the trajectory
representation to future location sequence by stacking multiple att(·, ·, ·) layers
to obtain a robust trajectory predictor.

4.5 Loss Function

Trajectory prediction loss. The final output from the prediction
decoder is the location-level trajectory prediction matrix Ŷ(n+1):(n+τ) =
[ŷn+1, ŷn+2, . . . , ŷn+τ ]. We introduce the mean absolute error (MAE) to calcu-
late the error between the predicted trajectory sequence and the real trajectory
sequence as the loss function:

Ltp = MAE(Ŷ(n+1):(n+τ),Y(n+1):(n+τ)) =

Π
∑

i=1

n+τ
∑

j=n+1

|ŷji − yji |. (17)

where Π denotes the number of trajectories in training set.
Contrastive learning loss. As described in Section 4.2.1, we treat the two
different view representations of each trajectory as the query and the positive
sample, and the representations of other trajectories in the same batch as
negative samples. Then these trajectory representations are fed into the same
task. To maximize the similarity of the task outputs of the query and the
positive sample and the difference of the task outputs of the query and the
negative samples, we employ a normalized temperature-scaled cross-entropy
loss:

lgi = − log
exp(sim(Og

i ,O
r
i )/T )

∑

k∈B,k ̸=i(exp(sim(Og
i ,O

g
k)/T ) + exp(sim(Og

i ,O
r
k)/T ))

, (18)

lri = − log
exp(sim(Or

i ,O
g
i )/T )

∑

k∈B,k ̸=i(exp(sim(Or
i ,O

g
k)/T ) + exp(sim(Or

i ,O
r
k)/T ))

, (19)

where O represents the task output, and sim(·, ·) is the similarity of two
output results, B denotes the set of all samples in the same batch, and T
denotes the temperature parameter. The contrastive learning loss function can
be calculated by accumulating all losses across all batches:

Lcl =
1

2Π

Π
∑

i=1

(lgi + lri ). (20)
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Auxiliary task loss. Furthermore, we also need auxiliary task loss function
to complete the auxiliary pre-training to guide the learning of the model. Let
Â denotes the auxiliary task prediction result, andA denotes the ground-truth
result. The auxiliary task loss function is formulated as:

Laux = MAE(Â,A). (21)

Eventually, we integrate Ltp, Lcl and Laux into a joint learning framework
through hyperparameters α and β:

L = Ltp + αLcl + βLaux +
λ

2
∥Θ∥2, (22)

where λ represents the hyperparameter for regularization, and Θ denotes the
model parameters.

5 Experiment

5.1 Datasets

We use two publicly available real-world large-scale vehicle trajectory datasets
to evaluate our model: Porto Taxi Trajectory Data and T-Drive Trajectory
Data.

• Porto Taxi Trajectory Data. This dataset is from the ECML-PKDD compe-
tition [47], containing over 1.7 million complete trajectories collected from
442 taxis running in the city of Porto from 1st July 2013 to 30th June 2014.
The sampling frequency is once every 15 seconds.

• T-Drive Trajectory Data. This dataset is a sample of T-Drive trajectory
dataset [48] that contains one-week trajectories of 10,357 taxis from Febru-
ary 2 to February 8, 2008. The total number of points in this dataset is
about 17 million and the total distance of the trajectories reaches 9 million
kilometers.

The basic statistics of the two datasets are summarized in Table 2.

Table 2: Basic statistics of two datasets.

Dataset #vehicles (users) #trajectories #locations Time spans

Porto 442 1.7M 8.3M 2013/07/01-2014/06/30
T-Drive 10,357 2.1M 17.6M 2008/02/02-2008/02/08

5.2 Baseline Methods

We compare our method with the following state-of-the-art baselines:
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• ST-LSTM [1]: This is a spatial-temporal LSTM model for next location
prediction.

• STAN [22]: This is an attention-based model, which explicitly uses relative
spatiotemporal information between POIs within the user trajectory.

• CTLE [24]: This is a contextual location embedding method that is built
upon a bi-directional Transformer framework.

• TALE [26]: This is a time-aware location embedding method that incor-
porates temporal information through designing a novel temporal tree
structure for hierarchical softmax calculation.

• Graph-Flashback [19]: This method uses GCN on the learned POI transition
graph to learn the representation of POIs, and then feeds them into RNN-
based models for location prediction.

5.3 Evaluation Metrics and Experiment Setting

5.3.1 Evaluation Metrics

In experiments, we use Mean Absolute Error (MAE) and Root of Mean Square
Error (RMSE) to evaluate the effectiveness of models, which are defined as:

MAE =
1

Ωτ

Ω
∑

i=1

n+τ
∑

j=n+1

dist(yji , ŷ
j
i ) (23)

RMSE =

√

√

√

√

1

Ωτ

Ω
∑

i=1

n+τ
∑

j=n+1

dist(yji , ŷ
j
i )

2, (24)

where Ω denotes the number of trajectories in the test set, and dist(·, ·) rep-
resents the distance calculation function between two latitude and longitude
location points.

5.3.2 Experiment Settings

In experiments, we randomly select 70%, 20%, and 10% of the data in each
dataset as training, testing, and validation sets, respectively.

For baselines, we use the source code released by their authors, adopt the
parameter settings recommended in their papers, and fine-tune them to be
optimal. For our model, we adopt Adam with default parameter setting to
optimize our objective functions. The depth of self-attention is set to 3 on both
datasets. We set the grid size to 80 meters(i.e., the level of gridding is 20),
the learning rate to 0.001, and the batch size to 64. The embedding dimen-
sions of user and time both are set to 12, and the representation dimension of
trajectories (i.e., H) is set to 512. The blocking ratio for mask matrix is set
to 30%. The multi-hop enhancement is set to two hops, the sampling ratio of
down-sampling enhancement is set to 30%, and the segmentation enhancement
adopts random truncation. The training epoch is set to 100 and the dropout
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rate is set to 0.2, however, an early stopping mechanism is used to avoid over-
fitting problems. All models are trained on a Linux server with a 2.60GHz
Intel(R) Xeon(R) Gold 6126 CPU and 2 × 16GB NVIDIA Tesla V100 GPU.

5.4 Experimental Results

5.4.1 Overall Performance

Table 3: Overall performance comparisons for trajectory prediction

Dataset Method MAE Std RMSE Std

Porto

ST-LSTM 876.59 11.39 3395.26 238.19
STAN 613.24 8.36 2578.16 121.83
CTLE 588.95 9.31 2385.60 89.61
TALE 211.44 5.79 1636.35 32.43
Graph-Flashback 209.37 7.11 464.29 22.19
PreCLN 193.15 4.99 432.18 21.86

T-Drive

ST-LSTM 99.31 3.89 1029.74 29.03
STAN 84.93 3.42 714.37 27.14
CTLE 71.21 2.91 603.38 20.18
TALE 68.38 2.73 693.16 23.86
Graph-Flashback 59.33 2.69 337.91 17.83
PreCLN 55.90 2.35 307.95 12.49

The comparison of PreCLN with all baselines on two real-world datasets
is shown in Table 3, where the best is shown in bold.

From the evaluation results, we can observe that our PreCLN framework
achieves the best prediction results as compared to state-of-the-art baselines.
In particular, the relative performance improvement of our PreCLN over the
best-performed baseline Graph-Flashback is 6.23% and 8.58% in terms of
MAE and RMSE on T-Drive dataset. Although Graph-Flashback incorpo-
rates knowledge graph embedding and GCN to learn location representations
and transition patterns between locations, it only relies on RNN model to
learn temporal dependencies. Our PreCLN not only uses Transformer-based
trajectory encoder to efficiently learn the mid- and long-term spatiotemporal
dependencies in trajectories, but also utilizes contrastive learning to enhance
the representation learning ability of the model. In addition, PreCLN signif-
icantly outperforms the pre-trained baseline TALE by average 14.91% and
52.36% improvements in terms of MAE and RMSE on two datasets, respec-
tively. The main reason behind this is that our model combines dual-view
contrastive learning and three auxiliary pre-training tasks to effectively model
and capture spatiotemporal dependencies in trajectories that contribute to tra-
jectory prediction, while TALE only uses pre-training techniques to enhance
the ability to learn location representations that incorporate contextual seman-
tics such as user and time. Additionally, the prediction performance superiority
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can be observed in our PreCLN compared with all competitive methods, which
validates the effectiveness of our pre-trained model with the integration of
dual-view contrastive learn framework and auxiliary pre-training tasks.

5.4.2 Ablation Study
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Fig. 3: Ablation study on auxiliary tasks

To verify the effect of each auxiliary task used in our PreCLN, we fur-
ther conduct the ablation study. We compare our model with eight carefully
designed variations. Despite the changed part(s), all variations have the same
framework structure and parameter settings. The performance of all variations
on two trajectory datasets are shown in Figure. 3

• IMP - This variation only considers trajectory imputation as auxiliary task
during pre-training.

• DP - This variation only considers trajectory destination prediction as
auxiliary task during pre-training.

• TUL - This variation only considers trajectory-user linking as auxiliary task
during pre-training.

• IMP+DP - This variation considers both trajectory imputation and
trajectory destination prediction as auxiliary tasks during pre-training.

• TUL+IMP - This variation considers both trajectory imputation and
trajectory-user linking as auxiliary tasks during pre-training.

• TUL+DP - This variation considers both trajectory-user linking and
trajectory destination prediction as auxiliary tasks during pre-training.

As we can see in Figure 3, all variants significantly perform worse than
PreCLN, which fully validates the effectiveness of all auxiliary pre-training
tasks used in our model in assisting trajectory prediction.

The variations with two tasks are generally better than the variations
with one task (i.e., (TUL+IMP)/(TUL+DP)/(IMP+DP) vs. TUL/IMP/DP),
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which verifies the effectiveness of the pairwise combination of the three
pre-training tasks. More specifically, from the comparisons among the three
single-task variations, it can be seen that both IMP and DP are significantly
better than TUL task on both metrics on two datasets, which reflects that
trajectory imputation task and destination prediction task can better assist
trajectory prediction compared to trajectory-user linking task. That is, for tra-
jectory prediction, the enhancement of short- and long-term spatiotemporal
dependence learning is more important than the enhancement of user prefer-
ence learning. This may be because we have effectively fused user information
through the multimodal embedding layer in trajectory representation learning.
This is also verified by IMP+DP being significantly better than TUL+IMP
and TUL+DP variations. PreCLN model using three auxiliary tasks further
improves trajectory prediction performance, indicating that the three pre-
training tasks can promote each other and strengthen the model’s ability to
learn effective trajectory representations from different aspects.
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Fig. 4: Model performance w.r.t. grid size

5.4.3 Parameter Study

We finally investigate the sensitivity of our PreCLN with respect to the impor-
tant parameters, including grid size and coefficients α and β. We report MAE
and RMSE on two datasets with different parameter settings in Figure 4,
Figure 5 and Figure 6.

As shown in Figure 4, at first, the prediction error of PreCLN decreases as
the grid size increases, and then begins to increase when the grid size is larger
than 80 meters. This is mainly because the grid size setting too large may lose
the spatial information of trajectory locations, since many GPS points share
a grid code. If the grid size is set too small, a large number of grids will be
generated, which increases the grid code length and reduces the spatial cor-
relation between adjacent GPS points, which in turn leads to poor prediction
performance.
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Fig. 5: Model performance w.r.t. α
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Fig. 6: Model performance w.r.t. β

We further study the coefficients α and β which balance weights between
main task and auxiliary pre-training tasks. As we can observe, the prediction
error first drops and then rises as α and β increase on both datasets. Moreover,
our model achieves relatively low prediction errors when α and β fall into a
certain range. However, the performance of PreCLN is worse when α and β
are closer to 0 or 2. This illustrates that trajectory prediction performance
can be significantly improved by considering contrastive learning loss and/or
auxiliary task loss, but too much focus on contrastive pre-training will also
hurt trajectory prediction performance of the model. Additionally, as can be
seen from the results, compared with auxiliary task loss (i.e., β), considering
contrastive learning loss (i.e., α) can reduce the model prediction error faster
in both MAE and RMSE, reflecting that the contrastive learning can integrate
the high-level travel semantics of trajectories with the fine-grained gridding,
which effectively the learning ability of trajectory representation.
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Table 4: Effect of trajectory augmentation strategies

with multi-hop with downsmapling with segmentation w/o all

Dataset MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Porto 223.56 453.85 209.54 391.56 217.60 446.26 275.43 563.29
T-Drive 73.55 389.56 60.57 336.81 68.54 372.29 90.51 427.95

5.4.4 Strategy Study

Effect of Augmentation Strategy.

We now evaluate the effect of the employed three trajectory data augmen-
tation strategies. We report the experimental results in Table 4.

Based on the results on two datasets in Table 4, we have two observa-
tions: (1) All trajectory data augmentation strategies help improve model
prediction performance. (2) The downsampling/missing augmentation per-
forms better than the other two augmentation methods. The reason may be
that the downsampling/missing augmentation method hides some location
points by random sampling, so that more diverse sub-trajectory samples can
be obtained, resulting in better results.

Table 5: Effect of trajectory encoder selection

Hierarchical map gridding Road network mapping

Dataset MAE RMSE MAE RMSE

Porto 193.45 432.18 351.07 534.30
T-Drive 55.90 307.95 81.54 381.27

Effect of Trajectory Encoder Selection. We also evaluate the selection of
different views of trajectory encoder. The experimental results on two datasets
are shown in Table 5. We can conclude that the trajectory prediction per-
formance of the trajectory encoder based on hierarchical map gridding is
significantly better than that of the trajectory encoder based on road network
mapping. This may be because the location encoding based on hierarchical
map gridding uses more fine-grained spatial information, while the location
encoding based on road network mapping only preserves the high-level transi-
tion patterns of trajectories. In addition, the goal of the trajectory prediction
task is to predict fine-grained location points, and it is more reasonable to
choose the trajectory encoder based on fine-grained location encoding view,
i.e., hierarchical map gridding.
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6 Conclusion

In this work, we propose a novel pretrained-based contrastive learning Network
PreCLN for vehicle trajectory prediction. It effectively captures the complex
spatio-temporal dependencies in vehicle trajectories for trajectory prediction
through the designed dual-view trajectory contrastive learning framework with
assistance of three auxiliary pre-training tasks. The experimental results on
two real-life large-scale vehicle trajectory datasets demonstrate the effective-
ness and superiority of our proposed model for trajectory prediction.

Acknowledgments. We also acknowledge the editorial committee’s support
and all anonymous reviewers for their insightful comments and suggestions,
which improved the content and presentation of this manuscript.

Declarations

Human and animal ethics. Not applicable.

Competing interests. The authors have no competing interests to declare
that are relevant to the content of this article.

Authors’ contributions. Bingqi Yan gave the main idea of this paper, pro-
grammed the codes and made experiments. The first draft of the manuscript
was written by Bingqi Yan and Geng Zhao. The material preparation includes
figures, data analysis were performed by Bingqi Yan, Geng Zhao and Lexue
Song. Junyu Dong gave suggestions and help to improve the manuscript. Yan-
wei Yu contributed significantly to preparation and modification of manuscript.
All the authors read and approved the final manuscript of this paper.

Funding. This work was supported by the National Natural Science Foun-
dation of China under grant Nos. 62176243, 61773331, and 41927805, and the
National Key Research and Development Program of China under grant Nos.
2018AAA0100602 and 2019YFC1509100.

Data availability. Two datasets used in this work are publicly avail-
able. The Porto dataset can be downloaded at https://www.kaggle.
com/c/pkdd-15-predict-taxi-service-trajectory-i and the T-Drive dataset
can be found at https://www.microsoft.com/en-us/research/publication/
t-drive-trajectory-data-sample/.

Ethics approval and consent to participate. Not applicable.

Consent for publication. All authors have read and agreed to the
published version of the manuscript.

References

[1] Kong, D., Wu, F.: Hst-lstm: A hierarchical spatial-temporal long-short
term memory network for location prediction. In: IJCAI, vol. 18, pp.
2341–2347 (2018)

https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i
https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/


22 Pretrained-based Contrastive Learning Network for Trajectory Prediction

[2] Shao, K., Wang, Y., Zhou, Z., Xie, X., Wang, G.: Trajforesee: How lim-
ited detailed trajectories enhance large-scale sparse information to predict
vehicle trajectories? In: 2021 IEEE 37th International Conference on Data
Engineering (ICDE), pp. 2189–2194 (2021). IEEE

[3] Hong, H., Lin, Y., Yang, X., Li, Z., Fu, K., Wang, Z., Qie, X., Ye,
J.: Heteta: heterogeneous information network embedding for estimating
time of arrival. In: Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, pp. 2444–2454
(2020)

[4] Chen, Z., Xiao, X., Gong, Y.-J., Fang, J., Ma, N., Chai, H., Cao, Z.:
Interpreting trajectories from multiple views: A hierarchical self-attention
network for estimating the time of arrival. In: Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 2771–2779 (2022)

[5] Rao, X., Wang, H., Zhang, L., Li, J., Shang, S., Han, P.: Fogs: First-
order gradient supervision with learning-based graph for traffic flow
forecasting. In: Proceedings of International Joint Conference on Artificial
Intelligence, IJCAI (2022). ijcai. org

[6] Liu, D., Wang, J., Shang, S., Han, P.: Msdr: Multi-step dependency rela-
tion networks for spatial temporal forecasting. In: Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 1042–1050 (2022)

[7] Yu, Y., Tang, X., Yao, H., Yi, X., Li, Z.: Citywide traffic volume inference
with surveillance camera records. IEEE Transactions on Big Data 7(6),
900–912 (2019)

[8] Li, K., Shang, S.S., et al.: Towards alleviating traffic congestion:, optimal
route planning for massive-scale trips. traffic 7(v8), 9 (2020)

[9] Chen, L., Shang, S., Jensen, C.S., Yao, B., Zhang, Z., Shao, L.: Effec-
tive and efficient reuse of past travel behavior for route recommendation.
In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 488–498 (2019)

[10] Li, K., Shang, S., Kalnis, P., Yao, B., et al.: Traffic congestion alleviation
over dynamic road networks: Continuous optimal route combination for
trip query streams. (2021). International Joint Conferences on Artificial
Intelligence Organization

[11] Shang, S., Ding, R., Yuan, B., Xie, K., Zheng, K., Kalnis, P.: User oriented
trajectory search for trip recommendation. In: Proceedings of the 15th
International Conference on Extending Database Technology, pp. 156–167



Pretrained-based Contrastive Learning Network for Trajectory Prediction 23

(2012)

[12] Shang, S., Chen, L., Wei, Z., Jensen, C.S., Wen, J.-R., Kalnis, P.: Collec-
tive travel planning in spatial networks. IEEE Transactions on Knowledge
and Data Engineering 28(5), 1132–1146 (2015)

[13] Asahara, A., Maruyama, K., Sato, A., Seto, K.: Pedestrian-movement pre-
diction based on mixed markov-chain model. In: Proceedings of the 19th
ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pp. 25–33 (2011)

[14] Mo, B., Zhao, Z., Koutsopoulos, H.N., Zhao, J.: Individual mobility pre-
diction in mass transit systems using smart card data: an interpretable
activity-based hidden markov approach. IEEE Transactions on Intelligent
Transportation Systems (2021)

[15] Gambs, S., Killijian, M.-O., del Prado Cortez, M.N.: Next place prediction
using mobility markov chains. In: Proceedings of the First Workshop on
Measurement, Privacy, and Mobility, pp. 1–6 (2012)

[16] Dai, S., Yu, Y., Fan, H., Dong, J.: Personalized poi recommendation:
spatio-temporal representation learning with social tie. In: International
Conference on Database Systems for Advanced Applications, pp. 558–574
(2021). Springer

[17] Sun, K., Qian, T., Chen, T., Liang, Y., Nguyen, Q.V.H., Yin, H.: Where
to go next: Modeling long-and short-term user preferences for point-of-
interest recommendation. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, pp. 214–221 (2020)

[18] Huang, L., Ma, Y., Wang, S., Liu, Y.: An attention-based spatiotempo-
ral lstm network for next poi recommendation. IEEE Transactions on
Services Computing 14(6), 1585–1597 (2019)

[19] Rao, X., Chen, L., Liu, Y., Shang, S., Yao, B., Han, P.: Graph-flashback
network for next location recommendation. In: Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 1463–1471 (2022)

[20] Li, F., Gui, Z., Zhang, Z., Peng, D., Tian, S., Yuan, K., Sun, Y., Wu, H.,
Gong, J., Lei, Y.: A hierarchical temporal attention-based lstm encoder-
decoder model for individual mobility prediction. Neurocomputing 403,
153–166 (2020)

[21] Dai, S., Wang, J., Huang, C., Yu, Y., Dong, J.: Temporal multi-view
graph convolutional networks for citywide traffic volume inference. In:



24 Pretrained-based Contrastive Learning Network for Trajectory Prediction

2021 IEEE International Conference on Data Mining (ICDM), pp. 1042–
1047 (2021). IEEE

[22] Luo, Y., Liu, Q., Liu, Z.: Stan: Spatio-temporal attention network for next
location recommendation. In: Proceedings of the Web Conference 2021,
pp. 2177–2185 (2021)

[23] Lian, D., Wu, Y., Ge, Y., Xie, X., Chen, E.: Geography-aware sequential
location recommendation. In: Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp.
2009–2019 (2020)

[24] Lin, Y., Wan, H., Guo, S., Lin, Y.: Pre-training context and time aware
location embeddings from spatial-temporal trajectories for user next loca-
tion prediction. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, pp. 4241–4248 (2021)

[25] Guo, Q., Sun, Z., Zhang, J., Theng, Y.-L.: An attentional recurrent neural
network for personalized next location recommendation. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 83–90
(2020)

[26] Wan, H., Lin, Y., Guo, S., Lin, Y.: Pre-training time-aware location
embeddings from spatial-temporal trajectories. IEEE Transactions on
Knowledge and Data Engineering (2021)

[27] Park, S.H., Kim, B., Kang, C.M., Chung, C.C., Choi, J.W.: Sequence-
to-sequence prediction of vehicle trajectory via lstm encoder-decoder
architecture. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp.
1672–1678 (2018). IEEE

[28] Khandelwal, U., He, H., Qi, P., Jurafsky, D.: Sharp nearby, fuzzy far
away: How neural language models use context. In: Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 284–294 (2018)

[29] Liu, Q., Wu, S., Wang, L., Tan, T.: Predicting the next location: A
recurrent model with spatial and temporal contexts. In: Thirtieth AAAI
Conference on Artificial Intelligence (2016)

[30] Yao, D., Zhang, C., Huang, J., Bi, J.: Serm: A recurrent model for next
location prediction in semantic trajectories. In: Proceedings of the 2017
ACM on Conference on Information and Knowledge Management, pp.
2411–2414 (2017)

[31] Han, P., Li, Z., Liu, Y., Zhao, P., Li, J., Wang, H., Shang, S.: Con-
textualized point-of-interest recommendation. (2020). International Joint



Pretrained-based Contrastive Learning Network for Trajectory Prediction 25

Conferences on Artificial Intelligence

[32] Feng, J., Li, Y., Zhang, C., Sun, F., Meng, F., Guo, A., Jin, D.: Deep-
move: Predicting human mobility with attentional recurrent networks.
In: Proceedings of the 2018 World Wide Web Conference, pp. 1459–1468
(2018)

[33] Zhu, Y., Li, H., Liao, Y., Wang, B., Guan, Z., Liu, H., Cai, D.: What to
do next: Modeling user behaviors by time-lstm. In: IJCAI, vol. 17, pp.
3602–3608 (2017)

[34] Li, X., Cong, G., Sun, A., Cheng, Y.: Learning travel time distributions
with deep generative model. In: The World Wide Web Conference, pp.
1017–1027 (2019)

[35] Zhao, Z., Koutsopoulos, H.N., Zhao, J.: Individual mobility prediction
using transit smart card data. Transportation research part C: emerging
technologies 89, 19–34 (2018)

[36] Wang, S., Cao, J., Yu, P.: Deep learning for spatio-temporal data mining:
A survey. IEEE transactions on knowledge and data engineering (2020)

[37] Bahdanau, D., Cho, K., et al.: Neural machine translation by jointly
learning to align and translate. arxiv preprint arxiv: 1409.0473 (2014)

[38] Capobianco, S., Millefiori, L.M., Forti, N., Braca, P., Willett, P.: Deep
learning methods for vessel trajectory prediction based on recurrent neural
networks. IEEE Transactions on Aerospace and Electronic Systems 57(6),
4329–4346 (2021)

[39] Tang, J., Wang, K.: Personalized top-n sequential recommendation via
convolutional sequence embedding. In: Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining, pp. 565–573
(2018)

[40] Chen, M., Zuo, Y., Jia, X., Liu, Y., Yu, X., Zheng, K.: Cem: A convolu-
tional embedding model for predicting next locations. IEEE Transactions
on Intelligent Transportation Systems 22(6), 3349–3358 (2020)

[41] Kang, W.-C., McAuley, J.: Self-attentive sequential recommendation. In:
2018 IEEE International Conference on Data Mining (ICDM), pp. 197–
206 (2018). IEEE

[42] Li, Y., Chen, T., Zhang, P.-F., Yin, H.: Lightweight self-attentive sequen-
tial recommendation. In: Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pp. 967–977
(2021)



26 Pretrained-based Contrastive Learning Network for Trajectory Prediction

[43] Xie, J., Chen, Z.: Hierarchical transformer with spatio-temporal context
aggregation for next point-of-interest recommendation. arXiv preprint
arXiv:2209.01559 (2022)

[44] Ren, H., Ruan, S., Li, Y., Bao, J., Meng, C., Li, R., Zheng, Y.: Mtra-
jrec: Map-constrained trajectory recovery via seq2seq multi-task learning.
In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pp. 1410–1419 (2021)

[45] Yang, C., Gidofalvi, G.: Fast map matching, an algorithm integrat-
ing hidden markov model with precomputation. International Journal of
Geographical Information Science 32(3), 547–570 (2018)

[46] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for
contrastive learning of visual representations. In: International Conference
on Machine Learning, pp. 1597–1607 (2020). PMLR

[47] Kaggle: Kaggle Competition. Website. https://www.kaggle.com/c/
pkdd-15-predict-taxi-service-trajectory-i (2015)

[48] Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y.: T-
drive: driving directions based on taxi trajectories. In: Proceedings of the
18th SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pp. 99–108 (2010)

https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i
https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i

	Introduction
	Related Work
	Next Location Prediction
	Trajectory Prediction

	Problem Definition
	Methodology
	Multi-modal Embedding Module
	Trajectory Data Augmentation
	User and Time Aware Location Embedding Layer

	Dual-view Contrastive Learning Network
	Dual-view Trajectory Contrastive Learning Framework
	Transformer-based Trajectory Encoder

	Multi-Auxiliary Task Pre-training
	Trajectory Imputation Task
	Trajectory Destination Prediction Task
	Trajectory-User Linking Task

	Trajectory Prediction Layer
	Loss Function

	Experiment
	Datasets
	Baseline Methods
	Evaluation Metrics and Experiment Setting
	Evaluation Metrics
	Experiment Settings

	Experimental Results
	Overall Performance
	Ablation Study
	Parameter Study
	Strategy Study


	Conclusion
	Acknowledgments
	Human and animal ethics
	Competing interests
	Authors' contributions
	Funding
	Data availability
	Ethics approval and consent to participate
	Consent for publication





