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Abstract
Representation learning based on temporal knowledge graphs (TKGs)
has attracted widespread interest, and TKG embeddings express time
entity and relation tokens and exhibit strong dynamics. Despite the sig-
nificance of the dynamics and the persistent updates in TKGs, most
studies have been devoted to static knowledge graphs. Moreover, pre-
vious temporal works ignored the semantic hierarchies observed in
knowledge modelling cases, which are common in real-world applica-
tions. Inaccurate semantic expressions caused by incomplete projections
might not capture complex topological structures very well. To solve
this problem, a novel hierarchical time-surface embedding (HTSE)
model is proposed for the representation learning of entities, relations
and time. Specifically, a unified relation-oriented hierarchical space
aims to distinguish relations at different semantic levels of a hier-
archy, and entities can naturally reflect the corresponding hierarchy.
Then, a time surface aims to enhance the temporal characteristics,
and quadruples are learned through exponential mapping and tan-
gent planes in the time surface. According to extensive experiments,
HTSE can achieve remarkable performance on five benchmark datasets,
outperforming baseline models for time scope prediction, temporal
link prediction and hierarchical relation embedding tasks.Furthermore,
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the qualitative analysis is used to demonstrate the explainable strat-
egy for hierarchical embeddings and their significance in TKGs.

Keywords: knowledge graph embedding, semantic hierarchy, time surface,
temporal prediction

1 Introduction
Because obtaining rich semantic information from multirelational graph-
structured data has become a challenge in artificial intelligence research,
multiclass knowledge graphs (KGs) have been proposed and developed for
various applications. These include large KGs, such as YAGO, Wikidata,
Freebase, WordNet, and DBpedia[19], and they have been utilized in numer-
ous mainstream applications, such as automatic question-and-answer systems,
information retrieval systems, and recommendation systems. Traditional static
KGs are known to take the form of triples (s,p,o), where s represents a subject,
p represents a predicate and o is an object. For example, the triple (LeBron
James, plays for, Cleveland) was true at a time node corresponding to 2018.
However, some facts (entities or relationships) in a knowledge base may change
over time, which can lead to conflicts between new facts and previous facts,
thus making the representations of the corresponding KGs inaccurate. For
example, the triple (LeBron James, plays for, Lakers) replaced the previous
triple in 2022.

To accommodate such dynamics, temporal knowledge graphs (TKGs) have
been proposed. In particular, for the commonly used Global Database of
Events, Language, and Tone (GDELT)[13] and the International Crisis Early
Warning System (ICEWS) database[15], TKGs can reflect remarkably impor-
tant differences by incorporating time information into existing graph data in
the corresponding static KGs. This approach can more accurately reflect the
dynamics of facts and the timeliness of real KGs. However, the incomplete-
ness has yet to be addressed in existing TKGs. Thus, related embedding tasks,
such as temporal link prediction, have remained challenging.

TKG embedding is a representation learning method in which time
information, entities and relations are expressed in a time-specific space in
vector form to achieve the transformation of high-dimensional data into low-
dimensional vectors. Several existing mainstream TKG embedding models,
such as HyTE[6], TTransE[12] and ChronoR[19], ignore the algebraic rep-
resentations of curvature vectors and inherent topological information. This
results in the inaccurate projection of vectors in scenarios with rich interactions
between temporal properties and multirelational features in TKGs. However,
a surface model is suitable for this scenario because it can solve this issue by
embedding high-dimensional curvature vectors. Therefore, it is necessary to
explore a time surface model for TKG embedding. This is one of the major
motivations for this work.
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Fig. 1 Details of hierarchy modelling and projection on a time surface

Another major motivation is the ignorance of modelling semantic hierarchy
in existing models. A semantic hierarchy is an indispensable TKG property.
For instance, the quadruple (Rio de Janeiro, capital of, Brazil, 1764-1956) is
true before relocation of the capital to Brasilia, where Brazil is at a higher
level than Rio de Janeiro. In Fig. 1, the quadruple (Obama, born in, Hon-
olulu, 1961-08-04) presents a person born in a city where the city is at a higher
level than the person. More specifically, the ICEWS dataset contains quadru-
ples (Obama, demand, Korea, [2014-04-25]) and (USA, criticize or denounce,
Korea, [2014-04-28]), where a person ’Obama’ is at a lower level than country
’USA’ and ’Korea’ in the hierarchy. Although some works have focused on the
issue of static semantic hierarchs, they have been limited to static embedding
and ignore temporal scenarios. This can lead to an inability to model complex
relations and incomplete semantic expressions. Therefore, it is still challeng-
ing to research a strategy to represent the semantic hierarchy accurately and
effectively in TKGs. Then, it is crucial to explore a time-surfaced model that
can process entities and relations in each TKG hierarchy.

To overcome the above issues and fill the research gaps, this work pro-
poses a novel hierachical time-surface embedding (HTSE) model. First, the
given entities and relations are embedded in a relation-oriented hierarchical
space and can clearly reflect the different hierarchies of importance levels
among the multihierarchical entities connected by each relation. Then, the
resulting quadruples are projected onto a time surface and used to represent
the rich interactions via exponential mapping, which can improve the seman-
tic expression ability of HTSE. Our experiments demonstrate the superiority
of the prediction process and the validity of HTSE hierarchy modelling. We
summarize the significant contributions of this work below.
• To address the issue of ignoring hierarchical knowledge when modelling,

a relation-oriented hierarchical modelling strategy is proposed to capture
semantic hierarchies more completely with regard to the entities and rela-
tions in TKGs. First, three separate imaginary components α, β, and γ are
used in the embeddings of the entities and relations within the hierarchical
space. Then, relations at different semantic levels of the hierarchy can be
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distinguished, and entities can naturally reflect the corresponding hierar-
chy. The processed entities and relations are taken as the quadruple bases
following the introduction of the time attribute.

• A HTSE model is proposed to address the shortcoming of semantic expres-
sion and to capture the deep topology information resulting from uneven
quadruple projections. Different from existing geometry-based methods, in
the proposed approach, the semantic hierarchy space is transformed into a
time surface, and various elements of a quadruple can be expressed on this
time surface first. Next, the time surface is divided into several local mani-
folds by timestamps, and the quadruples are accurately and more intuitively
embedded via an exponential mapping approach. In other words, the sur-
faced embedding model can improve the accuracy of representation learning
with respect to semantic hierarchies and time dynamic characteristics.

• Extensive experiments are conducted on temporal link prediction and time
information prediction. The experimental results show that the HTSE
model can improve the accuracy of embeddings and the capacity for knowl-
edge completion over that of the baseline models. The advantages of the
proposed hierarchical knowledge modelling strategy can be illustrated in
an analysis of hierarchical relation embeddings. Furthermore, the explain-
able strategy for link prediction on different hierarchies is shown in the
qualitative analysis.

The remainder of this work is as follows. The necessary related work is
introduced in Section 2. The main components and training process of the
HTSE model are discussed in detail in Section 3. Extensive experiments are
analysed and presented in Section 4. The paper concludes and provides an
outlook for future development in Section 5.

2 Related Work
According to previous research, related embedding models can be classi-
fied into temporally unaware embedding learning models and temporal-aware
learning models.
Temporal-unaware embedding models: A number of mature static KG
embedding methods have recently become available. To address the issues
of semantic loss and promote the accuracy of complex relation embeddings,
various embedding space models have been proposed, such as the TransE[2],
TransH[23], and TransR[14] models. These translation-based methods fol-
low the principle of the closest distance between entity and relation vectors
and have achieved success. To solve the issue of algebraic ill-posedness and
the insufficient adaptivity of geometric forms, different types of geometric-
based models have been proposed with excellent performance achieved through
link prediction tasks. ManifoldE[24] reviews knowledge representations in a
manifold space in regard to topology. Topology-aware associations are also
effectively exploited between relations in TACT[4]. Furthermore, aiming to
solve issues such as symmetry, antisymmetry and inversional relations using
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linear function, RotatE[20] and LineaRE[18] proposed rotation/liner ideas to
embed the relations of entity pairs into the corresponding space. Static hier-
archical embedding models, such as HAKE[26], [3], HittER[5] and HBE[16],
make use of different operations of hyperbolic reflection to the multiple hier-
archical relation patterns of the model to achieve better results.
Temporal-aware embedding models: Recent studies on TKG embedding
models, including extended models and entity dynamics models, have sought
to enhance the performance of temporal prediction[10]. To make them more
influential and extensible, these methods are actually extensions of previous
static KG models. [12] and [1] focus on introducing relational embedding vari-
ables extended to quadruples to upgrade a static model to a model with a time
attribute, e.g., TTransE, TA-DistMult and DE-SimplE[7]. RE-NET[11] mod-
els a sequence of events through a recurrent neural network event encoder and
an adjacent aggregator. HyTE[6] is based on a hyperplane representation of the
time space and expands the integration of the temporal information and ele-
ment representations into TKGs. DyERNIE[8] introduces dynamic evolution
in the form of a Riemannian manifold to capture the dynamic characteris-
tics of TKGs using velocity vectors. TIMEPLEX[9] is an improved variant
of ComplEx[22] that automatically utilizes the recursive properties of rela-
tions and temporal interactions. Know-Evolve[21] and EvoKG[17] use a deep
evolution network structure based on a knowledge system for temporal reason-
ing. ChronoR[19] captures the rich interaction between temporal knowledge
graphs and multirelation features with a high-dimensional rotation as its
transformation operator.

Our proposed HTSE model is a type of dynamic geometric model. In par-
ticular, HTSE shares similarities with DyERNIE, studying dynamic relation
embeddings based on Riemannian manifolds. However, there are two major
differences:
• The aims are different.

DyERNIE aims to learn multirelational data through dynamic relation
embeddings. Although it can capture the geometric features in a KG, it
ignores the explainable strategy for hierarchical embeddings. Instead, the
HTSE aims to model hierarchical space and provide explicit evidence for
temporal link prediction associated with different hierarchical levels when
modelling hierarchical relations.

• The methods to model temporal information are different.
DyERNIE aims to model temporal relation embeddings with Riemannian
manifolds, which let the entity representations evolve based on a veloc-
ity vector defined at each timestamp. The different methods are limited to
ignoring the weights of hierarchical structures. Instead, the HTSE utilizes
surfaced projections to address the existing drawbacks by assigning sepa-
rate weights to different layers on the local manifold, which significantly
outperforms DyERNIE.
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Another successful existing model is not considered to represent semantic
hierarchy and is limited to nonsurfaced TKG projection. Therefore, a novel
model HTSE is proposed and analysed comprehensively in this paper.

3 The Proposed HTSE
In this paper, a novel HTSE model is proposed and analysed. We empha-
size the process of semantic hierarchy modelling and the derivation of a
time surface embedding space in this section. HTSE contains four parts: a
relation-specific and hierarchy-aware space, a time surface and expo-
nential mapping module, a score function and a training process. Distinct
gradations are present among these four parts.

3.1 Relation-Specific and Hierarchy-Aware Space
A TKG possesses dynamic characteristics among its entities and relations over
time. HTSE transfers entities and relations to a relation-oriented space by
integrating the embeddings of entities and relations to a hierarchy-aware space.

Given a graph containing sets of entities E and relations R, we represent
the algebraic representation learning of entity pairs as h, t ∈ E. Then, we
assume that relation vectors are Ri = [ri1, ri2, . . . , rim] ∈ R at the ith hierarchy
level. As illustrated in Fig. 2, entities and relations are represented by different
coloured circles and directed arrows, respectively, on an equipotential surface
expressed by dashed lines. The three axes form the corresponding semantic
space. In hierarchical graph Gr, the green/blue points at the same level repre-
sent the head/tail entity vectors hi and ti, respectively, and the corresponding
circles represent the embedding modulus of these head/tail entities. Yellow
dots and purple dots denote entities belonging to different hierarchies. The
red arrows indicate the hierarchical relations Ri. This component completes
the triple modelling and supports the transformation to quadruples with time
stamps.

Specifically, given a subgragh Gr = (h, r, t) in hierarchy, HTSE represents
the embeddings of entities within the hierarchical space. The embeddings h′

and t′ of the head and tail entities are represented as:

h′ = hr + αhα,h + βhβ,h + γhγ,h

t′ = tr + αtα,t + βtβ,t + γtγ,t
(1)

, where h′ and t′ form a new hierarchical entity pair, and the hierarchical
relations r ∈ R link these entities to each other, hr and tr ∈ R

n. Three
imaginary components α, β and γ represent the three hierarchical space vector
decomposition units, and αβγ = α2 = β2 = γ2 = −1, hα,h, hβ,h and hγ,h ∈
R

n are the corresponding entity representations.
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Fig. 2 Details of hierarchy modelling and projection on a time surface

3.2 Time Surface and Exponential Mapping
Structured knowledge should be valid only within a specific time range, and
not considering this temporal information can result in dynamic deletions
within fact expressions. Therefore, it is worth proposing a new time surface
model for entities, relation reasoning, and time period prediction. This section
introduces a time surface-aware model that is proposed as an alternative to
existing methods. Specifically, the space processed as discussed in Section
3.1 is defined as Gr, and a time axis passing through Gr is transformed to
incorporate time information. The transformational time surface is set as a
combination of several local manifolds M and tangent planes TpM , represent-
ing the correlations between entities and relations on the surface (as depicted
in Fig. 2). Moreover, expp(v) represents the connection in the time surface
between two time properties of quadruples; it is an exponential mapping from
the starting to ending time stamp, and the temporal relation modelling is rep-
resented by the red real line. The red line lp,v represents the temporal relation
after projection on the time surface.
Definition: If expp : TpM → M ⇔ expp(v) = lp,v(1) exists, expp is an
exponential mapping.

Since the geodesic lp,v is defined locally, expp(v) can only be defined for an
open subset on TpM , for example, by setting Bp(δ) = {v | v ∈ TpM, ∥v∥ < δ},
where δ is a constant associated with point p. The exponential mapping is: ∀
vector v ∈ Bp(δ), ∃lp,v(τ) is the only geodesic, whose parameter value range
is [−1, 1]; hence, expp(v) = lp,v(1) holds. The geometric significance of the
exponential mapping means that expp(v) is the point starting from p with the
initial tangent vector v of length ∥v∥. From the properties of geodesic lp,v(τ),
we know that

∥

∥

∥

d(lp,v(τ))
dτ

∥

∥

∥
is an invariable constant. Then, we can obtain that
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d(lp,v(τ))
dτ

|τ=0 = v from the curvature, that is, the initial tangent vector v,
∥

∥

∥

d(lp,v(τ))
dτ

∥

∥

∥
≡ ∥v∥. At the same time, expp(v) = lp,v(1), p = lp,v(0), is known

for deriving the arc length from point p to expp(v) as follows:

∫ 1

0

∥

∥

∥

∥

d (lp,v(τ))

dτ

∥

∥

∥

∥

dτ =

∫ 1

0

∥v∥dτ = ∥v∥ (2)

. Therefore, the arc length at point p along the geodesic to expp(v) is exactly
equal to ∥v∥, as depicted by the red curve in Fig. 2. Finally, expp(τ) =

d exp
p
(τ)

dτ

is obtained. This proves the feasibility of the exponential mapping.
By analysing Fig. 2 and combining it with the above derivation procedure,

the temporal relation in the time interval [τi, τi + τ ] can be defined as:

rτ = expp (v0τ) + r0 (3)

where τi is the starting time stamp in the local manifold and r0 ∈ M is the
initial relation vector indicating the initial embeddings without time fluctu-
ations. v0 ∈ TpM represents the temporal relation-specific curvature vector,
which is defined in a tangent space that captures the dynamic features of the
relations and entities over a time transformation. Graphic relations are based
on derivations from the initial embeddings in combination with a tangent vec-
tor to easily represent the stationary semantics of relations/entities. Then,
special attention is given to additional temporal information. The final three-
component element is represented as (hr, rτ , tr), and a time component can
be added to form a new quadruple (hr, rτ , tr, [τ1 : τ2]).

3.3 Score Function
To develop an adaptive measurement to support the score function, we adopt
the standardized Euclidean distance. The standardized Euclidean distance
measurement method has been demonstrated to be the most accurate method
for calculating the distance between vectors. This method can overcome the
inaccuracy of traditional methods caused by the uneven distribution of data
in each dimension, which can lead to low link prediction accuracy. For this
purpose, each component is first standardized to an equal mean variance to
balance the dimensional components as follows. We set the standard deviation
of the weighted vector for entities/relations to Sk, and the score function of
HTSE(control) is

f(h, r, t, τ) =

∥

∥

∥

∥

∥

n
∑

k=1

hr + rτ − tr
Sk

∥

∥

∥

∥

∥

2

− µ ∥rτ − r∥2 (4)

To model these relations better, we incorporate the idea of error control to
extend HTSE. ∥rτ − r∥2 aims to ensure that the time-specific relation vector
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rτ is the best nearest neighbour for calculating the distance from the original
vector r, and µ can control the constraint as a hyperparameter.

3.4 Training
We explore the set of negative samples. A negative sampling method for tem-
poral perception is proposed to emphasize temporal information that considers
all quadruples in a TKG. Similar to previous works, the ranking loss based on
a marginal style is minimized as follows:

L =
∑

τ∈T

∑

x∈Q
+
τ

∑

y∈Q
−
τ

max (0, fτ (x)− fτ (y) + γ) −µ ∥rτ − r∥2 (5)

where Q+
τ are valid quadruples, and Q−

τ are negative samples, both of which
contain time information.

{Q−
τ = {(h′, r, t′, τ) | {h′ ∈ E} ∪ {t′ ∈ E} , (h′, r, t′, τ) /∈ Q+

τ } (6)

where γ is defined as the margin between Q+
τ and Q−

τ , µ ∥rτ − r∥2 controls
the extension error, the relation-specific weight vector satisfies ∥wr∥2 = 1,
∥hr∥2 , ∥tr∥2 , ∥rτ∥2 ≤ 1, and µ ∈ [0, 1), ∀τ ∈ T .

Since the model possesses a geometric structure, we make use of Rieman-
nian stochastic gradient descent (RSGD)[8], in which the Riemannian gradient
∆RL is obtained by normalizing the ∆E Euclidean gradient with respect to
the inverse of the metric tensor of the time surface.

The characteristic HTSE steps are shown in Algorithm 1. The triples of the
quadruples in the datasets are introduced as inputs in ∆ = (h, r, t). Then, we
process the relations and entities separately by calculating entropy values ej to
model the unified relation-specific and entity-weighted spaces. In addition, it
is necessary to adopt exponential mapping on the time surface T by projecting
time-aware space and providing accurate calculations. Finally, the projected
vectors and time information on the surface can be obtained. It is obvious
that the weighted process and the emphasis on time attributes are incisively
and vividly reflected by displaying (1) and (3) in the whole process.

4 Experiment
Extensive experiments are performed on benchmark datasets, including
YAGO11k, Wikidata12k[25], ICEWS14, ICEWS05-15[1] and GDELT[8]. The
experimental results are compared with those of several representative models.
Our goals are as follows.
• Evaluating our model and comparing it with static and dynamic models in

terms of temporal link prediction.
• Illustrating the advantage of HTSE based on surfaced projection with

respect to temporal scope prediction.
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Algorithm 1 HTSE Time Surface Estimation
Input: Entity pairs h and t, relations r, transformed vectors vh,r,· and vt,r,·;

Three hierarchical space vector decomposition units α, β and γ;
Initial relation r0, initial curvature vector v0
local manifold M , time surface T
segment K: K1,K2, . . . ,Km, tangent plane TpM

Output: Projected entity and relation vectors on the time surface: h′, t′ and
rτ

1: for i = 1 : k do
2: for j = 1 : m do
3: r ∼ U(N(j)) and r ∼ U (Ki\{m})
4: vh,r,· = vh ⊗ (αhα,h + βhβ,h + γhγ,h)
5: vt,r,· = vt ⊗ (αtα,t + βtβ,t + γtγ,t)
6: end for
7: rτ = expp (v0t) + r0
8: end for
9: h′ = hr + αhα,h + βhβ,h + γhγ,h

10: t′ = tr + αtα,t + βtβ,t + γtγ,t
11: rτ = expp (v0τ) + r0

Table 1 The sizes of the categories contained in the five benchmark datasets

Dataset #Entities #Relations #Train #Validation #Test

YAGO11k 10622 10 16408 2051 2050
Wikidata12k 12554 24 32497 4062 4062
ICEWS14 7128 230 72826 8941 8943
ICEWS05-15 10488 251 368962 46275 46092
GDELT 7691 240 1734399 238765 305241

• Analysing the differences between the results of the state-of-the-art (SOTA)
models and HTSE regarding hierarchical relation embedding.

• Presenting queries based on fact datasets to demonstrate the strategy
validity of our model for hierarchical embeddings.

4.1 Fundamental Setup
The abovementioned datasets contain facts associated with time annotations.
The dataset statistics are summarized in Table 1. The hyperparameters and
optimization procedure are presented in the experimental implementation
details.

Baselines and Evaluation Protocol To provide an overall presentation
of the superiority of HTSE, we select several excellent representative learning
models with static and temporal properties as our baselines. Specifically, we
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use TransE[2] and RotatE[20] as representative static models. As represen-
tative TKG embedding models, we choose the corresponding baselines, i.e.,
HyTE[6], DyERNIE[8], TIMEPLEX[9] and ChronoR[19]. We adopt the MRR
and Hits@n (n=1,3,10) standard metric models to evaluate the link prediction
performance. For each quadruple q = (h, rτ , t, τ) in the test set Qτ , |Qτ | is the
size of Qτ , MRR = 1

|Qτ |

∑|Qτ |
i=1

1
ranki , where rank i denotes the ranking of the

first correct answer in the ith Qτ , and Hits@n is defined in [2].
Furthermore, similar to the operations executed under the ’raw’ and ’fil-

tered’ settings in TransE[2], inspired by [9], we report a filtered version of
Hit@3. Specifically, we replace the head/tail entities with other entities when
testing quadruples during evaluation. The resulting corrupted quadruples may
be correct. The ’raw’ and ’filtered’ indices are treatments for the test set, where
the ’filtered’ is the correct quadruple filtered out of the corrupted quadruples.

Experimental Implementation Details To present an impartial com-
parison between HTSE and the baselines, we utilize the experimental setup
for the classic HyTE and DyERNIE baselines as our experimental basis and
select the optimal parameters for each model. Then, we use RSGD to train
the baselines and optimize the hyperparameter setups in accordance with
the MRRs obtained on the validation set. We set the maximum number
of epochs to 5000 and fix the minibatch size to 1024. The remaining set-
tings are as follows: the embedding dimensions d = 100, 200, 300, 500, 1000,
the learning rate lγ = 0.05, 0.001, 0.005, 0.01, 0.1, η = 1, 3, 6, 12, the margin
γ = 3, 6, 12, 36, 48, 120, and the error control parameter µ is varied in the range
[0, 1].

4.2 Temporal Link Prediction
In the evaluation, we aim to illustrate the advantages of our model with respect
to hierarchy and time surface modelling in comparison with other models.
TransE[2] and RotatE[20] are experimentally chosen for comparison due to
their common embedding space and lack of consideration for temporal dynam-
ics and hierarchies. HyTE[6], TIMEPLEX[9], DyERNIE[8], and ChronoR[19]
are chosen due to their use of hyperplanes, Euclidean distances, complex spaces
and Riemann manifolds instead of surface models.

The significant task is to predict the missing entity for an incomplete
quadruple. Unlike previous works involving static KGs, this task can predict
missing entities for quadruples in a TKG. More formally, for negative samples
derived from the gold-standard quadruple (h, rτ , t, τ), we perform prediction
on two categories: (h, rτ , ?, τ) and (?, rτ , t, τ). Following the same filtered
DyERNIE[8] settings, we evaluate our model with the MRR and Hits@1, 3, 10
metrics mentioned in the 4.1 Evaluation Protocol. The results obtained with
the above experimental settings are presented in Table 4.2.

Results and Observations From Table 4.2, on the YAGO11k and Wiki-
data12k datasets, HTSE produces excellent link prediction results compared
with those of the promising HyTE, TIMEPLEX and DyERNIE models as well
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Table 2 Temporal link prediction performance on the datasets

Static model Temporal model

Model TransE RotatE HyTE ChronoR DyERNIE TIMEPLEX HTSE(C)

YAGO11k

MRR .103 .167 .136 .248 .214 .246 .251±.004
H1 .060 .103 .132 .253 .243 .169 .260±.003
H3 .183 .197 .213 .335 .334 .389 .407±.001
H10 .244 .305 .301 .344 .491 .484 .518±.003

Wikidata12k

MRR .178 .221 .253 .375 .402 .336 .411±.001
H1 .121 .116 .147 .147 .275 .228 .301±.004
H3 .192 .239 .197 .209 .417 .477 .469±.004
H10 .344 .461 .483 .489 .589 .532 .603±.004

GDELT

MRR .113 .203 .118 .230 .457 .470 .503±.001
H1 .000 .204 .000 .141 .387 .312 .371±.003
H3 .158 .277 .165 .248 .479 .427 .502±.005
H10 .312 .389 .326 .403 .589 .599 .621±.001

ICEWS-14

MRR .283 .400 .298 .526 .669 .604 .674±.002
H1 .094 .388 .108 .418 .599 .601 .620±.001
H3 .367 .480 .416 .592 .714 .515 .726±.006
H10 .638 .724 .655 .725 .797 .771 .819±.004

ICEWS05-15

MRR .294 .575 .316 .513 .739 .640 .759±.005
H1 .090 .388 .116 .392 .679 .546 .720±.009
H3 .354 .522 .445 .578 .773 .787 .766±.003
H10 .663 .709 .681 .748 .855 .818 .878±.004

as the traditional static models by virtue of considering a projected time sur-
face instead of a traditional space, which can allow high-dimensional data to be
more accurately captured. Moreover, the experimental results show improve-
ments greater than 4% in terms of both the MRR and Hits@10 metrics. These
findings suggest that the hierarchy modelling in our model is more adaptable
than other methods for link prediction.

From Table 4.2, on the GDELT dataset, HTSE also achieves somewhat
better performance except in terms of the Hits@1, as this metric may be
affected by the time stamps of the validation facts. According to the other
results, the temporal models are superior to the static models, thus demon-
strating the significance of capturing time information. On the ICEWS14 and
ICEWS05-15 datasets, the results of HTSE are also superior to those of the
existing excellent models on average due to the more accurate expressivity in
our model.

Overall, HTSE outperforms the other models in terms of link prediction
due to its advantages of hierarchy modelling and more accurate projections
to preserve temporal interactions. In addition, error control is beneficial for
improving the results because it can ensure that the time-specific relation
vector rτ for calculating the distance from the original vector r is the best
nearest neighbour.

Link Prediction Performance over Time To clearly and comprehen-
sively illustrate the superior performance of HTSE in terms of future temporal
link prediction performance over time, we take the time information as an
index and present corresponding comparisons on the ICEWS, GDELT, Wiki-
data and YAGO datasets, as depicted in the line chart in Fig. 3. Specifically,
the vertical axis filtered Hit@3 represents the Evaluation Protocol in Section
4.1, and the horizontal axis includes different time stamps (day, month and
year). Here, we present the performance of HTSE under the ’filtered’ settings
to show that it exhibits superior temporal link prediction capabilities over
time after the removal of corrupted validations or test triples. Furthermore,
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Fig. 3 Results of temporal link prediction for future time stamps

we choose HyTE[6], DyERNIE[8], ChronoR[19] and TIMEPLEX[9] for com-
parison because of their poor projection abilities and the fact that they ignore
hierarchies.

Fig. 3 shows that the performance of these models fluctuates at different
time stamps. We notice that HTSE, corresponding to the red line, con-
sistently outperforms the other models for different time intervals, and its
performance varies irregularly over time. Furthermore, this finding suggests
that hierarchy modelling and surface projection achieve enhanced link predic-
tion performance over time compared to that of other models. Inspired by
these results, we consider that future performance can be predicted by simu-
lating and fitting numerical curves following an existing time sequence. This
is beneficial for addressing the issue of predicting future time periods.

4.3 Temporal Scope Prediction Results
In this part, we focus on illustrating the advantage of HTSE based on surface
projection for temporal scope prediction. Inspired by [9], the PG score func-
tion is proposed to evaluate the accuracy of time stamp completion and the
temporal information prediction results obtained in TKG embeddings. In addi-
tion, we test the results on the ICEWS14, ICEWS05-15 and GDELT datasets.
HyTE [6], TIMEPLEX [9], DyERNIE [8], and ChronoR [19] are chosen for
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Table 3 PG scores obtained for temporal information prediction

Model HyTE DyERNIE TIMEPLEX ChronoR HTSE(Our)

*ICEWS14 44.3% 70.0% 53.9% 70.2% 69.5%
*ICEWS05-15 39.1% 70.4% 63.0% 63.9% 71.3%
*GDELT 36.6% 61.6% 55.6% 62.8% 64.2%

comparison because these models have certain abilities to predict temporal
scopes, and none of them focus on hierarchical knowledge representations and
surface projections.

Considering the scarcity and completeness of facts in a TKG, the ability to
predict time information is indispensable. We wish to predict the time instance
and time interval that target a given test quadruple (h, rτ , t, ?). According to
the established time surface, the relations and entities are projected onto this
surface to check the plausibility of the test triple.

To correctly predict the temporal interval, we should make use of the opti-
mal nearest fact. Specifically, for (h, rτ , t, ?), the gold-standard time interval
is Tgold = [tsg, t

e
g] (which consists of the starting and ending time stamps of

a true fact), and this interval should be compared to the predicted interval
Tpre = [tsp, t

e
p] to determine the similarity of the prediction to the true fact.

In terms of the chosen evaluation metrics, the metric in TKBC [9] is not
entirely applicable to this task because it is designed to address the prob-
lem of large differences in the time proportion for the TAC metric [9]. For
instance, two groups of intervals exist, golden interval [2014, 2017] compared
with predicted interval [2010, 2013] and golden interval [7, 10] compared with
predicted interval [11,14]. Although the two groups share the same TAC score
[

1
1+|t1

s
−t2

s
| +

1
1+|t1

e
−t2

e
|

]

, the former time proportion is obviously less than the
latter. That is, a 4-year difference in 10 years may usually be considered more
serious than in 2010. However, the time proportion in datasets cannot be large
for this task. In response, we set the PG score function as a metric inspired
by improving the TAC metric with a two-parametric calculation to enhance
the accuracy of the score results.

Specifically, the difference PG between two time intervals/scopes can be
calculated as:

PG =
1

1 + tsp − tsg
+

1

1 + tep − teg
(7)

The score function PG serves as a criterion for evaluating the accuracy of
time predictions. As tsp − tsg, t

e
p − teg → 0, PG approaches its maximum value,

i.e., PG →
√
2. Thus, the higher the PG score (which is subject to the

condition 0 < PG <
√
2), the closer the predicted time interval is to the

gold-standard value for a given fact. The results of TTransE, TIMEPLEX,
DyERNIE, HyTE and HTSE are compared in Table 3. Note: the scores are
converted to percentages with a maximum score
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As indicated in this table, the results of HTSE, TIMEPLEX and DyERNIE
are vastly superior to those of HyTE and TTransE. These findings show that
a more adaptive projection space can result in better performance in terms
of PG. Moreover, the results of 71.3% and 64.2% achieved by HTSE on the
ICEWS05-15 and on GDELT datasets, respectively, are both the highest val-
ues. On the ICEWS14 dataset, our model is slightly inferior to DyERNIE
and TIMEPLEX because of a few redundant entities in the datasets. HTSE
outperforms DyERNIE and TIMEPLEX due to its innovative time surface,
which offers higher representative power and thus improves the accuracy of
the predicted temporal intervals. It is worth mentioning that DyERNIE and
ChronoR are second only to HTSE, which further illustrates the benefits of
utilizing specific geometry-based methods to enhance the performance of tem-
poral scope inference by addressing the issue of incomplete projections in the
embedding process. In other words, the surface projection benefits the presen-
tation of temporal semantic information based on a given triple. This would
be an exciting conclusion of this research.

4.4 Analysis of Hierarchical Relation Embeddings
In this part, we aim to demonstrate that the HTSE model can effectively model
hierarchical entities and relations at different levels by introducing a modulus
in relation embeddings inspired by [26]. In addition, it is shown that HTSE
is more accurate than the similar DyERNIE[8] model for entity matching
at three types of hierarchical levels because it comprehensively analyses the
embeddings of the hierarchical relations.

In Fig. 4, the distribution histograms concerning three types of relations are
presented with the corresponding hierarchies. These relations are chosen from
the ICEWS, GDELT, Wikidata and YAGO datasets. Specifically, the compar-
ison involves three groups of examples concerning three types of hierarchical
relations.

1. As shown in (a) and (d) in Fig. 4, the relations ”is_affiliated_to” in
the YAGO dataset and “city_of” in the GDELT dataset indicate that the
head entities are at lower semantic hierarchies than the corresponding tail
entities.

2. As (b) and (e) in Fig. 4, the entities linking the relations ”make_a_visit”
in the ICEWS dataset and ”is_married_to” in the YAGO dataset are at
the same semantic hierarchy.

3. As shown in (c) and (f) in Fig. 4, the relations ”has_part” and ”has_cause”
in the Wikidata dataset mean that this situation is exactly the opposite of
(a) and (d) in the first item.

Similarly, we set hm and tm as each entry of head and tail entities, that is, the
corresponding moduli are hm and tm. Then, following [26], we formulate cor-
responding relations as follows: rm = h−1

m ◦ tm. Therefore, we can obtain the
modulus of relations as rm. Experientially, the moduli of rm = 1 indicate the
same hierarchy. Notably, a smaller modulus (the horizontal axis) indicates a
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Fig. 4 Distribution histograms of hierarchical relation embeddings for several temporal
datasets

Table 4 Case study for a query based on a different hierarchy

Query1: (Malaysia, host_a_visit, ?, 2014− 02− 14)
Candidate condition: C0: Malaysia C1: Barack Obama C2: United States
Requirement: ∥C0∥ > ∥C1∥ and Lower hierarchy Confirmed answer: C1

Query2: (?, Demand,Citizen, 2014− 08− 01)
Candidate condition: C0: Citizen C1: United Kingdom C2:Lawyer/Attorney
Requirement: ∥C0∥ = ∥C2∥ and equal hierarchy Confirmed answer: C2

Query3: (?, owns,Buffalo_Stadium, 1961− 1963)
Candidate condition: C0: Malaysia C1: Houston_Astros C2: JimmyWynn
Requirement: ∥C0∥ < ∥C1∥ and higher hierarchy Confirmed answer: C1

lower semantic hierarchy. On this basis, we hope that a smaller model variance
and a tighter distribution lead to clearer hierarchy modelling effects. Specifi-
cally, moduli < 1, and most entries are located on the left side of moduli = 1
in cases (a) and (d), illustrating the lower hierarchies of the head entities.
Cases (c) and (f) are contrary to cases (a) and (d). Moreover, as indicated in
Fig. 4, our HTSE model (the blue one) corresponds to a much tighter distribu-
tion than DyERNIE (the orange one), which represents a smaller variance and
precisely proves our expectation. In conclusion, this experiment demonstrates
that our model can model hierarchical relations and distinguish corresponding
entities better than a similar model.

4.5 Qualitative Analysis
To demonstrate the explainable strategy for hierarchical embeddings in our
model, we present some queries, corresponding candidates and requirements
to evaluate the confirmed answer. Table 4 shows queries based on different
hierarchies. For example, the query 1 means that ’Who is host the visit in
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Malaysia? ’, we may compare the candidate ’Barack Obama’ with ’United
States’, then choose ’Barack Obama’ as the confirmed answer because of the
requirement ’Lower hierarchy and smaller moduli’. For the query 2 and query
3, we confirm corresponding answers based on their respective requirements.
These cases fit true facts in real datasets, which can prove that hierarchy is
very meaningful for temporal knowledge graph completion.

5 Conclusion
In this work, a novel time surface-aware model for embedding is proposed to
learn significant representations from TKGs. Our model employs a relation-
oriented hierarchy modelling strategy to address the issue of ignoring semantic
hierarchies. Another issue concerns the inaccurate semantic expressions caused
by the limitations of incomplete projections. To address this issue, we use a
time surface model with exponential mapping to enhance the representations
of temporal characteristics. Experimental results indicate that HTSE achieves
promising results and outperforms its geometric counterpart and other SOTA
models. It demonstrates the advantages of utilizing surface-based spaces and
hierarchical modelling for inference and prediction tasks in TKG embeddings.
Furthermore, we believe that enhancing the interpretability of temporal causal
embeddings will be the focus of future research.
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