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Abstract
Given a user dataset U and an object dataset I , a kNN join query in high-dimensional space
returns the k nearest neighbors of each object in datasetU from the object dataset I . The kNN
join is a basic and necessary operation in many applications, such as databases, data mining,
computer vision, multi-media, machine learning, recommendation systems, and many more.
In the real world, datasets frequently update dynamically as objects are added or removed. In
this paper,we propose novelmethods of continuous kNN join over dynamic high-dimensional
data. We firstly propose the HDR+ Tree, which supports more efficient insertion, deletion,
and batch update. Further observed that the existing methods rely on globally correlated
datasets for effective dimensionality reduction, we then propose the HDR Forest. It clusters
the dataset and constructs multiple HDR Trees to capture local correlations among the data.
As a result, ourHDRForest is able to process non-globally correlated datasets efficiently. Two
novel optimisations are applied to the proposed HDRForest, including the precomputation of
the PCA states of data items and pruning-based kNN recomputation during item deletion. For
the completeness of the work, we also present the proof of computing distances in reduced
dimensions of PCA in HDR Tree. Extensive experiments on real-world datasets show that
the proposed methods and optimisations outperform the baseline algorithms of naive RkNN
join and HDR Tree.

Keywords K nearest neighbors · KNN join · Dynamic data · High-dimensional data

1 Introduction

The k-Nearest Neighbor (kNN) join problem is fundamental in many data analytic and data
mining applications, such as classification [1–3], clustering [4, 5], outlier detection [6–10],
similarity search [11–13], etc. It can also be applied in some applications of the healthcare
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domain, such as for anomalies detection in healthcare data [14], multiclass classification [15],
emotion classification [16], similarity search [17], to detect autism spectrum disorder (ASD)
children [18], etc. Given a query datasetU and an object dataset I in high-dimensional space,
a kNN join query returns the kNN of ALL objects in dataset U from dataset I . For example,
social media platforms like YouTube, Netflix, Twitter, Facebook, and others use kNN join to
represent people and content as feature vectors in a high-dimensional space so it can make
suggestions based on what people like. E-commerce recommendation systems use kNN join
similarly to suggest products to customers so that they are more likely to buy them.

Inmanymodern uses of kNN join, like the ones listed above, data is being created at a very
fast rate. According to Twitter, approximately 350, 000 in tweets were sent per minute [19].
In many modern uses of kNN join, data is being created at a very fast rate. To utilise the
newly generated data to provide an up-to-date and timely response, there emerges a demand
for an efficient kNN join on highly dynamic data.

We can see from existing work that the vast majority of existing kNN join approaches [9,
20–24]workwith static data. For thesemethods toworkwith dynamic data, the kNN join to be
recalculated from scratch every time the object dataset is updated, such as when a new object
is added, or an old one is removed. This leads tomassive processing time and causes extremely
high latency. Yu et al. [25] devised the high-dimensional kNNJoin+ algorithm to dynamically
update newdata points, enabling incremental updates onkNN join results.But because itwas a
disk-based technique, it could notmeet the real-time needs of real-world applications. Further
work by Yang et al. [26] proposes the index structure of High-dimensional R-tree (HDR
Tree) on dynamic kNN join (DkNNJ). It identifies data nodes whose kNN are affected by the
inserted data and updates only the affected data points to avoid redundant computation. In
addition,HDRTree performs dimensionality reduction through principal component analysis
(PCA) and clustering to further prune candidates.

For update operations, insertion and deletion are the most fundamental operations. Refer-
ring to existing techniques, they primarily focus on the insertion operation. For every deletion
of a data item, they have to recompute the kNN for all query points as in static solutions,
which results in high time complicity and inefficiency. The results of a kNN join are updated
by existing algorithms on every update operation, and none of them supports batch updates.
Considering the fast growth of high-velocity streaming data, these approaches significantly
limit the performance of dynamic kNN join on large datasets. To address these issues, we
came up with lazy updates, batch updates, and optimised deletions in our previous work [27].
We design a lazy update mechanism. It identifies the users whose kNN should be updated
on insertions and deletions and marks them as “dirty” nodes in the HDR Tree. The actual
updating computation is delayed until the kNN values of the affected users are required. In
batch updates, for a given batch of updates (i.e., insertions and deletions), we propose not
to update the results immediately for each new item. Instead, we find out which users are
affected by the batch of updates before we update them. It helps avoid redundant computa-
tion. Item deletions in kNN join are costly operations. We need to search all affected users
and update their kNN list for any deletion operation. Thus, we propose to maintain a reverse
kNN table for all items to speed up the process of searching for affected users.

This paper extends the paper Efficient kNN Join over Dynamic High-dimensional
Data [27]. Compared to the conference version, we further identify and address the fol-
lowing problems in existing solutions for kNN join over dynamic high-dimensional data,
which are listed below:

1. Non-globally correlated data. Existing algorithms [25–27] heavily rely on global corre-
lation in the datasets for effective dimensionality reduction. However, real-world datasets
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are usually not globally correlated [28, 29]. Consequently, existing algorithms may fail
to capture distinct features on non-globally correlated data.

2. Redundant PCA Computation. Earlier, every time a new item was inserted or deleted, we
had to recompute the transformed dimensionality of that item based on the dimension of
that level. This creates redundant PCA computation, which is very costly.

3. Inefficient Recomputation during Deletion. For each deletion of object data, they need
to recompute the kNN for all query points as in static solutions, which results in
high time complicity and inefficiency. In our previous work [27], we proposed main-
taining the RkNN table to accelerate the process of RKNN search when deletion.
However, the updating process of the affected kNN lists is still costly and can be further
optimised.

To address the above shortcomings, we present new techniques and optimisations for
kNN join over dynamic high-dimensional data in this paper. Our proposed techniques support
efficient searching, improvised insertion, and optimised deletion. It computes the kNN join in
themainmemory and adopts our newHDRForest to reduce the cost of the in-memory search.
Further optimisations are presented in this work to enhance the effectiveness of our approach.
Compared to the conference version being extended [27], the additional contributions of this
paper can be summarised as follows:

1. The HDR Forest. We propose the HDR Forest to provide efficient processing of non-
globally correlated datasets. An HDR Forest constructs multiple local HDR Trees built
by local data and local PCA matrices. It fully makes use of the PCA features of local
correlation instead of global correlation to capture distinct features among non-globally
correlated datasets.

2. Precomputation of the PCA States.We propose to precompute the PCA states of all item
vectors in advance and index them in the tree. By doing so, we managed to avoid the
redundant PCA computation in previous algorithms to speed up updates.

3. Pruning-based kNN Recomputation during Deletion. We propose a pruning-based opti-
misation during deletion. Specifically, we derive an upper bound of distance to prune
unpromising items when recomputing the kNN of affected items. This optimisation sig-
nificantly reduces the number of computing the distance on full-dimensions between the
affected user and all the items in the sliding window when items are deleted.

4. Extensive Experiments and Additional Proof. Extensive experimental analysis on various
real-world high-dimensional datasets has been conducted to evaluate the performance
of the proposed methods. The results show that our HDR+ Tree and HDR For-
est significantly outperform the existing algorithms of continuous kNN join over
dynamic high-dimensional data. In addition, we present the proof of the theorem that
distPC A(V1, V2) ≤ dist(V1, V2) used in HDR Tree for the completeness of the paper,
as the previous report [30] with the proof is no longer accessible.

Outline The rest of this paper is organised as follows. Initially, we define the problem and
discuss preliminaries in Section 2. We review the related work in Section 3. We dedicate
Section 4 for a brief summarisation of the HDR Tree, and we also provided the proof of
distance computation in the reduced dimension theorem. In Section 5, we discussed the
previous optimisations, followed by the proposed ones.We discuss the proposed HDR Forest
inSection6. Section7presents the experimental results and analysis, followedbya conclusion
in Section 8.
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2 Background

2.1 Problem definition

This section provides the definitions for kNN join, reverse kNN join, kNN search, and
dynamic kNN join operations. Throughout this paper, we refer to U and I as the User and
Item sets for kNN join operations. Table 1 summarises frequently used symbols. We focus
on the problem of continuously processing a kNN join while handling a sliding window of
items. For each user in U = {u1, u2, . . . , un} we search for the k nearest neighbor items in
the item set I = {i1, i2, i3, . . . , ik} in d-dimensional space. We formally define kNN join in
Definition 1.

Definition 1 (kNN Join) Let U = {u1, u2, . . . , un} be a user dataset of a set of user data
points, and I = {i1, i2, . . . , im} be an itemdataset of a set of itemdata points in d-dimensional
space Rd , the function d(ui , i j ) to compute the distance between two data points ui and i j
be the Euclidean distance function, and k be a positive natural number. Then, the result of
the kNN Join query is a set kN N J (U , I , k) ⊆ U × I , which includes for every point of

Table 1 Summary of symbol and definitions

Symbols Definitions

U , I User set and Item set

u, i User and Item

W Sliding window

k Number of nearest neighbors

d, r Dimensionality of original and reduced dataset

R, Rp kNN and RkNN set

f Fanout

l Level of tree

d(l) Number of dimensions reserved on the l level of the HDR Tree

PCA(i) The low-dimensioal vector produced by PCA projection from the item i

PC Ad (i) The vector with d dimensions reserved produced by PCA from the item i

L Height of tree

Ci The i-th Cluster

dist Distance

distPC A Distance of two low-dimensional vectors produced by PCA transformation

dknn Distance from the user to its k-th nearest neighbor

distPC A(d) Distance of two low-dimensional vectors produced by the first d row vectors of the
PCA matrix from the full-dimensional vectors

maxdknn Maximal dknn value of the users in a cluster

X , V , T Matrix

n,m, N , M The size of a set

radius The radius of a cluster on full-dimensions

radiusPC A The radius of a low-dimensional cluster whose user vectors are produced by PCA
transformation from their full-dimensional states.

center The center of a cluster
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U (ui ∈ U ), it finds the k closest neighbours in I : kN N J (U , I , k) = {(ui , i j ) : ui ∈
U , i j ∈ kN N (I , ui , k)}.

For any update operation in dynamic data, it is necessary to search for the affected
users [26]. This refers to a reverse kNN (RkNN) join as defined in Definition 2. We use
RkNN [31] to check for the set of users affected by an item’s insertion/deletion operation
and update the kNN result accordingly.

Definition 2 (Reverse kNN Join) U = {u1, u2, . . . , un} be a user dataset of a set of user data
points, and I = {i1, i2, . . . , im} be an itemdataset of a set of itemdata points in d-dimensional
space Rd , the Euclidean distance function d(ui , i j ) compute the distance between two data
points ui and i j and the natural number k ∈ N

+. Then, the results of reverse kNN Join with
respect to the query data point i j is a set of data points RkNN (U , i j ) ⊆ U that includes i j
as one of their kNNs. RkNN (U , i j , k) = {u1, u2, . . . , un} ⊆ U , such that ∀u ∈ U ∧ i j ∈ I .

Definition 3 (kNN Search) Let U = {u1, u2, . . . , un} be a set of user data points and I =
{i1, i2, . . . , im} be a set of item data points in d-dimensional space Rd , uq be a user query
point in R

d , the function d(uq , ii ) to compute the distance between two data points uq ,
and ii be the distance function and k be a positive natural number. Then, the result of the
kNN Search with respect to uq and I is an ordered collection, kN N (I , uq , k) ⊆ I , which
contains k(1 ≤ k ≤ |I |) different data points with the k least distances for uq , such that
kN N (I , uq , k) = {i1, i2, . . . , ik} ⊆ I , d(uq , ii ) ≤ d(i j , uq) if 1 ≤ i < j ≤ k and ∀i ∈ I |
kN N (I , uq , k); we have d(uq , ii ) ≤ d(i, uq), 1 ≤ i ≤ k.

Definition 4 (Dynamic kNN Join) LetU = {u1, u2, . . . , un} be a set of user data points and
I = {i1, i2, . . . , im} be a set of item data points in d-dimensional spaceRd , uq be a user query
point inRd , the Euclidean function d(uq , i j ) to compute the distance between two data points
uq , and i j be the distance function and k be a positive natural number. and k be a positive
natural number. Then, the dynamic kNN join is the ability to dynamically join the similar data
points DkNN J (U , I , k) ⊆ U × I in Rd , which includes for every point ofU its k(1 ≤ k ≤
|I |) closest neighbours in I : DkNN J (U , I , k) = (ui , i j ) : ∀ui ∈ U , i j ∈ kN N (I , ui , k)
andmaintains (updates) the complete join resultwith every update operation, i.e., for insertion
or deletion of any data item i j ∈ I , finding the affected user set ua : RkNN (i j ) | i j ∈
I ∧ RkNN (i j ) ⊂ U and updating the affected user set kN N (I , ua, k) ⊆ U × I .

We denote kNN join over dynamic data asDynamic kNN Join (DkNNJ). DkNNJmaintains
a recommendation list R j for every user ui , containing its k nearest neighbors. We also used
the sliding window to monitor the item stream, and only the items within the sliding window
are recommended. The sliding window must also be updated every time an item is updated.
According to the pruning strategy, any newly inserted item will affect the set of users if and
only if it falls within the user’s dknn range.

If any existing item is removed or expired, then we have to check for the set of affected
users. Accordingly, we update the recommendation list of those affected users. Similarly,
when any new item is inserted into the sliding window, it looks for the affected user and
updates its recommendation list. It must be updated dynamically in a real-time system.

Lemma 1 The user is affected by the newly inserted item i j or the expired item i j if and only
if it falls within the user’s dknn radius range.

The lemma states that the purpose is to create an index on the user dataset U using the
dknn value, which can subsequently be used to look up the impacted users for every updated
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(i.e., new or expired) data item. We have to update the recommendation list R j of every
affected user whose item i j has been updated. Considering i j as a new data item, we add i j
into R j and order R j to maintain the kNN results. If an item i j has expired, it is removed
from R j . When an item i j expires, we must recompute R j because R j will contain fewer
than k results.

Problemdefinition Given a user datasetU and an item dataset I , our goal is to dynamically
output the kNN join results ofU in I upon every update of I (i.e., insertions and deletions).

3 Related work

Static kNN join The dimensionality reduction is the transformation of the high-dimensional
dataset into a low-dimensional dataset while keeping some useful properties of the orig-
inal dataset. It is a common approach to improve the performance of the kNN for the
higher-dimensional dataset. The Pyramid Technique [32] iDistance [33, 34], �-tree [35],
VA-File [36], iMinMax [37, 38], LSH [39], LSHI [40]; and other approaches have been pro-
posed to deal with the curse of dimensionality. It usually helps to improve the performance
of the kNN for high-dimensional datasets.

In the literature, many studies have been carried out on index structures that can handle
kNN join. In reference [20, 41], researchers proposed the very first “kNN join” work, where
they came up with a new method called “multi-page indexing (MuX)” to calculate the kNN
join. It utilises the index-nested loop join approach and follows the R-tree [42] structure.
Thus, large-size pages (hosting pages) were employed to reduce the I/O time. It also uses
buckets, which are smaller minimum bounding rectangles, to split the data more accurately
and efficiently. Every set of objects (i.e., R and S) has its own index, and MuX iterates the
index pages on R. Pages of S are retrieved using the index and a search for the k nearest
neighbors of pages of R stored in the main memory. The procedure comes to an end after all
pages have been looked through or filtered out. Combining bucket selection and page loading
techniques improvesMuX’s performance. However, this approach has some limitations, such
as performance degradation as dimensionality increases and high memory overhead, which
limits the scalability of MuX kNN Join.

To address the limitations of the MuX technique, Xia et al. proposed a new kNN join
algorithm called Gorder (G-ordering) [21], a block-nested loop join approach. It uses sorting,
join scheduling, and filtering based on the distance to keep I/O and CPU costs as low as
possible. The input datasets are sorted into G-order before the scheduled block nested loop
join is applied to the G-ordered data. Gorder’s joining stage is defined by two characteristics.
First, it optimises I/O and CPU times individually using a two-tier partitioning technique.
It then schedules the data joining to speed up the kNN processing. Due to a large number
of dimensions in the data, it is important to do as few distance calculations as possible
to maximise CPU efficiency. As a result, they created an algorithm to reduce the distance
calculation by pruning the unnecessary distance calculations. It manages high-dimensional
data well while being simple and effective, but it requires significant computation cost [43].

In [22], the authors propose a novel index-based kNN join technique that makes use
of the iDistance as the underlying index structure. In this work, they look at the problem of
processing a kNN join and also address the problemof theMuX technique. They devised three
strategies: the basic strategy, which they call iJoin, and two improved versions, called iJoinAC
and iJoinDR. In the first enhanced version (iJoinAC), approximation bounding cubes were
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used to reduce the amount of kNN computation and disk use. Later developments minimised
I/O and CPU costs by using the reduced dimensions of the data space (iJoinDR).

To address the computational challenges of large-scale kNN join for data in data mining,
Jiaqi et al. [44] propose a Spark-based approach that employs Locality-Sensitive Hashing to
group similar data points in buckets, effectively reducing candidates for kNN. This technique
showcases accuracy and efficiency, especially for high-dimensional big data with varying
dimensions.

The work in [45] fulfils the gap of adding result diversification to kNN joins by means of
Influence criteria which is a coverage-based criterion defined by the distance-based ternary
relationship between each search reference, the dataset, and the result set in large-scale, big
data frameworks. This paper solves the problem by extending the nested Better Results with
Influence Diversification algorithm to a Map-Reduce framework.

But since these techniques [20–22, 44, 45] use a static dataset, when the dataset is updated,
every user must go through the time-consuming and expensive kNN calculation.

Dynamic kNN join In [46], authors focus on efficient computation of continuous kNN joins in
high-dimensional data for real-time social recommendations. They introduce a binary sketch-
based method that uses Hamming distances to reduce computational load. This technique
improves performance in updating kNN join results as new data enters or exits a sliding time
window.

In [40], researchers address the challenge of real-time recommendation in social net-
working platforms by kNN Join on high-dimensional data using an approach called
Locality-Sensitive Hashing-based Index (LSHI) that focuses on the user sets to efficiently
identify users affected by new data updates. Through experiments, the paper demonstrates
the effectiveness of LSHI in maintaining real-time kNN recommendation results.

This research addresses the challenge of performing efficient kNN join over dynamic data
streams in location-aware systems. They introduce an adaptive scalable stream kNN join
technique [47], namedADS-kNN,which optimises kNNqueries for distributed environments
by using a multistage execution plan that overlaps computation and communication stages.
Experimental results on a 56-core system demonstrate that ADS-kNN achieves significantly
higher throughput than single-threaded and round-robin partitioning approaches.

In this work [48], Lee et al. address efficient kNN join query processing for large-
scale data using MapReduce. Their approach introduces seed-based dynamic partitioning to
reduce index construction overhead. By utilising average distances between seeds, computa-
tional load for candidate partition selection is minimised. Performance analysis demonstrates
improved query processing time compared to existing methods.

Also, a novel and helpful variation of the Reverse Nearest Neighbor query, known as the
Reverse Nearest Neighbourhood (RNNH) query [49], has been discovered. This query aims
to identify the set of neighboring facilities for which the queried point serves as the closest
among all available facilities. Considering its applicability, it can be considered for further
research. The recent research works, i.e. “approximate kNN Join” [40, 46] and “Distributed
kNN Join” [47, 48], concentrate on methods that are not centralised or exact solutions. In
contrast, our study exclusively emphasises the exact centralized approach to kNN join.

Yu et al. proposed the kNNJoin+ technique [25] for processing kNN join queries on high-
dimensional data. Four different types of data structures were used in this study: the RkNN
join table, kNN join table, iDistance, and the sphere tree. The M-tree [50] concept is used to
create the sphere tree. It’s structured similarly to an R-tree, but it deals with spheres rather
than rectangles. The iDistance indexing is used to find the kNN for a newly inserted point
p while, on the other hand, the sphere tree is used to look for RkNN, i.e., points with p
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as their kNN. The iDistance approach used the Pyramid Technique [32] to convert a high-
dimensional space into a one-dimensional value. In this work, they develop a shared query
optimisation strategy in order to improve performance, but being a disk-based approach, it
is difficult to meet real-time requirements.

Yang et al. [26] provide twodifferent data structures in a continuous kNN join namely exact
(HDR Tree) and approximate (HDR* Tree) solutions. HDR Tree utilises the PCA [51] and
clustering approaches for dimensionality reduction. On the other hand, HDR* Tree employs
the Random Projection [52] method for approximate dynamic kNN join. It uses a random
matrix to translate the data from d to r dimensions.

4 HDR tree

To handle dynamic kNN join in high-dimensional data, we adopt the HDR Tree [26] as the
index structure in our method. HDR Tree performs dimensionality reduction via PCA and
clustering. In this section, we briefly introduce HDR Tree.

4.1 Principal component analysis

The PCA approach is basically used to reduce the cost of computation in the tree structure.
Consider the dataset XN×d , where N represents the number of rows and d represents the
dataset’s dimensionality. We must follow a specific procedure to convert the dataset from d
to r dimensions. The value of r is 0 < r < d . While processing the dimensionality reduction,
the direction having the highest variance is considered the first principal component and is
followed by the second component in descending order. The tree structure’s 1st dimension
consists of values with high variance.

1. Initially, the covariance matrix of the input dataset (X ) is computed.
2. Using the covariance matrix, eigenvalues and their corresponding eigenvectors are cal-

culated as follows:

COV =
∑n

i=1 (Xi − x)(Yi − y)

n − 1

3. Sort the eigenvalues and associated eigenvectors in descending order.
4. The transformed matrix (T ) is used to transform the newly added point to the necessary

dimension.

This different dimensionality approach provides better pruning power, which helps reduce
the computation overhead.

4.2 Structure of tree

Figure 1 illustrates the structure of the HDR Tree. At each level, we utilise different dimen-
sions with the help of eigenvalues. The high-dimensional dataset was partitioned into clusters
using the k-means clustering method. Other clustering approaches can also be utilised. The
root level (i.e., level 1) with d1 dimensionality is clustered (i.e.,C1,C2, . . . ,C f ) based on the
fanout value f . The dimensionality d2 is set to the following level (level 2). Every cluster from
the root node is sub-clustered. In our case, cluster C1 is subdivided into C11,C12, ...C1 f .The
dimensionality increases at every level. At level l, the leaf node has its full dimensionality, dl .
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Figure 1 Example of lazy updates on HDR Tree

In Figure 1, the internal nodes and the root node have the same structure, represented by
a tuple (C,maxdknn, l, num, r , ptr). Where C is the center of the sub-cluster, maxdknn
is the maximum distance between the users and its kNN, l is the level of the node, num is
considered the number of users, r is the radius of the sub-cluster, and ptr is the pointer to
the next node.

4.3 Construction

The estimated height of the tree is calculated using L = [log f N ] to build the HDR Tree.
The fixed fanout size is used, and the threshold value θ is adjusted so that the tree’s level
does not exceed L too much. When the hierarchical level of a cluster during the construction
process surpasses L , and the cluster’s size exceeds θ , we persist in partitioning the cluster
using the entire user set’s full dimensionality, implying dl = d (when l > L). For each
level, the dimensionality is calculated and stored for further processing. First, we create the
cluster with d1 dimensions and set the maxdknn value. The maximum distance between the
cluster’s users and their k-th nearest neighbor item is defined asmaxdknn.While constructing
a tree, it checks for the number of users within a cluster. If it is less than a θ , it creates the
leaf node (LN); otherwise, it creates the non-leaf node (NLN) using the new incremental
dimensionality approach.

4.4 Search

When the search algorithm looks for the affected users in a leaf node LN , it directly computes
the distance between the users in LN and the updated item. Contrary to this, for a cluster
in a non-leaf node, the pruning condition will be checked to decide if the subtree of that
cluster will be searched or pruned. For a cluster C j in a non-leaf node, the pruning condition
distPC A(i, center(C j ))−radiusPC A(C j ) ≤ maxdknn will be checked against an updated
item i . (Note that the applied pruning condition on the HDR Tree for RKNN search is
explained in Theorem 1). If the pruning condition is satisfied, the subtree of C j needs not to
be visited further because the users in it will not be affected by the updating of i . Otherwise,
the search should be done in the C j subtree. The Theorem 1 is defined further below.

Theorem 1 (Pruning on a HDR Tree) When a cluster C j in an HDR Tree is visited during
the RkNN search for an updated item i, if distPC A(i, center(C j )) − radiusPC A(C j ) >
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maxdknn(C j ), the C j subtree can be pruned, and we can confirm that all the users in C j

may not be affected by i . Otherwise, the subtree of Ci should be searched.

Proof When distPC A(i, center(C j )) > radiusPC A(C j ) + maxdknn(C j ), we can have:

dist(u, i) ≥ distPC A(u, i) (1)

The reason of the inequality 1 is the Theorem 2 that distPC A(V1, V2) ≤ dist(V1, V2). The
proof for Theorem 2 is in Subsection 4.5. Then we can get that:

distPC A(u, i) ≥ distPC A(center(Ci ), i) − distPC A(center(Ci ), u) (2)

The inequality 2 is based on the Triangle Principle that dist(a, b)− dist(b, c) ≤ dist(a, c)

in Euclidean distance space where dist(a, b) = (a2 +b2)
1
2 . We have all of our user and item

vectors in Euclidean distance space. Then the inequality below can be gained:

distPC A(u, i) ≥ distPC A(center(Ci ), i) − radiusPC A(Ci ) (3)

Note that the radius of a cluster is the longest distance between its center and its member
vectors. We can deduce from the precondition, inequality 3, and inequality 1 that

dist(u, i) ≥ distPC A(u, i) > maxdknn(Ci ) ≥ maxdknn(u) (4)

The above analysis shows that when a distPC A(i, center(C j )) − radiusPC A(C j ) >

maxdknn(C j ), the users in C j are unlikely to be affected by updating i , so C j can be
pruned.

	

Theorem 2 (DistPC A is a low bound of dist) The distance between any two data points in
PCA space is always no larger than the distance between them in the full-dimensional space,
i.e., dist(T0 · V1, T0 · V2) ≤ dist(V1, V2)(distPC A(V1, V2) ≤ dist(V1, V2)), where T0 is a
partial PCA matrix, also known as Projection Matrix. Note that arbitrary two data points
are available, no matter if they are from the dataset that produces the PCA matrix or not.

4.5 Proof of PCA lower bound

Theorem 2 states that a set of vectors named N with n dimensions must have a PCAmatrix T
whose first r (r is an arbitrary number between 1 and n) or entire rows can forma partialmatrix
T0 of T to allow the inequality dist(T0 · V1, T0 · V2) ≤ dist(V1, V2)(distPC A(V1, V2) ≤
dist(V1, V2)) to hold, where V1 and V2 are two arbitrary n-dimensional vectors. This is the
theoretical basis for the pruning condition, which states that if distPC A(i, center(C j )) >

maxdknn(C j ), then dist(i, u) > dknn(u)must hold for an arbitrary user vector u in cluster
C j .

Note that Theorem 2 is widely used in the literature [26, 27, 29, 35, 51, 53] where PCA
is used to reverse the spatial features of high-dimensional data. All these papers refer to a
report [30] and state that the proof of Theorem 2 is in the report. However, the link to such
a report is no longer accessible. For the completeness of this paper, we present the proof of
Theorem 2 as follows.

Proof For the given vector set named N with n dimensions, try to find a PCA matrix T of
it whose first r (r is an arbitrary number between 1 and n.) or whole rows can be composed
into a partial matrix T0 of T to let dist(T0 · V1, T0 · V2) ≤ dist(V1, V2)(distPC A(V1, V2) ≤
dist(V1, V2)) hold. If such T can be found, the theorem is proved.
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Step 1. Calculate the covariance matrix M of N , then compute the eigenvalues of M
(assuming p eigenvalues), and sort the eigenvalues in descending order into a list E0 =
{e1, e2, . . . , ep}.

Step 2. Assume that ei (i = 1, 2, . . . , p) has a multiplicity of ni . Because M is a real
symmetric matrix, as a result,

∑p
i=1 ni = n, and ei has ni corresponding eigen vectors

Ei,1, Ei,2, . . . , Ei,ni that are linear independent. Calculate the corresponding ni linear inde-
pendent eigenvectors for each ei (i = 1, 2, . . . , p) and combine the obtained eigenvectors
into a matrix M1 by listing them in descending order of their corresponding eigenvalues.

M1 = {
E1,1 . . . E1,n1 . . . Ei,1 . . . Ei,ni . . . Ep,1 . . . Ep,n p

}

Step3. For j = 1, 2, . . . , p, performSchmidt orthogonalization [54] on E j,1, E j,2, . . . , E j,n j

to obtain the new standard orthogonal vector group Fj,1, Fj,2, . . . , Fj,n j , and add the newly
acquired standard orthogonal vector groups to form a new matrix M2.

M1 = {
E1,1 . . . E1,n1 . . . Ei,1 . . . Ei,ni . . . Ep,1 . . . Ep,n p

} ⇒ M2 =
{
F1,1 . . . F1,n1 . . . Fi,1 . . . Fi,ni . . . Fp,1 . . . Fp,n p

}

To prove MT
2 is a PCA matrix of N :

Pick an arbitrary group of rows FT
i,1, F

T
i,2, …, FT

i,ni
from MT

2 (1 ≤ i ≤ p) and take an

arbitrary row FT
i, j from the group. Fi, j is produced by Schmidt orthogonalization based on

Ei,1, Ei,2,…, Ei,ni which is a group of linear-independent eigen vectors of M corresponding
to the eigen value ei , as a result, |Fi, j | = 1 �= 0, and Fi, j is a linear combination of Ei,1,
Ei,2, …, Ei,ni . Therefore, Fi, j is an eigen vector of M corresponding to the eigen value
ei . Because the vector group Fi,1, Fi,2, …, Fi,ni is produced by Schmidt orthogonalization
based on Ei,1, Ei,2,…, Ei,ni which is a group of linear-independent eigen vectors, as a result,
|Fi,1| = |Fi,2| = . . . = |Fi,ni | = 1 �= 0 and Fi,x · Fi,y = 0 (x �= y). Therefore, Fi,1, Fi,2,
…, Fi,ni are linear independent. Based on the deduction above, MT

2 is a PCA matrix of N .
To prove dist(M0 ·V1, M0 ·V2) ≤ dist(V1, V2)(distPC A(V1, V2) ≤ dist(V1, V2)), where

M0 is a matrix composed by the first R (R is an arbitrary number between 1 and n) or the
whole rows of MT

2 and V1 and V2 are both of n-dimensional:
For two arbitrary vectors Fi,x and Fj,y (x �= y), if i �= j , Fi,x · Fj,y = 0 because

Fi,x and Fj,y are two eigen vectors corresponding to two different eigen values (ei and
e j ) of a real symmetric matrix M . Otherwise, Fi,x · Fj,y = 0 because Fi,x and Fj,y are
produced by Schmidt orthogonalization based on the same linear-independent vector group.
And |F1,1| = · · · = |Fp,n p | = 1. As a result, MT

2 is a matrix consisting of a standard

orthometric base. Therefore,dist(MT
2 ·V1, MT

2 ·V2)=((MT
2 ·V1)T ·(MT

2 ·V2)) 1
2 =(V T

1 ·MT
2 ·M2·

V2)
1
2 =(V T

1 ·E ·V2) 1
2 =(V T

1 ·V2) 1
2 =dist(V1, V2). Assuming that (MT

2 ·V1)T = (a1, a2, . . . , an)
and (MT

2 · V2)T = (b1, b2, . . . , bn), and M0 is composed by the first R rows of MT
2 , it will

be held that dist(M0 · V1, M0 · V2) = (
R∑

i=1
(ai − bi )2)

1
2 ≤ dist(M2 · V1, M2 · V2) =

(
n∑

i=1
(ai − bi )2)

1
2 = dist(V1, V2).

As a result, we can find MT
2 , which is a PCA matrix of N whose first R (R is an arbitrary

number between1 andn) orwhole rows can compose apartialmatrixM0 ofM2 to letdist(M0·
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V1, M0 · V2) ≤ dist(V1, V2)(distPC A(V1, V2) ≤ dist(V1, V2))hold. So the theorem is
proved.

	


5 HDR+ tree

In this section, we first discuss our earlier work [27], where we introduce the HDR+ Tree.We
proposed lazy updates, batch updates, and deletion optimisation of maintaining the RkNN
table in HDR+ Tree.

5.1 Lazy updates

We identify the users whose kNN should be updated for every new item updates. However,
we do not update the HDR Tree immediately. Instead, we mark the nodes along the search
tree as “dirty,” meaning that the radius information on these nodes is not tight.We only update
them when another new item accesses the same search path.

Example 1 If I = {i1, i2, . . . , in} is set of data items and U = {u1, u2, .., um} is a user
data set. So, we will consider the users affected by update operations i1, i2, and i3 are:
i1 = {u1, u2, u3}, i2 = {u1, u5, u9, u16}, i3 = {u3, u7, u19}. We look for users who are
affected by the update operation, i.e., u1, u2, and u3, for the newly inserted item i1. We mark
all the newly affected user nodes as dirty nodes. It will check for the other affected users
during the next insertion of an item i2. In this case, item i2 affects the u1, u5, u9, and u16.
As we can see, it is searching on the same path because it also consists of the u1. Hence, we
will update it as it tries to access the same path. Basically, we are updating the node if and
only if there is a necessity to do so.

As shown in Algorithm 1, lines 1-4 look for the affected users within the leaf node. Lines
5 to 10 examine the node’s status, i.e., whether it was previously marked as dirty. If the node
was marked as dirty, then we update the node and also need to update the HDR Tree. On
the other hand, lines 12-15 deal with the non-leaf node. Basically, it works on the pruning
approach of the HDR Tree. The cluster is pruned if the distance is less than the maxdknn
value, which helps improve an algorithm’s efficiency.

5.2 Batch updates

The HDR Tree index structure efficiently searches the affected users Rp in response to any
update operation. Subsequently, the recommendation lists for these affected users need to be
updated. However, the sequential method employed for these updates has proven computa-
tionally intensive. To address this concern, we propose using a batch approach to reduce the
computational costs.

This novel approach first identifies the users affected by newly inserted items. Importantly,
we refrain from immediately updating the search path for each new item individually. Instead,
updates for multiple new items are collectively processed, i.e. we process all updates at the
node left (i.e. leaf node) before updating the parameters on the internal level (i.e. non-leaf
nodes) to reduce computational costs.
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Algorithm 1 LazySearch.
Ensure: node node, item i
Require: affected user set Rp and Lazy nodes
1: if node is a LN then
2: for each users u j in LN do
3: if dist(i, u j ) ≤ u j → dknn then
4: add u j in Rp;
5: if u j → dir ty == true then
6: if u j → R.si ze() < k then
7: computekN N (W );
8: else
9: u j → computeDirtykN N (I );
10: u j → dir ty = f alse;
11: end if
12: end if
13: end if
14: end for
15: else
16: Cp = NLN → clusters;
17: for each clusters C j : Cp do
18: if distnode.dimension(i,C j) < C j → maxdknn then
19: LazySearch (NLN → children[ j], i,m);
20: end if
21: end for
22: end if

Example 2 For instance, I = {i1, i2, . . . in} is a stream of new items. As an instance, when
item i1 influences users u1, u8, and u11, and subsequent item i2 affects users u8, u11, u18, and
u25, updating the search path immediately after every new item is computationally expensive.
However, adopting the batch approach yields substantial benefits. In this example, items i1
and i2 affect common users, namely u8 and u11. So, rather than processing the updates
separately, we go with batch updates, which avoids individual, costly computation updates
and helps to improve efficiency.

The batch update operation is performed on all affected nodes using algorithm 2. Here,
Rp−ins denotes the set of all affected users. For each individual user within the set of affected
users, the algorithm calculates the kNN to update the recommendation list, the dknn value
of the cluster, and to further update the maxdknn value. The AdjustMaxDkNN method is
used to update the HDR Tree structure.

In the batch update deletion algorithm, the Rp−del is a set of affected nodes by dele-
tion operation. In lines 1 to 3 of Algorithm 3, check for the affected users, perform an
update operation by computing its kNN, and finally adjust the maxdknn value of the HDR
Tree. The computekNN method finds the k closest neighbor for the user vector using a
sliding window items stream. It first calculates the distance between the user and the item
vector, then finds the k nearest neighbors for the desired user and sets the user’s dknn
value based on that distance. It’s worth noting that deletion operations are inherently more
costly compared to insertion, thus necessitating optimisation to enhance performance. For
the same reason, we introduce lazy updates and batch optimisation for insertion and deletion
operations.
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Algorithm 2 Batch update for insertion operation.
Require: Affected user set Rp−ins
Ensure: Updated R, DkNN and maxDkNN
1: for each u j in Rp−ins do
2: for each i in u j → R do
3: D ← dist(i, u j );
4: V ← tuple(D, i)
5: end for
6: computekN N (V );
7: u j → dknn = V [k];
8: while u j → R.si ze() > k do
9: pop u j from R;
10: end while
11: end for
12: Ad justMaxDkNN ();

Algorithm 3 Batch update for deletion operation.
Require: Affected user set Rp−del
Ensure: Updated R, dknn and maxdknn
1: for each u j in Rp−del do
2: if u j → R.si ze() < k then
3: computekN N (V );
4: end if
5: end for
6: Ad justMaxDkNN ();

Algorithm 4 Update RkNN table.
Require: The updating of an item i
Ensure: The updated RkNN table
1: if updating=Deletion then
2: for each user u j in RkNN (i) do
3: Update kN N (u j )
4: Add u j to RkNN (the k-th nearest neighbor of u j )
5: end for
6: Cancel RkNN (i) from the RkNN table
7: else
8: Gain RkNN (i) by the HDR Tree
9: Add RkNN (i) to the RkNN table
10: for each user u j in RkNN (i) do
11: Cancel u j from RkNN (the k-th nearest neighbor of u j )
12: Update kN N (u j )
13: end for
14: end if

5.3 Maintaining RkNN table for deletions

If an item is deleted, the RkNN join of an item on the HDR Tree needs to be computed
again without the help of any other data structures. The computation of the RkNN join for
the delete operation is a very costly operation. As a result, we use a structure known as an
RkNN table [25], which continuously maps the items in the sliding window to their RkNN
lists to reduce computation time. Using an RkNN table helps us to directly get the RkNN list
of a deleted item without repeating the RkNN join process on the HDR Tree.

An RkNN table contains rows of data, where the number of rows is equal to the size of
the sliding window. To map every item to its RkNN list, each row in an RkNN table contains

123



World Wide Web (2023) 26:3759–3794 3773

the index of an item and the RkNN list of that item. An RkNN list of an item means a list
that contains the indexes of all the users that have that item in their kNN lists. The Update
RkNN table algorithm is described in detail in Algorithm 4.

6 The HDR Forest

In this section, we introduce the HDR Forest with two additional optimisations. We first
describe the motivation of the HDR Forest.

Dependence on global correlation HDR Tree [25–27] heavily relies on the global
correlation of the datasets for effective dimensionality reduction. However, in the real
world, strong global data correlation is not common. When a single HDR Tree is built
on a dataset that is not typically globally correlated, the possibility of the Type I Error
that rejects to prune the unaffected users will be large on the low levels of the tree.
That is because the number of dimensions corresponding to the low levels of an HDR
Tree is so small that the difference between the applied pruning condition and the full-
dimensional pruning condition is not trivial. Note that the applied pruning condition is that
if distPC A(i, center(C j )) − radiusPC A(C j ) > maxdknn(C j ), then the subtree of C j can
be pruned while a cluster C j on an HDR Tree is visited during the RkNN search of an
updated item i . The applied pruning condition is stated in Theorem 1. The detailed mean-
ing of “full-dimensional pruning condition” and the difference between them is explained
below.

Theorem 3 (Full-dimensional pruning on aHDRTree) If dist(i, center(C j ))−radius(C j ) >

maxdknn(C j ), the subtree of C j can be pruned when a cluster C j is visited during RkNN
search of an updated item i. Otherwise, the subtree of C j should be searched.

Proof When dist(i, center(C j )) − radius(C j ) > maxdknn(C j ), we can have:

dist(u, i) ≥ dist(center(Ci ), i) − dist(center(Ci ), u) (5)

The inequality (5) is based on the Triangle Principle. Then the inequality below can be
gained:

dist(u, i) ≥ dist(center(Ci ), i) − radius(Ci ) (6)

Combining the precondition and the inequality. Equation (6), we can deduce that

dist(u, i) > maxdknn(Ci ) ≥ maxdknn(u) (7)

Based on the calculation above, we can confirm that when dist(i, center(C j )) −
radius(C j ) > maxdknn(C j ), the users in C j might not be influenced by the updating
of i , therefore, C j can be pruned. 	


The difference between the applied pruning condition and the full-dimensional prun-
ing condition on HDR Tree is gained by using the left side of one condition to reduce
that of the other condition and then taking the absolute value that |dist(i, center(C j )) −
distPC A(i, center(C j ))|+ |radiusd=d(C j )(C j )−radius(C j )|. This difference can be used
to quantify the loss of spatial features caused by PCA; it is inversely proportional to the num-
ber of dimensions reserved by PCA. The greater the loss of spatial information, the greater
the possibility of Type I error and the lower the pruning efficiency.
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In conclusion, when applied to a non-globally correlated dataset, the searching efficiency
of a single HDR Tree can be inadequate. The performance of a single HDR Tree is hindered
by its inability to effectively prune unaffected users at low levels, which consequently neces-
sitates increased distance calculations to traverse deeper levels. To illustrate, we present an
example of a globally correlated dataset and a non-globally correlated but locally correlated
dataset.

Example 3 In Figure 2, the left sub-figure shows a globally correlated dataset, where the
variance on the first dimension of the vectors produced by PCA projection accounts for a
dominant proportion. However, more dimensions from the global PCA matrix are required
to capture the global spatial features in the right sub-figure, whereas C1 and C2 are locally
correlated clusters whose spatial features can be obtained using only a few dimensions from
local PCA. A single HDR Tree will perform weaker on the dataset in the right sub-figure
because many unaffected users cannot be pruned early.

Expensive operations on a large tree Furthermore, apart from the inadequate pruning
capabilities resulting from the presence of non-globally related data, there exists another
concern associated with the utilisation of a single HDR Tree. As the volume of data expands,
the size of the tree also grows, causing a single HDR Tree to become very long on a large
dataset, which leads to expensive searching and updating.

6.1 HDR forest

To overcome the limitations of using a singleHDRTree, we introduce the concept of theHDR
Forest (HDRF). The HDRF comprises multiple local HDR Trees, built on the local vectors
by the local PCA matrices. Strong local correlation allows for more unaffected users to be
pruned at lower levels of the local HDR Trees, saving the distance calculation required to
search deeper in the trees. Therefore, an HDR Forest can implement faster RkNN searching

y

xa

First principal component

y

xb

First principal component of C2

First principal component of C1

First principal component of C3

First principal component of C4

C1 C2

C3 C4

Figure 2 Correlation variance illustration of PCA
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than a single HDR Tree when the dataset is not globally correlated but locally correlated.
Furthermore, because only a few local HDR Trees of small scale instead of a global HDR
Tree of large scale are searched and updated when an item is updated, the time cost of a
RkNN search can be further decreased, and the time cost for updating the data structure can
be decreased. This subsection’s content explains the structure and construction process of
HDR Forest, as well as the RkNN search on HDR Forest.

Structure of HDRF A HDRF(n × f ) consists of n × f local HDR Trees {T1,1, . . . , T1, f ,
. . . , Ti,1, . . . , Ti, f , . . . , Tn,1, . . . , Tn, f }where n and f are decided by the programmers. Ti, j
means the local HDR Tree built on the users in Si, j by the local PCA of the user vectors in
Si, j . Note that Si, j is the j-th section of the i-th cluster of the whole data.

A local HDR Tree Ti, j contains the following information: the tree structure of Ti, j ,
maxdknn(Si, j ), center(Ci ), doi, j and dii, j . The maximal distance from the user vectors in
Si, j to the center of the i-th cluster is labelled as doi, j . The minimal distance from the user
vectors in Si, j to the center of the i-th cluster is labelled as dii, j .

Example 4 An example of the structure of an HDRF(4 × 2) is shown in the Figure 3

Construction of HDRF AnHDR Forest is constructed by following the steps outlined below.
The algorithm for the construction process of an HDRF is shown in Algorithm 5.

Step 1. Cluster the entire user set into n clusters, labelled C1, . . . ,Cn , using a specific
method. We use the k-means clustering method in this paper to make things easier.

Step 2. Based on the distance between the vectors and the center of cluster Ci , divide every
Ci cluster of the n acquired clusters into f sections Si,1, . . . , Si, f . Any user vector uk in Si, j
must meet the following requirements: ( j − 1) × radius(Ci )/ f < dist(uk, center(Ci )) ≤
j × radius(Ci )/ f .

C1 C2 C3 C4

The whole user set

Clustering method i3i2i1

T1,1 T1,2 T2,1 T2,2 T3,1 T3,2 T4,1 T4,2

i1 rknn list Update T1,1

i1

S1,1 S1,2 S2,1 S2,2 S3,1 S3,2 S4,1 S4,2
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Figure 3 The structure and RkNN process of the HDR Forest
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Step 3. For each section Si, j , calculate the PCA matrix of the user vectors in Si, j and
construct the corresponding local HDR Tree Ti, j based on the computed local PCA matrix,
record the distance between the outermost user in Si, j and the center of Ci as doi, j and the
distance between the innermost user in Si, j and the center of Ci as dii, j . The information
of doi, j , dii, j , center(Ci ), maxdknn(Si, j ) and the local PCA matrix of Si, j are recorded in
Ti, j .

Algorithm 5 Construction of HDR forest.
Require: The whole user set U , the number of local clusters n, the number of sections that each local cluster

is divided into f , the fanout for each HDR Tree F , the threshold of each HDR Tree θ

Ensure: A HDR Forest
1: Initialise an empty list L
2: C=Clusters(U , n)
3: for each C j in C do
4: r ← radius(C j )/ f
5: for int i in [1, f ] do
6: Initialise an empty list l
7: Initialise an empty list l1
8: Initialise an empty list l2
9: for each user u in C j do
10: if ( f − 1) × r < dist(u, center(C j )) ≤ f × r then
11: push u in l
12: push dist(u, center(C j )) in l1
13: push dknn(u) in l2
14: end if
15: end for
16: Initialise a Local HDR Tree T
17: T .maxdknn ← max(l2)
18: T .do ← max(l1)
19: T .di ← min(l1)
20: T .matri xpca ← CalculatePCA(l)
21: T .tree ← ConstructHDR(l, F, θ )
22: T .center ← C j .center
23: push T in L
24: end for
25: end for
26: return L

RkNN process by HDRF When an item I is updated, all the local HDR Trees in the
HDRF structure will be traversed. For a visited local HDR Tree Ti, j , a pruning con-
dition that (dist(I , center(Ci )) > doi, j + maxdknn(Si, j )) ∨ (dist(I , center(Ci )) <

dii, j − maxdknn(Si, j )) will be checked; if the condition is satisfied, Ti, j can be pruned
and does not need to be searched, otherwise, search should be implemented on it and Ti, j
should be updated. Note that an example and an explanation of the pruning condition are
presented below this paragraph. A detailed description of the pruning condition is in Theo-
rem 4. The process of RkNN search by HDRF is depicted in Figure 3. The detailed process
of RkNN search by HDRF is illustrated in Algorithm 6.

Example 5 To provide a concrete illustration, consider Figure 4. In this scenario, an RkNN
search on the Si, j (Ti, j ) is only required when the updated item I is in the available region
for theSi, j (Ti, j ).
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maxdknn

Ci maxdknn

Available regionSi,j (Ti,j )

di of Si,j (Ti,j )

do of Si,j (Ti,j )

Figure 4 The RkNN search only needs to be performed when an item is in the available region of the particular
section (local HDR Tree)

Theorem 4 (Pruning on HDR Forest for RkNN search) If (dist(I , center(Ci )) > doi, j +
maxdknn(Si, j ))∨ (dist(I , center(Ci )) < dii, j −maxdknn(Si, j )) when a local HDR Tree
Ti, j is visited during the RkNN search of an updated item i on an HDRF, the users in the local
HDR Tree Ti, j might not be influenced by the updating of i; therefore, Ti, j can be pruned
and does not need to be searched.
Otherwise, the users in the local HDR Tree Ti, j should be searched.

Proof If doi, j < dist(I , center(Ci )) − maxdknn(Si, j ), then for an arbitrary user u in the
section Si, j , dist(I , u) ≥ dist(I , center(Ci ))−dist(u, center(Ci )) ≥ dist(I , center(Ci ))−
doi, j > dist(I , center(Ci ))− (dist(I , center(Ci ))−maxdknn(Si, j )) = maxdknn(Si, j ).
As a result, the user vectors in the section Si, j (in the local HDR Tree Ti, j ) can be pruned.
If dii, j > dist(I , center(Ci )) + maxdknn(Si, j ), then for an arbitrary user u in
the section Si, j , dist(I , u) ≥ dist(u, center(Ci )) − dist(I , center(Ci )) ≥ dii, j −
dist(I , center(Ci )) > dist(I , center(Ci )) + maxdknn(Si, j ) − dist(I , center(Ci )) =
maxdknn(Si, j ). As a result, the user vectors in the section Si, j (in the local HDR Tree Ti, j )
can be pruned. 	
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Algorithm 6 RkNN search on HDR forest.
Require: an item I that is deleted from or inserted into the sliding window, an HDRF structure with a list L

containing multiple local HDR Trees
Ensure: The users affected by I
1: Initialise an empty list R
2: for T in L do
3: if T .di − T .maxdknn ≤ dist(I , T .center) ≤ T .do + T .maxdknn then
4: RkNN_Search(R, T .tree)
5: Update(T )
6: end if
7: end for
8: return R

6.2 Precomputation and index of PCA

This subsection optimises RkNN search on HDR Tree by adding an additional dynamic list
indexing the PCA states of the updated item. Because of the similarity between the structure
of HDR Tree and the structure of local HDR Tree among HDR Forest, such a supportive
list is also available for HDR Forest. For convenience, in the following content explaining
the precomputation and index of the PCA states of the updated item, we assume that the
dynamic index list is used with an HDR Tree. The application of the dynamic index list on
HDR Forest is described at the end of this subsection.

Repeated PCA projection HDR Tree has a flaw that it does not index the low-dimensional
states of the itemvectors produced byPCAprojection. (In the following content, “PCAstates”
works as a substitute for “low-dimensional states” because the low-dimensional states of an
item are produced by PCAprojection from that item.) This lack of indexwill result in repeated
PCA projection when multiple clusters on the same level of the HDR Tree are visited. Below
is an example of repeated PCA projection.

Example 6 For example, as is shown in Figure 5, when the child node of the cluster C f is
visited during the RkNN search of an updated item i , PCAd(2)(i) must be calculated twice
for the calculation of distPC Ad(2) (i, center(C f 1)) and distPC Ad(2) (i, center(C f f )) if there
is no index for the PCA states of i .

Precomputation and index of PCA In order to resolve the aforementioned issue, we include
a dynamic list in the HDR Tree that indexes the PCA states of the updated item. When an
item i is updated, the list is cleared first, and then PCAd(l)(i) is precomputed and stored
in the list for each level l on the HDR Tree. When processing a cluster C j on HDR Tree
level l, PCAd(l)(i) can be extracted directly from the dynamic PCA index list rather than
implementing PCA projection. This PCA index list helps to address the issue of repeating

Figure 5 The structure of HDR Tree, where f anout = f
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Figure 6 The HDR Tree structure with a dynamic list indexing the PCA states of the updated item

PCA projection when processing several clusters at the same level. The structure of the HDR
Tree combined with the dynamic list indexing the PCA states of the updated item is as shown
in Figure 6.

Use of precomputation and index of PCA on HDRF If RkNN search for an updated item
i is implemented on a HDRF supported by a dynamic PCA index list, the dynamic list is
cleared at the beginning stage of visiting an arbitrary local HDR Tree Ti, j among the HDRF.
Then the PCA states of i will be calculated by the partial local PCA matrices of the user
vectors in Si, j . After that, the calculated PCA states will be stored in the dynamic list. As
a result, PCAd(l)(i) can be extracted directly from the list rather than calculation of PCA
projection when calculation of the low-dimensional distance between a cluster on level l of
Ti, j and i .

6.3 Pruning-based kNN recomputation

This subsection focuses on enhancing the HDR Tree by utilising a novel algorithm designed
to efficiently recalculate the kNN lists of affected users when items are deleted from the
sliding window. This method, referred to as “pruning-based kNN recomputation” proves to
be highly effective. Furthermore, its applicability extends to HDRF as a means to accelerate
updating affected kNN lists. For clarity, we assume in the following description of pruning-
based kNN recomputation that the algorithm is applied to a HDR Tree. And the application
of pruning-based kNN recomputation on HDRF is discussed at the end of this subsection.
Here, for a better understanding of the following content, new symbols used in the following
content and their meanings are listed in Table 2 instead of Table 1.

Disadvantages of basic kNN recomputation When an item is deleted from the sliding
window, an affected user ua must search for its new k-th nearest item from Wu . The conven-

Table 2 New symbol and
definitions

Symbols Definitions

Wo Sliding Window before an item is deleted

Wu Sliding Window after an item is deleted

Ro kNN set before the item is deleted

Ru kNN set after the item is deleted

knn f A set whose elements are the friend user vectors
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tional search approach involves computing the distance between ua and the items inWu − Ro

to confirm the nearest item to ua in Wu − Ro. Note that the distance between ua and the
items in Wu ∩ Ro needs not to be calculated because such items have been in the kNN set
of ua . And it is obvious that the nearest item in Wu − Ro is the new k-th nearest item. Such
basic method for updating kNN lists is highly time costly because distance calculation in this
process is on full dimensions. Based on the observation above, we propose the pruning-based
kNN recomputation for updating the kNN lists of the affected users when deletion of items.
Before describing the algorithm, we introduce the concept of “friend user” which is defined
in Definition 5.

Definition 5 (Friend User) A user ux is a friend user of uy in an HDR Tree T (local), if and
only if there exists a leaf node LF that LF ∈ T ∧ ux , uy ∈ LF .

Preparation of pruning-based kNN recomputation In order to accelerate the computation,
we precompute the PCA states of the users and items whose number of dimensions can be
chosen by the appliers but should be limited under a small scale to confirm fast distance
calculation. And then, for each user and item, its computed PCA state will be stored and
attached to it. Supported by the storage of PCA states of the user vectors and the item
vectors, the time cost for projecting the full-dimensional vectors to the PCA space can be
saved every time distPC A(u, i) needs to be computed.

Algorithm 7 Update kNN list.
Require: An affected user u and a deleted item I
Ensure: The updated kNN list of u
1: Initialise two empty lists L and T
2: for ui in LN that contains u do
3: for i j in ui → R do
4: if not i j in u → R then
5: push dist(i j , u) in L
6: end if
7: end for
8: end for
9: B ← min(L)

10: for ik in sliding window do
11: if not ik in u → R then
12: if distancePC A(ik , u) ≤ bound then
13: push(ik , distance(ik , u)) in T
14: end if
15: end if
16: end for
17: Get the item i with its distance to u least in T
18: Push i into u → R
19: Delete I from u → R

Explanation of the algorithm The algorithm is described in Algorithm 7. In the first stage,
two empty lists L and T are initialised in line 1, where L is for storing the distance between the
affected user ua and the items in knn f (ua)− Ro(ua) and T is for storing the tuple composed
of ik and dist(ik, ua) for each item in a subset ofWu − Ro(ua)which is produced by pruning
a large proportion of items inWu − Ro(ua). And the operation in lines 2-9 gains the minimal
distance between ua and the items in knn f (u) − Ro(ua) and stores that shortest distance as
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a pruning bound B.(Note that if a friend user ub of ua is also affected, then either Ru(ub) or
Ro(ub) is available in this step.) And through the loop with if statements in lines 10-16, the
nearest item to ua among the items that are in Wu − Ro(ua) and have their low-dimensional
distance to ua no larger than B is gained. The updating process of R(ua) is completed by the
operation in lines 17-19 which pushes the gained item in R(ua) and deletes I which is the
item deleted from the sliding window from R(ua).

Example 7 For instance, consider the situation shown in Figure 7 where 5NN is applied.
When i4 is deleted from the sliding window, the original 5NN list of an affected user u3
is i1, i2, i3, i4, i5 and the 5NN list of its only one friend user u4 is i3, i5, i6, i7, i8, then, the
pruning bound B for u3 should be the minimum among the distance between u3 and i6, i7, i8.
And for each item ik in Wu − Ro(u3), only when distPC A(ik, u3) ≤ B will ik be considered
as the potential new 5-th nearest neighbor item of u3.

Complexity analysis The advantage of Pruning-based kNN Recomputation is that it only
requires distance calculation of low-dimensional for most of the items inWu −Ro. The friend
users of the affected user ua are very close to ua because they are assigned to the same leaf
node with ua after hierarchical clustering, as a result, the closest item to ua among the items
in knn f (ua) − Ro(ua) is also very close to ua among the items in Wo − Ro(ua) and can
provide a very tight pruning bound B. For an item ik inWu −Ro(ua), it is highly possible that
dist(ik, ua) > B because of the tightness of the pruning bound B. As a result, it is highly
possible that distPC A(ik, ua) > B because dist(ik, ua)−distPC A(ik, ua) can be very small
due to the feature of PCA. Therefore, it is highly possible that ik can be pruned from the
candidate list before the calculation of distance on full dimension begins. In conclusion, only
a few items in Wu − Ro(ua) require distance calculation on full dimensions.

Correctness The following discussion proves that Pruning-based kNNRecomputation offers
the affected user ua the nearest item in Wu − Ro(ua) which is also the new k-th nearest
item for ua . Let’s categorise the items in Wu − Ro(ua) into two groups. The first group is
labelled as G1. We have G1 = {i1|i1 ∈ Wu − Ro(ua), distPC A(i1, ua) > B}. The second
group is labelled as G2. We have G2 = {i2|i2 ∈ Wu − Ro(ua), distPC A(i2, ua) ≤ B}. It
becomes evident that for an arbitrary item i , if i ∈ G1, then ∃iB , iB ∈ Wu − Ro(ua) and
dist(iB , ua) < dist(i, ua). Because the item in knn f (ua) − Ro(ua) providing the bound
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l=1 & d=d1
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C11 C1f Cf1 Cff

u1  u2 u3  u4
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Figure 7 The pruning policy when optimised deletion
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B can serve as iB because of the inequality B < distPC A(i, ua) ≤ dist(i, ua). As a result,
any given item in G1 cannot be the closest item to ua in Wu − Ro(ua). Therefore, for an
item im , if dist(im, ua) = min{dist |∃i ∈ G2, dist(i, ua) = dist}, then dist(im, ua) =
min{dist |∃i ∈ Wu − Ro(ua), dist(i, ua) = dist}. The result provided by Pruning-based
kNN Recomputation satisfies the condition above and is in Wu − Ro(ua), consequently,
Pruning-based kNN Recomputation provides the nearest item to ua in Wu − Ro(ua) and the
new k-th nearest item for ua .

Pruning-based kNN recomputation in HDR forest When Pruning-based kNN recomputa-
tion is used to update the kNN list of an affected user u on HDRF, the friend users are the
users that are in the same leaf node with u in a local HDR Tree.

7 Performance evaluation

In this section, we present our experimental results. All experiments are conducted on a
computer with an Intel Core i5-4210U 2.4GHz processor, 12GB RAM, andWindows 10 OS.
All methods are implemented in C++.

7.1 HDR+ tree

In this subsection, we compare our HDR+ Tree (Section 4) with the two baseline algorithms:

1. NaiveRkNN : Thenaive approachof searching affected userswithout an index. It computes
the distance between the item and all users withinU and decides whether or not to update
the user recommendation list.

2. HDR Tree: The HDR Tree [26] method that searches for the affected users caused by any
update operation as discussed in Section 4.

We performed most of the experiments on the 128 Dimensional NUS-WIDE Image
DataSet [55], which consist of 269, 648 records from the Flickr dataset. A 128-dimensional
dataset is used by default. We build the sliding window, which acts as an item stream. The
default sliding window W size is kept at 200, 000, and 50, 000 random users are selected.
We set the default value of k to 10 and the fanout f to 5. The default number of updates is
set to 100 following [26].

Exp-1: Varying the number of updated items We compare the effect of updated items by
varying it from 100 to 600. Figure 8 shows that the cost for searching the affected items is
linearly increasing for all the approaches, but the batch update and lazy update outperform
the baseline approaches. The batch and lazy updates are about 1.5 and 3 times faster than the
HDR Tree.

Exp-2: VaryingWand k In Figure 9, it can be seen thatwhen increasing the k size, the elapsed
time increases in all the approaches. But lazy updates and batch updates give better results
than baseline approaches. When we increase the k size, the maxdknn also grows, resulting
in more affected users. As shown in Figure 10., with an increase in the sliding window size
W , the time cost increases for all the approaches as the computation cost increases.
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Exp-3: Varying the number of features We conduct experiments on other datasets with
different dimensions in the NUS-WIDE Image DataSet collection. The dimension varies
from 128 to 500. Figure 11 illustrates that with the increase of dimensionality, the execution
time increases because the time required for distance computation increases. As shown in
the figure, our approaches outperform existing ones.

Exp-4: The effect of deletion optimisation We compare the effectiveness of our deletion
optimisation with the naive HDR Tree in this experiment. For the HDR Tree method, we
use the HDR Tree to find the RkNN list of a being deleted item. In our method (denoted as
the RkNN Table in Figure 12), we directly extract the RkNN list of a deleted item from the
RkNN table. Note that we normalise the time cost as the ratio between the real-time cost for
updating items and the time cost for updating 100 items using our method. As observed, our
method achieves about 15% of improvement when updating 600 items.

7.2 HDR forest

In this subsection, we compare four versions of the HDR Forest (Section 6):

1. HDR Tree: A single HDR Tree without any optimisation can be regarded as an HDR
Forest of 1 × 1 size.
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2. HDR Forest: A forest consists of multiple local HDR Trees built by the PCA matrices
of the local data. The HDR Forest uses local correlation to accelerate the RkNN search
process, whether it’s for deleted or newly inserted items in the sliding window.

3. HDR Forest with Precomputation and Indexing of PCA: Precomputation and Indexing of
PCA can further optimise the process of RkNN search on HDR Forest by precomputing
and indexing the PCA states of the updated item by local PCAmatrices of the user vectors
that form the local HDR Trees. (Detailed information on the PCA precomputation and
indexing is in Section 6.2). In this subsection, we denote HDR Forest supported by
Precomputation and Indexing of PCA as HDR+ Forest.

4. HDR Forest with Precomputation and Indexing of PCA and with Pruning-based kNN
Recomputation: When both Precomputation and Indexing of PCA and Pruning-based
kNN Recomputation are added to the HDR Forest, both the process of updating the
affected kNN lists and the process of RkNN search on HDR Forest can be accelerated.
(Detailed information on Pruning-based kNN Recomputation is in Section 6.3). In this
subsection, we denote HDR Forest supported by Precomputation and Indexing of PCA
and by Pruning-based kNN Recomputation as HDR* Forest.

We reservemost of the experiment settings of the experiments forHDR+-Tree. The default
sliding window W size is kept at 50, 000, and the default number of updates is set to 5, 000.
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Note that HDR Forest with Precomputation and Indexing of PCA and with Pruning-
based kNN Recomputation will not be implemented in the experiments for insertion of items
because the algorithm Pruning-based kNN Recomputation is designed to recompute the
affected kNN lists when item deletion instead of insertion.

Exp-5: Varying the insertion number We detect the influence of the number of inserted
items on the advantage of HDR Forest and HDR+ Forest compared with basic HDR Tree
by varying the number of insertions from 1000 to 10000. Figure 13 illustrates that the time
consumption for all the methods and the insertion number form a positive linear relation.
However, the HDRForest performs better than the basic HDRTree by 12%-shorter time cost.
Besides, HDR Forest can be strengthened by about 11.5% if combined with Precomputation
and Indexing of PCA.
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Exp-6: Varying k when insertion We study the impact of varying k from 5 to 25 on the
performance difference between HDR Forest, HDR+ Forest, and basic HDR Tree. Figure 14
shows that as k increases, the time consumption of all methods increases. When k increases,
the dknn value of the users will increase so that more users might be affected by the inserted
items. As a result, it needsmore time to do RkNN search to search for the affected users. HDR
Forest still keeps its advantage of about 10% towards basic HDR Tree, and Precomputation
and Indexing of PCA can enhance HDR Forest by about 12%.

Exp-7: Varying number of dimensionswhen insertion According to Figure 15, an increase
in dimensions from 32 to 160 increases the time cost of all the methods except for the
situation where the number of dimensions is increased from 96 to 128. This is because the
time complexity of distance calculation is of positive relation with the number of dimensions.
And when the data is 128D, the distribution of the dataset might be special that fewer users
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are influenced by the inserted items than in the 96D dataset. As a result, RkNN search time is
an anomaly. HDR Forest still keeps its average advantage of about 13% towards basic HDR
Tree, and Precomputation and Indexing of PCA can contribute about 15% acceleration when
combined with HDR Forest.

Exp-8: Varying window size when insertion In Figure 16, the trend of time cost for all the
methods appears to be generally descendingwhen thewindow size is from 20,000 to 100,000.
This is because when the window size increases, the dknn value of the users decreases. As
a result, less users will be influenced by the inserted items. Therefore, less influenced users
need to be found, and the RKNN Search process costs less time. HDR Forest is about 12%
faster than basic HDR Tree, and HDR+ Forest outperforms HDR Forest by about 15%.

Exp-9: Vary user set size when insertion In Figure 17, when the user set is enlarged from
20,000 to 100,000, the time cost for all the methods increases because more users have to
be searched, and more users are affected. And larger user set might lead to a weaker global
correlation, which might be the reason that the advantage of HDR Forest toward HDR Tree
becomes more obvious when the user set is larger. And more searched users lead to more
visiting of the clusters on the same level of localHDRTrees, so the function of Precomputation
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and Indexing of PCA is more obvious. HDR Forest is about 12% faster than basic HDR Tree,
and HDR+ forest is faster than HDR Forest by about 13%.

Exp-10: Varying number of updated items when deletion Figure 18 shows that as the
number of deleted items increases from 1000 to 10,000, the time cost of dynamic kNN join
by all themethods increases linearly. HDR* Forest costs less than 50% time of othermethods.
That is because when item deletion, updating of the affected kNN lists costs much more time
than the RkNN search. The time cost for updating the affected kNN lists is dominant in
the whole time for dynamic kNN join when deletion. And HDR* Forest makes full use of
the pruning technique and dimensionality reduction to accelerate kNN updating effectively
when item deletion, while the other methods only use the basic method to update the affected
kNN lists. So HDR* Forest shows a huge advantage over other methods. The reason why the
difference between HDR Forest and HDR Tree becomes larger is that when some items are
deleted from the slidingwindow, dknn value of the users will become larger. As a result, more
users are influenced by deleted items to be found by RkNN search. Therefore, the advantage
on RkNN search of HDR Forest towards HDR Tree is enlarged. And the difference between
HDR Forest and HDR+ Forest seems trivial because both HDR Forest and HDR+ Forest use
the basic method to update kNN lists, and the time difference between such two methods is
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their time difference on RkNN search, which might be almost covered by the relatively long
kNN updating time.

Exp-11: Varying kwhendeletion As is shown in Figure 19, when the number of k increases
from 5 to 25, the time cost of dynamic kNN join by all the methods increases. HDR* Forest
costs less than 50% time of other methods because of its efficient updating of affected kNN
lists when deletion. The reason why the difference between HDR Forest and HDR Tree
becomes larger is that when k increases, the dknn value of the users becomes larger, which
means more affected users by deleted items to be found. Therefore, the advantage on RkNN
search of HDR Forest towards HDR Tree is enlarged. And the difference between HDR
Forest and HDR+ Forest seems trivial because the time difference on the RkNN search is
almost covered by the relatively long kNN updating time.

Exp-12: Varying number of dimensions when deletion As is shown in Figure 20, the
time for dynamic kNN join increases when the number of dimensions increases from 32
to 160, regardless of the method used, during deletion. And the efficiency of HDR* Forest
is significantly higher compared to other methods by about 1.6% to 60%. This advantage
is magnified as the number of dimensions increases. That is because when the number of
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full dimensions go upward, the difference between the time for distance calculation on full
dimensions and that on low dimensions becomes larger.

Exp-13: Varying window size when deletion According to Figure 21, an increase in win-
dow size from 20,000 to 100,000 prolongs the time of dealing with item deletion, no matter
which method is used. This is because when the window size increases, more distance calcu-
lation between the affected users and the items in the slidingwindow is needed to update kNN
lists. However, HDR* Forest still reserves its advantage by about 50% over other methods.
The time difference between HDR Tree and HDR Forest and HDR+ Forest becomes smaller
when the window size increases. This is because a larger window size results in a smaller
dknn value for users, which means that there are less affected users to be found by RkNN
search. So the advantage of RkNN search brought by Precomputation and Indexing of PCA
and local correlation seems less obvious.

Exp-14: Varying size of user set when deletion According to Figure 22, when the size of
the user set increases from20,000 to 100,000, time consumption for all themethods increases.
This is because when the user set is extended, more users might be affected by the deleted
items, which leads to more distance calculations to update the kNN lists of such users. When
the user set size increases, the speed of using HDR* Forest to deal with deletion is about
50% faster than other methods.

8 Conclusion

In this paper, we study the problem of continuous kNN join over dynamic high-dimensional
data. We first propose the HDR+ Tree based on the HDR Tree, which has the functions
of efficient insertion, deletion, and batch update. Moreover, we propose the HDR Forest to
capture the local features of non-globally correlated datasets. Two optimisations, namely
precomputation of PCA and pruning-based kNN recomputation, are further introduced to
address the limitations of redundant PCA projection and inefficient recomputation of the
affected KNN lists during deletion. Furthermore, we prove the theorem that distance in PCA
space is always no larger than the distance in its full dimensionality. Our experiments on
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real-world datasets demonstrate that our approaches achieved high performance for dynamic
high-dimensional data and significantly outperform the existing approaches.
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