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Abstract
With Bitcoin being universally recognized as the most popular cryptocurrency, more Bitcoin
transactions are expected to be populated to the Bitcoin blockchain system. As a result, many
transactions can encounter different confirmation delays. Concerned about this, it becomes
vital to help a user understand (if possible) how long it may take for a transaction to be con-
firmed in the Bitcoin blockchain. In this work, we address the issue of predicting confirmation
time within a block interval rather than pinpointing a specific timestamp. After dividing the
future into a set of block intervals (i.e., classes), the prediction of a transaction’s confirmation
is treated as a classification problem. To solve it, we propose a framework, Hybrid Confirma-
tion Time Estimation Network (Hybrid-CTEN), based on neural networks and XGBoost to
predict transaction confirmation time in the Bitcoin blockchain system using three different
sources of information: historical transactions in the blockchain, unconfirmed transactions in
the mempool, as well as the estimated transaction itself. Finally, experiments on real-world
blockchain data demonstrate that, other than XGBoost excelling in the binary classification
case (to predict whether a transaction will be confirmed in the next generated block), our
proposed frameworkHybrid-CTEN outperforms state-of-the-art methods on precision, recall
and f1-score on all the multiclass classification cases (4-class, 6-class and 8-class) to predict
in which future block interval a transaction will be confirmed.

Keywords Transaction confirmation time · Bitcoin · Blockchain · XGBoost · Neural
network

1 Introduction

As Bitcoin is universally recognized by more organisations, institutes and governments, it is
booming in an increasing number of areas [1]. Currently, many businesses, such as PayPal,
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Microsoft, and Overstock, have embraced Bitcoin as a method of payment. Meanwhile,
various online cryptocurrency trading platforms, such as Coinbase, Gemini1, and PayPal,
have enabled users to purchase, sell, store, and transfer Bitcoins. As a result, more Bitcoin
exchanges are expected to be populated into the Bitcoin blockchain. Unfortunately, due to
the confirmation mechanism in the system, only a limited number of transactions (restricted
to the capacity of a block) can be confirmed at a time. Therefore, many transactions cannot
be immediately confirmed, and confirmation delays commonly occur in the Bitcoin system.
Concerned about this, it becomes vital to help a user to understand (if possible) how long it
may take for a transaction to be confirmed in the Bitcoin blockchain.

Most previous attempts at estimating the confirmation time for a transaction focus on
predicting a specific timestamp or predicting the number of blocks a transaction needs to
wait for before it is confirmed [2–9]. However, it is usually more practical to predict the
confirmation time as falling into the corresponding predefined time intervals (e.g., within 1
hour, between 1 hour and 4 hours, and more than 4 hours). It is motivated by the following
considerations: On one hand, when attempting to estimate a specific timestamp, one issue
is that the estimation performance can be affected by the submission time, especially for
transactions that are scheduled for confirmation in the subsequent block. The confirmation
time for these transactions is influenced by the remaining time before the next block is
produced. Consequently, this can lead to a situation where, as a result of delayed submission,
a transaction with a significantly higher fee can experience a longer delay than a transaction
with a lower fee if the higher fee one is submitted later than the lower-fee one. The second
issue arises from the unpredictable nature of block generation time,which can span frommere
seconds to several hundred seconds. As a result, the confirmation time for two transactions
submitted at different block heights but confirmed within the same block interval can exhibit
unpredictable differences, which may undermine users’ satisfaction when using a client-side
transaction system.

On the other hand, by utilizing the block as the unit of measurement for confirmation
time, the variance in confirmation time can be significantly diminished. However, a challenge
arises as the estimation result can be heavily influenced by a small proportion of transactions,
especially when there is a scarcity of historical transactions for that interval. In such cases, the
estimation result may become highly dependent on a single or a few transactions. Moreover,
when the estimated confirmation time (in terms of both a specific time and a block interval)
exceeds a certain level, users tend to pay a higher transaction fee to prioritize the confirmation
process. In conclusion, we suggest that as long as the confirmation time falls within an
acceptable range, it may be more practical and reasonable to estimate a confirmation time
range rather than a confirmation time stamp to system users. Under such background, if we
divide the future into a number of block intervals (representing a number of classes), the
confirmation time prediction problem can be considered as a classification problem.

The accuracy of transaction confirmation time estimation is crucial for blockchain-based
applications. However, existing efforts suffer from four key drawbacks in their frameworks:
(1) The existing methods for transaction confirmation estimation do not provide tailored
estimates for individual transactions. Instead, most of them estimate the confirmation time
for a group of transactions. For example, some works such as [5, 6] estimate the average
confirmation time of high-feerate class transactions and low-feerate transactions, while oth-
ers like [8] estimate the average confirmation time of all the unconfirmed transactions. (2)
Models proposed in [3, 10] predict only whether a transaction can be confirmed in the next
block, treating the problem as a binary classification task. However, such models may not be

1 https://www.gemini.com
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sufficient in practice as they do not provide more detailed confirmation information beyond
a simple yes or no. (3) Some of the assumptions made in existing approaches [2, 4–8] are not
realistic. For example, the confirmation process in blockchain systems is often modeled as a
steady-state queueing system [11]. They assume that transaction submission is slower than
transaction confirmation, and a fixed number of transactions can be confirmed each time.
However, in reality, the number of transactions in a block can vary, and the rate of transaction
submissions can exceed the rate of confirmations. (4) There is insufficient utilisation of infor-
mation on transactions, blocks, and mempool, which can provide further information on the
current blockchain system. For example, information in the block sequence can signal the
size and generation rate of future blocks, which can help improve the estimation accuracy.

To address the limitations in the previous works, we propose a framework based on neural
networks and XGBoost (Extreme Gradient Boosting) [12] to estimate transaction confir-
mation time for a specific transaction. This framework draws upon three different sources
of information: historical transactions within the blockchain, unconfirmed transactions in
the mempool, and the estimated transaction itself. In this framework, neural networks are
applied to identify complex structures and generate high-level concepts from these inputs.
Subsequently, XGBoost is employed to perform classification based on the hidden patterns
derived from the neural networks.

To summarize, we have made the following contributions:

• We comprehensively examine the features of historical transactions in the blockchain,
unconfirmed transactions in the mempool, as well as the estimated transaction itself
features related to transaction confirmation.

• We design a strategy to discretize confirmation time into non-overlapping intervals based
on transaction distribution.

• We develop a transaction confirmation time estimation framework Hybrid-CTEN based
on neural networks and XGBoost to analyze transaction confirmation time in the Bitcoin
blockchain.

• We demonstrate the efficiency and effectiveness of the proposed framework Hybrid-
CTEN in handling complex estimation tasks using real-world blockchain data.

This work builds upon our prior work [13] by proposing a new transaction confirmation
time framework based on neural networks and XGBoost. In this work, we also incor-
porate transformer [14] as an alternative technique for feature extraction, leveraging its
well-established efficiency in handling sequential data. Furthermore, during the feature con-
struction process, we have optimized our approach for modeling transaction distribution to
better align with the characteristics of real-world blockchain data in both block and mempool
analyses. Moreover, we have adopted the strategy of training a model for the entire testing
dataset, instead of retraining at each block height, and we have meticulously fine-tuned
hyperparameters to achieve improved performance.

The rest of this paper is organized as follows: Section 2 provides a review of the related
work and Section 3 defines the transaction confirmation time estimation problem. Section 4
presents our proposed framework Hybrid-CTEN for transaction time estimation. Section 5
details our experimental setup and evaluation. Finally, Section 6 concludes this paper.
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2 Related work

Many approaches have been proposed to estimate the transaction confirmation time in the
Bitcoin blockchain. In [3, 10], the authors approached the confirmation time estimation
problem as a binary classification task, focusing on predicting whether a transaction can be
confirmed in the upcoming block. They employed supervised learning models such as SVM,
random forest, and AdaBoost to estimate the confirmation delay. This estimation was based
on two key factors: the characteristics of the transaction itself and the characteristics of the
unconfirmed transactions in the mempool. The latter was described through metrics such as
transaction count and transaction feerate distribution.

Other studies such as [2, 4–8] have adopted a different approach by analyzing the distribu-
tion of transaction submission and confirmation. Among these, [5, 6] approach the estimation
problem bymodeling it as a bulk service queueing system denoted as M/G B/1, where trans-
action arrivals follow the Poisson distribution and batches of transactions (B) are confirmed at
a ratewith a specified distribution. Balsamo et al. [2] describe it as another type of bulk service
queueing systems, M/M B/1, with transaction arrival following the Poisson distribution and
the confirmation of batches following an exponential distribution. Zhao et al. [8] introduce the
concept of a zero-transaction service within the traditional bulk queueing system, accounting
for the possibility of a block containing zero transactions. It assumes that transaction arrivals
follow a Poisson distribution, and batch confirmations adhere to a stochastic density function.
Apart from these queueing system-based solutions, [4, 7] model the confirmation process
as a Cramér-Lundberg process with a fixed rate of transaction arrivals and an exponential
distribution for the confirmation of a predetermined number of transactions. In the work [13],
transaction confirmation time was approached as a classification problem. They conducted
an extensive comparison of various models, including neural networks, ensemble learning
models, and a method that solely considers transaction fees.

3 Problem definition

Previous studies have demonstrated that transaction confirmation is a complex process that
depends on various factors, such as the characteristics of the transaction, the competition
among unconfirmed transactions in the mempool, mining policy, and system resources.

Given a newly submitted transaction ˆt x , the goal is to predict its confirmation time
(interval) denoted as y ∈ {y1, · · · , yn}, where {y1, · · · , yn} constitute a collection of non-
overlapping confirmation time intervals, collectively representing the future timeline.F is the
designed function to estimate the confirmation time within which the submitted transaction
will likely be confirmed, relying on various sources of information.

y = F(TxInf( ˆt x),BlockInfo, MemInfo)

where,

• TxInf( ˆt x) contains the information of transactions that is related to transaction valida-
tion and confirmation in the network, such as transaction feerate, transaction weight,
transaction inputs, and submission time.

• BlockInfo provides information on the characteristics of mined blocks, such as historical
transaction feerate, block size, and transaction distribution. These characteristics can
implicitly reflect the volume and mining preference of mining activity, which can be
helpful in predicting future confirmation time.
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• MemInfo provides information about unconfirmed transactions in the mempool, which
is a temporary storage area for transactions that have been broadcasted to the Bitcoin
network but are yet to be included in a block. As the capacity of a block is limited in the
Bitcoin system, submitted transactions compete with each other to be confirmed in the
next block.

4 Methodology

Hybrid-CTEN is a framework based on neural networks and XGboost to estimate the trans-
action confirmation time in the Bitcoin blockchain. It operates by taking the estimated
transaction itself, confirmed transactions in the blockchain, and unconfirmed transactions
in the mempool as inputs, and generates the estimated confirmation time for this transaction.

Figure 1 presents the overview workflow of Hybrid-CTEN. It consists of three compo-
nents: a Data Preprocessing Module, a Feature Extraction Module, and a Confirmation Time
Estimation Module. The Data Preprocessing Module encompasses the construction of fea-
tures derived from the blockchain, which holds records of confirmed transactions in the
blocks, mempool information representing unconfirmed transactions, and transaction data
encompassing transaction-specific characteristics. Meanwhile, within this module, the entire
confirmation time spectrum is discretized into distinct block intervals. In the subsequent Fea-
ture Extraction Module, the constructed features from blocks, mempool, and transactions are
amalgamated to unveil underlying patterns. These extracted patterns are then relayed to the
Confirmation Time Estimation Module for the final estimation process.

4.1 Data preprocessingmodule

This module is employed for constructing features from transactions, blocks and mempool.
It also outlines the procedure of discretizing continuous confirmation time into intervals.

4.1.1 Feature construction

By analyzing the confirmation process in the Bitcoin blockchain, we identified three factors
that contribute to transaction confirmation, namely, transaction features, block states, and
mempool states.

• Transaction features describe the unique details of a submitted transaction. We select
the features that we believe may affect a transaction’s validation and confirmation.

– transaction weight: measures transaction size2.
– transaction feerate: refers to the transaction fee per size unit, with each unit being
approximately equivalent to a quarter of a transaction weight unit. Generally, trans-
actions with higher feerates are considered confirmed earlier than those with lower
feerates.

– number of inputs and number of outputs: mainly contribute to the validation cost of
miners, as they need to check the legitimacy of the assets stated in each transaction
input by tracking the previous transactions in the blockchain.

2 Segwit transactions relocate the unlocking script (witness) from within the transaction to an external data
structure, resulting in a smaller size in terms of its raw data
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Figure 1 An overview of Hybrid-CTEN

– transaction first-seen time: refers to the moment when a Bitcoin transaction is ini-
tially observed by a node in the Bitcoin network. In this work, it is treated as an
approximation of the transaction submission time. This is because it can be chal-
lenging to accurately determine the exact time when a transaction was submitted to
the network, as well as the transaction propagation time in the network before the
Bitcoin system observes it.

– mempool position: indicates the competition among unconfirmed transactions in the
system. As higher fee transactions are typically expected to be processed earlier than
this one, we computed it by summing the weights of all unconfirmed transactions
with higher feerates and subsequently dividing the sum by the maximum block size.

• Block states encompasses attributes associated with the blocks that have been mined,
such as block size and transaction confirmation distribution. These characteristics are
used to infer future transaction confirmation and mining preference based on historical
transactions confirmed in each block.

Miners typically prefer to include transactions with higher fees to maximize their profits.
Therefore, we construct the block states by characterizing the transaction distribution within
a block based on their respective feerates. During the distribution construction process, it
becomes infeasible to represent every individual feerate value due to the continuous nature
of feerate values and the uneven distribution of transactions across different feerates. Hence,
we made a trade-off between the precision of the scale and the scale dimension, assigning
smaller scales to the lower feerate zones and larger scales to the higher feerate zones, based
on the distribution characteristics. Figure 2 illustrates the confirmed transaction distribution
across different feerates in the blockchain, revealing that 94% of transactions have a feerate
lower than 84 and transactions are more densely packed at lower feerate levels than at higher
levels.

Specifically, we partition the complete feerate spectrum into 36 non-overlapping intervals
with exponentially increasing interval sizes. The first interval is defined with a feerate range
of 0-3, and for each subsequent interval, the maximum feerate is expanded by 10% of the
prior interval’s maximum feerate. This progression continues until the final interval, which
encompasses all transactions with feerates surpassing the maximum feerate (approximately
84). The division criteria for every three intervals are depicted by the dotted line in Figure 2,
using smaller scales for the lower feerate range and larger scales for the higher feerate range.
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Figure 2 Cumulative distribution function (CDF) of transaction across different feerates

Finally, the block states of a block, denoted as dist_b, are modeled by the distribution
of transactions in this block b across each feerate interval u. It is calculated by summing
the weight w of every transaction t x in this block with its feerate r falling into that interval
according to (1):

dist_b(u) =
∑

t x∈b,r∈u

w(t x) (1)

• Mempool states indicates the competition among the unconfirmed transactions in the
mempool Mem, where transactions compete to be included in the next block. Similar to
the block states, we model the mempool states mem as the distribution of unconfirmed

Figure 3 The distribution of transactions confirmation within a 2-block interval
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transactions across each feerate interval u. It is calculated by summing the weight of each
transaction t x with its feerate r falling into that interval, as defined in (2):

mem(u) =
∑

t x∈Mem,r∈u

w(t x) (2)

4.1.2 Confirmation time discretization

This work discretizes future time into block intervals rather than time intervals. This choice is
mainly owing to the unpredictability of block generation time,which can introduce significant
variance in the estimation outcomes. Figure 3 illustrates the confirmation time of transactions
with a 2-block confirmation interval. We can see that the duration of the 2-block interval can
vary from a few seconds to hundreds of seconds. Therefore, a fixed-time range could represent
different block intervals, with some cases having a one-block interval and others having 2-
block intervals, leading to inevitable classification errors. Fortunately, these variances can
be addressed by discretizing future time into block intervals, which mitigates classification
errors that may occur due to the variation in confirmation time.

Specifically, we adhere to two discretization rules when dividing the confirmation time
(block intervals) into multiple classes: The first rule is that transactions with the same con-
firmation block interval will be grouped in the same class. The second rule is to try to seek
a balance in the number of transaction samples in each class. According to Figure 4, the
Bitcoin blockchain system exhibits a long tail in the distribution of transaction confirmation
time. Transaction confirmation time ranges from a few blocks to over a hundred blocks,
with the majority of transactions being confirmed within 10 blocks. When the confirmation
duration exceeds 10 blocks, the distribution becomes sparser across each confirmation block
interval.

The discretization process, guided by the two rules, is outlined in Algorithm 1. It encom-
passes the following steps: (1) Set the lower bound elow of a new decentralized interval,
with the smallest block elapsed time (starting from a 1-block interval) in the unclassified
time range. (2) Determine the split ratio pspli t to discretize the unclassified confirmation
time range, aiming for an equal division of the remaining block elapsed time range. (lines

Figure 4 The distribution of transaction confirmation in the Bitcoin blockchain
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4–7). (3) Determine the upper bound eupp of the new decentralized interval by accumulating
higher block elapses until the split ratio is reached (lines 9-11), yielding the new decentralized
interval with the time range [elow, eupp]. (4) Repeat (1)–(4) iteratively until k intervals (E)
have been defined.

Algorithm 1 Confirmation Time Discretization Algorithm
Input: confirmation time (block elapse e) ratio, P = {p1, p2, · · · , pemax }; the classification size, k.
Output: The discretized block intervals, E = {E1, E2, · · · , Ek }.
1: c_num ← 1; � construct a new block interval
2: elow ← 1; � the minimum confirmation time in each class
3: while c_num ≤ k do
4: if c_num == 0 then
5: pspli t ← 1

k
6: else

7: pspli t ← 1−∑elow−1
1 pi

k−c_num ;
8: end if
9: eupp ← argmin(pspli t ≤ ∑eupp

elow ri ) � the maximum confirmation time in each class
10: c_num ← c_num + 1
11: Ec_num ← {elow, · · · , eupp}
12: elow ← eupp + 1
13: end while
14: return E = {E1, E2, · · · , Ek };

4.2 Feature extractionmodule

After embedding these three sources of information, the Feature ExtractionModule is applied
to generate high-level concepts from these inputs. Specifically, it takes inputs from sequences
of block states and mempool states, as well as the transaction features and then outputs the
extracted patterns. In this module, the incorporation of block states is intended to assist in
inferring transaction confirmation by considering the volume of future blocks and mining
preferences based on confirmed transactions in each block. The sequence of mempool states
is utilized to infer the competition among unconfirmed transactions in the future.

As shown inFigure 1, sequencemodels arefirst applied to the block sequence andmempool
sequence to extract trend information. The generated sequential trend patterns are then com-
bined with the transaction features and passed through a series of stacked fully-connected
layers for further pattern extraction. Finally, a softmax algorithm is applied to produce a
classification result, which is then used to train the feature extraction module. To mitigate
overfitting, each fully-connected layer is trailed by a dropout operation and activated using
a ReLU function.

In addition to the Long Short-Term Memory (LSTM) sequence model [15], which aggre-
gates information on a token-by-token basis in sequential order, we have also implemented
alternative sequence models that attempt to capture the relationships between different
positions of a single sequence to generate a representation for the sequence. These mod-
els encompass additive attention [16], self-attention [14], weighted attention [17], and
transformer encoder [14]. We compare their performance in processing sequential data, par-
ticularly given their significant achievements in handling time series data [18–21].
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Table 1 Experimental dataset for
transaction confirmation time
estimation

Dataset Training Testing

S1 621005–621184 621185–621229

S2 621255–621434 621435–621479

S3 621505–621684 621685–621729

S4 621755–621934 621935–621979

S5 622005–622184 622185–622229

S6 622255–622434 622435–622479

4.3 Confirmation time estimationmodule

In this module, the output of the chosen fully-connected layer in the Feature ExtractionMod-
ule (the third layer in Figure 1), encompassing both specific and conceptual attributes of
the transaction features, block states, and mempool states, will be obtained. Subsequently,
XGBoost is employed for the final classification, drawing from its well-established effec-
tiveness and efficiency within the machine learning community.

5 Experiments

5.1 Datasets

We collected transaction data from the block range 621001–622500 via Blockchain.com3.
Each dataset consists of 225 continuous blocks selected from every 250 blocks. The first 80%
of blocks in each dataset (approximately 400000 transactions) are used for training, while
the remaining 20% (approximately 100000 transactions) are used for testing. Only newly
submitted transactions are selected when selecting instances for training and testing. Once
a model is trained, we evaluate its performance on the testing dataset relative to the training
dataset, as shown in Table 1.

5.2 Confirmation time discretization

In this work, we discretize the range of transaction confirmation time into four different class
sizes, as indicated in Table 2: k = 2, k = 4, k = 6, and k = 8. For k = 2, the confirmation
time range is categorized: ‘confirmed within 1 block interval’ and ‘confirmed within more
than 1 block interval (≥ 2 blocks)’. In this case, this problem can be viewed as a binary
classification problem of predicting whether a transaction will be confirmed in the next block
as studied in the works [3, 10].

In this work, we choose not to further discretize the confirmation time into more than
8 classes, as transactions confirmed beyond 50 blocks are rare at each block interval, as
depicted in Figure 4. Meanwhile, Class 8 in the set of 8 classes (k = 8) already encompasses
transactions confirmed beyond a 59-block interval, as shown in Table 2.

3 https://www.blockchain.com/api/blockchain_api
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5.3 Evaluationmetrics

In this work, we have selected precision, recall, and f1-score as our primary metrics for
evaluation, while accuracy is considered a secondary metric. This choice is due to the nature
of the data and the distribution among the prediction classes. Given the uneven distribution
of transactions confirmed with various block intervals, approximately 60% of them being
confirmed within a 1-block interval and the rest representing a smaller fraction (as indicated
in Table 2), an important consideration arises. This situation can lead to a classification
model achieving a high accuracy score simply by predicting the majority class, even if its
performance on the minority class is unsatisfactory.

• Primary metric:

recall = TP

TP+FN
(3)

precision = TP

TP+FP
(4)

f1-score = 2 · recall · precision
recall+precision

(5)

• Secondary metric:

accuracy = TP+TN

TP+TN+FP+FN
(6)

where TP (true positive), FP (false positive), FN (false negative), and TN (true negative) are
observed classification results.

5.3.1 Compared methods

We compare the estimation performance of neural network models, ensemble learning mod-
els, a baseline model as well as the proposed Hybrid-CTEN framework.

• Neural Network (NN) refers to neural network models, which have gained prominence
in the machine learning community for their effectiveness in addressing classification
tasks [22, 23].

– MLP, Multi-Layer Perceptron, is composed of stacked fully-connected layers. In
this work, it takes only transaction features as input.

Table 2 Transaction confirmation time discretization under class k=2, 4, 6, 8

Class k=2 k=4 k=6 k=8
blocks ratio blocks ratio blocks ratio blocks ratio

Class 1 1 62.2% 1 62.2% 1 62.2% 1 62.2%

Class 2 ≥2 37.8% 2 13.2% 2 13.2% 2 13.2%

Class 3 3–7 13.2% 3–4 8.5% 3 5.2%

Class 4 ≥8 11.5% 5–8 5.5% 4–5 5.5%

Class 5 9–28 5.3% 6–9 4.0%

Class 6 ≥29 5.3% 10–18 3.4%

Class 7 19–58 3.4%

Class 8 ≥59 3.2%
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– Lstm, Lstm+ and Lstm_prev utilise LSTM as a sequence model to process both
block states and mempool states. The output of the LSTM is then combined with
transaction features and passed through a fully-connected layer network. The dif-
ference lies in that Lstm+ applies a deeper 7-layer fully-connected network, while
Lstm_pre models the block states and mempool states applied in the work [13].

– Adv, Wht, Self, and Transf correspond to models that utilize different attention
techniques to extract features fromblock states andmempool states. These techniques
include additive attention [16], weighted attention [17], self-attention [14], as well
as the transformer model [14]. The extracted sequential features are then combined
with transaction features and fed into a fully-connected layers network.

In the neural networkmodels, the sequence processingmodel is configured with 8 hidden
units and, if applicable, a sequence length of 3. The fully connected layers consist of a
three-layer neural network with hidden unit configurations of [64, 8]. A dropout rate of
0.2 is applied, followed by the specified class size. For the Transformer model, we used
2 attention heads and 32 units in its fully-connected layer. The batch size is set to 1000
when applicable, and the models are optimized using stochastic gradient descent with
the Adam optimizer.

• Ensemble Learning (EL) models enhance prediction performance by training mul-
tiple estimators and integrating their predictions [12, 24–27]. In this work, we study
the classification performance of four state-of-the-art ensemble approaches: XGBoost
[12], LightGBM [25], Random Forest (RF) [26], and Rotation Forest (RoF) [27], all
of which are well-known for their outstanding performance in handling classification
tasks. XGBoost is a cutting-edge gradient boosting framework of decision trees that
gained popularity in the 2015 Kaggle classification challenge. Compared to XGBoost,
LightGBM employs histogram-based algorithms to reduce execution time and memory
consumption. RF, ensembling decision trees based on the bagging technique, is popu-
lar owing to its generalized performance, high prediction accuracy, and quick operation
speed. Meanwhile, RoF has been demonstrated to score much better on classification
tests than other ensemble approaches such as Bagging, AdaBoost, and Random Forest
[27].
In addition, we also study the classification performance of deep forest (DF) [28], which
maintains the layer structure of a neural network while replacing the neurons in the fully
connected layers with base estimators (some ensemble learningmodels). In this work, the
base estimators consist of two random forest models and two extremely randomized trees
classifiers as introduced in [29]. We also investigate its variants with the introduction of
a misclassification penalty, DF_Cost [30].
In both the ensemble learningmodels and deep forest models, the number of estimators is
set to 100 by default. However, for XGBoost, the number of estimators is set to 300, and
the booster is set to gbtree. Additionally, the values for γ = 0.1, max_depth = 6, λ = 2,
and colsample_bytree = 0.7 are set, with all other parameters left at their default values.

• Hybrid-CTEN is our proposed framework that combines neural network and XGBoost.
We implemented two feature extraction frameworks, LstmandAdv, and appliedXGBoost
to analyze the extracted features, resulting in two variants:HybridLstm andHybridAdv.
Additionally, we introduced a variant HybridLstm+ by stacking a seven-layer neural
network with hidden unit configurations of [64, 48, 36, 24, 18, 12] for the first 6 layers,
along with a final layer designed for the specified class size, as opposed to the 2-layer
network used in HybridLstm.
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Table 3 Comparison of model performance across different class sizes

(a) Prediction performance on class size k= 2 and k= 4

Model k=2 k=4

precision recall f1-score accuracy precision recall f1-score accuracy

NN MLP 94.8% 91.8% 92.6% 93.3% 69.3% 62.0% 62.1% 82.8%

Adv 95.0% 92.3% 93.1% 93.7% 70.9% 65.1% 65.6% 82.6%

Wht 94.7% 91.6% 92.4% 93.1% 62.4% 60.6% 59.7% 82.1%

Self 93.4% 91.2% 91.8% 92.4% 71.2% 59.6% 59.0% 79.1%

Lstm 94.3% 92.3% 93.0% 93.6% 62.7% 63.8% 58.7% 81.4%

Transf 94.0% 91.8% 92.5% 93.1% 72.7% 72.1% 69.2% 83.6%

EL RF 96.9% 96.3% 96.5% 96.7% 78.5% 79.4% 78.0% 87.9%

RoF 94.5% 94.4% 94.4% 94.7% 73.1% 74.1% 72.9% 84.5%

DF 96.9% 96.3% 96.5% 96.7% 78.5% 79.4% 78.0% 88.0%

DF_Cost - - - - 78.2% 78.7% 78.0% 88.0%

LightGBM 97.0% 96.4% 96.6% 96.8% 78.6% 79.4% 78.0% 88.0%

XGBoost 97.1% 96.4% 96.7% 96.9% 78.6% 79.5% 78.0% 88.1%

Hybrid HybridAdv 90.5% 91.2% 90.1% 90.3% 78.0% 78.9% 76.7% 84.7%

-CTEN HybridLstm 93.2% 94.0% 93.4% 93.7% 77.5% 79.9% 76.5% 84.8%

HybridLstm+ 91.5% 92.3% 91.5% 91.8% 78.6% 79.6% 78.5% 87.7%

Baseline 96.6% 96.1% 60.9% 66.0% 77.6% 78.0% 30.9% 51.5%

(b) Prediction performance on class size k= 6 and k= 8

Model k=6 k=8

precision recall f1-score accuracy precision recall f1-score accuracy

NN MLP 41.2% 41.2% 37.9% 74.7% 32.5% 35.0% 31.0% 73.0%

Adv 43.2% 44.0% 40.7% 74.4% 40.8% 38.7% 37.3% 74.2%

Wht 44.4% 46.3% 42.2% 75.1% 44.1% 41.3% 39.1% 74.0%

Self 47.7% 41.9% 38.3% 72.9% 31.9% 34.4% 29.8% 70.9%

Lstm 45.7% 45.3% 43.0% 74.9% 34.2% 34.5% 30.9% 72.6%

Transf 41.8% 42.1% 38.8% 75.1% 40.2% 39.3% 36.8% 74.6%

EL RF 66.4% 66.8% 65.1% 84.4% 58.0% 57.5% 56.7% 82.4%

RoF 62.5% 63.0% 61.7% 81.1% 55.3% 54.9% 54.5% 79.2%

DF 66.0% 66.3% 64.6% 84.1% 58.1% 58.2% 57.1% 82.4%

DF_Cost 66.0% 66.3% 64.6% 84.1% 58.1% 58.2% 57.1% 82.4%

lightGBM 66.3% 66.3% 65.0% 84.5% 58.1% 58.0% 57.1% 82.8%

XGBoost 66.8% 66.4% 65.1% 84.9% 58.6% 58.3% 57.3% 83.1%

Hybrid HybridAdv 67.4% 68.5% 64.9% 81.5% 58.7% 58.3% 55.8% 78.8%

-CTEN HybridLstm 67.5% 69.2% 66.0% 81.4% 59.8% 59.4% 56.9% 80.2%

HybridLstm+ 68.5% 69.7% 66.9% 81.6% 60.6% 60.4% 59.4% 81.7%

Baseline 66.4% 65.4% 21.1% 48.6% 59.6% 58.2% 15.8% 47.3%

The bold text is to highlight the best performance among all the methods
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5.4 Result analysis

We compare the prediction performance of our proposed Hybrid-CTEN framework with the
other models across different class sizes. Additionally, we conduct a further study on the
effectiveness of the feature construction proposed in this work.

5.4.1 Evaluation of classification performance

Table 3 presents the overall performance of different classification models across different
class sizes, obtained by averaging the performance across each dataset. We can observe that
as the class size increases, the performance of each model decreases under every evaluation
strategy. Meanwhile, we can find that both ensemble learning models and our proposed
Hybrid-CTENmodels outperform neural network models in handling this classification task.

Among all the models, XGBoost achieves the most competitive performance in pre-
dicting whether a transaction can be classified into the next block (k = 2). However, when
handlingmore complicated classification tasks, our proposed Hybrid-CTEN framework vari-
ants, HybridAdv, HybridLstm, and HybridLstm+, which incorporate the features of block
states and mempool states, gradually dominate the prediction performance on precision,
recall, and f1-score, outperforming XGBoost. In the classification case k = 4, HybridLstm+
achieves the best performance on precision and f1-score, while HybridLstm achieves the
best performance on recall. When the class size increases to 4 and 6, both HybridLstm+ and
HybridLstm dominate the other models on all precision, recall, and f1-score. Furthermore,
it is worth noting that HybridLstm+ outperforms HybridLstm with more complex feature
extraction work, highlighting the significance of block states and mempool states in han-
dling complicated classification tasks. This conclusion is consistent with the observation in
neural network models, where incorporating block states and mempool states yields better
performance than solely relying on transaction features.

XGBoost dominates the other models in terms of accuracy. This is due to its strength
in binary classification and the unbalanced nature of the classification task, which favors
predicting the majority class in each task. Figure 5 presents the confusion matrices generated
by XGBoost and HybridLstm+ for different classes on dataset S3. It can be seen that for
Class 1, where the majority of instances sit, XGBoost outperforms HybridLstm+ with a
significantly higher proportion of correct predictions. However, XGBoost loses its dominance
in the other classes. The same conclusion can be drawn for the other datasets as well.

In the context of our Hybrid-CTEN framework, the superior performance of HybridLstm
and HybridLstm+ over HybridAdv suggests that LSTM-based models are more effective in
estimating transaction confirmation time.

5.4.2 Evaluation of optimization on feature construction

Compared to our previous work [13], we made several adjustments to the feature extrac-
tion framework: (1) We updated the transaction distribution modeling in block states and
mempool states based on the feerate characteristics of the blockchain. This was achieved
by assigning smaller scales to lower feerate zones and larger scales to higher feerate zones,
with a 10% incremental increase in each subsequent interval. (2) We increased the number of
fully-connected layers in the neural network solutions from 3 to 7 layers. Results on Figure 6
demonstrates the optimization. First, in terms of feature construction on block states and
mempool states, we proved its effectiveness by comparing the performance of Lstm models
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Figure 5 Confusion matrix of XGBoost and HybridLstm+ on different classes in dataset S3

with different feature constructions. We observed that the model Lstm with updated features
outperformed the previous one, Lstm_prev. Additionally, we further demonstrate the effec-
tiveness of deeper feature extraction layers through the superior classification performance
of HybridLstm+ over HybridLstm, especially when handling complex classification tasks
with class size k ∈ {4, 6, 8}.

Figure 6 Prediction performance evaluation of feature construction
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Figure 7 Prediction performance evaluation of HybridLstm+ with different extraction layers

Furthermore, we evaluated the classification performance of HybridLstm+ using features
extracted from different layers. Starting from the output of Layer_0, which contains the
original concatenated features from the outputs of the sequential model and transaction raw
features, we compared its prediction performance with features extracted from each of the
following 7-layer fully-connected layers. Our results, as shown in Figure 7, indicate that
Laye_0 outperforms the other layers, suggesting that the extracted data from the subsequent
layers may have missed essential information required by XGBoost.

In conclusion, these findings emphasize the importance of feature selection and extraction
in developing effective classification models for transaction confirmation time estimation
tasks.

6 Conclusion

This paper approaches the problem of transaction confirmation time estimation by framing
it as a classification problem. Then a transaction confirmation time estimation framework,
Hybrid-CTEN, is proposed to solve this problem. This framework combines historical con-
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firmation time in the block, unconfirmed transactions in the mempool, and the estimated
transaction itself to improve estimation performance over multiple classification tasks. The
experiments on the real-world blockchain data demonstrate that other thanXGBoost excelling
in the binary classification case (to predict whether a transaction will be confirmed in the
next generated block), Hybrid-CTEN surpasses state-of-the-art methods in terms of preci-
sion, recall, and f1-score across all multiclass classification scenarios (4-class, 6-class, and
8-class).

Our future research will concentrate on two main directions. Firstly, we will optimize
our framework for the Bitcoin blockchain. This will involve enhancing the extraction of
transaction features and addressing the issue of handling imbalanced data distribution in
estimating transaction confirmation time, which is a common challenge encountered in real-
world datasets. Secondly, we plan to adapt our proposed framework to different blockchain
systems. For example,wewill explore its applicability to predicting gas usage in theEthereum
network. This adjustment will involve considering the specific characteristics and require-
ments of other blockchain platforms to ensure the effectiveness of our framework across
diverse contexts.
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