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Abstract
Mining real-time streaming data is a more difficult research challenge than mining static data due to the
processing of continuous unstructured massive streams of data. As sensitive data is incorporated into
the streaming data, the issue of privacy continues. In recent years, there has been significant progress in
research on the anonymization of static data. For the anonymization of quasi-identifiers, two typical
strategies are generalization and suppression. But the high dynamicity and potential infinite properties of
the streaming data make it a challenging task. To end this, we propose a novel Efficient Approximation
and Privacy Preservation Algorithms (EAPPA) framework in this paper to achieve efficient data pre-
processing from the live streaming and its privacy preservation with minimum Information Loss (IL) and
computational requirements. As the existing privacy preservation solutions for streaming data suffered
from the challenges of redundant data, we first proposed the efficient technique of data approximation
with data pre-processing. We design the Flajolet Martin (FM) algorithm for robust and efficient
approximation of unique elements in the data stream with a data cleaning mechanism. We fed the
periodically approximated and pre-processed streaming data to the anonymization algorithm. We
propose novel k-anonymization and l-diversity privacy principles for data streams using adaptive
clustering. The proposed approach scans a stream to detect and reuse clusters that fulfill the k-
anonymity and l-diversity criteria for reducing anonymization time and IL. The experimental results reveal
the efficiency of the EAPPA framework compared to state-of-art methods.

1. Introduction
Today, digital transformation is transforming the face of organizations all over the world, and it is
increasingly necessary for firms to incorporate data into their operations than developing and investing in
new technology. According to recent research, the global data sphere will raise from 33 Zettabytes (ZB) in
2018 to 175 Zettabytes (ZB) by 2025 [1]. Almost everyone nowadays interacts with data daily.
Businesses are attempting to acquire this data to process it further to extract interesting patterns that can
be utilized to boost profitability. Many data mining approaches have been proposed in the literature by
various academics, most of which are relevant to batch processing [2]. These strategies may be used to
extract knowledge that can then be utilized to make decisions. According to different polls connected to
digitization undertaken by international organizations such as IDC, it is expected that because all
consumers interact with data in their everyday lives, real-time data would account for 30% of worldwide
data available in 2025 [3]. Businesses want to take advantage of this possibility to process data in real-
time to increase profits. By 2025, 75% of the world's population will be dealing with data daily, and the
number of individuals interacting with data will continue to rise as billions of Internet of Things (IoT)
devices are linked throughout the world [4–6]. Smartphones, numerous sensors, the web, online
transactions, IoT devices, and other sources of data are constantly generating data. This real-time data
contains a wealth of information and wisdom. Unlike batch processing of static data, continuously
generated real-time data (also known as data streams) necessitates different processing methods to
extract useful patterns and knowledge, because data streams arriving at high speeds must be processed
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as soon as possible, and delayed processing renders data streams invalid. Businesses aim to acquire
data and process it to extract hidden information that will benefit their operations, i.e., make the most of
data [7]. Sensitive and private data, such as financial status, medical issues, location, and so on, are
managed by diverse stakeholders throughout the whole cycle, from data collection through knowledge
extraction. The open problem in data streams mining is to fine-tune the balance between maximal data
utilization to find relevant patterns and privacy preservation [8].

Privacy preservation is a vital requirement for both static and streaming data. Hospitals and other
organizations frequently need to disseminate microdata for scientific study and knowledge-based
decision-making [9], such as illness analysis and prediction. Such data is frequently recorded in the form
of table D. The recorded data D consists of different types of attributes such as sensitive attributes,
explicit identifiers (ID), quasi-identifiers, and others. "The explicit identifier (ID) can identify individuals
(e.g. name and social security number); quasi-identifier (QI) is a set of attributes that can potentially
identify an individual, such as zip code, date of birth, and gender (in general, we assume that QI is
background knowledge possessed by attackers); and sensitive attributes (e.g. visit date, if it is not
contained in QI)". To avoid the leaking of personal information, clear identifying information must be
deleted when microdata is provided. Individual privacy might potentially be jeopardized if additional
public data is linked to QI [10]. As a result, adequate mechanisms for privacy-protected data posting are
necessary. Techniques for preserving privacy, such as k-anonymity, l-diversity, t-closeness, and so on, are
appropriate for anonymizing static datasets just once in an offline setting. But when anonymization is
required regularly for data streams and execution speed is critical, these techniques may be deemed
ineffective. Existing privacy preservation approaches for streaming data failed to provide the required
privacy level, resulting in a greater IL. On the other hand, the time and space requirements for performing
the privacy preservation of streaming data become a difficult research topic. As a result, an effective
solution is necessary to accomplish the streaming data's complete privacy protection principles.

However, before applying the privacy preservation and knowledge discovery, another vital challenge is the
data approximation and pre-processing of periodically streamed data [11]. There is a lack of effective
techniques to perform the data approximation. Every day, more than 2.5 quintillion bytes of data are
produced on the internet. Big data refers to data that is growing in terms of volume, diversity, and velocity.
To examine this data, one must first gather it, store it in a secure location, clean it, and analyze it. Dealing
with useless or redundant data is one of the most difficult difficulties that big data developers confront
[11]. It takes a lot of time and resources to keep and analyze all of this extra data, yet it's all for naught in
the end. As a result, removing duplicate data becomes critical for lowering analysis costs and reducing
duplication. Data cleaning may be done using a variety of ways [12–15], but first, you must determine
how much usable data is available in the dataset. As a result, before removing duplicate data from a data
stream or database, it's vital to identify what data is different or unique. Apart from this, the online
streaming data may contain noisy data which can result in incorrect knowledge discovery and decision
making. Therefore, before performing the streaming data mining (knowledge discovery and decision
making), the appropriate mechanisms are required to approximate and pre-process the online streaming
data.
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To end this, we proposed a novel framework EAPPA in this paper to achieve an efficient knowledge
discovery mechanism from the input streaming data. The EAPPA framework consists of two vital phases
such as (1) streaming data approximation and pre-processing, and (2) dynamic privacy preservation. The
periodically collected incoming streaming data contains redundant information and different noises
around all attributes. The FM algorithm is designed in this paper to approximate the number of unique
attributes in the input data stream. The highlight of the FM algorithm is that it employs less time and
memory while running. After approximation of the periodically received streaming data, we applied the
lightweight mechanism of data cleaning using Natural Language Processing (NLP). The clustering
techniques play the significant role in privacy preservation [16–19]. The structured input of the first phase
is then processed for privacy preservation where we have designed the adaptive clustering-based k-
anonymization. We extend the adaptive k-anonymized clustering by l-diversity to prevent attribute
disclosure. The remainder of the sections of this paper is ahead. In section 2, we present a brief study of
various privacy preservation techniques. The design and methodology of the proposed EAPPA framework
are presented in section 3. The experimental results and comparative analysis is presented in section 4.
Conclusion and future works are disclosed in section 5.

2. Related Works
As the main focus of this paper is on the effective processing of streaming data mining concerning
privacy preservation, we review different approaches to privacy preservation in this section. We begin with
a discussion of privacy concepts and anonymous techniques for static datasets with one-time
anonymization. Then, we review the state-of-art developments in privacy protection for publishing
dynamic datasets and data streams. Finally, we demonstrate the key research issues of building privacy
preservation approaches for data streams and the contributions of the suggested model.

A. Privacy Preservation for Static Datasets

Recently privacy preservation in static datasets like Online Social Networks (OSNs) becomes an essential
requirement due to various cyber threats. Several techniques [20–29] have been proposed to achieve
privacy preservation over the static OSN datasets recently. To understand the functionality of static
dataset privacy preservation methods, we reviewed recent techniques with single and multiple sensitive
attributes. A hybrid OSN privacy protection approach had proposed in [20]. They looked at identity and
location privacy leaks and resilience. The game-based Markov decision process system had designed to
maximize data value while retaining anonymity. For OSN publication, the authors provide a local
differential privacy strategy to keep community structure data in [21]. This model's published versions
produced synthetic social network information using the edge probability reconstruction structural
constraint. Unanonymization of social networks using structural information had demonstrated in [22].
An efficient node matching mechanism had also designed. The clustering method was developed in [23]
to achieve k-anonymity in OSNs. Initially, the author employed Particle Swarm Optimization (PSO) to
construct the clustering strategy to reduce IL. The high processing cost of PSO-based clustering led to the
development of a hybrid Genetic Method (GA)/PSO-based algorithm (PSO-GA). Recent research [24] used
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OSN to demonstrate the impact of user attributes on de-anonymization accuracy. Their multipartite graph
included user attribute diversity and essential characteristics. The multipartite graph had divided into
groups. Using clustering to secure OSN privacy was proposed in [25]. They recommend clustering to
achieve privacy for nodes, linkages, and properties in social networks. To ensure k-anonymity, OSN nodes
were clustered by similarity. To achieve l-diversity privacy, k-anonymity was enhanced. The feature
learning approach for privacy-preserving poisoning prevention had recently developed in [26]. They used
feature learning to infer social relationships between users before building an inferred social graph. The
privacy-preserving principles assumed a social network. Message obfuscation using message replication
and sensitive attributes replacement approach had presented in [27]. They assessed each user's privacy
trustworthiness in OSN based on their social behaviors. To maintain anonymity across all graph portions,
the authors proposed in [28] combining distinct series. These are the dK-1 series for degree frequency, the
dK-2 series for joint degree frequency, and the dK-3 series for edge connecting information. The
"Customizable Reliable Differential Privacy (CRDP)" technique had suggested in [29]. They used the
social distance to change the privacy protection settings for the shortest link between two nodes.

The recent privacy preservation methods [20–29] for static datasets revealed that applying k-
anonymization is not sufficient to address all the privacy requirements. Therefore, k-anonymization had
achieved using clustering with l-diversity or t-closeness methods. Such methods delivered effective
privacy solutions for the static dataset, but cannot be suitable for the dynamic and streaming data. They
failed to address the unstructured, dynamic, and high-volume real-time streaming data.

B. Privacy Preservation for Data Streams

Privacy preservation for data streams is not easier tasks due to reasons disclosed earlier in this paper;
therefore, rare attempts were made on achieving the effective privacy preservation on dynamic or data
streams recently. In this section, we reviewed some standard works for privacy preservation of data
streams and highlight their limitations.

The authors of [30] suggested an anonymization approach with the generalization that allows for
continuous data dissemination while maintaining privacy as new records are entered. It ensures that each
release meets separate l-diversity requirements and that a new anonymized table issued does not
introduce any inference channels with regard to previously released tables. However, this approach only
allows for insertions. The authors of [31] suggested an m-invariance privacy model and a generalized
anonymization mechanism to address both record insertions and deletions. The authors of [32] expanded
m-invariance to m-distinct to address both external ("the dataset has updated with record insertions
and/or deletions") and internal modifications ("the attribute values of each record are dynamically
updated"). But methods in [30–32] cannot be directly applied to data streams. Anonymizing data streams
varies from anonymizing dynamic datasets because the inferences that may be drawn while
anonymizing data streams differ. Anonymizing a dynamic dataset necessitates duplicated table releases.
Because each record is anonymized only once, this inference is impossible in an anonymizing data
stream. An attacker can analyze the output anonymized tuples to make conclusions in the anonymizing
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data stream. Because data streams may only be scanned in one pass and executed in a pipeline, strict
guarantees on the maximum permissible latency between entering input and matching anonymized
output are necessary. Thus, efficiency is critical when anonymizing data streams.

The authors of [33] introduced k-anonymity for publishing privacy-preserving data streams in the case of
a person with numerous records, as well as a clustering method to anonymize data streams and assure
the anonymized data freshness through fulfilling given latency limits. They do, however, assign different
equivalence classes to various recordings of the same person. As a result, they lose the link between the
weights of a susceptible property that belongs to the same person. In [34], the authors have proposed
data stream anonymization built on clustering to speed the anonymization process and prevent
information loss by taking into account temporal limits on tuple publishing and cluster reuse. They
named this approach as “Fast clustering-based k-Anonymization approach for Data Streams (FADS)”.
However, methods in [33] and [34] failed to address the data redundancy and attribute disclosure
problems. In [35], authors have suggested two novel privacy techniques: “improved identify-reserved (α,
β)-anonymity and l-diversity”. They created the DAnonyIR model using a clustering approach that uses
several decision functions to reduce IL due to generalization. The authors of [36] initially looked at the
privacy issue of broadcasting transactional data streams using a sliding window. Then, to anonymize a
sliding window in real-time, they suggested two dynamic techniques with generalization and suppression.
Information of the same user or tuple may be distributed among different windows. Another recent
mechanism called IDEA (“Incomplete Data strEam Anonymization”) had been proposed in [37] for the
continuous data stream. They addressed the incomplete data streams challenges in IDEA with clustering-
based anonymization. A slide-window-based processing architecture was implemented in IDEA to
continually anonymize data streams, with each tuple being produced with anonymized clusters. However,
the sliding window-based approach in [36] and [37] to anonymize the data streams suffered from data
redundancy and sensitive data loss problems.

C. Contributions

Fewer studies [33–37] proposed so far on handling privacy preservation requirements for data streams.
Each method [33–37] has suffered from serious challenges for the privacy preservation of data streams.
The key challenges such as IL due to sliding window technique, redundant data anonymization, lack of
data stream cleaning, incomplete privacy preservation, etc. It motivates us to propose a novel framework
called EAPPA for continuous data streaming using effective algorithms. The contributions of the EAPPA
framework are described below.

We propose the integrated stream data mining framework that consists of stream data
approximation, data cleaning, adaptive clustering-based k-anonymization, and l-diversity.

The efficient FM algorithm is designed in EAPPA to perform the approximation using a suitable hash
function of the currently received data stream in one pass with minimum time and memory
requirements. The approximated data streams are pre-processed to remove the unwanted noise
contains without loss of sensitive and original information.
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We propose the clustering-based improve k-anonymization algorithm to anonymize the periodically
received pre-processed data streams within time constraints using the similarity measure technique.
This approach ensures the k-anonymized clusters with at-least k-anonymized data tuples. To prevent
attribute disclosure in k-anonymized clusters, we introduced the l-diversity approach in the EAPPA
model.

By changing the number of data stream tuples and clusters, we investigate the performance of the
EAPPA framework with similar techniques on a real-world dataset.

3. Proposed Model
Figure 1 shows the overall functionality of the proposed model of processing the data streams. As
discussed above, the phases of the EAPPA model are two-fold. The first contribution is called Data
Approximation and Pre-processing (DAP) and the second contribution is called Adaptive Clustering-based
Privacy Preservation (ACPP). Figure 1 shows the processing of both phases step-by-step using the delay
constraint approach. The functionality is mainly derived from the concept of periodical data processing
of incoming streaming data. Before acquiring the data streams, we first initialized the timer . The
acquired data streams are then processed using the DAP. We applied the FM algorithm to reduce the
redundant data streams followed by the pre-processing algorithm to filter out the noisy contains. The
sequentially received data streams are first checked for duplication, pre-processed, and then stored into
output matrix . The functionality of DAP continues until the timer reaches a pre-defined threshold value 

. Once the delay constraint is satisfied, EAPPA launches the ACPP phase which takes the  as input. In
the ACPP phase, we first compute the k-number of centroids using a basic k-means algorithm. Then
estimate the similarities of each data stream tuple with its corresponding centroid tuple. All the estimated
similarities are recorded and sorted in descending order. Finally, the k-anonymized clusters are formed as
per the sorted order to ensure the k-anonymity. As the k-anonymization failed to prevent the attribute
disclosure, we applied the l-diversity privacy notion on each cluster. The clusters ensuring the k-anonymity
and l-diversity are then published before taking the next periodic data stream. We explore the design of
both phases is explored in the below section.

A. DAP

The functionality of DAP is consists of FM-based data streams approximation and pre-processing of
each received tuple without losing the sensitive information. Figure 2 shows the methodology of the DAP
phase in detail. The input data stream  holds the 1 or more tuples. If the number of tuples in  is more
than 1, then we initiate the FM algorithm and pre-processing algorithm. The main aim of the FM
algorithm is to estimate the total number of distinct data streams, but we explored the FM algorithm to
extract the distinct data streams and discard the redundant data streams. This process continues for
each incoming tuple. Algorithm 1 shows the modified FM algorithm integrated pre-processing algorithm
2.

t

D

λ D

S S
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As shown in algorithm 1, we have effectively utilized the FM algorithm to approximate the periodic data
stream. The advantage of estimating the number of unique tuples using the FM algorithm is explored in
this paper to identify the redundant or duplicate incoming tuple. The core functionality of the FM
algorithm is belonging to the steps such as defining the hash function (step 9), computing that the hash
function of each attribute belongs to each stream (step 11), binary conversion of each hash value (step
12), counting trailing zeros of a binary number (step 13), and computing total distinct streams in  using
step 15 and 16. After discovering the number of distinct elements, we utilized that parameter to discover
whether the current data stream  is unique or redundant and accordingly we take the actions as shown
in steps 17–24 in algorithm 1. From algorithm 1, we called algorithm 2 for the pre-processing of the input
data stream and stored the final pre-processed streams in . The core part of this algorithm is the
manual discovery of the unique attribute of each streaming tuple and defining hash function. For this
work, we defined the hash function shown in Eq. (1).

1

Where, we set the x represents the attribute value of current stream. We set  to
compute the hash values.

S

s

D

h (x) ← (a.x + b)modc

a = 1, b = 6&c = 32
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Algorithm 1: DAP

Input

Output

1. Initial timer

2. 

3. 

4. If

5. For

6. Estimate the sensitive unique attribute from all streams

7. , record the position unique value

8. End For

9. Define hash function for stream  using Eq. (1) and apply

10. For

11. 

12. 

S : inputdatastream

λ : pre − definedtimeconstraint

j : uniquesenstiveattribute

D : Approximtedandpre − processeddatastream

t = 0

s ← acquire (stream)

S ← add (s)

(size (S) > 1)

i = 1 : size (S)

w (i) ← S (i, j) jth

w

i = 1 : size (w)

h (i) ← (a.w (i) + b)modec

h (i) ← binary (h (i))
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Algorithm 1: DAP

13. 

14. End For

15. Compute maximum value:

16. Compute distinct tuples:

17. If

18. Current stream  is unique and apply pre-processing

19. 

20. 

21. Else

22. Discard stream s from stream S as:

23. 

24. End If

25. Else

26. 

27. 

28. End If

29. 

30. Check time constraint

31. If

r (i) ← trailingzeros (h (i))

R ← max (r)

N ← 2R

(N == size(w)

s

p ← algorithm2 (s)

t + +

S ← substract (s)

t + +

S ← algorithm2 (S)

t + +

D ← add (p)

(t ≥ λ)
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Algorithm 1: DAP

32. Return Launch ACPP phase

33. Reset timer , goto step 1

34. Else

35. goto step 2

36. End If

Algorithm 2

shows the pre-processing of each input stream. First, we have checked whether the attribute is a string. If
it strings then, we performed the lemmatization using NLP to convert the incorrect strings into the
meaningful form and remove the noise in the string. Apart from this, we have addressed the challenges of
missing or incomplete data in this work for numeric attributes. We have discovered the numeric attributes
and replaced them with relevant values using the function. The discover the most relevant value using
statistical analysis of same attributed of other steams.

(D) ,

t = 0
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Algorithm 2: Data Pre-processing

Input

Output

1. Acquisition of test stream s

2. For each attribute each attribute

3. If

4. 

5. End If

6. If

7. 

8. End If

9. End For

10. Return

B. ACPP Phase

This phase belongs to achieving the complete privacy preservation of periodically collected data stream
D without losing information. We estimate the centroids using the existing k-means clustering before
doing the k-anonymization. The arguments for using k-means clustering are that (1) it is straightforward
to group tuples based on their similarities, (2) it is quick and creates efficient clusters, and (3) outliers in
the dataset cannot be avoided using k-means and all outliers have privacy. Therefore, we form the initial
centroids of input data stream  as:

2

s : inputdatastream

p : pre − processeddatastream

i = 1 : size (s)

(s (i) == string)

p (i) ← Lemmatization (s (i))

(s (i) == NULL)

p (i) ← newV al ()

(p)

D

[C, C̈] = kmeans(D,n)
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Where,  defines the number of clusters (in this work, we have set n as 30, 60, 90, 120, and 150). 
represents the set of  clusters where the tuples of  are distributed. represents the centroid tuple for
each cluster. The k-means algorithm failed to achieve the complete k-anonymity across all the clusters.
The clusters are k-anonymized if they satisfied the constraint of having exactly k-number of tuples in
each cluster. The value of  is discovered by:

3

Therefore, we have proposed the adaptive clustering mechanism in this paper to achieve the complete k-
anonymization privacy notion for periodically received data stream . This is done by enhancing the
output of k-means clustering as showing in algorithm 3. As showing in algorithm, it takes inputs such as 

, ,  and  and return the set clusters  that ensures the k-anonymity. Before enhancing the
present clusters, we have first estimate the distance between  tuple of  cluster and centroid. This
distance is measured by Manhattan distance technique in  function. It is calculated as the
sum of the absolute differences among two numeric vectors of two tuples. All the distances are
measured into the vector  which contains the entire tuple and its distance value. We then sorted the
tuples in  in descending order of distance values. Finally, the clusters are reformed that ensures
maximum k-tuples per cluster criteria to ensure the k-anonymity. The proposed clustering takes simple
approach to achieve the k-anonymity for the current data stream D. The number of tuples in each cluster
should be less than or equal to k. Therefore, algorithm 3 returns the clusters of similar size to achieve the
k-anonymization with less IL.

n C

n D C̈

k

k =
∣
∣
∣

∣
∣
∣

size (D)

n

D

C C̈ n,x, y O

ith jth jth

getDist(. )

P

P



Page 14/30

Algorithm 3: K-anonymized adaptive clustering

Inputs

Output

C : Setofclusters

C̈ : setofcentroidtuplesforeachcluster

n : numberofclusters

x : numberoftuplesinD

y : numberofattributesineachtuple

O : setofk − anonimizedclusters
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Algorithm 3: K-anonymized adaptive clustering

1. Initialize, ,

2. For 

3. For

4. 

5. 

6. 

7. 

8. End For

9. End For

10. 

11. for

12. for 

13. if

14. 

15. end if

16. end for

17. end for

18. Return

P ← zeros(x, y + 1) q = 1

i = 1 : n

j = 1 : size (C (i))

d ← getDist(C (i, j) , ¨C (i))

P (q, 1 : x) ← C (i, j)

P (q, y + 1) ← d

q + +

temp ← sort (descening,P (:,m + 1))

i = 1 : size (temp)

j = 1 : n

(size (O (j)) ≤ k)

O (i, j) ← join (temp (i, :))

(O)
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Due to its limitations of attribute disclosure, background knowledge, and homogeneity, k-anonymity does
not guarantee total privacy protection. The l-diversity resolved the k-anonymity issues. Therefore, we
further extend the k-anonymized clusters with l-diversity notion in this paper. We used the entropy l-
diversity idea to expand the clusters in  to meet the l-diversity requirement [38]. We calculated diversity
using entropy for each k-anonymized cluster and stored the result in matrix . The greedy approach had
used to guarantee that each cluster met the l-diversity requirement. The procedure continues until all of
the clusters are l-diverse. Because we are not removing any tuples from the cluster during the whole
algorithm 4, the privacy concept of k-anonymity remains the same. As showing in algorithm 4, our aim is
achieve the clusters with diversity below 1. We therefore rearranged the each cluster until we achieve the
diversity level below 1. This is achieved by computing the current cluster with maximum diversity value
and cluster with minimum diversity value. And according to that value , we arranged
the clusters in output vector . Finally, we publish the privacy preserved data stream towards the
intended destinations. The process of clustering repeated for each incoming data stream with similarity
functionality, therefore it is named as adaptive clustering for privacy preservation.

O

L

(Max + Min = l)

F
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Algorithm 4: l-diversity and publish

Input

Output

1. For

2. 

3. End For

4. Ensures the l-diversity

5. While (  do

6. 

7. 

8. 

9. 

10. End While

11. Publish

12. Return 

4. Experimental Results
This section presents the outcomes of experimental work for performance analysis. To implement and
evaluate the proposed model with state-of-art methods, we used the Python tool. The experiments were
performed on Windows 10 Operating System with an Intel I5 processor and 8GB RAM. Each scenario has

O : setofk − anonimizedclusters

F : setofk − anonimizedandl − diverityensuredclusters

j = 1 : size (O (i))

L (i) ← ComputeDiversity (O (i))

L < 1)

Max ← max (L)

Min ← min (L)

l ← Max + Min

F ← O − {Max,Min} + l

(F)

(F)
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been executed for 20 instances and then averaged their performances. The proposed method compares
with three state-of-art data stream anonymization methods such as FADS [34], DAnonyIR [35], and IDEA
[36]. To demonstrate the performance of the algorithms on different data distributions, we conduct
experiments on two real-world datasets: Adult from the UCI repository [39]. This is standard dataset for
studying k-anonymity algorithms.

To investigate the proposed method with state-of-art methods, we have measured three performance
parameters such as “Degree of Anonymization (DoA), IL, and Execution Time (ET)”. The ET represents the
average execution time for each scenario of 20 instances required to perform the OSN data
anonymization. The DoA of any tuple is measure by measuring the number of assigned tuples in its
cluster, i.e., tuple DoA is similar to the DoA of its cluster for each incoming data stream D.

4

Where,  represents  tuple of  cluster, M represents number of periodically received data
streams .

The IL metrics has computed according to the formulation presented in [39] as:

5

Where, SSE denotes sum of squares within cluster and SST denotes sum of squares among clusters.

A. Clustering Size Analysis

This section presents comparative results analysis for different techniques of privacy preservation of
data streams. The results are analyzed with respect to the varying number of clusters (i.e., value k).
According to value k, the predefined time constraint value also changes in the proposed model. Figures 3,
4, and 5 show the outcomes of DoA, IL, and ET using FADS, DAnonyIR, IDEA, and the proposed EAPPA
methods.

As the cluster sizes increases, the maximum numbers of tuples in each data stream are increases. The
first finding to be drawn from the DoA result (Fig. 3) is that anonymization decreases as the size of the
cluster rise. Fundamentally, this is due to the fact that a small number of clusters allows for a high
number of k-anonymous users to persist, but increasing the size of a cluster reduces the proportion of at
least k-anonymous persons in each cluster The proposed method beat all existing methods in terms of
overall performance when compared to the other two strategies. The EAPPA methodology addressed the

DoA =
M

∑
s=1

degree (s → (F (i, j)) × i)

F (i, j) ith jth

M = 1, 2, … , s

IL =
SSE

SST



Page 19/30

challenges of existing techniques, and it reflects in the achieved results. Figure 4 depicts another
important result of IL for this study utilizing all four techniques. The DoA performance with contrast
effects follows a similar trend in IL with changing cluster sizes. As the number of clusters grow, the
number of anonymous tuples decreases, resulting in reduced loss of sensitive information. As a result, for
a large number of clusters, there is less sensitive IL than for a small number of clusters. The suggested
anonymization methodology EAPPA lowered the IL ratio considerably with enhanced DoA compared to
state-of-art data stream privacy preservation approaches. The key reasons for performance improvement
using EAPPA techniques are (1) effective mechanism to remove the redundant tuples from the streaming
data with data cleaning which is missing in all existing techniques, (2) adaptive k-anonymized clusters
formation with minimum IL and computational requirements (Existing methods relied on sliding window
approach), and (3) k-anonymized clustered enhanced by applying l-diversity privacy. Finally, the time
complexity outcomes showing in Fig. 5 claims that the proposed model takes less time to achieve strong
privacy preservation (DOA) with minimum IL.

B. Data Stream Size Analysis

After analyzing the effects of varying clustering sizes on the performances, we further aimed to
investigate the effective increasing stream data size on privacy preservation performances using
different techniques. This section presents the outcomes for varying data stream sizes 2000, 6000,
10000, 14000, and 18000 tuples with a fixed number of clusters set to 90. We set limits to acquire the
number of tuples from the stream data to investigate data stream size varying. Figures 6, 7, and 8
demonstrate the DoA, IL, and ET performances respectively using FADS, DAnonyIR, IDEA, and the
proposed EAPPA methods. Figure 6 illustrates that DoA has improved as data size has grown. It has been
discovered that the growth in DoA value is virtually exponential. Figure 7 shows the results of IL with
different data sizes for each approach. Because the number of tuples increases, the created clusters
become more significant, resulting in a lower IL. Figure 8 reveals the optimal time requirements to achieve
the higher DoA and lower IL using the EAPPA method compared to all existing techniques. Finally, we
averaged results in Table 1 for each method for each performance metric. We already disclosed the
reasons of performance improvement using the EAPPA method over the exiting solutions.

Table 1
Comparative Analysis of Average Performances

  FADS DAnonyIR IDEA EAPPA

DoA 4799 5158 5367 5799

IL 47.16 39.18 37.16 35.05

ET 338.34 278.11 305.34 281.36

5. Conclusion And Future Works
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The novel EAPPA framework has been proposed in this paper with aim of overcoming the challenges of
processing the data streams effectively for knowledge discovery. The EAPPA approach mainly focused
on achieving stream data approximation and privacy preservation by considering the challenges of
existing techniques such as data redundancy, sensitive information loss, and complete privacy
preservation. To remove the redundant tuples from the streaming data and data noise, we have designed
the DAP using FM and NLP techniques. To prevent data loss, we have designed adaptive clustering to
ensure k-anonymization. Then, k-anonymized clustered enhanced by applying l-diversity privacy to
achieve the complete privacy preservation of data streams. The experimental results show that EAPPA
improved the DoA performance compared to recent methods by 18.45% and IL performance reduced by
17.6% with minimum computational requirements. There are some further directions to extend this work
such as (1) investigating the performance of the EAPPA method using different hash functions in the FM
algorithm, (2) improving the accuracy of handling the missing data, (3) analyzing the performances using
other datasets.
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Figures

Figure 1

Architecture of proposed EAPPA system
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Figure 2

Architecture of DAP phase
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Figure 3

DoA performance investigation with varying clusters
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Figure 4

IL performance investigation with varying clusters
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Figure 5

ET performance investigation with varying clusters
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Figure 6

DoA performance investigation with varying stream data size
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Figure 7

IL performance investigation with varying stream data size
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Figure 8

ET performance investigation with varying stream data size


