
LAMEE: A Light All-MLP Framework for TimeSeries
Prediction Empowering Recommendations
Yi Xie

Shanghai Key Lab of Data Science, Fudan University, Shanghai
Yun Xiong

Shanghai Key Lab of Data Science, Fudan University, Shanghai
Xiaofeng Gao (gao-xf@cs.stju.edu.cn)

MoE Key Lab of Arti�cial Intelligence, Shanghai Jiaotong University
Jiadong Chen

MoE Key Lab of Arti�cial Intelligence, Shanghai Jiaotong University
Yao Zhang

Shanghai Key Lab of Data Science, Fudan University, Shanghai
Xian Wu

Shanghai Key Lab of Data Science, Fudan University, Shanghai
Chao Chen

College of Computer Science, Chongqing University

Research Article

Keywords: time series analysis, multi-layer perceptron, joint time-frequency information, lightweight
framework, recommendation systems

Posted Date: December 21st, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3750712/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

Version of Record: A version of this preprint was published at World Wide Web on February 12th, 2024.
See the published version at https://doi.org/10.1007/s11280-024-01251-w.

https://doi.org/10.21203/rs.3.rs-3750712/v1
mailto:gao-xf@cs.stju.edu.cn
https://doi.org/10.21203/rs.3.rs-3750712/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11280-024-01251-w

LAMEE: A Light All-MLP Framework for Time

Series Prediction Empowering Recommendations

Yi Xie1,2, Yun Xiong1,2, Xiaofeng Gao3*, Jiadong Chen3,

Yao Zhang1,2, Xian Wu1,2, Chao Chen4

1*Shanghai Key Lab of Data Science, Fudan University, Shanghai,
200433, China.

2School of Computer Science, Fudan University, Shanghai, 200433, China.
3MoE Key Lab of Artificial Intelligence, Shanghai Jiaotong University,

Shanghai, 200240, China.
4College of Computer Science, Chongqing University, Chongqing,

400044, China.

*Corresponding author(s). E-mail(s): gao-xf@cs.stju.edu.cn;
Contributing authors: yixie18@fudan.edu.cn; yunx@fudan.edu.cn;

chenjiadong998@sjtu.edu.cn; yaozhang18@fudan.edu.cn;
xianwu21@fudan.edu.cn; cschaochen@cqu.edu.cn;

Abstract

Exogenous variables, unrelated to the recommendation system itself, can sig-
nificantly enhance its performance. Therefore, integrating these time-evolving
exogenous variables into a time series and conducting time series predictions can
maximize the potential of recommendation systems. We refer to this task as Time
Series Prediction Empowering Recommendations (TSPER). However, as a sub-
task within the recommendation system, TSPER faces unique challenges such as
computational and data constraints, system evolution, and the need for perfor-
mance and interpretability. To meet these unique needs, we propose a lightweight
Multi-Layer Perceptron architecture with joint Time-Frequency information,
named Light All-MLP with joint TimE-frEquency information (LAMEE).
LAMEE utilizes a lightweight MLP architecture to achieve computing efficiency
and adaptive online learning. Moreover, various strategies have been employed
to improve the model, ensuring stable performance and model interpretabil-
ity. Across multiple time series datasets potentially related to recommendation
systems, LAMEE balances performance, efficiency, and interpretability, overall
surpassing existing complex methods.

1

Keywords: time series analysis, multi-layer perceptron, joint time-frequency
information, lightweight framework, recommendation systems

1 Introduction

Recommendation systems have become a pivotal component in various online plat-
forms, offering numerous benefits and applications that enhance user experience and
business performance [1]. Research has found that in some recommendation scenarios,
considering some exogenous knowledge often helps to enhance the performance [2–4].
For instance, considering stock market information can aid in recommending financial
products [5, 6]; taking into account illness information can strengthen recommenda-
tions in social media [7]; considering weather, traffic or some social information can
assist in recommending POI or navigation strategies [8–11], etc. In general, exogenous
knowledge can significantly affect the strategies of recommendations.

We refer to some numerical exogenous knowledge as exogenous variables, it can be
therefore concluded that accurately predicting the future trends of these exogenous
variables can effectively assist the recommendation system in enhancing its perfor-
mance, both now and in the future. The prediction of exogenous variables is essentially
a time series prediction and modeling problem. We refer to this kind of task as the Time
Series Prediction Empowering Recommendations (TSPER) task. Compared to tradi-
tional time series forecasting and modeling tasks, TSPER is a subsystem embedded
within the recommendation systems and therefore has some additional requirements:

• Computing Efficiency: TSPER task is designed to support the recommendation
system, so it should not consume too many resources originally allocated to the
recommendation system. It even needs to be efficient in inference and training phases
in GPU-less environments, which requires lightweight frameworks.

• Adaptive Online Learning: TSPER must adapt to changes in the content of the
recommendation system over time through online training, which means that this
task must have the ability to tolerate a certain degree of ’distribution drift’ to adapt
to new recommendation patterns. This allows the model to quickly absorb new
information and discard outdated data, in order to maintain its temporal relevance
to the recommendation system.

• Assured Performance: Despite the above limitations, we still require this model
to have excellent prediction performance, which is fundamental to a superior pre-
diction model. Sacrificing the performance of the model to achieve efficiency and
model lightweight is a case of missing the forest for the trees.

• Model Interpretability: As a time series prediction tool aiding the recommen-
dation system, the model’s interpretability is critical for business analysis, ensuring
that its functionality and outputs are comprehensible and actionable.

To this end, we propose Light All-MLP with joint TimE-frEquency information
(LAMEE). As the name implies, it is an all-MLP framework leveraging information
from both time and frequency domains.

2

To meet the requirements of Computing Efficiency, LAMEE has chosen Multi-
Layer Perceptrons (MLP) as the fundamental building blocks for its time series model.
Compared to models based on Transformer [12–16], the lightweight and efficient nature
of MLPs gives them a computational efficiency edge. Particularly in GPU-less envi-
ronments, LAMEE demonstrates impressive training speeds on CPUs, even surpassing
some Transformer and convolution-based models in their GPU training speeds.

For Adaptive Online Learning, LAMEE’s MLP components are effective.
Recommendation system content changes over time, which can be regarded as a phe-
nomenon of ”concept drift” [17, 18]. While MLPs are more sensitive to these shifts
compared to Transformers [19, 20], this sensitivity is advantageous for the TSPER
task. Due to the need for timely recommendations, limited training data, and the
MLP’s efficiency in training, its ability to quickly adapt to new data is beneficial.
Although MLPs might not capture long-term dependencies as well as Transformer-
based models, their rapid adaptability is crucial for recommendation systems that
require fast responses.

Considering these constraints, LAMEE’s performance can be affected. For
Assured Performance, we propose three strategies to counter that: joint time-
frequency modeling, residual decomposition, and input-auxiliary supervision strategy.
These strategies, essentially, can be regarded as feature augmentation, high-frequency
components denoise, and trend correction, respectively, which significantly boost
LAMEE’s prediction performance. Additionally, LAMEE prefers raw features over
high-dimensional embeddings, avoiding unnecessary information redundancy caused
by the non-full rank nature of high-dimensional spaces [21–23], while maintaining
Model Interpretability. Furthermore, leveraging the denoising capability of fre-
quency information via low-pass filtering [24, 25], and its comprehensive perception
across the entire time domain, we devise residual decomposition and input-auxiliary
supervision strategies. These strategies fortify noise immunity and tackle the issue
of inconsistent distribution between input signals and predictions (termed ”trend
inconsistent” in this context), substantially improving performance.

Extensive experiments demonstrate, on six time-series datasets related to recom-
mendation systems, LAMEE achieved the top two positions in 45 out of 48 metrics,
among which, in the 34 metrics where LAMEE had the best performance, the aver-
age improvement over the second place was 16.7%. Based on the above, efficiency
discussions indicate that LAMEE, compared to these baselines, only used an average
of 29.48% of the parameter amount, 12.07% of the time consumption, and 19.84%
of the memory usage. Further experiments also demonstrated that LAMEE possesses
excellent adaptive online learning capabilities and interpretability.

The primary contributions of this paper are outlined as follows:

• The paper emphasizes the importance of time series data in capturing changes in
user behavior and preferences over time in recommendation systems, and high-
lights the challenges in processing such data. We refer to such task as Time Series
Prediction Empowering Recommendations (TSPER) task.

• We propose Light All-MLP with joint timE-frEquency information (LAMEE) to
handle these challenges. The LAMEE model employs an all-Multilayer Percep-
tron (MLP) architecture and integrates time and frequency information, aiming to

3

enhance the handling of time series data. It addresses specific challenges in recom-
mendation systems through strategies focused on computational efficiency, adaptive
online learning, performance assurance, and interpretability.

• Through a series of experiments, the LAMEE model demonstrates its superior per-
formance in various recommendation scenarios, particularly in handling concept
drift and maintaining computational efficiency, showing significant advantages over
other models.

2 Related Works

2.1 Time Series Prediction

Time series prediction remains an essential tool in various domains, from finance and
healthcare to energy forecasting and stock predictions. Over the decades, the methods
for time series prediction have evolved significantly.

Historically, statistical methods such as autoregressive moving average models
[26, 27], exponential smoothing [28], and Kalman filters [29] were dominant. These
methods, while powerful, often required domain-specific knowledge and manual cal-
ibration for optimal performance. Machine learning ushered in a new era with
techniques like gradient boosting regression tree (GBDT) [30, 31]. While they out-
performed many traditional methods, they often depended heavily on manual feature
extraction and engineering to be effective.

The rise of deep learning brought a paradigm shift. Neural networks, with their
ability to automatically learn representations from raw data, presented a natural fit
for time series prediction. Initial forays into this area saw the deployment of Recurrent
Neural Networks (RNNs) [32–34], which were specifically designed to handle sequences.
Temporal Convolutional Neural Networks (TCNs) [35–37] soon followed, leveraging
convolutional layers to capture local and global patterns in time series data.

Transformers and their variants have also emerged as a popular approach for time
series prediction, given their self-attention mechanism’s ability to capture long-range
dependencies [12]. However, as noted, the quadratic complexity in attention operations
can be computationally intensive, especially for longer sequences. Alternative archi-
tectures that strike a balance between computational efficiency and predictive power
are still a topic of active research.

2.2 The Renaissance of MLPs

Multi-Layer Perceptrons (MLPs), often considered the building blocks of neural net-
works, have enjoyed a resurgence in recent years. Their foundational work dates back
to the early 1990s [38–40]. While initially overshadowed by specialized architectures
like CNNs and RNNs, MLPs have remained the workhorse for various tasks, form-
ing the backbone of architectures such as CNNs [41], LSTM networks [42], and even
Transformers [12].

The recent success of Transformers in diverse fields like computer vision [43],
language processing [44], data mining [45], and time series prediction [46], has inad-
vertently shone a spotlight back on MLPs. Some research argues that, given the right

4

conditions, MLPs can outperform more sophisticated models in tasks as diverse as
image classification, language understanding, and more [47, 48].

It’s posited that the architectural simplicity of an MLP, when scaled appropriately,
can often lead to better generalization and easier optimization [?]. This resurgence
has spurred discussions on understanding the underlying reasons behind the efficacy of
MLPs. Some believe that it offers an architectural inductive bias that aids in particular
tasks. Recent studies [49] have even sought to uncover the relationship between MLPs
and their more intricate counterparts like CNNs.

3 Problem Formulation

We first formulate the problem as follows. Let X(t) ∈ Rc and Y(t) ∈ Rc denote the
real values, and the predicted values at the timestamp t, c is the channels (or the
number of variables). Specifically, we use Xk(t),Yk(t) ∈ R to denote the value of
the k-th channel at timestamp t. Given a set of I-length ordered history information
X(0 : I − 1) ∈ RI×c = [X(0),X(1), · · · ,X(I − 1)] from timestamp 0 to timestamp
I − 1 as the input signals, the target is to predict the next O-timestamp values:
Y(I : I+O−1) ∈ RO×c = [Y(I),Y(I+1), · · · ,Y(I+O−1)], from the timestamp I to
the timestamp I +O−1. Analogously, Xk(0 : I−1) ∈ RI and Yk(I : I +O−1) ∈ RO

respectively denote the iuput and predicted sequences of the corresponding channel.
In the follows, X(0 : I−1) and Y(I : I+O−1) will be simplified denoted as X and Y.

4 Methodology

Input Signal

P
re

-P
ro

c
e

s
s

in
g

Padding

(Optional)

FC

Layer

Temporal Dense Layer (TDL)

Activation

X

X̂
(0)

Skip-ConnectionX̂
(0)

T

Temporal Dense Layers N ×

Norm

DFT &

Filtering

FC

Layer

Series

Decomp

Season

Term

IDFT &

Activation

X̂
(0)

F

Skip-Connection

Frequency Dense Layer (FDL)

Trend

Term

X̂
(1)

F
← Season(X̂(1)

F
)

Trend(X̂(1)

F
)

FC

Layer
Activation

Skip-Connection

X̂
(1)

T FC

Layer
Activation

Skip-Connection

…
X̂

(2)

T
X̂

(N−2)

T

DFT &

Filtering

FC

Layer

Series

Decomp

Season

Term

IDFT &

Activation

X̂
(N−2)

F

Skip-Connection Trend

Term

X̂
(N−1)

F
← Season(X̂(N−1)

F
)

Trend(X̂(N−1)

F
)

…

Frequency Dense LayersN ×

All Trend Terms

Post-

Processing

Inv

 Norm

Output

Signal

Y

Input-Auxiliary Supervision (when training)

Input Signal

X(0 : I − 1)

Supervision

Signal

Interception

X(I : I + O − 1)

LAMEE

X(J : I + O − 1)

X(J : I − 1)

Output Signal

Y(J : I + O − 1)
Loss

(when training)

Interception

Y(I : I + O − 1)

Predictions

Y(I : I + O − 1)

The Details of

Input-Auxiliary

Supervision

Input-Auxiliary

Supervision

Signal

Signal

Fusion

X̂
(N−1)

T

X̂

X

Y

X̂
(1)

F

Trend(X̂(n)

F
) (n = 2,3,⋯, N − 2)

X̂
(N−1)

F

Frequency Dense Layer (FDL)

Temporal Dense Layer (TDL) Temporal Dense Layer (TDL)

Fig. 1 (Left) Depicting LAMEE’s overall architecture. (Right) A detailed view of the input-auxiliary
supervision strategy. The LAMEE black box corresponds to the entirety of the structure on the left.

5

4.1 Overview

Figure 1 presents the simplified, lightweight architecture of LAMEE. The input signals
are denoted as X ∈ RI×c, and Xk ∈ RI denotes the k-th channel of input signals.

4.1.1 Pre-Processing

The aim of pre-processing in LAMEE is to transform raw input signals X into
the desired format X̂. This involves a necessary normalization step and an optional
padding operation.
Normalization (Norm). For the stability of the input signals distributions during
training, we will first perform time-wise normalization for the input signals to ensure
the distributions of the input signals are within 0 and 1:

Norm(Xk) =
Xk −mean(Xk)

std(Xk)
. (1)

Padding (Optional). As previously stated, we employ an input-auxiliary supervision
strategy to mitigate the issue of trend drift. Consequently, the output signals have a
length of (J + O), where J is a hyper-parameter associated with this strategy and
J ≤ I (refer to Section 4.4 for more details). An optional padding operation can be
utilized to bring input signals to the desired length:

X̂
(0) = concat(X,Z) (2)

where Z ∈ {0}J×c is an all-zero tensor, X̂(0) ∈ R
(J+O)×c. Subsequent operations will

be performed on the full (J+O)-length signals in both the time and frequency domains.
Here, we use a superscript to denote the layer index of the output. For example, X̂(0)

signifies the output of the 0-th layer,i.e., the input to the whole model. It should be
noted that the padding operation’s goal is to maintain the consistency of signal shapes
across layers, though this isn’t strictly necessary.

4.1.2 Post-Processing

The aim of the post-processing step is to transform the output signals Ŷ into a form
Y with tangible significance. This involves a single operation: inverse normalization.
Inverse Normalization (InvNorm). Since the distribution of output signals falls
within the range of 0 to 1, we carry out a time-wise inverse normalization to ensure
that the final predictions align with actual distributions:

InvNorm(Yk) = Yk ⊙ std(Xk) +mean(Xk). (3)

Here, mean(·) and std(·) represent time-wise mean values and standard deviations,
respectively, while ⊙ signifies an element-wise product.

4.2 Time & Frequency Dense Layer

Once pre-processed, the resulting input signals X̂(0) will be divided into two branches,
which are sent into the temporal dense layer and the frequency dense layer, denoted

as X̂
(0)
T

and X̂
(0)
F

respectively. The objective is to perform non-linear transformations,
capturing information that is hard to acquire solely within a single domain.

6

4.2.1 Temporal Dense Layer

Temporal Dense Layers (TDLs) are to execute non-linear transformations within the
time domain, comprising a fully-connected layer (FC Layer), an activation function,
and a skip-connection. The operations within each layer can be articulated as follows:

X̂
(n+1)
T

= TDL(X̂
(n)
T

) = GELU(W
(n)
1 X̂

(n)
T
W

(n)
2) + X̂

(n)
T

. (4)

At the n-th temporal dense layer, W
(n)
1 ∈ R(J+O)×(J+O) and W

(n)
2 ∈ Rc×c are train-

able parameters, where W
(n)
1 is the time-wise transformation parameter matrix, and

W
(n)
2 is for channel-wise transformations. GELU(·) denotes the Gaussian Error Linear

Units activation function [50].

4.2.2 Frequency Dense Layer

The Frequency Dense Layers (FDLs) are employed for non-linear transformations in

the frequency domain. For the n-th layer input signals X̂
(n)
F

∈ R
(J+O)×c, the FDL

processing pipeline is as follows:

• Discrete Fourier Transforms (DFT):

F
(n)(ω) = DFT (X̂

(n)
F

)(ω) =

(J+O)−1∑

t=0

X̂
(n)
F

(t)e−
2πωt
J+O

i
, (5)

where F (n) ∈ C(⌊
(J+O)

2 ⌋+1)×c denotes the bases in the frequency domain, containing

⌊ (J+O)
2 ⌋ + 1 frequency components. ω is a frequency-correlated variable 1.

• Low-Pass Filtering (Filtering). Selecting the lowest M ≤ ⌊ (J+O)
2 ⌋ + 1 frequency

components as the new bases, and other frequency components are ignored. This
process helps identify noise while reducing computational complexity. Afterwards,
F (n) ∈ CM×c.

• Fully-Connected Layer (FC Layer):

F
(n)
← U

(n)
1 F

(n)
U
(n)
2 , (6)

U
(n)
1 ∈ C

M×M and U
(n)
2 ∈ C

c×c denote the complex trainable parameters at the
n-th frequency dense layer for frequency-wise and channel-wise transformation,
respectively.

• Inverse Discrete Fourier Transforms (IDFT):

IDFT (F(n)) =
1

(J +O)

(J+O)−1∑

ω=0

F
(n)(ω)e

2πωt
J+O

i
. (7)

• Activation and skip connection. In FDL, we still use Gaussian Error Linear Units
as the activation function, and also add the skip connection:

X̂
(n+1)
F

= FDL(X̂
(n)
F

) = GELU(IDFT (F(n))) + X̂
(n)
F

. (8)

The output from the temporal dense layers feeds into the subsequent temporal
dense layer, while the output from the frequency dense layers undergoes residual
decomposition.

1Here, we use single side spectrum for simplification, resulting in there are ⌊
(J+O)

2 ⌋ + 1 frequency
components, rather than (J + O).

7

4.3 Residual Decomposition

Low-pass filtering in signal processing identifies noise usually found in the highest
frequency components. But, because of potential overlap between noise and high-
frequency data, simple filtering could lose important data or retain harmful noise.
Transformers can partly manage noise through their attention mechanism, the simpler
MLPs are more susceptible. Small amounts of noise can greatly impact prediction
performance, showing MLPs’ reduced noise tolerance, a significant concern given the
ubiquity of real-world noise.

To combat noise interference, we introduce a residual decomposition method. Based
on time series theories, we split a time series into trend and seasonal elements after
each Frequency Dense Layer. These correspond to the low and high-frequency com-
ponents of the series, respectively. Each seasonal element is processed in the next
Frequency Dense Layer, undergoing low-pass filtering, feature transformation, and fur-
ther decomposition. Meanwhile, each trend element directly feeds into the final fusion
and prediction process.

Residual decomposition operates on the premise that noise usually exists in signals’
highest frequency components [51]. It distinguishes between high-frequency compo-
nents and noise, recognizing that higher frequencies likely indicate noise, while lower
frequencies carry genuine information. By consistently extracting and filtering out
higher frequency components, it reduces noise while preserving crucial high-frequency
data. This approach minimizes the risk of mishandling these components and noise,
enhancing the accuracy of noise detection and the model’s noise filtration capa-
bilities. Essentially, residual decomposition combines prior knowledge from series
decomposition with N-Beats’ residual learning.

4.3.1 Decomposition Strategy

We employ an additive decomposition model [52] to decompose signals into trend and
seasonal terms, which has been widely adopted in various works [15, 53].

Trend(X̂
(n)
F

) = AvgPool(X̂
(n)
F

)

Season(X̂
(n)
F

) = X̂
(n)
F
− Trend(X̂

(n)
F

)
. (9)

4.3.2 Signal Fusion

We fuse all trend terms, the output of TDL and FDL as the final output signals. In
this paper, we use the simplest additive model to fuse all trend terms and the output
of temporal and frequency dense layers. Suppose we have N temporal and frequency
dense layers, the final output signals Y can be represented as:

Y =

N−1∑

n=0

Trend(X̂
(n)
F

) + X̂
(N−1)
F

+ X̂
(N−1)
T

where X̂
(n+1)
F

= FDL(Season(X̂
(n)
F

)) if n ̸= 0

(10)

in which, Y ∈ R
(J+O)×c.

8

4.4 Input-Auxiliary Supervision

Applying MLPs directly to time series prediction can lead to a situation where the
predictions and input signals differ in numerical distribution, even to the point of
magnitude discrepancies. We term this situation as ”trend inconsistent”. Due to the
auto-regressive nature of time series, there should be a high correlation between
input signal and prediction. This makes the trend inconsistent phenomenon detri-
mental to time series prediction tasks, and it becomes particularly prominent in
non-stationary time series. This problem is primarily due to the inherent limitations
in the representational capacity of MLPs.

To address this problem, we introduce an optimization strategy termed ”input-
auxiliary supervision”. The central concept of input-auxiliary supervision involves
having part or all of the input signals contribute to the model’s supervision and
optimization along with the original supervision signals. This concept, akin to AutoEn-
coders, compels the model to reconstruct part or all of the input signals. Given the
high correlation between input and prediction in time series, such a reconstruction
forces the numerical distributions of predictions to align more closely with the input
signals in the time domain, thus mitigating trend inconsisten. Furthermore, in the fre-
quency domain, as frequency information provides a ”global perception” across the
entire time domain, reconstructing the input signals also rectifies the final predictions.

More specifically, for input signals of length I, we reconstruct the most recent
J-length signals. The reconstructed signals are then outputted together with the pre-
dictions, resulting in a combined output signal of length (J + O). During training,
we incorporate the most recent J-length input signals X(J : I − 1) to form the
input-auxiliary supervision signals X(J : I + O − 1) by concatenating them with the
supervision signals (ground truth) X(I : I +O−1). These supervision signals are then
used to optimize the model using mean squared errors (MSE) as the loss function:

Loss = MSE(Y(J : I +O − 1), concat(X(J : I − 1),X(I : I +O − 1))). (11)

During evaluation, we extract the prediction portion of the output signals Y (I :
I +O−1) to calculate metrics against the ground truth X(I : I +O−1). If we regard
the entirety of LAMEE as a black box, the input-auxiliary supervision strategy can
be visually represented by the right side of Figure 1.

4.5 Discussion

4.5.1 Representation Learning

Numerous deep learning methods typically project representations into a high-
dimensional space to create high-dimensional embeddings, the dimensions of which are
independent of the original feature dimension. Such high-dimensional embeddings can
markedly improve the representational capacity of deep learning methods. However,
we have empirically found that high-dimensional embeddings can degrade performance
in LAMEE, with detailed results provided in Section 5.7.

From the perspectives of linear spaces and tensor analysis, we conjecture that
high-dimensional embeddings are equivalent to projecting low-dimensional raw fea-
tures into a higher-dimensional space. Given that the raw features of time series are

9

Table 1 The theoretical comparison about efficiency and complexity. L
denotes the length of time series, d represents the dimensions of latent
representations, M is a hyper-parameter that determines the passed
frequency components after filtering, and c denotes the channels. Usually,
M ≤ L

2
, and c < d.

Methods
Complexity
Function

Number of
Operations

Parameter
Amounts

Transformer [12] 4Ld2 + 2L2d 7 4d2

Informer [13] 4Ld2 + 2(L · log L)d 8 4d2

Autoformer [14] 4Ld2 + 4(L · log L)d 10 4d2

Fedformer [15] 4Ld2 + 2M2d + 2(L · log L)d 8 4d2

LAMEE (ours) 2Lc2 + L2c + M2c + 2(L · log L)c 6 L2 + M2 + 2c2

full rank, their high-dimensional projection inevitably results in a non-full rank, lead-
ing to additional information redundancy. Handling such high-dimensional redundant
information requires powerful deep learning models, such as the Transformer and its
variants. Yet, as the fundamental building block of LAMEE, the simple architecture
of MLPs cannot effectively handle high-dimensional non-full rank features, leading to
overfitting. Thus, we choose to use raw features directly instead of high-dimensional
embeddings, thereby avoiding such additional complexity.

4.5.2 Efficiency and Complexity

We perform a simple theoretical analysis comparing the efficiency and complexity of
LAMEE with several other baseline methods in terms of time complexity and parame-
ters. The baseline methods included in this comparison are the Transformer, Informer,
Autoformer, and Fedformer. We provide a comparison in terms of the theoretical com-
plexity function, the number of operations, and the quantity of parameters for each
layer. The results of this comparison can be found in Table 1.

The efficiency and complexity benefits of LAMEE primarily arise from two factors:
(1) the number of channels, c, in raw features is considerably less than the dimension,
d, of the high-dimensional latent space, and (2) fewer operations are performed. The
threshold for the complexity function of LAMEE being less than all baselines is set at
Lc < d2. Here, we perform a simple deduction.

Proof. Let’s consider the conditions c < d and M < L, we then explore when the
complexity function of LAMEE is smaller than that of Informer. This is given by the
inequality

L2c + M2c + 2(L · logL)c + 2Lc2 < 4Ld2 + 2(L · logL)d. (12)

Given the condition c < d, it follows that

2(L · logL)c < 2(L · logL)d, (13)

and

2Lc2 < 2Ld2. (14)

Thus, we can deduce:

10

Table 2 The statistics of datasets.

Datasets
Number of

Variables (channels)
Sampling
Frequency

Total
Observastions

Splitting
(train:val:test)

ILI 7 1 Week 966 7:1:2
Stock 654 1 Day 1681 7:1:2

Electricity 321 1 Hour 26304 7:1:2
Traffic 862 1 Hour 17544 7:1:2
Weather 21 10 Minutes 52695 7:1:2
ETTm2 7 15 Minutes 69680 6:2:2

L2c + M2c < 2Ld2. (15)

Now consider the condition M < L, this implies that

L2c + M2c ≤ 2L2c < 2Ld2, (16)

From this inequality, we conclude:

Lc < d2. (17)

Hence, when c < d and M < L hold, a sufficient but not necessary condition for
the complexity function of LAMEE to be smaller than that of Informer is Lc < d2.

Further experiments addressing efficiency and complexity are also conducted in
Section 5.3.

5 Experiments

5.1 Experimental Settings

5.1.1 Dataset

We conduct experiments on six datasets with varying domains: Influenza-Like Ill-
ness (ILI)1, Stock2, Electricity (ELC), Traffic3, Weather, Electricity Trans-
former Temperature (ETTm2)4. The detailed information and statistics are
summarized in Table 2.

We simply categorize these datasets as three kinds:

• Small Datasets. We classify the Influenza-Like Illness (ILI) and Stock datasets as
small due to their limited size. These datasets help assess the model’s ability to
represent and generalize from a small amount of data.

• Multi-Variable Datasets. Electricity and Traffic are multi-variable datasets. The
commonality of both is: each channel has the same physical meaning, thus the
evolution and distributions among channels are overall consistent.

• Multi-Source Datasets. Weather and ETTm2 datasets are multi-source datasets.
Each channel of these datasets has completely different physical meanings. This

1https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
2https://www.csmar.com/channels/31.html
3http://pems.dot.ca.gov/
4https://github.com/zhouhaoyi/ETDataset

11

leads to inconsistent evolution and distributions among chennels, which increases
the difficulty of prediction.

For ILI dataset, we take the length of input as I = 36, and output O ∈
{24, 36, 48, 60}-length predictions. For Stock dataset, we take the length of input as
I = 48, and output O ∈ {12, 24, 48, 96}-length predictions. For other datasets, we take
the length of input as I = 96, and output O ∈ {96, 192, 336, 720}-length predictions.
These differences are mainly due to the different amounts of data.

5.1.2 Baselines and Metrics

We compared LAMEE with the following 13 baselines: MTGNN [54], Informer
[13], Autoformer [14], Pyraformer [16], Fedformer [15], Non-Stationary Trans-
former (NSTrans) [55], ETSformer [56], MICN [57], DLinear [53], LightTS
[58], CrossFormer [59], TimesNet [60]. We use Mean Absolute Errors (MAE) and
Mean Sequared Errors (MSE) as the metrics, widely used in previous studies.

5.2 Main Results

The main comparison results are given in Table 3. In a macro view, LAMEE achieves
state-of-the-art performance on 38 out of 48 metrics in six datasets, and achieves the
top two performance on 46 out of which. On the all metrics that LAMEE achieves the
best, the averaged improvement is 11.09%.

5.2.1 Small Datasets

LAMEE outperforms in all metrics for the ILI and Stock datasets, averaging improve-
ments of 34.20% and 17.03% respectively. These results demonstrate LAMEE’s
excellent prediction abilities on small datasets. Usually, small datasets often compli-
cate model training due to their insufficient sample size. Conversely, LAMEE’s light
all-MLP architecture and direct use of raw features, as opposed to high-dimensional
embeddings, allows for better fitting and more efficient training on small datasets.

5.2.2 Multi-Variable Datasets

While LAMEE doesn’t top all metrics on the Electricity and Traffic datasets, it still
surpasses all baselines on 6 out of 16 metrics (with averaged 2.77% performance
improvements) and achieves top-two performance in 14 of them. The relative con-
sistency in the evolution and distribution between these two datasets, as well as the
clear seasonal patterns, contribute to the existing methods performing well on these
datasets, which results in LAMEE not exhibiting a significant advantage over them.
Nonetheless, LAMEE has achieved excellent performance.

5.2.3 Multi-Source Datasets

LAMEE scores average improvements of 6.98% and 5.58% on all metrics for the
Weather and ETTm2 datasets respectively. These multi-source datasets each con-
sist of channels with distinct physical meanings, making prediction more challenging

12

Table 3 Main Results. The prediction errors in terms of MSE and MAE, the lower the better. Bold fonts denote the best performance, and
underline denotes the second best.

Datasets Steps Metrics MTGNN Informer Autoformer Pyraformer Fedformer NSTrans ETSformer MICN DLinear LightTS CrossFormer TimesNet LAMEE

ILI

24
MSE 4.265 5.764 3.483 7.394 3.228 2.294 2.527 2.684 2.248 8.313 3.041 2.317 0.832

MAE 1.387 1.677 1.287 2.012 1.260 0.945 1.020 1.112 1.011 2.144 1.186 0.934 0.588

36
MSE 4.777 4.755 3.103 7.551 2.679 1.825 2.615 2.507 2.436 6.631 3.406 1.972 1.083

MAE 1.496 1.467 1.148 2.031 1.080 0.848 1.007 1.013 1.019 1.902 1.232 0.920 0.643

48
MSE 5.333 4.763 2.669 7.662 2.622 2.010 2.359 2.423 2.414 7.299 3.459 2.238 1.157

MAE 1.592 1.469 1.085 2.057 1.078 0.900 0.972 1.012 1.051 1.982 1.221 0.940 0.707

60
MSE 5.070 5.264 2.770 7.931 2.857 2.178 2.487 2.653 2.514 7.283 3.640 2.027 1.469

MAE 1.552 1.564 1.125 2.100 1.157 0.963 1.016 1.085 1.116 1.985 1.305 0.928 0.767

Stock

12
MSE 3.772 5.362 3.911 5.264 3.852 4.041 4.453 4.133 3.792 5.508 4.193 3.990 2.592

MAE 1.309 1.244 1.153 1.271 1.119 1.107 1.246 1.096 0.989 1.621 1.437 1.030 0.718

24
MSE 4.892 5.859 4.196 5.486 4.123 4.457 4.470 4.241 3.888 5.103 4.021 4.512 3.123

MAE 1.330 1.307 1.178 1.484 1.142 1.131 1.393 1.090 1.021 1.467 1.220 1.092 0.814

48
MSE 4.613 5.965 4.620 5.931 4.553 4.139 4.933 4.466 4.513 5.321 4.480 4.335 3.774

MAE 1.588 1.308 1.228 1.520 1.191 1.306 1.517 1.293 1.322 1.461 1.291 1.096 0.920

96
MSE 5.541 5.986 5.345 5.998 5.335 5.505 5.784 5.167 5.013 5.593 5.463 5.331 4.595

MAE 1.507 1.310 1.300 1.573 1.295 1.241 1.513 1.181 1.231 1.668 1.420 1.253 1.039

ELC

96
MSE 0.272 0.274 0.201 0.386 0.193 0.169 0.187 0.165 0.176 0.207 0.171 0.168 0.158

MAE 0.361 0.368 0.317 0.449 0.308 0.273 0.304 0.276 0.252 0.307 0.273 0.272 0.264

192
MSE 0.297 0.296 0.222 0.378 0.201 0.182 0.199 0.187 0.181 0.213 0.196 0.184 0.176

MAE 0.380 0.386 0.334 0.443 0.315 0.286 0.315 0.296 0.285 0.316 0.287 0.289 0.277

336
MSE 0.327 0.296 0.222 0.378 0.201 0.182 0.199 0.193 0.198 0.213 0.205 0.198 0.188

MAE 0.383 0.394 0.338 0.443 0.329 0.304 0.329 0.298 0.296 0.333 0.317 0.300 0.290

720
MSE 0.420 0.373 0.254 0.376 0.246 0.222 0.233 0.207 0.245 0.265 0.241 0.220 0.237
MAE 0.410 0.439 0.361 0.445 0.355 0.321 0.345 0.316 0.333 0.360 0.353 0.320 0.310

Traffic

96
MSE 0.651 0.719 0.613 0.867 0.587 0.612 0.607 0.602 0.611 0.615 0.525 0.593 0.567
MAE 0.413 0.391 0.388 0.468 0.366 0.338 0.392 0.373 0.391 0.391 0.296 0.321 0.328

192
MSE 0.682 0.696 0.616 0.869 0.604 0.613 0.621 0.612 0.587 0.601 0.529 0.617 0.562
MAE 0.404 0.379 0.382 0.467 0.373 0.340 0.399 0.402 0.351 0.382 0.297 0.336 0.317

336
MSE 0.700 0.777 0.622 0.881 0.621 0.618 0.622 0.637 0.610 0.613 0.530 0.629 0.597
MAE 0.416 0.420 0.337 0.469 0.383 0.328 0.396 0.439 0.393 0.386 0.300 0.336 0.330

720
MSE 0.741 0.864 0.660 0.896 0.626 0.653 0.632 0.639 0.645 0.658 0.573 0.640 0.631
MAE 0.435 0.472 0.408 0.473 0.382 0.355 0.396 0.413 0.394 0.407 0.313 0.350 0.348

Weather

96
MSE 0.408 0.300 0.266 0.622 0.217 0.173 0.197 0.192 0.172 0.182 0.248 0.172 0.153

MAE 0.441 0.384 0.336 0.556 0.296 0.223 0.281 0.250 0.255 0.242 0.318 0.220 0.199

192
MSE 0.452 0.598 0.307 0.739 0.276 0.245 0.237 0.240 0.237 0.227 0.251 0.219 0.203

MAE 0.513 0.544 0.367 0.624 0.336 0.285 0.312 0.300 0.296 0.287 0.369 0.261 0.248

336
MSE 0.668 0.578 0.359 1.004 0.339 0.321 0.298 0.281 0.283 0.282 0.335 0.280 0.258

MAE 0.805 0.523 0.395 0.753 0.380 0.338 0.353 0.330 0.335 0.334 0.415 0.306 0.291

720
MSE 0.940 1.059 0.419 1.420 0.403 0.414 0.352 0.350 0.345 0.352 0.420 0.365 0.330

MAE 1.039 0.741 0.428 0.934 0.428 0.410 0.388 0.387 0.381 0.386 0.499 0.359 0.340

ETTm2

96
MSE 0.688 0.365 0.255 0.435 0.203 0.192 0.189 0.190 0.193 0.209 0.273 0.187 0.177

MAE 0.602 0.453 0.339 0.507 0.287 0.274 0.280 0.285 0.292 0.308 0.356 0.267 0.255

192
MSE 0.851 0.533 0.281 0.730 0.269 0.280 0.253 0.284 0.284 0.311 0.426 0.249 0.241

MAE 0.732 0.563 0.340 0.673 0.328 0.339 0.319 0.356 0.362 0.382 0.487 0.309 0.296

336
MSE 0.941 1.363 0.339 1.201 0.325 0.334 0.314 0.394 0.369 0.442 0.516 0.321 0.297

MAE 0.796 0.887 0.372 0.845 0.366 0.361 0.357 0.430 0.427 0.466 0.631 0.351 0.330

720
MSE 1.401 3.379 0.433 3.625 0.421 0.417 0.414 0.537 0.554 0.675 0.592 0.408 0.397

MAE 1.079 1.338 0.432 1.451 0.415 0.413 0.413 0.509 0.522 0.587 0.673 0.403 0.390

13

due to unique numerical distributions and evolution patterns. Yet, LAMEE performs
well by efficiently modeling these patterns with raw features, avoiding non-full rank
redundancy from high-dimensional spaces. Its input-auxiliary supervision also reduces
numerical biases by mitigating trend inconsistent, and joint time-frequency modeling
further improves performance.

5.3 Efficiency Discussion

In a previous section, we compared LAMEE with other methods by looking at com-
plexity, operations, and parameters in Section 4.5.2. Now, we test these findings with
actual experiments, focusing on parameters, time consumption (on both GPUs and
CPUs), and memory usage.

We’ll use both long and short-term scenarios on Electricity and Weather datasets
to show LAMEE’s effectiveness. In the long-term scenario, we use 1000 input signals
to predict 1000 future timestamps, while in the short-term, both input and output are
100. We’re comparing LAMEE with Informer [13], Crossformer [59], Autoformer [14],
Fedformer [15], DLinear [53], MICN [57], and TimesNet [60], all using their settings
at the best performance.

Table 4 Efficiency comparison. In the table, # Para denotes the number of parameters, TC denotes
the time consumption (seconds per epoch), and MU denotes the memory usage on GPUs. OOM means
out of memory.

Datasets ELC Weather

Metrics # Para TC TC on CPUs MU # Para TC TC on CPUs MU

Methods I, O

Informer
100 12.88M 32.16 > 1000 2.57GB 11.51M 54.98 > 1000 2.43GB
1000 24.74M 159.81 - 11.45GB 23.38M 197.30 - 7.98GB

Autoformer
100 12.57M 40.24 > 1000 3.48GB 10.73M 68.95 > 1000 3.41GB
1000 28.46M 255.65 - 21.82GB 22.61M 430.91 - 19.74GB

Fedformer
100 17.97M 108.97 > 1000 3.01GB 16.44M 121.30 > 1000 2.83GB
1000 22.84M 408.53 - 6.79GB 20.89M 603.24 - 3.41GB

DLinear
100 0.11M 18.65 56.51 1.09GB 0.11M 14.34 33.51 0.91GB

1000 11.26M 100.26 - 3.71GB 11.26M 36.46 - 1.77GB

MICN
100 6.83M 24.31 325.35 2.15GB 1.59M 30.80 214.23 1.88GB
1000 24.87M 108.63 - 5.19GB 21.89M 99.41 - 11.62GB

TimesNet
100 150.33M 590.41 > 1000 14.01GB 6.70M 106.35 > 1000 13.41GB
1000 152.28M > 1000 - 23.51GB 22.31M >1000 - 21.48GB

LAMEE
100 0.67M 10.32 46.36 0.89GB 0.26M 13.41 20.43 1.03GB
1000 20.44M 87.43 - 3.51GB 18.91M 26.49 - 1.89GB

5.3.1 Parameter Amounts

Our experiments show that LAMEE uses 0.44%-16.31% and 13.90%-90.73% of non-
linear methods’ parameters (excluding DLinear) in short-term and long-term cases,
respectively. On average, it uses 37.1% of the parameters compared to other non-
linear models in all cases. As signal length increases, LAMEE’s parameter advantage
diminishes due to its quadratic parameter usage. However, it still has a significant
advantage in short-term cases in both datasets. While LAMEE lacks a parameter
advantage against DLinear because of their internal structures, it still uses significantly
fewer parameters than all other baselines

14

5.3.2 Time Consumption

On GPUs, LAMEE takes only 1.70%-44.21% and 4.4%-80.15% of the time that these
non linear methods (excluding DLinear) use in short- and long-term tests, respectively.
In all the cases listed, it takes averaging 21.9% of the time used by other non linear
baselines. Even when considering a linear method such as DLinear, LAMEE demon-
strates excellent efficiency. On CPUs, the efficiency of linear models like DLinear and
LAMEE is even more evident, since only the two can be trained within 1000 seconds
for an epoch, and other methods take over 1000 seconds. This makes them suitable for
training in environments with computationally constrained environments (GPU-less).
In general, LAMEE has great time efficiency in both short- and long-term cases on
both GPUs and CPUs.

5.3.3 Memory Usage

LAMEE uses only 6.3%-54.81% and 8.8%-67.60% of the memory these non linear
methods (excluding DLinear) take in short- and long-term cases, respectively. In all the
cases listed, it takes averaging 26.7% of the memory used by other non linear baselines.
Memory usage often matches the number of operations and complexity. Theoretically,
LAMEE has fewer operations per layer and lower complexity than these models.

The efficiency metrics show that linear models: LAMEE and DLinear, perform
better than Transformer and convolutional methods. Though similar, LAMEE excels
by using fewer resources and less time. Despite potential variations, actual results do
give insight into real-world efficiency.

5.4 Adaptive Online Learning

We design an experiment to evaluate the capability of adaptive online learning mod-
els in handling time series data under evolving data distributions. The experiment
uniformly divides a time series dataset into 10 non-overlapping subsets to simulate
incremental content. The first five subsets are used for the initial training of the model,
followed by the gradual introduction of the remaining subsets for incremental learn-
ing. After the addition of each new subset, the model is evaluated. The experiment
assesses the model’s adaptability to new data and overall predictive performance by
calculating the average of evaluation metrics across all incremental learning steps. This
experiment aims to reveal the performance of online learning models in dynamic time
series environments, especially under conditions where data distributions change over
time. In this section, we select ELC and Weather datasets, and the baselines include
Informer [13], Autoformer [14], MICN [57], and TimesNet [60]. For each subset of the
data, we still adopt an experimental setting of I,O = 96, and use the last 20% of each
subset as the test set.

Fig. 2 illustrates the performance of online learning on both ELC and Weather
datasets. First, it can be observed that LAMEE’s performance demonstrates a stable
upward trend (i.e., a decrease in MAE) as the rounds of augmentation increase, indi-
cating that LAMEE has excellent online learning capabilities and can adeptly adapt
to data distributions evolving over time. Meanwhile, the other four baselines also gen-
erally show a trend of decreasing error, suggesting that with the addition of data and

15

Fig. 2 The evaluation of adaptive online learning. The horizontal axis represents the number of
rounds of incremental training conducted after each subset of data is added, where 0 indicates the
baseline performance after training is completed on the first five datasets, and no new subsets have
been added.

the integration of new data, all models can adapt well to time-evolving data distri-
butions. However, the performance improvement of these baselines is not as stable
and even carries the risk of declining in some rounds. This is because these complex
models have a certain immunity to concept drift, which, although theoretically advan-
tageous, can be a drawback for a system with strong time sensitivity. The sensitivity
to inconsistencies in time series distribution, in fact, can be a beneficial trait. Thus, we
see that LAMEE, with its simpler structure, can effectively perceive the concept drift
brought about by data evolution over time, thereby better fitting the current data.

5.5 Interpretability

We analyze the weights of each layer to interpret the model, as we do not use high-
dimensional embeddings for raw features. Using the Electricity dataset (I = 96, O =
96) as an example, we visualize the heatmaps of each layer in Figure 3.

5.5.1 Temporal Dense Layers

The first layer’s scattered weights capture global info, with smaller weights for padded
zeros and most info from input signals. The second layer’s weights are widely dis-
tributed, emphasizing timestamps like the 4-th, 96-th, 124-th, and 148-th for their
cyclic characteristics. In the third layer, the right half of the weight matrix, which
corresponds to predictions, has larger weights than the left half, which is related to
reconstructed input signals. This is because predicting future signals is harder than
reconstructing input signals.

5.5.2 Frequency Dense Layers

For signals of length 96 + 96 (J +O), we forward the lowest 32 frequency components.
Since frequency dense layer weights are complex, we demodulate for visualization.
Similar to temporal dense layers, the first frequency dense layer has a scattered weight
distribution, with the lowest frequency components having the least weight. This is due

16

1-st Layer 2-nd Layer 3-rd Layer

T
e

m
p

o
ra

l
D

e
n

s
e

 L
a
y
e

rs
F
re

q
u

e
n

c
y
 D

e
n

s
e

 L
a
y
e

rs

Fig. 3 Weights visualization for interpretability. We logarithmize all weights for better distinction,
thus the visualization are relative values.

to the lowest frequency component in discrete Fourier transforms being 0, suggesting
infinite seasonality. This component primarily influences trend, not the main focus of
the frequency dense layers, thus having lower weights. The second layer assigns larger
weights to the 4-th, 8-th, and 12-th frequency components, reflecting the inherent 48,
24, and 18-hour seasonality. The third layer prioritizes low-frequency components for
determining overall prediction trends.

5.6 Parameter Sensitivity

LAMEE has three main settings: layer count (N), reconstructed input signal length (J)
in input-auxiliary supervision, and passed frequency components (M). We tested these
settings’ impact on results using the Electricity and Weather datasets. In our tests,
we used 96 timestamps to predict future 96, with N ∈ {2, 3, 4, 5}, J ∈ {24, 48, 72, 96},
and M ∈ {16, 32, 64, 96}.

5.6.1 Layers (N)

On the Electricity dataset, the best results come with 2-3 layers, adding more worse
outcomes. But the Weather dataset does better with more layers. This is because the
Electricity dataset has clear seasonal trends, which a few dense frequency layers can
easily capture, and more layers could lead to overfitting. The Weather dataset, being
non-stationary, benefits from more layers to better capture less obvious patterns.

17

Layers ()N Reconstructed Length ()J Passed Frequency Components ()M

E
le

c
tr

ic
it

y
 d

a
ta

se
t

W
e

a
th

e
r

d
a

ta
se

t

2 3 4 5

2 3 4 5 24 48 72 96

24 48 72 96

8 16 32 48

8 16 32 48

M
A

E
M

A
E

M
S

E
M

S
E

M
A

E
M

A
E

M
S

E
M

S
E

M
A

E
M

A
E

M
S

E
M

S
E

Fig. 4 Parameter sensitivity analysis.

5.6.2 The length of reconstructed input signals (J)

Our analysis of the length of reconstructed input signals shows a clear trend in both
datasets: the best performance comes when hyper-parameters are at their highest
values. The highest value for the length of reconstructed input signals means the entire
input signal will be reconstructed, effectively capturing the characteristics provided
by the input signals.

5.6.3 The passed frequency components (M)

The sensitivity analysis for the passed frequency components shows that best perfor-
mance comes at the highest value, meaning no frequency components should be filtered
out. However, this is less noticeable in the non-stationary Weather dataset compared
to the stationary Electricity dataset. While increasing passed frequency components
linearly increases computational complexity but only slightly improves performance.
So, the model is most cost-effective when the passed frequency components are at 16%
of the total length (M = 16).

5.7 Ablation Studies

This section evaluates different modules in our model: joint time-frequency informa-
tion, residual decomposition, and input-auxiliary supervision. We study these through
ablation models, namely LAMEE (w/o TDL), LAMEE (w/o FDL), LAMEE (w/o
RD), and LAMEE (w/o IAS). The first two models test the joint time-frequency aspect
by removing temporal or frequency dense layers. LAMEE (w/o RD) and LAMEE (w/o
IAS) assess the effectiveness of residual decomposition and input-auxiliary supervision.

18

(A) Comparison of introducing frequency information (right) or not (left)

(B) Comparison of introducing residual decomposition (right) or not (left)

(C) Comparison of introducing input-auxiliary supervision (right) or not (left)

Fig. 5 Case visualization of ablation studies.

The results, displayed in Table 5 and Figure 5, suggest that each module con-
tributes to performance enhancement. Furthermore, an incremental model, LAMEE
(embeddings), shows that using raw features directly rather than high-dimensional
embeddings can improve prediction accuracy.

5.7.1 Joint Time-Frequency Information

By introducing the frequency information, the prediction accuracy on all datasets will
be increased by an average of 29.10%, especially on the Electricity dataset with strong
seasonality, the performance will benefit even more (about 51.20%). This result con-
firms the correctness of our introduction of frequency information. By introducing the

19

Table 5 The results of ablation studies.

Models Metrics
ILI Electricity Weather

24 36 92 196 92 196

LAMEE MAE 0.709 0.841 0.476 0.483 0.240 0.280
(w/o FDL) MSE 1.006 1.356 0.432 0.438 0.185 0.234

LAMEE MAE 0.689 0.775 0.297 0.303 0.225 0.268
(w/o TDL) MSE 0.943 1.312 0.185 0.186 0.176 0.229

LAMEE MAE 0.601 0.743 0.270 0.277 0.215 0.267
(w/o RD) MSE 0.849 1.320 0.168 0.190 0.160 0.233

LAMEE MAE 0.710 0.779 0.280 0.322 0.218 0.281
(w/o IAS) MSE 0.961 1.183 0.167 0.195 0.166 0.229

LAMEE MAE 0.656 0.778 0.298 0.308 0.246 0.277
(embeddings) MSE 0.893 1.359 0.179 0.213 0.173 0.245

LAMEE
MAE 0.588 0.643 0.264 0.277 0.199 0.248

MSE 0.832 1.083 0.158 0.176 0.153 0.203

frequency information, the performance will also be improved, but the overall improve-
ments in performance (12.20%) is smaller than introducing the frequency information,
which might reflect that frequency information is more important than temporal infor-
mation under such a case. In any case, this set of ablation studies demonstrates the
importance and effectiveness of using joint time-frequency information. The corre-
sponding case visualization is shown in Figure 5(A). Comparing Figure 5(A)(left)
(without frequency information), high-frequency components can be better predicted
by introducing frequency information, peaks and troughs can also be well fitted (Figure
5(A)(right)).

5.7.2 Residual Decomposition

While LAMEE (w/o RD) shows that residual decomposition only slightly improves
metrics (7.0%), it’s crucial for reducing error variance under extreme noise conditions,
enhancing the model’s prediction reliability. This is illustrated when we add Gaussian
noise to the input signals. As seen in Figure 5(B), the complete LAMEE model (right)
produces smoother and more accurate predictions with smaller error variance com-
pared to LAMEE (w/o RD) (left), even with noisy signals, proving LAMEE’s strong
noise immunity and stability.

5.7.3 Input-Auxiliary Supervision

LAMEE (w/o IAS) shows the benefits of input-auxiliary supervision, it improves per-
formance by about 11.0%. The effect of this strategy is visually shown in Figure 5(C),
where the full LAMEE model’s predictions align with the input signals’ focus and
trend, preventing trend inconsistent. This is especially effective for non-stationary
cases, ensuring reliable predictions.

5.7.4 Embeddings

We also verified through LAMEE (embeddings) that directly using raw features for
modeling and comparing features in high-dimensional embeddings resulted in a 14%
performance improvement. This improvement primarily stems from the challenge

20

faced by MLPs in handling the non full-rank feature introduced by high-dimensional
embeddings.

6 Conclusions

In this study, we introduced LAMEE, a novel lightweight All-MLP framework
for Time Series Prediction Empowering Recommendations (TSPER). LAMEE has
addressed several challenges and difficulties in the TSPER task concerning computa-
tional efficiency, model evolution, and performance assurance, resulting in a balanced
time series prediction model in terms of performance, efficiency, and other aspects.
Through extensive experiments, LAMEE demonstrated superior performance in vari-
ous datasets, outperforming existing methods in both efficiency and effectiveness. Our
work not only showcases the potential of LAMEE in enhancing time series prediction
accuracy, but also opens new avenues for future research in this domain.

References

[1] Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender systems: an
introduction (2010)

[2] Guo, Q., Zhuang, F., Qin, C., Zhu, H., Xie, X., Xiong, H., He, Q.: A survey on
knowledge graph-based recommender systems. IEEE Transactions on Knowledge
and Data Engineering 34(8), 3549–3568 (2020)

[3] Sun, R., Cao, X., Zhao, Y., Wan, J., Zhou, K., Zhang, F., Wang, Z., Zheng, K.:
Multi-modal knowledge graphs for recommender systems. In: Proceedings of the
29th ACM International Conference on Information & Knowledge Management,
pp. 1405–1414 (2020)

[4] Huang, C., Xu, H., Xu, Y., Dai, P., Xia, L., Lu, M., Bo, L., Xing, H., Lai, X., Ye,
Y.: Knowledge-aware coupled graph neural network for social recommendation.
In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp.
4115–4122 (2021)

[5] Sharaf, M., Hemdan, E.E.-D., El-Sayed, A., El-Bahnasawy, N.A.: A survey on rec-
ommendation systems for financial services. Multimedia Tools and Applications
81(12), 16761–16781 (2022)

[6] Xue, J., Zhu, E., Liu, Q., Yin, J.: Group recommendation based on financial social
network for robo-advisor. IEEE Access 6, 54527–54535 (2018)

[7] Nilashi, M., Asadi, S., Minaei-Bidgoli, B., Abumalloh, R.A., Samad, S., Ghabban,
F., Ahani, A.: Recommendation agents and information sharing through social
media for coronavirus outbreak. Telematics and Informatics 61, 101597 (2021)

[8] Hussain, M.M.-u., Avci, B., Trajcevski, G., Scheuermann, P.: Incorporating
weather updates for public transportation users of recommendation systems. In:

21

2016 17th IEEE International Conference on Mobile Data Management (MDM),
vol. 1, pp. 333–336 (2016). IEEE

[9] Djavadian, S., Hoogendoorn, R.G., Van Arerm, B., Chow, J.Y.: Empirical
evaluation of drivers’ route choice behavioral responses to social navigation.
Transportation research record 2423(1), 52–60 (2014)

[10] Hussain, M.M.-u., Avci, B., Trajcevski, G., Scheuermann, P.: Incorporating
weather updates for public transportation users of recommendation systems. In:
2016 17th IEEE International Conference on Mobile Data Management (MDM),
vol. 1, pp. 333–336 (2016). IEEE

[11] Yin, H., Zhou, X., Cui, B., Wang, H., Zheng, K., Nguyen, Q.V.H.: Adapting to
user interest drift for poi recommendation. IEEE Transactions on Knowledge and
Data Engineering 28(10), 2566–2581 (2016)

[12] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L., Polosukhin, I.: Attention is all you need. Advances in neural
information processing systems 30 (2017)

[13] Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., Zhang, W.:
Informer: Beyond efficient transformer for long sequence time-series forecasting.
In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp.
11106–11115 (2021)

[14] Wu, H., Xu, J., Wang, J., Long, M.: Autoformer: Decomposition transform-
ers with auto-correlation for long-term series forecasting. Advances in Neural
Information Processing Systems 34, 22419–22430 (2021)

[15] Zhou, T., Ma, Z., Wen, Q., Wang, X., Sun, L., Jin, R.: Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. International
Conference on Learning Representations (2022)

[16] Liu, S., Yu, H., Liao, C., Li, J., Lin, W., Liu, A.X., Dustdar, S.: Pyraformer:
Low-complexity pyramidal attention for long-range time series modeling and
forecasting. In: International Conference on Learning Representations (2021)

[17] Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept
drift: A review. IEEE transactions on knowledge and data engineering 31(12),
2346–2363 (2018)

[18] Zenisek, J., Holzinger, F., Affenzeller, M.: Machine learning based concept drift
detection for predictive maintenance. Computers & Industrial Engineering 137,
106031 (2019)

[19] Ding, C., Zhao, J., Sun, S.: Concept drift adaptation for time series anomaly
detection via transformer. Neural Processing Letters 55(3), 2081–2101 (2023)

22

[20] Zhao, Z., Xu, J., Zang, Y., Hu, R.: Adaptive abnormal oil temperature diagnosis
method of transformer based on concept drift. Applied Sciences 11(14), 6322
(2021)

[21] Trybulec, W.A.: Vectors in real linear space. Formalized Mathematics 1(2), 291–
296 (1990)

[22] Brand, L.: Vector and Tensor Analysis. Courier Dover Publications, ??? (2020)

[23] Arjovsky, M., Bottou, L.: Towards principled methods for training generative
adversarial networks. arXiv preprint arXiv:1701.04862 (2017)

[24] Pallás-Areny, R., Webster, J.G.: Analog Signal Processing. John Wiley & Sons,
??? (1999)

[25] Orfanidis, S.J.: Introduction to Signal Processing. Prentice-Hall, Inc., ??? (1995)

[26] Box, G.E., Jenkins, G.M.: Some recent advances in forecasting and control. Jour-
nal of the Royal Statistical Society. Series C (Applied Statistics) 17(2), 91–109
(1968)

[27] Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis:
Forecasting and Control. John Wiley & Sons, ??? (2015)

[28] Gardner Jr, E.S.: Exponential smoothing: The state of the art. Journal of
forecasting 4(1), 1–28 (1985)

[29] Jalles, J.T.: Structural time series models and the kalman filter: a concise review
(2009)

[30] Friedman, J.H.: Greedy function approximation: a gradient boosting machine.
Annals of statistics, 1189–1232 (2001)

[31] Elsayed, S., Thyssens, D., Rashed, A., Jomaa, H.S., Schmidt-Thieme, L.: Do
we really need deep learning models for time series forecasting? arXiv preprint
arXiv:2101.02118 (2021)

[32] Wen, R., Torkkola, K., Narayanaswamy, B., Madeka, D.: A multi-horizon quantile
recurrent forecaster. arXiv preprint arXiv:1711.11053 (2017)

[33] Rangapuram, S.S., Seeger, M.W., Gasthaus, J., Stella, L., Wang, Y.,
Januschowski, T.: Deep state space models for time series forecasting. Advances
in neural information processing systems 31 (2018)

[34] Maddix, D.C., Wang, Y., Smola, A.: Deep factors with gaussian processes for
forecasting. arXiv preprint arXiv:1812.00098 (2018)

23

[35] Oord, A.v.d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalch-
brenner, N., Senior, A., Kavukcuoglu, K.: Wavenet: A generative model for raw
audio. arXiv preprint arXiv:1609.03499 (2016)

[36] Borovykh, A., Bohte, S., Oosterlee, C.W.: Conditional time series forecasting with
convolutional neural networks. arXiv preprint arXiv:1703.04691 (2017)

[37] Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. ArXiv abs/1803.01271 (2018)

[38] Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are
universal approximators. Neural networks 2(5), 359–366 (1989)

[39] Ruck, D.W., Rogers, S.K., Kabrisky, M.: Feature selection using a multilayer
perceptron. Journal of neural network computing 2(2), 40–48 (1990)

[40] Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are
universal approximators. Neural networks 2(5), 359–366 (1989)

[41] Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep
convolutional neural networks. Communications of the ACM 60(6), 84–90 (2012)

[42] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation
9, 1735–1780 (1997)

[43] Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Trans-
formers in vision: A survey. ACM computing surveys (CSUR) 54(10s), 1–41
(2022)

[44] Tay, Y., Dehghani, M., Bahri, D., Metzler, D.: Efficient transformers: A survey.
ACM Computing Surveys (CSUR) (2020)

[45] Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.-Y.: Do
transformers really perform bad for graph representation? In: Neural Information
Processing Systems (2021)

[46] Wen, Q., Zhou, T., Zhang, C., Chen, W., Ma, Z., Yan, J., Sun, L.: Transformers
in time series: A survey. arXiv preprint arXiv:2202.07125 (2022)

[47] Liu, R., Li, Y., Tao, L., Liang, D., Zheng, H.-T.: Are we ready for a new paradigm
shift? a survey on visual deep mlp. Patterns 3(7), 100520 (2022)

[48] Tolstikhin, I.O., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner,
T., Yung, J., Steiner, A., Keysers, D., Uszkoreit, J., et al.: Mlp-mixer: An all-mlp
architecture for vision. Advances in Neural Information Processing Systems 34,
24261–24272 (2021)

[49] Melas-Kyriazi, L.: Do you even need attention? a stack of feed-forward layers does

24

surprisingly well on imagenet. arXiv preprint arXiv:2105.02723 (2021)

[50] Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415 (2016)

[51] Nussbaum, M.: Advanced digital signal processing and noise reduction. (2016)

[52] Persons, W.M.: Indices of business conditions: an index of general business
conditions (1919)

[53] Zeng, A., Chen, M., Zhang, L., Xu, Q.: Are transformers effective for time series
forecasting? arXiv preprint arXiv:2205.13504 (2022)

[54] Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., Zhang, C.: Connecting the dots:
Multivariate time series forecasting with graph neural networks. In: Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 753–763 (2020)

[55] Liu, Y., Wu, H., Wang, J., Long, M.: Non-stationary transformers: Exploring
the stationarity in time series forecasting. In: Advances in Neural Information
Processing Systems (2022)

[56] Woo, G., Liu, C., Sahoo, D., Kumar, A., Hoi, S.: Etsformer: Exponential smooth-
ing transformers for time-series forecasting. arXiv preprint arXiv:2202.01381
(2022)

[57] Wang, H., Peng, J., Huang, F., Wang, J., Chen, J., Xiao, Y.: Micn: Multi-
scale local and global context modeling for long-term series forecasting. In: The
Eleventh International Conference on Learning Representations (2023)

[58] Zhang, T., Zhang, Y., Cao, W., Bian, J., Yi, X., Zheng, S., Li, J.: Less is more: Fast
multivariate time series forecasting with light sampling-oriented mlp structures.
arXiv preprint arXiv:2207.01186 (2022)

[59] Zhang, Y., Yan, J.: Crossformer: Transformer utilizing cross-dimension depen-
dency for multivariate time series forecasting. In: The Eleventh International
Conference on Learning Representations (2023)

[60] Wu, H., Hu, T., Liu, Y., Zhou, H., Wang, J., Long, M.: Timesnet: Temporal
2d-variation modeling for general time series analysis (2023)

Declarations

Ethical Approval

This study did not involve any experiments on human or animal subjects. Therefore,
ethical approval was not required.

25

Funding

This work is funded in part by the National Natural Science Foundation of China
Projects No. U1936213, and the Shanghai Science and Technology Development Fund
No. 19DZ1200802.

Availability of Data and Materials

The data used in this study are publicly available. Details and access information for
these data have been provided in the main text of the paper.

26

	Introduction
	Related Works
	Time Series Prediction
	The Renaissance of MLPs

	Problem Formulation
	Methodology
	Overview
	Pre-Processing
	Post-Processing

	Time & Frequency Dense Layer
	Temporal Dense Layer
	Frequency Dense Layer

	Residual Decomposition
	Decomposition Strategy
	Signal Fusion

	Input-Auxiliary Supervision
	Discussion
	Representation Learning
	Efficiency and Complexity

	Experiments
	Experimental Settings
	Dataset
	Baselines and Metrics

	Main Results
	Small Datasets
	Multi-Variable Datasets
	Multi-Source Datasets

	Efficiency Discussion
	Parameter Amounts
	Time Consumption
	Memory Usage

	Adaptive Online Learning
	Interpretability
	Temporal Dense Layers
	Frequency Dense Layers

	Parameter Sensitivity
	Layers (N)
	The length of reconstructed input signals (J)
	The passed frequency components (M)

	Ablation Studies
	Joint Time-Frequency Information
	Residual Decomposition
	Input-Auxiliary Supervision
	Embeddings

	Conclusions

