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Abstract

With the popularity of mobile devices, the software market of mobile
applications has been booming in recent years. Android applications
occupy a vast market share. However, the applications inevitably con-
tain defects. Defects may affect the user experience and even cause
severe economic losses. This paper proposes ATAC and ATPPO, which
apply reinforcement learning to Android GUI testing to mitigate the
state explosion problem. The article designs a new reward function
and a new state representation. It also constructs two GUI testing
models(ATAC and ATPPO) based on A2C and PPO algorithms to
save memory space and accelerate training speed. Empirical studies
on twenty open-source applications from GitHub demonstrate that: (1)
ATAC performs best in 16 of 20 apps in code coverage and defects
more exceptions; (2) ATPPO can get higher code coverage in 15 of
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20 apps and defects more exceptions; (3)Compared with state-of-art
tools Monkey and ARES, ATAC, and ATPPO shows higher code cov-
erage and detects more errors. ATAC and ATPPO not only can cover
more code coverage but also can effectively detect more exceptions.
This paper also introduces Finite-State Machine into the reinforcement
learning framework to avoid falling into the local optimal state, which
provides high-level guidance for further improving the test efficiency.

Keywords: Reinforcement Learning, GUI testing, Advantage Actor Critic,
Proximal Policy Optimization, Finite-State Machine

1 Introduction

With the rapid development of mobile computing and wireless network tech-
nology and the widespread use of mobile devices in the past few years, the
scale of mobile applications also has been overgrown. To meet the demands
of users and conform to the trend of The Times, mobile applications (APPs)
need to be developed and iterated constantly. Many applications may contain
defects. Due to the different versions of devices and operating systems, mobile
apps often need help with cross-platform and cross-version compatibility. If
the APP fails, it may lead to poor user experience and even huge financial
losses. For example, the China Merchants Securities and Huaxi Securities trad-
ing systems went down in 2022, causing economic losses for investors. In the
same year, Chengdu’s nucleic acid testing system collapsed, causing a waste
of medical resources and citizens’ time resources. Therefore, how to test these
applications to ensure the correct operation of the APP has become the key
to solving the compatibility and security at this stage.

There are many operating systems for mobile devices, such as Android,
iOS, Harmony, Blackberry, Symbian, etc. In terms of mobile devices, Android
devices occupy a massive share of the mobile market, and the number of
Android apps is also increasing. Therefore, this paper studies the Graphical
User Interface (GUI) test of Android apps. Android apps are mainly written
in Java and stored in executable files in the form of dex files. The APP is
distributed as an apk file. This example contains the dex file, code (if any),
and other resources. An APP declares its main components in the Android-
Manifest.xml. There are four main elements: activities, services, broadcast,
receivers, and content providers. An activity is a component responsible for
the GUI. An activity corresponds to a UI interface, which includes many UI
elements (such as menus, buttons, and images). Developers can control the
behavior of activities by implementing callbacks for each lifecycle (for example,
create, pause, and destroy). The activity responds whenever the user responds
to an interface action (such as a click), which is the primary goal of the Android
testing tools. The service component can run for a long time in the back-
ground. Unlike activities, there is no user interface, so they are not usually the



Springer Nature 2021 LATEX template

ATAC and ATPPO 3

direct target of Android testing tools, although they may be tested indirectly
through some activities.

The GUI may contain many widgets, and the GUI testing mainly performs
functional testing on the application under test (AUT). GUI testing checks the
behavior of the APP by interacting with the GUI (for example, clicking, long
clicking, scrolling, and typing strings). If the behavior of an APP deviates from
what is expected, the APP contains some defect. However, with the continuous
development and iteration of APP, the composition of APP becomes more
and more complex, and checking its function and behavior may require some
clarification. Due to limited human resources and time pressures, Android APP
GUI testing is expensive. New challenges arise when trying to replace human
testing with machine tools. These challenges include the explosive growth of
state combinations and the limitations of exploration. Automated testing of
Android APPs has great research potential.

GUI testing has attracted massive attention from researchers. Some
researchers propose random testing, which generates random events on the
GUI. One of the most famous random test tools is Monkey [1], which Google
provides for stability and stress testing. It generates random user events such
as key presses and random inputs. However, random tests like Monkey may
generate large amounts of invalid and redundant events. It is ineffective for
them to explore more states and detect failures. Model-based strategies [2–6]
build precise or abstract GUI models by static or dynamic methods to gen-
erate test cases. Nevertheless, the strategies are influenced by two problems.
One of the problems is inherent state explosion. Another one is that the effec-
tiveness of generated test cases depends on the built model’s integrity and the
representation of the application’s state.

Reinforcement learning (RL) contains agent learning strategies to maximize
returns or achieve specific goals by interacting with the environment. It is
extensively used in Android GUI testing. Unlike supervised learning, which
requires labeled datasets, RL can learn automatically by interacting with the
environment. Though RL is applied to GUI testing, most are implemented
using Q-learning. Q-learning uses a table to record expected values of actions
that are called action values in a specific state. The Q table occupies a lot
of memory. Some researchers are considering replacing tabular methods with
Deep Neural Networks (DNN). The agent utilizes DNN to learn the action-
value function automatically through past experiences. Driven by a reward
function, the agent guides us to explore the AUT, unlike random testing,
which explores the AUT without purpose. The optimal action to perform can
be predicted by the agent even if the state has never been visited before. It
can effectively solve the state explosion problem. RL allows us to test GUI
effectively and efficiently. DeepGUIT [7] adopts Deep Q Network (DQN) to
represent the value function, and ARES [8] applies TD3, DDPG, and SAC to
fit value functions. However, these methods utilize a replay buffer that records
the pairs of states and rewards. The replay buffer also occupies a lot of memory,
even if less than Q-table. In reinforcement learning, exploration is one of the
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most challenging issues. In a mobile application, a function is triggered by a
specific operation sequence. As the length of the operation sequence becomes
more extended, exploration becomes more challenging.

In this paper, we propose ATAC(Automatic Testing based on A2C) and
ATPPO(Automatic Testing based on PPO). They are novel approaches
based on deep reinforcement learning to test Android GUI. ATAC applies the
A2C algorithm to Android GUI testing to avoid using a relay buffer. A2C algo-
rithm that introduces the idea of parallelism constructs multiple threads, and
the thread interacts with the environment, respectively. Besides, ATAC does
not need a replay buffer, and it can save memory space and consume fewer
resources. The neural network it constructs is much smaller than DeepGUIT
and ARES. It can work even if the agent does not equip with GPU. The PPO
algorithm is an improvement of the A2C algorithm. It uses the importance
sampling method to convert the off-policy into the on-policy strategy, which
improves data utilization. ATPPO applies the PPO algorithm to Android GUI
testing to avoid using a relay buffer. To reduce interruption of the execution
sequence, we consider constructing a Finite-State Machine(FSM) during the
test process. If the strategy falls into the local optimal state, according to FSM,
it provides more advanced guidance for exploring reinforcement learning algo-
rithms. We evaluate them in twenty apps in the environment of Android 10.
Experimental results show that our approaches achieve higher coverage and
detect more failures than the state-of-the-art test generation tool Monkey and
RL-based ARES.

To summarize, this paper has the following major contributions:

• We utilize executable GUI elements in XML files to represent states.
• We adopt a new reward function to avoid sparse rewards, and the reward
function in this paper mainly depends on the change of state and whether
errors can be detected.

• We construct two GUI testing models(ATAC and ATPPO), respectively,
based on the A2C and PPO algorithms.

• We put forward the exploration strategy based on FSM, which provides
high-level guidance for further improving test efficiency.

• Empirical studies on 20 applications have found that our approaches have
significantly different effects on the code coverage and the number of defects
detected.

The remainder of this paper is structured as follows: Section 2 introduces
relevant basic concepts and definitions. In Section 3, our proposed approach
is described in detail. Section 4 shows the evaluation of our approach and
discusses the results. Then, the threats to validity are shown in Section 5.
Section 6 gives a general description and summary of related work. Finally,
section 7 concludes our work.
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Fig. 1 Markov decision process

2 Preliminaries

Section 2.1 introduces the concept of reinforcement learning and the spe-
cific Markov decision process. There are two main methods to solve the
Markov decision process: model-based and model-free methods. The model-
based approach is mainly implemented by the dynamic programming method.
However, the premise of using model-based methods is that the current envi-
ronment is known and well-described. Therefore, the approximation of the
model-based method (model-free method) is usually used to deal with the
problem. The existing model-free agents are presented in section 2.2.

2.1 Markov decision process

RL is a branch of Machine Learning which tries to maximize the reward it
obtains in a complex and uncertain environment. It consists of the agent
and the environment. RL trains the agent by constantly interacting with the
environment. The agent’s purpose is to receive as much reward from the
environment as possible through trial and error.

The Markov decision process is one of the most fundamental theoretical
models of reinforcement learning, and most problems can be regarded as or
transformed into the Markov decision process. A Markov decision process is
represented by a 4-tuple < S,A, P,R >.

S: Set of all possible states
A: Set of possible actions that the agent can perform in all states.
P (S ×A× S → [0, 1]): State transition function represents the probability

of taking action to transfer to some state.
R(S × A× S → R): Reward function represents the reward received from

the environment after taking the action which changes the current state.
Fig.1 shows the process of Markov decision. At a time step t, the agent

observes the current state st ∈ S, and then selects and performs the action
from action space A. Then a reward is obtained, the environment moves to a
new state, and then the agent continues to repeat the above process until the
terminal state or timeout and restarts. The process above can be represented
by a trajectory: s0, a0, r1, s1, a1, r2, s3.... at means the action performed and
rt denotes the reward when performing at in the state st. The accumulated
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return Rt from the time step t with discount factor γ ∈ (0, 1] can be noted as:
Rt =

∑

∞

k=0 γ
krt+k.

The goal of the agent is to maximize the expected return from each state
st. The action-value function Qπ(s, a) is used to estimate the expected return
when we take an action in a certain state when following the current policy.
The state-value function V π(s) is to evaluate the expected return in the current
state s when following the π. The action value function or the value function
can be eliminated by substitution, and the Bellman expectation equation can
be obtained. Similarly, the relationship between the optimal state and the
action value function can be defined:

{

V ∗(s) = maxa∈A Q∗(s, a)
Q∗(s, a) =

∑

s′,r p(s
′, r|s, a)[r + γVπ(s

′)]
(1)

Then, the Bellman optimal equation can be derived according to the optimal
state and the action value function:

{

V ∗(s) = maxa∈A[r(s, a) + γ
∑

s′ p(s
′|s, a)V ∗(s′)]

Q∗(s, a) = r(s, a) +
∑

s′ p(s
′, r|s, a)maxa′ Q∗(s′, a′)

(2)

We use the symbol ∗ to indicate the estimated value. r(s, a) indicates the
reward when performing a in the state s. We can find an optimal policy through
Bellman’s expectation and optimal function in theory. However, the Bellman
equation is difficult to obtain. Therefore, we need other ways to estimate the
optimal value function, such as policy iteration.

2.2 Model-free agent

An optimal policy can be found through Bellman expectation and optimal
function in theory. However, the Bellman equation is difficult to obtain. There-
fore, we need other ways to estimate the optimal value function, such as policy
iteration.

There are three types of model-free agents: Value-Based agent, Policy-
Based agent and Actor-Critic agent and Actor-Critic agent combines the first
two. Value-based model-free methods learn the value function so that a pol-
icy can derive from value function. Policy-based model-free methods directly
parameterize the policy by π(a|s; θ) and update parameter θ by perform-
ing gradient ascent on E[Rt]. Actor-Critic agent learns both policy and value
function.

A standard policy-based method [9] updates θ by ∇θRtlogπ(at|st; θ), it is
an unbiased estimate of ∇θE[Rt]. Afterwards, baseline bt(st) from the return
has been used in order to reduce the variance of the estimate forward. Then
the parameter of policy π is updated by ∇θ(Rt − bt(st))logπ(at|st; θ) .The
estimated value function can be rewarded as bt(st) to further reduce the vari-
ance and Rt − bt(st) can be considered as the advantage of performing the
action at in state st when we adopt the policy π. As mentioned above, Rt is
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Fig. 2 Mechanism of A2C algorithm

the estimate of the action value function Qπ(st, at) and finally the advantage
A(st, at) can be calculated by Q(st, at)−V (st).The method [10, 11] introduced
above can be viewed as an Actor-Critic architecture with policy π as an actor
and the baseline V (st) as a critic.

Advantage Actor-Critic (A2C) [12] is a typical Actor-Critic method, which
is a synchronous, deterministic variant of Asynchronous Advantage Actor-
Critic (A3C). It uses multiple workers to avoid the use of a replay buffer. Fig.2
shows the mechanism of A2C.

Most of work [13–16] based on RL adopts Q-learning as agent. Q-learning
uses a table to record expected values of actions that are called action values
in a specific state. Recently, some researchers replace tabular methods with
Deep Neural Networks (DNN). DeepGUIT represents the value function by
DQN, and ARES adopts TD3, DDPG, and SAC to fit value functions.

3 Approach

This paper proposes a method of Android GUI testing based on A2C and
PPO. This section will describe the GUI testing of APP applying reinforcement
learning in detail. The process of testing APPs can be thought of as a Markov
decision process. A2C and PPO algorithms were used to generate test cases,
respectively.

First, Appium extracts specific information about an APP installed on
an Android device or emulator. Appium is an open-source automated testing
tool for native, mobile, or hybrid APPs. Android devices communicate with
Appium through the Android Debug Bridge (ADB). The GUI state composed
of GUI elements exists in the form of an XML file that includes informa-
tion such as package name, executable events (such as whether the widget is
clickable, long-clickable, or scrollable), boundary information, and resource-id.
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Fig. 3 workflow of ATAC and ATPPO

Then, the XML file is preprocessed. Since the XML file saves the page infor-
mation, the information is extracted from the page. Then all the executable
widgets are obtained. Afterward, the page’s state(which can be processed by
the neural network) is expressed according to the widget’s information. Then
the current state can be passed to the agent. According to the current state,
the agent makes decisions and outputs actions. The digital action is converted
into a specific operation, and the corresponding process is executed. Once the
action is performed, the reward module rewards the agent for the action in
its current state. The agent adjusts the parameters inside the neural network
according to the reward feedback.

At a time step t, the environment gets the current GUI of the Android
device through Appium, extracts the state from it, and passes the observa-
tion to the agent. Then, the agent (Actor-network follows policy π) predicts
an action likely to archive more accumulated rewards. Once the action is per-
formed, the agent will obtain a reward as feedback from the environment. The
agent will adjust the actor and critic networks according to the rewards. The
workflow is shown in Fig.3.

3.1 Representation of States and Actions

In the reinforcement learning process, the current state needs to be abstractly
represented to express the form the neural network can understand. The state
representation needs to combine the parts that are beneficial to the training
of the agent. The GUI of an Android application consists of GUI elements,
and a GUI interface contains many widgets. This method only considers the
executable GUI elements in the interface. We only consider the executable
GUI elements to represent the states so that they can be passed to and pro-
cessed by the neural network. We denote the abstract state by all executable
widgets from the GUI of the application. Each widget is represented by a
three-dimensional vector wi, and each state is represented by st:

st = (w1, w2, w3, ..., wi, ...wn) (3)
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The first dimension of wi indicates whether the widget i is clickable, the
second dimension indicates whether i is long-clickable, and the third dimension
indicates whether the i is scrollable. If the widget i is clickable, long-clickable,
or scrollable, the corresponding dimension will be marked as 1. Otherwise, we
will mark the dimension as 0. For example, if widget i is clickable and can be
long-clickable but not scrollable, we would denote wi as [1,1,0]. At the time
t, the agent observes a state st composed of n widgets, where n is the total
number of executable widgets in the GUI interface.

Both system-level actions and typical actions are considered in our
approach. The system-level actions include switching the internet connection
state, screen rotation, and return. There is no return button in many appli-
cations explicitly, and the applications may keep in a stalemate state, which
prevents them from exploring more space. ATAC adopts a similar action rep-
resentation as ARES [8]. A 3-dimensional vector denotes each action, and
the first dimension specifies which widget or system-level action will be oper-
ated. The second dimension works when the widget expects an input since the
dimension indicates the index of a string in a predefined dictionary. The third
dimension acts as a compliment. The third dimension decides which actions
to perform when a widget is clickable and long-clickable. When a widget is
scrollable, the third dimension specifies the scrolling direction.

3.2 Reward Function

The design of the reward function is a crucial step where the agent adjusts its
strategy based on the feedback (reward) it receives after performing a particu-
lar action in the current state (GUI interface). The value of the reward reflects
which behaviors are encouraged and which are discouraged. A positive reward
value indicates that the current operation is encouraged, and a negative reward
value suggests that the current process is discouraged. The larger the reward
value, the more expected the action was performed in the current state.

The reward function needs to be designed with the ability to detect faults
in mind. However, a few failures in GUI testing can lead to sparse rewards.
Intuitively, exploring more GUI space might lead to finding more bugs, so the
design of the reward function also considered whether more GUI space explo-
ration could be done. The reward function in this article depends mainly on
the change of state and whether an error can be detected. There are two main
aspects to the state change process, one is whether a state can be explored
that was not explored during the previous test, and the other is whether
the executable widget has never been executed in its current state. When an
agent chooses to return, there are two aspects to consider. First, we want it
to return as soon as the application enters a deadlock state. Second, we don’t
expect frequent returns, which might interfere with our application explo-
ration. According to the particularity of reward, two kinds of reward functions
are defined in this paper.

The definition of reward function is as follows:
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a)When the agent performs actions:

rt =















R1, crash
−R4, st+1 /∈ AUT
−R3, stopT ime < N
R3, stopT ime ≥ N

(4)

b)When the agent performs other actions:

rt =















R1, St+1 /∈ visitedState or crash
R2, St+1 ∈ visitedState and at /∈ visitedWidgets
−2repeattime , St+1 ∈ visitedState and at ∈ visitedWidgets
−R4, St+1 /∈ AUT

(5)

The numbers in the function satisfy the conditions that R1 > R2 > R4 >
R3.R1 = 1000.R2 = 500, R4 = 100 and R3 = 50. We encourage this behavior
when an application crashes. Either the agent explores a new state or manipu-
lates a widget that hasn’t been executed before. stop time indicates how long
it is in the current state. A positive reward is given if the application stays in
the same state for a long time and the agent performs a return operation. If
the agent frequently returns when the application is in a new state, we give it
a negative reward. repeat time indicates the number of times the same action
is executed consecutively.

3.3 Advantage Actor-Critic(A2C) based Testing

A2C (Advantage Actor-Critic) is a synchronous variation of A3C (Asyn-
chronous Advantage Actor-Critic). They all maintain a network of policies
and a network of value functions. They choose the same advantage function
A(at, st) = (rt+1 + γV (st) − V (st)) and use multithreading to perform gra-
dient descent. The difference between them is the time to update the global
policy and the value function. A2C is synchronous, and A3C is asynchronous.
A2C uses multiple threads to avoid using the experience replay buffer.

A2C constructs multiple threads that interact with the environment. In
each iteration, the global network waits for the threads to complete their
respective turns and updates the global network through the gradient uploaded
by the threads. The global network then sends the latest network parameters
to all threads simultaneously. The detailed algorithm for each thread is shown
in Algorithm 1.

3.4 Proximal Policy Optimization(PPO) based Testing

With the continuous improvement of the reinforcement learning algorithm, the
PPO algorithm is proposed to improve the A2C algorithm. This paper also uses
the PPO algorithm as the training and decision-making algorithm. The PPO
algorithm combines the multi-threading thought of the A2C algorithm and the
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Algorithm 1 Advantage Actor-Critic Algorithm for each worker(thread)

Require: global actor network θπ, global critic network θv
Ensure: accumulated actor network gradient dθπ, critic network gradient dθv
1: repeat
2: Reset gradients:dθπ ← 0, dθv ← 0
3: Observe the GUI state St

4: repeat
5: at ← π (at|st,θπ

′

)
6: Perform an action at and Receive a reward rt
7: Observe a new GUI state st+1

8: until st is terminal or timeout
9: for each step i of episode do

10: R← ri + γR
11: dθπ ← dθπ +∇θ

′

π
logπ(ai|si; θ

′

π)(R− V (si; θ
′

π))

12: dθv ← dθv + ∂(R− V (si; θ
′

π))
2/∂θ

′

π

13: end for
14: until timeout
15: return dθπ, dθv

idea of using the trust domain to enhance the actor of the TRPO algorithm.
Both A2C and PPO algorithms are reinforcement learning methods based
solely on strategy from time to time. In essence, they are both action-based
and evaluator methods, including value function and strategy function.

Reinforcement learning can use on-policy learning and off-policy learning.
On-policy reinforcement learning indicates that agents need to interact with
the environment during the learning process. On-policy reinforcement learn-
ing trains the models by the current strategy, and each piece of data is only
used once. PPO adopts off-policy reinforcement learning. Standard policy-
based methods perform a gradient update for each data sample. PPO reuses
the data for the multi-stage minor batch update. The main idea of PPO is
that after updating a new policy, it should be similar to the previous policy,
so the scope of parameter updating should be limited. Using importance sam-
pling, the model of this stage can be updated through the data of strategies
of different scenes. This is done by adding the TD-Error of other actions to
the probability of action and multiplying it by the gradient of the feedback of
different strategies.

3.5 Construction and Application of FSM

When exploring the reinforcement learning strategy, some operations need
to be executed continuously to trigger a function or function. For example,
the user login function must first enter the user name, enter the password,
and click the confirm button to realize the login function. However, each step
may be interrupted. The longer the sequence, the higher the probability of
interruption, which makes it more challenging to achieve the ideal transition,
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Algorithm 2 Proximal Policy Optimization Algorithm

Require: initial policy θ
Ensure: up-to-date policy θ
1: for iteration=1,2,... do
2: for iteration=1,2,...,N do
3: Use policies πθoldto Interact with the environment within time T
4: Calculate advantage to estimate A1, .., AT

5: end for
6: Optimize θ according to K epochs and small batch data minibatch
7: θold ←θ
8: end for
9: return θ

especially when facing a long path. FSM M can be defined as a five-tuple
(S,A, δ, s0, F ), in which S is a finite set of states, A is a set of actions, δ :
S ×A→ S is a set of transitions, s0is an initial state, and F is a termination
state that cannot be transferred to other states. During the testing process,
the FSM will update continuously.

When the algorithm may enter a local optimal state, we need to find a path
to reach a new state if we want to resume exploration. FSM contains essential
information such as state, action, and transition, which can guide subsequent
selection. We chose the least visited state in the least explored as the starting
point to explore Android APP again. We use the Floyd algorithm to identify
the shortest path that can reach the state and then executes the correspond-
ing operation sequence to guide to reach the target state and execute the
conversion.

Floyd algorithm is based on greedy and dynamic programming and is sim-
ilar to the Dijkstra algorithm. Dijkstra algorithm applies to the solution of the
shortest path of a single source, and Floyd algorithm applies to the search of
the shortest path between multiple source points in the weighted graph.Floyd
algorithm contains two matrices, the shortest distance matrix Dn×n of a graph
and the shortest path matrix pathn×n. The element di,j n, the shortest distance
of the graph, represents the distance from node i to node j. In using reinforce-
ment learning to test Android APP GUI, nodes represent various states. At
the initial stage of the test, the distance is positive and infinite. Each time a
state transition occurs, the value in the shortest distance matrix may change
because the distance between two states will be updated to the shortest dis-
tance. If the distance between two nodes is shortened, the shortest path will
also change. The algorithm updates the shortest distance matrix and path
according to the state transition equation.

The target state can be easily reached when the shortest path matrix is
solved. If the state si wants to transfer to the state sj , it needs to move to
the state spathi,j

first, then from the state spathi,j
to the target state sj . With

the state transition process, the target state can be reached according to the
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shortest path between states, and further exploration can be carried out on
this basis.

4 Empirical Study

When testing the application, we want to be able to detect exceptions. In
theory, it is only possible to detect more anomalies by exploring as many
states as possible. In many studies [7, 8, 14, 16, 17], code coverage and fault
detection number are used as evaluation indicators. Therefore, this chapter
mainly investigates the code coverage capability and fault detection capabil-
ity of the proposed method. We evaluated the following metrics: instruction
coverage, branch coverage, line coverage, method coverage, and number of fail-
ures. ATAC and ATPPO are compared with the state-of-art tools, Monkey,
and ARES. Our empirical study is designed to answer the following research
questions:
RQ1: Do ATAC and ATPPO achieve higher instruction coverage, branch cov-
erage, line coverage, and method coverage than state-of-art testing tools?
RQ2: Can ATAC and ATPPO reveal more failures than state-of-art testing
tools?
RQ3: Can the introduction of FSM into the reinforcement learning framework
prevent the algorithm from entering the local optimal state and trigger more
functions?

4.1 Applications under Test

Although this approach is black-box, in order to compare with other
approaches, you must obtain the source code to gather coverage information,
and the experiment uses the Jacoco [18] plug-in to generate coverage infor-
mation. The experiment selected 20 open source F-Droid applications from
Github for method evaluation. The applications selected for the experiment are
also used by other researchers studying mobile application GUI testing, and
the experiment excluded many applications that were outdated or no longer
operational. Some of the applications selected for the experiment are still being
modified and iterated. Details of the application under test are shown in Table
1. To facilitate the calculation of the coverage information of the application,
the apk package and source code of the AUT have been uploaded to Github 1.

4.2 Evaluation Setup

We compare the proposed methods with the tools Monkey and ARES. Monkey
is a random test generation tool, and ARES is based on deep reinforcement
learning. Then, specific experimental settings are introduced.

We experiment on a computer with the MacOS operating system, M1 pro-
cessor, and 16GB of memory. Since the simulator is unstable, the application
in the experiment runs on an actual Android device, the operating system is

1https://github.com/RL-ATAC/AUT-of-ATAC
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Table 1 Target applications for evaluation

Applications instructions braches lines methods classes

QuickSettings 470 28 115 17 4
MunchLife 954 63 214 34 12

Silent-ping-sms 1,732 137 324 39 7
BatteryDog 2,945 164 600 72 18
AnyCut 1,527 97 379 72 18
Afwall 63,182 5,397 14,004 2,155 337

Jamendo 18,382 1,103 4,467 909 205
microMathematics 126,031 13,100 24,636 3,262 486

AnyMemo 50,311 2,732 11,251 2,476 547
AmazeFileManager 85,537 7,418 20,471 3,018 488

zooborns 3,543 259 780 132 24
AntennaPod 59,826 4,909 14,830 2,587 385
BudgetWatch 5,248 319 1,194 168 51

Drawablenotepad 2,498 132 563 124 22
MutiSmsSender 3,736 235 826 126 32

RedReader 102,238 8,427 23,748 3,731 657
BirthdayCountDown 1,607 68 262 30 5

materialistic 30,745 2,664 7,227 1,815 274
BMI 510 45 103 25 5

LockPattern 2,816 217 642 128 28

Android 10, and the memory is 6GB. The framework of ATAC is based on
ARES. It realizes the A2C algorithm mainly by OpenAI Gym [19]. The commu-
nication between applications and agent is through Appium [20], and Android
Debug Bridge [21]. The structures of the Actor and Critic networks are the
same, and ATAC adopts two 2-layers neural networks. There are 64 neurons in
each layer. ATAC and ATPPO choose relu as the activation function in both
neural networks. The number of actions that can be performed changes from
time to time in each state, so the Gaussian distribution is adopted as output,
representing the probability distribution of actions in the current state. The
ATAC and ATPPO parameters are shown in Table 2 and 3, respectively.

The experiment also builds FSM during ARES and ATAC testing, respec-
tively. When the experiment may be in the local optimal state, we find the least
frequently visited state and the shortest path to the state in transition through
Floyd algorithm under the guidance of FSM. By performing the actions in the
shortest route, reaching the target state, and continuing exploring. The con-
dition to determine whether the local optimal state may be achieved is if the
new state can be found in 30 steps or if it stays on the current page after
repeating 30 steps.

The length of an episode is set as 250. The agent explores and tests the
application within 5000-time steps, limiting the time to one hour. The same
settings are used in ARES. The throttle setting was 200 in Monkey, and the
procedure lasted one hour. The tool was configured to ignore any crash, system
timeout, and security exceptions until the timeout was reached. The running
log of the application is analyzed to obtain the crash information. Reinforce-
ment learning has a certain randomness. We repeated all the experiments five
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Table 2 Specific parameter settings of ATAC

Parameter name Parameter value Parameter name Parameter value

learning rate 0.0007 use rms prop True
n steps 5 max grad norm 0.5
gamma 0.99 total timesteps 5000
ent coef 0 n eval episodes 5
vf coef 0.5 rms prop eps 1e-05

Table 3 Specific parameter settings of ATPPO

Parameter name Parameter value Parameter name Parameter value

learning rate 0.0003 gamma 0.99
n steps 2048 gae lamda 0.95

batch size 64 clip range 0.2
n epochs 10 ent coef 0
vf coef 0.5 normalize advantage True

times and used the average value of 5 times to represent the final result to
avoid the randomness of the results. The comparative experiment was also
repeated five times to take the average value.

4.3 RQ1:Do ATAC and ATPPO achieve higher code
coverage than state-of-art testing tools?

To answer RQ1 and avoid the randomness of the results as much as possible,
we repeat all the experiments five times and use the average of five executions
to represent the final result, including the comparative experiment. Table 4
and Table 5 show the average instruction coverage of ATAC and ATPPO.
Inst represents instruction coverage, bran represents branch coverage, the line
represents line coverage, and meth means method coverage.

Table 3 shows the results of comparing ATAC with the coverage of ARES
and Monkey. It can be seen that ATAC covers more instructions, branches,
lines, and methods on 20 APPs. It can be noted that the average instruction
coverage (50.8%) of ATAC is higher than Monkey (35.0%) and ARES (47.5%).
The average branch coverage (36.5%) is also higher than Monkey (21.3%) and
ARES (33.1%). The average line coverage (51.2%) is also higher than Monkey
(34.1%) and ARES (47.9%), and the average method coverage (55.4%) is also
higher than Monkey (40.3%) and ARES (52.1%).

Regarding average instruction coverage and branch coverage, ATAC per-
forms best in 16 of the 20 APPs, ARES performs best in 4, and Monkey
performs poorly. In terms of average line coverage, Monkey also has no out-
standing performance. ARES performs best on 4 APPs, and ATAC performs
best on 16 APPs. Regarding average method coverage, ATAC is the best on
most apps, ARES is the best on three apps, and Monkey is the best on only
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Table 4 Coverage of ATAC(%)

apps under test ATAC ARES Monkey

inst bran line meth inst bran line meth inst bran line meth
QuickSettings 88.6 72.4 87.7 82.8 84.6 63.8 84 81.4 72.9 45.0 72.6 86.8

MunchLife 83.6 59.0 84.0 88.2 81.2 51.8 80.8 88.2 59.0 33.8 53.5 66.4
Silent-ping-sms 43.0 27.0 47.2 59.0 42.0 23.0 46.3 59.0 30.8 11.5 30.3 42.4
BatteryDog 71.0 55.0 69.8 73.6 69.0 52.6 68.4 70.8 65.4 50.0 61.5 66.1
AnyCut 68.6 52.4 69.5 75.0 68.0 49.2 68.9 72.3 39.4 22.2 39.8 50.1
Afwall 14.8 11.4 15.5 19.1 12.8 9.6 13.4 17.5 6.0 4.0 7.0 10.0
Jamendo 23.4 14.4 23.4 28.5 16.7 9.0 16.3 22.3 10.9 6.5 11.6 14.9
microMathematics 37.2 25.2 36.0 44.5 42.4 29.4 41.2 48.8 24.4 15.0 24.3 31.6
AnyMemo 37.8 26.4 38.6 43.0 24.6 16.3 25.7 28.9 17.7 11.0 19.3 23.3
AmazeFileManager 28.8 19.8 27.5 35.9 16.0 9.2 15.6 22.6 15.4 8.9 14.6 20.6
zooborns 18.2 7.4 19.8 24.5 17.4 7.6 18.6 24.3 11.5 4.8 12.5 17.1
AntennaPod 28.0 17.8 26.4 28.2 23.2 13.6 22.7 23.5 10.4 5.6 9.2 9.8
BudgetWatch 41.0 27.8 44.3 56.4 39.8 26.2 43.0 55.4 19.8 9.1 20.9 25.9
Drawablenotepad 87.8 76.3 86.4 85.3 83.8 70.8 82.7 81.8 57.4 30.5 56.3 60.7
RedReader 38.0 26.8 35.6 42.9 27.4 22.0 27.4 33.0 14.4 8.5 14.1 18.5
BirthdayCountDown 90.8 62.2 90.9 90.0 92.0 65.0 92.0 91.3 78.4 47.6 73.1 78.0
materialistic 51.4 32.6 51.6 55.2 46.2 27.8 46.4 50.1 28.2 15.2 28.5 32.4
BMI 62.0 30.0 66.0 80.0 67.0 38.6 68.5 77.6 62.0 36.0 60.8 80.8
LockPattern 64.0 54.0 61.7 54.7 64.8 54.4 62.4 55.9 60.4 53.2 57.1 51.9
MutiSmsSender 38.6 31.2 41.5 41.1 31.4 21.8 33.4 37.0 15.4 8.2 15.8 18.1
AVERAGE 50.8 36.5 51.2 55.4 47.5 33.1 47.9 52.1 35.0 21.3 34.1 40.3

Table 5 Coverage of ATPPO(%)

apps under test ATAC ARES Monkey

inst bran line meth inst bran line meth inst bran line meth

QuickSettings 90.0 71.0 89.6 82.4 84.6 63.8 84 81.4 72.9 45.0 72.6 86.8

MunchLife 82.6 57.6 82.9 88.2 81.2 51.8 80.8 88.2 59.0 33.8 53.5 66.4
Silent-ping-sms 43.0 27.0 47.2 59.0 42.0 23.0 46.3 59.0 30.8 11.5 30.3 42.4
BatteryDog 71.0 55.0 70.0 73.6 69.0 52.6 68.4 70.8 65.4 50.0 61.5 66.1
AnyCut 69.0 53.0 69.7 75.0 68.0 49.2 68.9 72.3 39.4 22.2 39.8 50.1
Afwall 14.4 11.2 14.0 16.9 12.8 9.6 13.4 17.5 6.0 4.0 7.0 10.0
Jamendo 23.0 14.0 23.3 28.6 16.7 9.0 16.3 22.3 10.9 6.5 11.6 14.9
microMathematics 37.2 25.0 36.1 44.3 42.4 29.4 41.2 8.8 24.4 15.0 24.3 31.6
AnyMemo 49.2 34.6 50.1 54.9 24.6 16.3 25.7 28.9 17.7 11.0 19.3 23.3
AmazeFileManager 29.8 20.6 28.2 36.1 16.0 9.2 15.6 22.6 15.4 8.9 14.6 20.6
zooborns 17.6 7.6 19.6 24.4 17.4 7.6 18.6 24.3 11.5 4.8 12.5 17.1
AntennaPod 21.6 12.4 20.4 24.1 23.2 13.6 22.7 23.5 10.4 5.6 9.2 9.8
BudgetWatch 40.2 28.4 44.1 55.1 39.8 26.2 43.0 55.4 19.8 9.1 20.9 25.9
Drawablenotepad 84.4 69.8 83.7 83.1 83.8 70.8 82.7 81.8 57.4 30.5 56.3 60.7
RedReader 40.8 28.8 40.7 46.8 27.4 22.0 27.4 33.0 14.4 8.5 14.1 18.5
BirthdayCountDown 84.2 52.6 83.7 84.0 92.0 65.0 92.0 91.3 78.4 47.6 73.1 78.0
materialistic 51.6 32.2 51.7 56.1 46.2 27.8 46.4 50.1 28.2 15.2 28.5 32.4
BMI 62.6 31.4 66.2 80.0 67.0 38.6 68.5 77.6 62.0 36.0 60.8 80.8

LockPattern 63.4 53.4 61.1 54.7 64.8 54.4 62.4 55.9 60.4 53.2 57.1 51.9
MutiSmsSender 37.4 32.2 39.7 35.5 31.4 21.8 33.4 37.0 15.4 8.2 15.8 18.1
AVERAGE 50.7 35.9 51.1 55.1 47.5 33.1 47.9 52.1 35.0 21.3 34.1 40.3

two apps. By applying the A2C algorithm, ATAC achieves higher instruction,
branch, line, and method coverage than state-of-art tools Monkey and ARES.

The results of the code coverage of ATPPO, ARES, and Monkey are shown
in Table 5. By analyzing the coverage results, we can find that the average
instruction coverage of ATPPO(50.7%) was higher than Monkey(35.0%) and
ARES(47.5%). The average branch coverage of ATPPO(35.9%) was also higher
than Monkey(21.3%) and ARES(33.1%). The average line coverage (51.1%)
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Fig. 4 Code Coverage achieved by Monkey, ARES and ATAC

was also higher than that of Monkey(34.1%) and ARES(47.9%), and the aver-
age method coverage (55.1%) was higher than that of Monkey(40.3%) and
ARES(52.1%). ATPPO achieves higher instruction, branch, line, and method
coverage in 15 of 20 apps.

ATPPO performed best in 15 out of 20 applications, ARES performed best
in 5 out of 20 applications, Monkey performed poorly and only performed
best in QuickSettings in method coverage. For some reason, Monkey doesn’t
perform well on data sets running on Android 10.

In short, ATPPO achieves higher instruction coverage, branch coverage,
line coverage, and method coverage than the existing advanced methods Mon-
key and ARES tools. ATAC and ATPPO perform better than ARES and
Monkey regarding code coverage. ATAC performs better than ATPPO in the
number of apps and code coverage.

4.4 RQ2: Can ATAC and ATPPO reveal more failures
than state-of-art testing tools?

We explore five times on each APP. This method may find the same exception
multiple times in each iteration. ATAC finds exceptions in 8 out of 20 apps,
ATPPO also finds exceptions in 7 apps, ARES finds exceptions in 4 apps, and
Monkey finds exceptions in 2 apps.

Since no exceptions are found in the other 11 apps, this section only focuses
on the nine apps in which the method proposed in this paper, ARES and
Monkey found exceptions. ARES and Monkey can’t find exceptions that ATAC
and ATPPO find in Jamendo, AmazeFileManager, AnyMemo, AntennaPod,
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Fig. 5 Code Coverage achieved by Monkey, ARES and ATPPO

Table 6 The number of experiments where failures is found

Applications ATAC ATPPO ARES Monkey

Jamendo 2 4 0 0
AmazeFileManager 1 2 0 0

AnyMemo 3 3 0 0
Drawablenotepad 3 5 1 0

zooborns 5 5 5 1
AntennaPod 1 0 0 0
BatteryDog 5 5 5 1
materialistic 3 0 0 0

MutiSmsSender 0 1 1 0

and materialistic. Table 6 records the number of experiments where failures
are seen five times. TATAC and ATPPO have the best performance and can
find exceptions on more apps. All the methods detect some exceptions in the
five experiments in zooborns and BatteryDog.

Table 6 and Table 7 show that ATAC and ATPPO can reveal as many
exceptions as possible, and ATPPO finds more exceptions than other methods.
Since many of the exceptions discovered by researchers have been fixed, and
the source code of most apps is still being iterated and modified, the number
of exceptions that can be found decreases with each release. Exceptions found
by ATAC and ATPPO include RuntimeException, NullPointerException, and
NumberFormatException. Table 8 describes the detailed exceptions.
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Table 7 The kinds of experiments where failures is found

Applications ATAC ATPPO ARES Monkey

Jamendo 1 1 0 0
AmazeFileManager 1 3 0 0

AnyMemo 2 4 0 0
Drawablenotepad 1 2 1 0

zooborns 1 1 1 1
AntennaPod 1 0 0 0
BatteryDog 1 1 1 1
materialistic 3 0 0 0

MutiSmsSender 0 1 1 0

Table 8 The number of experiments where failures is found

Applications descriptions of exceptions

Jamendo An error occurred while executing doInBackground()
AmazeFileManager IndexOutOfBoundsException
AmazeFileManager Unable to start activity ComponentInfocom.android.certinstaller/com.android.certinstaller.CertInstallerMain
AmazeFileManager InvocationTargetException

AnyMemo Unable to start activity ComponentInfo
AnyMemo InvocationTargetException
AnyMemo IndexOutOfBoundsException
AnyMemo Attempt to invoke virtual method ’java.lang.Integer org.liberty.android.fantastischmemo.entity.Card.getId()’ on a null object
AnyMemo start failed
AnyMemo For input string: ”string2”

Drawablenotepad InvocationTargetException
Drawablenotepad IndexOutOfBoundsException

zooborns Attempt to get length of null array
AntennaPod For input string: ”string2”
BatteryDog Attempt to invoke interface method ’void android.view.Menu.clear()’ on a null object reference
materialistic For input string: ”string6”
materialistic Unable to start activity ComponentInfocom.android.certinstaller/com.android.certinstaller.CertInstallerMain
materialistic Attempt to invoke virtual method ’java.lang.Integer org.liberty.android.fantastischmemo.entity.Card.getId()’ on a null object reference

MutiSmsSender Unable to start activity ComponentInfocom.hectorone.multismssender/com.hectorone.multismssender.PhoneNumberSelection

Compared to ARES and Monkey, ATAC performs best on 16/20 apps,
while ATPPO performs best on 15/20 apps regarding code coverage. ATAC
and ATPPO can find more exceptions in terms of exception detection. At
the same time, ATPPO finds the most types of exceptions. Experiments have
shown that ATAC and ATPPO can achieve higher code coverage and find more
number and variety of exceptions than ARES and Monkey.

4.5 RQ3: Can the introduction of FSM into the
reinforcement learning trigger more functions?

To answer RQ3, we established FSM in the testing process based on ARES
and ATAC, respectively. When the experiment is in the local optimal state, the
action is performed under the guide of FSM. Branch coverage and method cov-
erage are used to evaluate the degree of exploration of each APP. The average
branch coverage and average method coverage of each method in five exper-
iments are calculated, where branch represents branch coverage and method
means method coverage.

Table 9 compares the branch coverage and method coverage of ARES meth-
ods with and without FSM guidance on 20 apps. In the app data set of this
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Table 9 Branches and method coverage of ARES and FSM-guided ARES (%)

apps under test FSM-guide ARES ARES

bran meth bran meth

QuickSettings 54.4 82.4 63.8 81.4
MunchLife 59.8 88.2 51.8 88.2
Silent-ping-sms 27.0 59.0 23.0 59.0
BatteryDog 55.2 73.3 52.6 70.8
AnyCut 50.4 75.0 49.2 72.3
Afwall 12.4 19.8 9.6 17.5
Jamendo 12.2 26.3 9.0 22.3
microMathematics 28.0 48.6 29.4 48.8

AnyMemo 27.0 44.3 16.3 28.9
AmazeFileManager 22.6 35.7 9.2 22.6
zooborns 11.0 33.3 7.6 24.3
AntennaPod 18.8 32.7 13.6 23.5
BudgetWatch 28.4 56.0 26.2 55.4
Drawablenotepad 71.6 83.1 70.8 81.8
RedReader 47.0 46.6 22.0 33.0
BirthdayCountDown 66.6 91.3 65.0 91.3
materialistic 25.2 45.3 27.8 50.1

BMI 30.8 79.2 38.6 77.6
LockPattern 54.6 55.9 54.4 55.9
MutiSmsSender 29.2 34.1 21.8 37.0

AVERAGE 36.6 55.5 33.1 52.1

experiment, the average branch and method coverage of ARES with FSM guid-
ance is higher than that of ARES without FSM guidance. The average branch
coverage of ARES with FSM guidance is 36.6%, and the method coverage is
55.5%. Without FSM guidance, the branch coverage of ARES is 33.1%, and
the method coverage is 52.1%.

The ARES method with FSM guidance performed best in 16 of 20 applica-
tions in the branch coverage, while the ARES method without FSM guidance
performed best in only 4 of them. In terms of method coverage, ARES method
and FSM guidance have improved the effect of 13 APPs. The method cover-
age of the two models on MunchLife, Silent ping sms, BirthdayCountDown,
and LockPattern is the same, and the ARES method without FSM guidance
on the three applications performs better. In general, using FSM to guide
ARES improves the coverage of branches and methods on most apps, provides
the possibility of triggering more functional methods or more functions, offers
advanced guidance for the execution of long specific sequences, and alleviates
the possible local optimization problems.

Table 10 shows the branch coverage and method coverage of ATAC, includ-
ing FSM guidance and excluding FSM. On 20 APP, the ratio of ATAC with
FSM guidance is higher than without guidance. The average branch cover-
age of the A2C-based GUI test model with FSM guidance is 37.7%, and the
method coverage is 56.9%, while the branch coverage of the ATAC without
guidance is 36.5% and the method coverage is 55.4%. Branch coverage and
method coverage are analyzed, respectively. Regarding branch coverage, ATAC
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Table 10 Branches and method coverage of ATAC and FSM-guided ATAC(%)

apps under test FSM-guide ATAC ATAC

bran meth bran meth

QuickSettings 72.4 82.8 72.4 82.8
MunchLife 59.8 88.2 59.0 88.2
Silent-ping-sms 23.0 59.0 27.0 59.0
BatteryDog 53.0 71.6 55.0 73.6

AnyCut 53.0 75.0 52.4 75.0
Afwall 17.6 27.8 11.4 19.1
Jamendo 14.0 28.1 14.4 28.5

microMathematics 31.0 50.0 25.2 44.5
AnyMemo 27.2 43.2 26.4 43.0
AmazeFileManager 21.4 39.8 19.8 35.9
zooborns 11.0 27.3 7.4 24.5
AntennaPod 18.4 29.6 17.8 28.2
BudgetWatch 32.0 62.5 27.8 56.4
Drawablenotepad 77.0 86.0 76.3 85.3
RedReader 30.0 48.9 26.8 42.9
BirthdayCountDown 64.0 90.0 62.2 90.0
materialistic 33.2 55.2 32.6 55.2
BMI 34.0 80.0 30.0 80.0
LockPattern 54.0 54.7 54.0 54.7
MutiSmsSender 32.5 45.2 31.2 41.1
AVERAGE 37.7 56.9 36.5 55.4

with FSM guidance is the best, while ATAC without guidance is only the best
on silent ping SMS, BatteryDog, and Jamendo. In terms of method coverage,
FSM has instructed ATAC to improve its effect on 10 APPs. The method cov-
erage of these two algorithms is the same on QuickSettings, MunchLife, Silent
ping sms, AnyCut, BirthdayCountDown, Materialism, BMI, and LockPattern.
The impact of ATAC on BatteryDog and MutiSmsSender without guidance is
not apparent at a young age, but it performs better on large apps. Generally,
using FSM-guided ATAC can improve branch and method coverage.

A specific sequence of operations triggers a function. The introduction of
FSM into the reinforcement learning framework makes it possible to explore
the long operation sequence, which provides the possibility of realizing the ideal
transition, triggering and detecting more branches and functions while pre-
venting the algorithm from entering the local optimal state, providing higher
guidance for the exploration of the reinforcement learning algorithm.

5 Threats to validity

Internal Threats. The threat to internal validity is the non-deterministic
characteristic of reinforcement learning. In different iteration cycles, code
coverage and error detection quantity may be different. Each method was per-
formed five times on each application to reduce the threat, and the results
of the five experiments were combined to evaluate and analyze the technique.
Reinforcement learning-based mobile application GUI testing is black-box,
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based on the front-end page to find exceptions, and may not cover the back-end
logic errors.

External Threats. Limits on the number of apps used for evaluation.
Although there are tons of apps, we only tested 20 apps. Experiment with
selecting different categories and sizes of applications to reduce this threat.
The parameters of the reinforcement learning algorithm are set. Many hyper-
parameters are selected according to domain knowledge, and some may have
better choices.

6 Related work

6.1 Random Exploration Strategy

In the simplest form, the random strategy only produces UI events, is ineffi-
cient at generating system-level events, and can only react to a few occasions in
a given situation. One of the advantages of the random exploration strategy is
that it can quickly generate UI events, which is suitable for stress testing. How-
ever, the disadvantage of this type of approach is that it is difficult to produce
highly compatible test cases, resulting in many redundant test cases. Monkey
is a tool provided by Google for stability and stress testing. It simulates user-
generated events or system events (such as clicking, randomly entering text,
and so on). It implements the most basic random strategy, where the user spec-
ifies the number of events to be generated, and when that number is reached,
the test stops. However, it can create a lot of invalid tests, which makes no
sense in testing the application.

Dynodroid [22] is also based on a random exploration strategy and can
generate both system events and UI events. It can create system events by
examining APP-related events. A novel random algorithm is used to select
a widget, either by choosing the least frequently selected event or by taking
context into account, allowing the user to provide input manually when explo-
ration stalls, for example, by authenticating the user. Some researchers [23, 24]
have introduced fuzzy testing into test applications to generate fuzzy input.
These tools are designed to create invalid input, crash the APP, and test the
robustness of the test application. Such methods are also quite effective in
revealing security vulnerabilities (such as denial of service), highly targeted,
and less effective in detecting defects. Intent Fuzzer [23] combines static anal-
ysis with random test generation. Droidfuzzer [25] analyzes Intent-filter tags
in the AndroidManifest.xml file to target activities.

6.2 Model-based Exploration Strategy

Some mobile application testing methods begin by building a GUI model of
the application and then generating events based on that to explore the mobile
application. Typically these test methods use finite state automata as a model,
abstracting an activity into a state and events as transitions between states.
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Based on the depth-first traversal strategy, the GUIRipper [2] dynamically
builds the APP model, adding a list of events every time a new state is found.
To increase the application coverage, SwiftHand [6] will also need to optimize
the exploration strategy by generating a finite state automaton model of the
application, which cannot create system events, only simple UI events such
as clicking and scrolling. The framework PUMA [26] is easy to extend. It
implements the same essential random exploration as Monkey and can also be
extended and dynamically analyzed based on the basic exploration strategy.
As a model-based approach, PUMA also includes finite-state machines. The
framework supports different exploration methods and state representation.
However, it has some problems, such as incompatibility with some versions
of the framework. Stoat [4] used a random finite state automaton model to
describe the behavior of APP. In model construction, the executable events
are judged, and their execution priority is determined according to the event
type and execution frequency.

6.3 System Exploration Strategy

Functions cannot be triggered by simple clicking, scrolling, or system-level
events. They need to be triggered by specific inputs. Some mobile applica-
tion testing tools use evolutionary or symbolic execution algorithms to explore
mobile applications systematically. Although the system exploration strat-
egy can cover the function or function well, it needs to improve in terms of
scalability.

EvoDroid [27] uses evolutionary algorithms to systematically explore appli-
cations, including fitness functions, to achieve maximum coverage. ACTEve
[28] is a symbol testing tool that tracks events from the point in the frame-
work where they are generated to the point where they are processed in the
APP. For this reason, ACTEve needs to examine the APP and its framework.
ACTEve supports both system and UI events. Sapienz [29] used Pareto-based
optimal multi-objective search to maximize code coverage, reveal errors and
minimize the length of test sequences. To generate the article field for a spe-
cific input, reverse design the APK to get a statically defined string. However,
generating new test cases through random crossover and mutation results in
generating invalid sequences, and iterative evaluation of newly generated test
cases also takes a significant amount of time.

6.4 Machine Learning based Strategy

Machine learning techniques include supervised Learning, reinforcement learn-
ing, and Active Learning. Methods based on machine learning have been widely
used in the field of testing. Reinforcement learning also does not need to label
data sets. Under the guidance of the reward function, the model is trained
through trial and error exploration to find the most favorable actions under
the current situation.
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SwiftHand [30] applies machine learning to learn a model of the app during
testing and uses the model to generate user inputs that visit unexplored states
of the app. Then, it uses the app’s execution on the generated inputs to refine
the model. More and more researchers [9–13, 15] try to adopt reinforcement
learning into GUI test generation. Most of them [2, 16] utilize Q-learning as
an agent which maintains a Q-table to record Q value. Q-testing [14] uses Q-
learning and divides different states at the granularity of functional scenarios to
efficiently explore other functionalities. The Q-table needs wonderful memories
if the states and actions space is enormous. [7, 17] replace Q-learning with
Deep Q Network, which utilizes Q network to predict actions in certain states.
ARES [8] is a Deep RL approach for black-box testing of Android applications,
and it employs DDPG, SAC, and TD3 algorithms as the agents. However, it
needs a big replay buffer to save the experience.

7 Conclusion

Applications are constantly updated, and their functions and pages are
expanded continuously. They are becoming more and more complex and lim-
ited by human resources and time and space, making it more challenging to test
apps. Aiming at the problem of state combination explosion and exploring the
spatiotemporal limitations of an APP, the paper proposes ATAC and ATPPO.
Our approaches apply a deep neural network as an agent and are evaluated
in 20 apps and perform better than Monkey and ARES. They have higher
instruction, branch, line, and method coverage. The performance of detecting
failures is also better. This paper also introduces Finite-State Machine into the
reinforcement learning framework to avoid falling into the local optimal state,
which provides high-level guidance for further improving the test efficiency.
We will compare them with more tools and explore more apps in future work.
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