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Abstract Hardware-Software co-specification is a criti-
cal phase in co-design. Our co-specification process starts
with a high level graphical description in Statecharts and
ends with an equivalent parallel composition of hardware
and software descriptions in Verilog. In this paper, we
first investigate the Statecharts formalism by providing
it a formal syntax and a compositional operational se-
mantics. Based on that, a semantics-preserving linking
function is designed to compile specifications written in
Statecharts into Verilog. The obtained Verilog specifica-
tions are then passed to a partitioning process to gener-
ate hardware and software sub-specifications, where the
correctness is guaranteed by algebraic laws of Verilog.
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1 Introduction

The design of a complex control system is ideally decom-
posed into a progression of related phases. It starts with
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an investigation of properties and behaviors of the pro-
cess evolving within its environment, and an analysis of
the requirement for its safety performance. From these
is derived a specification of the electronic or program-
centred components of the system. The process then may
go through a series of design phases, ending in a program
expressed in a high level language. After translation into
a machine code of a chosen computer, it can be executed
at a high speed by electronic circuity. In order to achieve
time performance required by the customer, additional
application-specific hardware devices may be needed to
embed the computer into the system which it controls.

Classical circuit design methods resemble the low level
machine language programming methods. These meth-
ods may be adequate for small circuit design, but not ad-
equate for circuits that perform complicated algorithms.
Industry interests in the formal verification of embedded
systems are gaining ground since an error in a widely
used hardware device can have adverse effect on profits
of the enterprise concerned. A method with great poten-
tial is to develop a useful collection of proven equations
and other theorems, to calculate, manipulate and trans-
form a specification formula to the product.

Hardware/software co-design is a design technique
which delivers computer systems comprising hardware
and software components. A critical phase of the co-
design process is the hardware/software co-specification,
which starts from a high level system specification and
ends with a pair of sub-specifications representing resp.
hardware and software. In our previous work [23; 24], we
propose a formal partitioning algorithm which splits an
Occam source program into hardware and software spec-
ifications. The partitioning correctness is verified using
algebraic laws developed for Occam. One of advantages
of this approach is that it ensures the correctness of the
partitioning process. Moreover, it optimizes the underly-
ing target architecture, and facilitates the reuse of hard-
ware devices.

In this paper, we first bridge the gap between the
high level specification in Statecharts and the Verilog
source program by defining a mapping function between
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the two formalisms; and then present an algebraic hard-
ware/software partitioning process in Verilog. The over-
all co-specification process can thus be automated, as
illustrated in Fig.1. We have made the following key con-
tributions:

— we propose a formal operational semantics for a sub-
set of Statecharts with data states, which adopts an
asynchronous model and supports true concurrency;

— we define a formal mapping function which trans-
forms a specification in Statecharts into a program
in Verilog. We show that the target program after
mapping preserves the semantics of the source spec-
ification. This mapping is taken as the front-end of
our hardware/software co-specification process; and

— we design a collection of formal rules to partition
the above-obtained Verilog specification into hard-
ware and software sub-specifications. All the rules are
proved correct based on the algebraic semantics of
Verilog.

The remainder of this paper is organized as follows.
Section 2 gives a formal (text-based) syntax for Stat-
echarts with data states and proposes a compositional
operational semantics for it afterwards. Section 3 intro-
duces a subset of Verilog for behaviourial specification.
An operational semantics and an algebraic semantics are
presented. We build a mapping function from Statecharts
into Verilog and prove that it is a homomorphism be-
tween the two formalisms in Section 4. Section 5 presents
our hardware/software partitioning process, where the
partitioning strategy and formal partitioning rules are

depicted. Related work together with a simple conclu-
sion follow afterwards.

2 Operational Semantics for Statecharts

The graphical language of Statecharts as proposed by
David Harel [5] is suitable for the specification and mod-
eling of reactive systems. While the (graphical) syntax
of the language has been formulated quite early, the def-
inition of its formal semantics proved to be more diffi-
cult than originally expected. As discussed in [22], these
difficulties may be explained as resulting from several
requirements that seem to be desirable in a specifica-
tion language for reactive systems, but yet conflict with
one another in some interpretations. This may be why
there exist more than twenty variants of Statecharts [30],
each of which can be regarded as a subset of the orig-
inally expected language. The version discussed in [7]
for STATEMATE is rather large and powerful; however,
their operational semantics is neither formal nor compo-
sitional. The work presented in [18] provides a compo-
sitional semantics for Statecharts, but does not contain
data states. Hooman et.al [15] propose a denotational se-
mantics based on histories of computation. Following this
line, [29] attempts to link the denotational semantics of
Statecharts with temporal logic, so as to support formal
verification. All these works adopt a synchronous model
of time, which is simpler to understand and formalize,
but less powerful than the asynchronous model.

Our version of Statecharts involves data items. The
model we adopt is the asynchronous model, which is
more powerful for specifying and modeling complex sys-
tems. QOur formal operational semantics comprises the
following features.

— It is compositional, which implies that inter-level tran-
sitions and state references have been dropped. The
history mechanism has also been ignored.

— It adopts an asynchronous time model, in which a
macro-step (comprising a sequence of micro-steps)
occurs instantaneously. This model supports perfect
synchrony hypothesis and also supports state refine-
ment in top-down design.

— It reflects the causality of events.

— To be more intuitive, our semantics obeys local con-
sistency, rather than global consistency. That is, the
absence of an event may lead to itself directly or in-
directly in the same macro-step.

— Instantaneous states are allowed, but each state can-
not be entered twice or more at the same instant of
time. !

— It covers the data-state issues of Statecharts, allowing
assignments in state transitions.

! For simplicity, this checking is omitted in our semantics.

We can include it by keeping records of the states that are
passed so far in the current macro-step and prevent a former
state from being re-entered in each macro-step.



— It supports true concurrency.

In this paper, timeout events are not included and
this aspect is left as future work.

In what follows we give a formal syntax for State-
charts, and afterwards investigate its operational seman-
tics thoroughly.

2.1 A Formal Syntax of Statecharts

Quoting from [6], state charts = finite-state diagrams +
depth + orthogonality + broadcast communication. This
equation indicates the typical features of the Statecharts
formalism:

— It is an extension of conventional finite state machines
(Mealy machine).

— It provides natural notion of depth. A state can either
be a basic one, or of a hierarchical structure, inside
which some other states are treated as its substates.
It supports the modeling of concurrency. A state may
contain several states as its concurrent components.
This feature also helps to avoid state explosion.

It provides the broadcast communication mechanism.
Unlike CSP or CCS, output events in Statecharts
are asynchronous, and can be broadcast to any re-
ceiver without waiting. However, input events in Stat-
echarts are synchronous, and are blocked until the
arrival of the corresponding output events. Such a
communication mechanism is similar to Verilog.

In order to formalize the syntax of Statecharts, we
introduce the following notations.

S: a set of names used to denote Statecharts which
is large enough to prevent name conflicts.

IT.: the set of all abstract events (signals). We also
introduce another set IT, to denote the set of negated
counterparts of events in IT,, i.e. IT, =4 {€| e € II.},
where € denotes the negated counterpart of event e, and
we assume € = e.

I1,: the set of all assignment actions of the form v =
exp.

o : Var — Val is the valuation function for variables,
where Var is the set of all variables, Val is the set of all
possible values for variables. A snapshot for variables v
is (D).

T: the set of transitions, which is a subset of & x
QUVIe  9lleUIla 5 B % S, where B, is the set of boolean
expressions.

Similar to [19; 18], we give a term-based syntax for
Statecharts. The set SC of Statecharts terms is constructed
by the following inductively defined functions.

Basic: § —+ SC
Basic(s) =ar |[s]|
Or:8 x[SC] x SCx T — SC

OI’(S, [pli. D ,pn],pl,T) =df |[S : [p17' : ',pn],pl,T:”
And: S x 25C 5 sC
And(s,{p1,---,pn}) =ar l[s: {p1, -, Pn}ll

Some informal explanations follow:

— Basic(s) denotes a basic statechart named s.

— Or(s,[p1, -, Pty --»Pn], 1, T) represents an Or-statechart
with a set of substates {p1,---,pn}, where p; is the
default substate, p; is the active substate, T is com-
posed of all possible transitions among immediate
substates of s.

— And(s,{p1, .., Pn}) is an And-statechart named s, which
contains a set of orthogonal (concurrent) substates

{pla o apn}

2.2 Operational Transition Rules

The configuration of computation is defined by a triple
(p, 0, E;p,), where

— p is the syntax of the statechart of interest.
— o gives the snapshot of data items.
— FE;, denotes the current environment of active events.

The behaviour of a statechart is composed of a se-
quence of macro-steps, each of which comprises a se-
quence of micro-steps. A statechart may react to any
stimulus from the environment at the beginning of each
macro-step by performing some enabled transitions and
generating some events. This may fire other state tran-
sitions and lead to a chain of micro-steps without ad-
vancing time. During this chain of micro-steps, the stat-
echart does not respond to any potential external stimu-
lus. When no more internal transitions are enabled, the
clock tick transition will occur by emptying the set of
active events and advancing time by one unit.

We explore a set of transition rules comprising state
transitions and time advance transitions.

At any circumstance, what a basic statechart can do
is to advance time by a clock tick.

1. ([[s], 0, B) - ([ls]], o, 0)

If a transition between two immediate substates of
an Or-statechart is enabled and the transition condition
is true in current circumstance, it can be performed.

p= |[S : [pla o ,pn],pl,T“
T € En(p,E) A a(b)

2
<p[lr—>a2d(tgt(7'))]7 o', (E—trigh (1)) U ¢ (7')>

T&b
—

(p,0, E)

where

src(T) and tgt(T) denote, respectively, the source and
target state of transition 7.

a®(1) C IT represents all events generated by transi-
tion 7, whereas a®(7) denotes a single assignment action
v = ex generated by 7. No loss of general results since
a sequence of instantaneous assignment statements can
be transformed into a single one. This changes the data
state from o to o/ =0 @ {v — o(ex)}.



En(p, E) comprises all transitions among substates of
p being enabled by events in E. It can be generated by
the following definition.

TE En(l[s : [pl" o apn]:pl,T“:E) iff
T€T A sre(r)=pi A trigh(r) CE A trig-(t)NE =0.

where trigt (1) and trig~ (1) represent respectively the
positive events and the negated events from 7.

The function a2d(p) changes the active substate of p
into its default substate, and the same change is applied
to its new active substate.

a2d(|[s]|) =ar |[s]]
a2d(|[s : [pla T ,pn]apl:T”) =df |[S : [Pl, e apn]aaZd(pl)aT]l
a2d(|[s : {p1, - -, pn}ll) =ar l[s : {a2d(p1),---,a2d(pn)}]|

The substitution py.,, for an Or-statechart p =
ls : [p1,--->Pnl, o1, T is defined by

=df |[S [pla : 7pn]7pm7T]|

Discussion: in rule 2, those events that are used to
trigger 7 are consumed by 7 and will no longer exist.
This mechanism looks intuitive and reasonable and can
help to prevent incorrect looping. Consider an example
given in Fig. 2 (a). When the first event e from the en-
vironment comes, the transition 7y is performed and the
active substate is migrated from p; to ps. This will not
move back to p; until next event e occurs, as under nor-
mal expectation. Earlier work [22] suggests a different
treatment, where active events are kept active during all
micro-steps in a macro-step, where they may be reused
many times. O

The transitions in Statecharts are considered hierar-
chically. If no transitions among immediate substates of
an Or-statechart are enabled, an enabled (inner) transi-
tion for the active substate may be performed instead.
This consideration is carried out inductively as high-
lighted in rule 3.

= |[S : [pla T Jpn]aleT”
En(p, E) =0

(o0, ) 7 = (p}, 0", E')
(9,0, E) ™2 (pucsyy, o', (= trig* () U a2 (7))
If no transition is enabled for an OR-statechart, time
advances, as shown below.
En*(p, E) =
(o =Ils o1, pals 21, T 0, B) 5 (p,0,0)

The premise indicates that no transitions in p can be
triggered by E. The set of transitions that are enabled
at multiple levels is defined as follows.

Plipm]

3.

4.

En*(|[s]l, E) =as 0, for any basic state |[[s]];
En:(p = |[S [Pl,' . 1pn]1plvT]|7 E) =df En(pv E?«U En*(plaE))
En (p = |[S : {pla e 3pn}]|)E) =df Ulgign En (p“E)

For an AND-statechart, variables are shared by all
orthogonal components. However, each variable can only

be modified by one component. We use WVar(p) to de-
note the set of variables that can be modified by a stat-
echart p.

It is natural and intuitive to accept that several tran-
sitions allocated in orthogonal components may be fired
simultaneously. This implies that they can be performed
in a truly concurrent way. However, we have to write the
transition rule for parallel charts carefully. Let us look at
the statechart in Fig. 2 (b). Suppose the external stimu-
lus is E = {a,b, ¢}, which will fire both 73 and 74 at the
same moment. Under rule 2, performing either of them
will prevent another from happening since the common
event b is consumed by the performed transition. This
contradicts the above intuitive explanation.

We propose a more reasonable way in which simul-
taneously enabled transitions are allowed to occur con-
currently within And-charts. In the following rule, we
suppose i1, - -, i, is a permutation of 1,-- -, n.

p=|[s:{p1,-,pn}ll, all p; are constructed by Basic or Or

(pir,, 0, E) i plk,alk,Ezk> foralll<k<m
En” (pz,E forallm<k<n
WVar(p;) N WVar(pJ) =0, for all i,j, where i # j
o =0, ® Do,

i (BE=Uicicm tmg (T”e)) u U1<z<m a*(Tiy)
5 p |[ {pn; 7pzm7p7«m+17 apln }]l
(p,, E) &1<k<'m_(7')zk&b1k) %, o E')

In this rule, the overall transition that the And-chart
p performs involves several simultaneously enabled tran-
sitions 7;, (1 < k < m) which are performed respectively
by components p;, (1 < k < m). Other components p;,
(m < k < n) are not involved in this transition.

A time advance transition will take place if all or-
thogonal components agree to do so.

En*(pz,E) 207 i=1,---,n

6. 7
(p = |[8 : {pla' "7pn}]|707E> - <p707 ®>

3 Verilog and Its Formal Semantics

Hardware description languages (HDLs) are widely used
to express designs at various levels of abstraction in mod-
ern hardware design. A HDL typically contains a high
level subset for behaviour description, with the usual pro-
gramming constructs such as assignments, conditionals,
guarded choices and iterations. It also has appropriate
extensions for real-time, concurrency and data structures
for modeling hardware. VHDL and Verilog ([16]) are
two contemporary HDLs that have been used for years,
where Verilog HDL has been standardized and widely
adopted in industry [16]. Verilog programs can exhibit a
rich variety of behaviours, including event-driven com-
putation and shared-variable concurrency. In our hard-
ware/software partitioning process, the non-trivial sub-
set, of Verilog we adopt contains the following categories
of syntactic elements.



Fig. 2 Example statecharts (a) and (b)

1. A Verilog program can be a sequential process or a
program paralleled by several sequential processes, with
or without local variable declaration.

Pu:=S | P||P | varzeP

2. A sequential process in Verilog can be any of the fol-
lowing forms.

S ::= PC(primitive command)
| S;S (sequential composition)
| S <1bp S (conditional)
| bx* S (iteration)
| (gS)]---[(gS) (guarded choice)
| always S (infinite loop)
| case(e) (pt S)...(pt S) (switch statement)

where

PC:=v:=e | sink | skip | L | —-n | vi=cge
g == #n (time delay) | eg (event control)
| —n (output event)

cg = #n | eg
egu= n|egoreg|eg&eg|eg & —eg
7 = ~wv (value change) | 71 v (value rising)

| v (value falling) | e (a set of abstract events)

To facilitate algebraic reasoning, the language is enriched
with

— assignment event Q(v := e)
— general guarded choice construct (g1 P1)] - - .[(gn Pn)
— non-deterministic choice P M @

Although it is reported that Verilog has been much
more widely used in industry than VHDL [3], the formal
semantics of Verilog has not been fully studied. Gordon
[4] tries to relate event semantics of Verilog to its trace
semantics. He and Zhu [13; 35] explore an operational
and a denotational semantics for Verilog and investi-
gate some algebraic laws from them. Zhu, Bowen and He
[32; 34; 33] establish formal consistency between above-
mentioned two presentations. Iyoda and He [17] success-
fully apply simple algebraic laws of Verilog to hardware
synthesis process. In [8], He has explored a collection of
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algebraic laws for Verilog, by which a well-formed Ver-
ilog program can be transformed into head normal forms.
In the following, we first present an operational seman-
tics for the subset of Verilog that we adopt and then
explore some algebraic laws for it. The operational se-
mantics will be used to build the formal link between
Statecharts and Verilog, while the algebraic semantics
will play a fundamental role in our hardware/software
partitioning process. The discussion on the consistency
between the operational and algebraic semantics is out
of the scope of this paper, readers can refer to [31] where
a detailed discussion on unifying different semantics is
available.

3.1 Operational Semantics

The subset of Verilog we adopt is quite similar to that
proposed by He [8]. However, there are some different
treatments between our version and that in [8]. We in-
clude explicitly the possible context environment of ac-
tive events in our configuration, and change the oper-
ational rules for the parallel constructs. This facilitates
the semantic mapping from Statecharts into Verilog, and
does not change the observable behaviour of a program.

In our operational semantics of Verilog, transitions

are of the form S — S'. The configuration S describes
the state of an executing mechanism of Verilog programs
together with the environment of active events before an
action I, whereas S’ describes that immediately after.
They are identified as triples (P, o, E), where

— P is a program text, representing the rest of the pro-
gram that remains to be executed.

— o0 : Var — Val records the data state.

— FE is the current set of active events.

A label | denotes a transition from state S to S'. It
can be a clock tick event 1/, or a compositional event pos-
sibly with three conjunctive parts: b&g’&g° representing
the enabling condition, the set of events consumed, and
the set of events generated, respectively.



Now we present a critical subset of transition rules
which are relevant to our transformation from State-
charts into Verilog.

The primitive sink can do nothing but advance time
by a clock tick.

. Vi
(sink, o, E) = (sink, o, ()

The guarded choice construct
P = (bi&gi&gi P)]. . [(bn&eg &gy, Pr)
can take a guarded transition if that guard is enabled.
o(bx) A (EF gt), for some k
bi&gi &2 .

T (Pryo! B — ee(g]) U ed(g])
where E | gt indicates that the input guard g is enabled
by E. This is defined as:

Mizigm(e; € B) A Migizn(e; N E = 0)

(P,o,E)

Also, e(g") extracts all “positive” events from the in-
put guard ¢g* (to be consumed when enabling the guard),

ie.,
U «

(e & &ep &€& - &el) =g
1<i<m

and e9(g°) records the set of events generated by the out-
put guard g°. Given an output guard g° =— e&Q(x =
v), the generated events are

eU{tz}, if o(z) <w,
e9(g°) =4 {gu{¢wh if o(z) > v,

e, otherwise.

If no guard is enabled, the clock tick can be per-
formed.

VE:1<k<ne-(a(by)A(EF gi))
(P,0,E) s (P',0,0)

where P’ is the same as P if no time delay guards (#1)
appear in P. Otherwise, it is the guarded choice obtained
from P by eliminating all time delay guards.

A parallel construct of guarded choices P is of the
form Gy || -+ || Gn where

Gy = ngjgrkbjk&g;'k&g;k Pj, 1<k<n

This can be transformed into a guarded choice construct
by algebraic laws [8]. Here, we give the transition rules for
the parallel construct directly. It can perform a (compo-
sitional) guarded transition if some threads agree, where
i1, -+, denotes a permutation of 1,---,n.

I
(Giy, 0, E) — (Pikao'ik)Eik)a']' <k<m
Vi:1<j S’l“k.—!(a(bjik)/\(Ef—g;-ik)), m<k<n
o =0y @ Doy,
E = (E- U1§k§m e’(9,)) U U1§k§m e?(9%,)

& m L
(P,o,E) =3 (P ol EY)

where P! =4 Q1] --- || Qn, and

— Pik; 1 S k S m,
Qi =df {Gik, m<k<n

If no threads can take a guarded transition, then the
clock tick event can take place, as follows:

Vi:1<j<rye=(obji)AN(EFgl,)), 1<k<n
(P,0,E) Vs (P',0,0)

Note that P’ is the same as P if no time delay guards
(#n) appear in P. Otherwise, it is the guarded choice
obtained from P by reducing all time delay guards by 1
(from #n to #(n — 1), or eliminating it if n = 1).

A sink thread does not block the behaviour of its
partners.

(P,0, E)
(sink || P,o, E)

(P',0", E')
(sink || P, o', E")

l
—
1
—

3.2 Algebraic Laws

We discuss the algebraic semantics of Verilog in this sec-
tion, which will be useful in later discussions. Before pre-
senting the algebraic laws, we define a triggering predi-
cate as follows.

Definition 1 Given an event control eg, we define those
simple events that enable eg as follows.

{1z}, ifeg=ts
{lz}, ifeg=lz
{ta,lz}, ifeg=~z

tr(eg) =ar if eg = eg1 or eg

if eg =eg1 & ego
if eg =eg1 & —ego

tr(eg1) Utr(eg2),
tr(eg1) Ntr(eg2),
tr(egi) \ tr(eg),

Given an output event — 7, and an event control eg,
we adopt a triggering predicate, denoted as n ~ eg, to
describe the condition under which the former enables
the later.

n~eg =q4 tr(n) Ctr(eg)

and adopt the predicate, n ~ eg, to denote the condition
when the former cannot trigger the later.

n~eg =q tr(n) Ntr(eg) =0
O

By this definition, we can define the well-formedness
of guarded choice constructs:

Definition 2 A guarded choice | icr 9i Pi is well-formed
if and only if all its input guards are disjoint, i.e., for any
input guards gk, gi from {g; | ¢ € I}, if tr(gx)Ntr(g) # 0,
then gx = g;, and Py, and P, are exactly the same process.
O



All guarded choice constructs are well-formed in later
discussions.

Now, we explore a collection of useful algebraic laws
for Verilog programs.

Successive assignments to the same variable can be com-
bined to a single one.
(assgn-1) v :=e; v := f = v = fle/v]

In an assignment to a list of variables, the order of vari-
ables is irrelative.
(assgn-2) u,v:=e, f = v,u:=f, e

Variables not occurred on the left side of an assignment
remain unchanged during the assignment.
(assgn-8) u:=e = u,v:=e, v

skip does not change the value of any variable.
(assgn-4) skip = v:=wv

Sequential composition is associative, and has left zero
1. It distributes backward over conditional, internal and
external choices.

(seg-1) (P;Q);R = P;(Q;R)

seq-2) L;P = L

seg-3) (PNQ); R = (P;R)N(Q; R)

seq-4) (P<1b>Q);R = (P;R)<Qb> (@5 R)
seq-5) (lics (9 Q)i R = ;e (9i (Qis R))

By the following law, we can transform a sequential com-
position of an output event and a guarded choice into
a guarded process (g P), where output guard g will no
longer fire guards of P.

(seq-6) Let S = [;.; (9: ), and g is the disjunction of
all input guards of S.

(
(
(
(

g _ 0SS ifnwg

(D). 2mS = —n Py ifn’\’:»gk for some k € I.
(2). (z<fluQ@:=/);S =
{(w<f)L;@(w:=f)S if tz~g;

(x< f)L;Q(z:=f) P, if 1z~ g for some ke l.
@). (> fl;Q(z:=f);8 =

(x> f)1;Q(z:=f)S if Lz~vg

(x> f)1;Q(x:=f) P, if |z~ g for some ke l.
(4). (z=f);Qz:=f);8 = (z=f);Qz:=2)8

where b, is an assertion defined as skip < b> L ([14]).

For a general guarded choice G, we can also transform it
by this law into a guarded choice [,.; (g; P;), where no
output guard in {g; | ¢ € I} will enable any guards of the
process following it. Without loss of generality, from now
on, we assume all guarded choices meet this property.

Assignment distributes forward over conditional.

(cond-1) v := e; (P<b(v)>Q) = (v :=
(v:= Q)

Iteration is subject to the fixed point theorem.
(iter-1) bx P = (P;bx P) < b > skip

e; P) <1b(e) >

Non-deterministic choice is idempotent, symmetric and
associative.
(nond-1) PN P

P
(nond-2) PNQ = QNP
(nond-8) PN(QMNR) = (PNQR)NR

Parallel operator is symmetric and associative, and has
1 as zero.

(par-1) P Q = Q[ P
(par-2) P [ (Q | R) =
(par-3) L|| P = L

PlAINER

Local variable declaration enjoys the following laws.
(lvar-1) varx e (x :=¢€) = skip

(lvar-2) var xe(P<ib>Q) = (var x @ P)<ib>(var xz e Q),
provided z is not free in b.

(lvar-3) If z is not free in @, then
(1) varze @ = Q

(2) (varz @ P);Q = varxz e (P;Q)
(3) Q;(varx e P) = varx e (Q;P)
(4) (varz o P) || Q = varz e (P || Q)

(lvar-4) varv e (—n, P) = wvarv e (skip; P)

(lvar-5) varu e (varve P) = wvarve (varue P)

We will denote var xevarye...evarz as var z,y, ..., 2.

The following is a set of expansion laws which enables us
to convert a parallel process into a guarded choice. We
assume that

Gi = licr(9: Qi) Gy = [;es(h; R;j)
Gs = liex (e Fr) Gy = liep(ew T1)

where all g; and h; are input guards (like 7); all e,, and
ey, are respectively output events with respect to vari-
ables v, and u; (like —»n or Q(z := f)).

(par-4) (z:=e;G1) || (y := f;G2) =
(Q(z :=¢) (G1 || (y:= £;G2))) [
(Q(y := f) ((z :=e;G1) || G2))
(par-5) Gy || (y := f;G2) =
@y := f)(G1 ]| G2)) |
Hze[ 9i Qz ” (y = :GQ))

(par-6) Let g =45 orTicr gi, h =qr orjes hj, then
(G1]Gs) [| (G2]Ga) =
licr ((9i & —h) (Q: || (G2[GY)) |



lics ((h; & —g) ((G1]Gs) || Ry)) [
[]z'eI,jeJ ((9i & Rhy) (Qi || Ry)) [
HkEK,jEJ,evk'\»hj (ewr, (P || By)) [
liekenonon (Evi (Br [l (G2[Ga))) |
HiEI,lEL,EulMgi (ew, (Qi | T1)) |

[ )

Gs) | Th))

(par-7) An assignment thread is involved.
() (@:=e)l[(y:=1f) =
Q@ :=e)(y:=1) | @y :=F)(z:=¢))

IEL ey, g (e, ((G1 ]

= ¢)Ga) | ey (s (@ = ©) | Ry))

The parallel operator is disjunctive.
(par-8) (PNQ) | R = (P||R)N(Q || R)

In some special case, the parallel operator distributes

over conditional.

(par-9) varvy,...,v, 0 ((S1 <b> S2) || G) =
varvy,...,vp @ ((S1 || G) <b> (Sa || G)),

provided guards in G are either event controls with re-

spect to variables in {vy,...,v,} or time-delay guards.

Time-delay guards are involved in the following law.
(par-10) Let nqy > na >0, n > 0.
(1). (#n9)|Gs = Gs

(2). (Gi]#m )||(G2|]#n2 T) =
licr ((9: & =h) (Q: || (G2 [#n2T)) |
lcs ((hy &ﬁg)(( L[ #nS) || By)) [
HzeI Jed ((gz & h; )(Qz I R )) [|
| #n2 (#(n1 —n2) S) || T)

(3)- (Gi[#n )||(G2ﬂ#"T) =

licr ((9:& =h) (Q: || (G2 [ #nT)) |
ljes (s &ﬂg) ((GL[#nS) || By)) |
licr,jes ((9: &) (Qi |l B))) |

[ #n(SIT)

The guarded choice is idempotent, symmetric and asso-
ciative.

(guard-1) G1 | G1 = G
(guard—?) G1 [| Gz = G2 |] G1
(guard-3) (g1 Q1)

((92Q2) [ (93 Q3)) =

[
((91 Q1) [ (92Q2)) [ (93 Q3)
(guard-4) varv e ((n, P)|G1) = varveGy

The construct always S executes S forever.
(always-1) always S = S;always S

Take note that skip is not a left zero of sequential
composition in general cases, because it might filter some
signal. Hereby, the following in-equation is obvious.

To # skip;tv

The following definition will capture those cases where
skip is a left zero of sequential composition.

Definition 3 (Event control insensitive)
A process P is event control insensitive if
skip; P = P. O

Proposition 1 The following processes are event con-
trol insensitive.

— x:=¢e, skip, L, or #(t);

— Q(z =€), = n;

- Pab>Q,bxQ, case(e) (pt1 S1) - .. (ptn Sn);

= lic1 (9: Q:), v := ge, where no guards are event con-
trols;

— Py; P>, where Py is event control insensitive;

— PLN P, P, || P>, where both P, and P, are event
control insensitive;

— always S, where S is event control insensitive;

— varvy,...,v,e(S1 || ... || Sn), where each S; is either
event control insensitive, or only guarded by events
with respect to variables in {v1,...,v,}. O

From those basic algebraic laws mentioned above, we
investigate the following lemma, which will be very useful
in later discussions.

Lemma 1 Let
P = (77uP2)7 Q = (_>n’Ua77’UQ2)7

suppose sequential programs Py, Py, Q1 are event control
isensitive, and variables u,v do not occur in Py or Q1,
then

(1). varu,ve (P || Q) = wvaru,ve (Ps| (7, Q2))
(2). varu,ve (P [ (Q1;Q)) = varu,ve(Q1;(P || Q))

(3)- varu,ve ((P; P) || (Q1;Q)) =
varu,v e ((Py[| Qu); (P | @)

Proof The proof is given in the Appendix.

We introduce an ordering relation between programs be-
fore further investigation.

Definition 4 (Refinement)

Let P, @ be Verilog processes employing the same set
of variables, we say @ is a refinement of P, denoted as
PLCQ,if P1@Q = P is algebraically provable. O

4 Mapping Statecharts into Verilog

In this section, we build a link between Statecharts and
Verilog, by which a Statecharts description can be mapped
to its corresponding Verilog program. We show such a
mapping preserves the semantics and can be conducted
in a compositional manner.



4.1 Mapping Function

Before constructing the mapping function called L, we
address some subtle issues and introduce some notations.
There exist two features which complicate the definition
of L on an Or-chart, one is the hierarchical feature of
Statecharts and the priority of transitions, whereas the
other lies in that an And-chart can be a sub-chart of
an Or-chart. This feature differentiates Statecharts from
conventional programming languages. The former indi-
cates that transitions in an outer level (rule 2) has higher
priority than those in an inner level (rule 3). The pos-
sible transitions are considered hierarchically, starting
from the current active state, and progressing into inner
active substates where applicable. By enumerating these
transitions in accordance with the hierarchy, we can cope
with the different priorities for transitions occurring in
distinct levels.

To deal with the above features, we prepare the fol-
lowing formal notations. We first give a function or-depth :
SC — N to calculate the “or-depth” of a statechart,
which is defined as follows:

— for a statechart ¢ = [[s]| constructed by Basic,
or-depth(c) =ar 0;

— for astatechart ¢ = |[s : [p1,- -+, Pn], 21, T]| constructed
by Or, or-depth(c) =4 or-depth(p;) + 1;

— for a statechart ¢ = |[s : {p1,-- -, pn}]| constructed by
And, or-depth(c) =4 1.

The or-depth of an Or-chart just records the deepness
of the path transitively along its active Or-substates. We
stop going further once an And-state is encountered. The
or-depth of an And-chart is simply 1.

Secondly, we extend some notations from Or-charts
to And-charts. As already known, for an Or-chart ¢ =
Ils : [p1,-- > pnl, p1, T||, active(c) = p; denotes its current
active substate; for any transition 7 € T, sre(7) and
tgt(T) respectively represent its source and target state.
Given an And-chart ¢ = |[s : {p1,---,pn}]|, where all
p; are Or-charts, we define its current active state as
a vector of the active states of these constituents, i.e.,
active(c) =q¢ (active(py),---, active(p,)). We use T'(c) to
denote all possible (perhaps compositional) transitions
of the And-chart c. Given a transition 7 = &1<k<mTi, €
T(c), where 7;, € T*(p;,), for 1 < k <m, and i1,---, iy
is a permutation of 1,---,n, we define its source state
and target state respectively as follows:2

sre(t) =4 (q1,---,qn), where ¢;, = sre(t;,), for
1<k <m,and ¢, = active(p;, ), for m < k < n;

2 For an Or-chart p = |[s : [p1,---,pn], 01, T]|, T* (p) con-

tains all possible transitions inside p along its transitive ac-
tive substate chain, i.e., T*(p) =¢r {7 | 7 € T A sre(r) =
pi} UT™(pr).
With the help of 7 (p), we define the aforementioned possi-
ble transition set T'(c) for an And-chart ¢ = |[s : {p1, p2}]| for-
mally as T(c) =45 {Ti&h3_i | T € T*(pi),i =1, 2} U{n&n |
T € T*(ps),t = 1,2}, where h; =g &{—7 | 7 € T*(p;)}. The
transition set for the general And-chart with n components
can be defined similarly.

tgt(t) =q¢ (r1,---,Tn), where r;, = tgt(r;,), for
1<k <m, and r;, = active(p;,), for m < k < n.

Thirdly, we need to know the resulting statechart af-
ter a transition is taken. When a transition 7 occurs, any
involved statechart can have changes in its (transitive)
active substates. We use a function

resc:T x SC — SC

to return the modified statechart after performing a tran-
sition in a statechart. It is defined inductively with re-
gard to the type of the statechart.

— for a Basic-chart ¢ and a transition 7, resc(r, ¢) =4 ¢;
— for an Or-chart ¢ = [[s : [p1,--,pn), 2, T]|, and a

transition 7,
Clisaza(tgtry)> o T € T A sre(T)=p1,
resc(T,c) =af {C[l!—)TeSC(T,Pl)]’ if T € T*(mr),
¢, otherwise.
— for an And-chart ¢ = |[s : {p1,---,pn}]|, and a transi-
tion T,
Cr, ZfT = &1<k<mTi €T(c )
rese(r,c) =q { ¢, otherwise. ’ ©
where ¢; = c[q1/p1,- -+ ,qn/Pn] is the statechart ob-
tained from c¢ via replacing p; by ¢;, for 1 < i < n,
i, = reSC(Tikapik)a for 1<k < m, and Qi = Pir> for
m < k <n.

The definition of L is split into three cases in accor-
dance with the type of the source statechart.

Definition 5 (Mapping function L) The function
L : SC — Verilog

maps any statechart description into a corresponding
Verilog process. It keeps unchanged the set of variables
employed by the source description, i.e.,

Ve € SC e vars(L(c)) = vars(c)
and it is inductively defined as follows.

— For a statechart ¢ = |[s]| constructed by Basic, L maps
it into an idle program sink which can do nothing but
let time advance, i.e.,

L(c) =4 sink

— For a statechart ¢ = |[s : {p1,- -, pn}] constructed by
And, L maps it into a parallel construct in Verilog.

L(c) =a lli<i<n L(ps)

— For a statechart ¢ = |[s : [p1,---,pn], 01, T]| con-
structed by Or, we define L by exhaustively figuring
out the first possible transitions of ¢ if any, otherwise
it sinks.

_ sink, if T*(c) = 0
L) = { P, otherwise

where

P =g UO§k< or-depth(c)

[ {brs &eg7, & (&1<j<h hj)&eg?, L(resc(ry, c)) |

Ty € T(actijuek (e)) N sre(my) = active®T1(c) A '

hj = &{—gt | T € T(active’ "' (c)) A sre(T) = active’ (c)}}
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and
active?(c) =4 ¢, active'(c) =4 active(c)
active™ (c) =g active(active'(c))

The input guard g,';k comprises the overall trigger
events of 7y, which has the form e,&—e,, where ¢,
are events from trig" (73), whereas e, are events out
of trig— (1x)-

Due to the priority mechanism of Statecharts, an en-
abled transition 74 in an inner level (k) can occur only
when no transitions from any outer level (0, ---,k-1)
are enabled. The part (&1<j<k h;) is used to denote
this condition.

The output guard g7, is the overall action performed
by 7k, which has the form —e&@(z = v), where e
comprises all abstract events out of a®(7y), and the
assignment action z = v is from a®(7y).

For each statechart, we always assume each of its vari-
ables has bounded range, and the set of possible events
is finite, which implies that the set of its configurations
is finite. Therefore, the set of configurations (under tran-
sition relation) forms a well-founded quasi order, which
indicates the mapping function L is terminating.

The following example deals with the transformation
of statecharts in Fig. 2.

Ezample 1 The statechart (a) in Fig. 2 can be described
as p:
p = |5 : [p1, 2], P1, {71, T2 }]
where ; =45 (pi,{e}, 0, true,ps_;), i =1,2.

After applying the mapping function L onto it, the
statechart (a) becomes the following process
5X o (e (¢ X))

which does nothing but just waits to be fired by an event
e from the environment.
The statechart (b) can be described as ¢:

q=|[s: {aq1,¢}]]

a1 = |[s1 = [p3, pa], p3, {73}]]

g2 = |[32 : [p5ap65p7]7p57{7—477—5}]|
where

73 = <p37 {a7 b}7 {6}7 tTU€7P4)

T4 = @5; {ba C}, {f}: trueapfi)

T5 = <p5; {6}, {g}a true,p7)

It is mapped into the following parallel construct
(a&b&c(—e) sink) || ((e&(—g) sink)[((b&c)&(—f) sink))
where the two parallel processes are mapped from ¢; and
q2, respectively. O

FEzxample 2 The statechart in Fig. 3 is more complicated
than those in Fig. 2. It is described by:

p = |[s : [p1,P10], P1, {t1 }]]

p1 = [[s1 : [p2, o], P2, {t2, t3}]|

D2 = [52 : {p3,p4}]

ps = |[s3 : 5, pe], 5, {ta}]

P4 = |84 : [p7, D8], p7, {ts }]|

p1o = [[810 : [P11,P12]; P11, {te, 17} ]|

y <10(te t7

pi2

Fig. 3 A more complicated statechart

where

= <p15 {6}, {@(y = 0)}: tTU@,plo)

te = @9;@7@,1' > 07p2)

ls = (PQ, {d}a {@(.Z‘ =T — 1)}7 true;pQ)
ty = <p5; {b}a {C}, true,pe)

ts <p7a {a}ama tTUC,pg)

te = (p12,0,0,y < 10,p11)

l7 = <p117 {f}v {@(y =y+ 1)}7 true:plQ)

After applying L onto it, we obtain the following re-
cursive process.
QP
[(b&—adc—d&—e& —c) (Q | P | (a&—d&—e) (Q]P))
ﬂ(a&—!b&—!d&—!e) (Q |] Pl] (b&—\d&—!e& —)c) (QHP))
[(b&a&c~d&—e& —c) (Q]P)

pXe

where Q =4 e&Q(y =0) pY o (f&Q(y =y+1) (y<10) Y)
P =g (d&—e&@Q(x =2—-1)) ((z > 0)&—e) X

Let us illustrate a more practical example: a simple re-
mote controller for an air-conditioner.

Ezample 8 Part of the specification for an air-conditioner
remote controller is presented in Fig. 4. It is composed
of five orthogonal components namely Fan, Temperature,
Timer, TempDisplay, and TimerDisplay. They will be
respectively mapped to Verilog programs pFan, pTem-
perature, pTimer, pTempDisplay, and p TimerDisplay.

After applying the mapping function L to the stat-
echart in Fig.4, we obtain the following target program
pon:

pon =g pFan || pTemperature
|| pTimer || pTempDisplay || pTimerDisplay

The five component programs are respectively

pFan =g pX e (bfan (bfan (bfan X)))

pTemperature =g
Ye (((v < 28)&elncr&Q@(v =v +1) X) )
H [ ((v>16)&eDecr&@(v =v —1) X)

pTimer =4 pX o ((btimer& —timeron) P)
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Temperature

-
(o)

Timer

T

I TempDisplay

| v>dv /dv=v
. 9

|

|

|

T
I I
I I
| |
t D
auto : : btimer / timeron
bfan : elncr & v<28/v:v+1: hincr & t<8 / t=t+1 - vdi=v_ o
ﬁj| ‘ imer woff | TimerDisplay
bfan high |, | ptimer [
. e | (tiDisoff
hDecr & t>1/t=t-1
bfan | ' | | )
I I btimer I |timeroff |imeron
| eDecr & v>16 /v=v-1| |
low h <8/ L dt /
[_} : : ton pner & (<8 : tiDisOn P
\\ : : hDecr & t>1/t=t-1 : t<dt / dt=t /
Fig. 4 An Air-Conditioner Remote Controller: the on state
t
C C'
where
((t < 8)&hIncr&Q(t=t+1)Y) L L
P =g pYe <[| ((t > D)&hDecr&@Q(t =t —1) Y))
(btimer Q)
” pP— P
((t < 8)&hIncr&Q(t=t+1) Z)
Q =a pZe (H ((t > 1)&hDecr&@Q(t =t — 1) Z)) Fig. 5 Mapping function L
[ ((btimer& —timeroff) X)

pTempDisplay =4 pX e (ﬁ(z](;gil)f)lgé@d(vdvz;})v))?())

pTimerDisplay =g4f

((t < dt)&Q(dt = t)

(t>d)&Q(dt=1)Y)
yQ
(timeroff X)

(
1 X o timeron pY e <|]
[

4.2 Correctness

The following theorem shows that the mapping function
from Statecharts into Verilog is a homomorphism be-
tween the two formalisms.

Theorem 1 (Homomorphism) Given any statechart
C and any of its possible transitions T which leads to
statechart C', there exists a Verilog transition | for L(C)
which arrives at P', such that P' = L(C"); on the other
hand, for any Verilog transition of L(C) leading to P',
there exists a transition in Statecharts from C to C', such
that L(C") = P', as illustrated in Fig. 5.

Proof By case analysis on the type of C.

1. C =|[s]| is constructed by Basic.
What C' can do is to perform the clock tick and re-
mains as C after the transition. On the other hand,
from Definition 5 we know L(C) = sink, which does
nothing but performs the clock tick and remains as
sink after that.

2. C=|[s:[p1, " ,pnl,pi,T] is constructed by Or.
In case that T*(C) = 0, it can be proved similar to
the first case. Now suppose T*(C) # 0, C can (1) per-
form a transition 7 € T'(active® (C)) for some k > 0
in case that all transitions of outer levels (if any) are
not available, which changes the active substate of
active® (C) from its source state to its target state
and results in resc(r,C); (2) otherwise, it can take
a clock tick and remain its state. From Definition 5
of L, we know that L(C) has the form [ (g, P;). If
(1) occurs, g is fired, from the semantics of Verilog,
such a program can perform the corresponding tran-
sition and become P;, otherwise it can perform the
clock tick transition. From the definition of L, it is
straightforward that P, = L(resc(t, C)).
The second part can be proved similarly from the
definition of L.

3. C=|s:{p1,-,pn}]| is constructed by And.
From Definition 5, we know

L(C) = L(p1) || --- || L(pn)-

Given any possible transition 7 € T(C), we assume
T = &1<k<m Tk, where 7, € T*(py), without loss of
generality. If 7 can be performed at the current en-
vironment, from rule 5, we know that 7, for 1 <
k < m, are ready to take place and orthogonal com-

ponents other than py,---,p, do not have available
transitions. This implies all processes L(p1), - - -, L(pm)
can take the transition corresponding to 71, -+, 7

respectively in the current environment, whereas oth-
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ers can not. From the operational semantics of par-
allel construct of Verilog, a parallel transition corre-
sponding to 7 can take place and after the transition
the program becomes

Pl Py
where

p - L(resc(ti,pi)), for 1 <i<m,
Y7 | L(pi), otherwise.

It exactly accords with L(resc(r,C)). The case for a
clock tick transition is trivial.

The second part is also straightforward, since any
transition of the result parallel construct L(C') in Ver-
ilog either involves several threads or a single thread.
From the definition of L, we can conclude, in either
case, there exists a corresponding Statecharts tran-
sition for C, which yields C' and L(C") = P’ holds.
O

The following theorem shows the soundness of the
mapping function.

Theorem 2 (Soundness) The mapping function L in
Definition 5 transforms any specification in Statecharts
into a Verilog program with the same observable behaviour
as the original chart.

Proof In addition to the results from Theorem 1, we
need to show that, given a statechart C' and its image
L(C) in Verilog, any possible pair of their correspond-
ing steps (a statechart transition and a Verilog tran-
sition), starting from the same execution environment
(the same o and F in the corresponding configurations),
consume the same set of events, generate the same set
of events, and bring the updates of data state into ac-
cord. These follow directly from the construction of the
mapping function L. O

5 Hardware/Software Partitioning
5.1 Partitioning Strategy

This section introduces our hardware/software partition-
ing strategy, which can be described in four steps, see
Fig. 6.

— Before conducting the partitioning process, the pro-
grammer either (1) codes directly the kernel specifi-
cation for the system in our source language ( a se-
quential subset of Verilog which will be explained in
detail next section), or (2) designs the kernel specifi-
cation using Statecharts and passes it to the mapping
function to generate the Verilog description.

— Then, assisted by program analysis techniques (dis-
cussed in [24]), the programmer carries out the hard-
ware/software allocation task, i.e., marks out those
parts that should be implemented by hardware and
divides the variables employed by the kernel specifi-
cation into two disjoint sets.

— Our hardware/software partitioning algorithm will
take such a marked program as input, and deliver
as output the corresponding hardware and software
kernel specifications. In this step, we design and prove
a collection of syntax-based splitting rules, which en-
sure the correctness of the partitioning process and
make computer automatic partitioning possible.

— Finally, hardware/software partitioning results for the
whole environment-driven system are derived from
the results in the third step.

We have proposed an algebraic approach to hard-
ware/software partitioning, which ensures the correct-
ness of the hardware/software partitioning process and
facilitates the automatic partitioning.

In what follows, we will first investigate our parti-
tioning framework and then explore the algebraic parti-
tioning rules.

5.2 Hardware/Software Partitioning Framework

In this section, we introduce our hardware/software par-
titioning framework. We depict source language and in-
vestigate the underlying target hardware-software archi-
tectures.

5.2.1 The Source Language

The source language we adopt is a sequential subset of
Verilog. For clarity, we list the syntax as below.

S ::= AC (primitive command)
| S;S (sequential composition)
| S<b> S (conditional)
| ST S (non-deterministic choice)
| bxS (iteration)
| (gS)](9S) (guarded choice)

where

AC ::= PC(defined in section 3)
| (v:=e), (timing assignment)
| (S) (specific block)

The assignment statement with time constraint (v := e),
does not appear explicitly in Verilog’s syntax introduced
in section 3, but it is in fact a well-formed Verilog pro-
gram since

(vi=e)n = To<k<n (V:=#ke)

Moreover, the block notation in (S) has no semantical
meanings.

Based on the customer’s requirements, the program-
mer can work out the Statecharts specification and pass
it to the mapping function. A Verilog specification in
the above source language is then generated which will
be taken as the input for the partitioning process. Al-
ternatively, the programmer can also describe directly
the kernel specification for the system to be designed
in the above source language, if he/she is more familiar
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Kernel Specification

| Hardware/Software Allocation
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Fig. 6 Hardware/Software Partitioning Strategy

with Verilog than Statecharts. After appropriate hard-
ware/software marking and allocation, a marked source
program is then passed to the partitioning process.

5.2.2 The Underlying Target Architecture

The underlying target hardware and software compo-
nents from the kernel specification will own specially-
chosen forms. We adopt an event-trigger mechanism to
synchronize behaviors between hardware and software,
and use a shared-variable mechanism to cope with inter-
actions between hardware and software.

The kernel part of the software specification is a mem-
ber of CP(r,a), a subset of Verilog programs, which is
constructed by the following inductive rules.

(1). An event control insensitive process not contain-
ing variables r, a;

(2). = nr; C;ng, where C' is a member of C P(r,a) not
mentioning r, a;

(3). Ci; Cs, or C7<1br>Cy, or C11MC4y, or (91 C1) |] (gz Cz),

where C1,C2, 91,92 € CP(r,a);
(4). bx C, where C € CP(r,a).

We introduce another set C'P-(r,a) comprising those
processes in CP(r,a) not mentioning variable €.

As mentioned in last section, our splitting task is di-
vided to two steps. Firstly, we design a collection of al-
gebraic rules to refine any source program S (the kernel
specification for the system) to its hardware/software de-
composition

Co || Do

where the software component Cy is of the form (C;—
7e), C is a member of C'P.(r,a), the special event — 1),

is adopted for the purpose of synchronization between
hardware and software, and the hardware component D
is subject to the following equation:

Do = pX e (1, M;—=n4; Do) [ (ne skip))

where
M =4 case(id) (py My)...(pn M)

is a case construct not containing r, a, €.

We denote as DP.(r,a) the set of processes with the
same form as Dy.

To avoid any possible loss of signals at the moment
when the fixed point construct (equation) is expanded,
we naturally claim that an abstract event only takes
place at the moment when there’s no other active events
at all.

Secondly, given the kernel specification S of a system,
rather than considering its hardware/software partition,
we deal with the decomposition for the whole system’s
specification

Pi(S) =ar always (ns S;—ny)
which is driven by the environmental process:
Env =4 always (—ns;n5)

and derive the partitioning of ¥7(S) under the environ-
ment Env as

W; (C) ”Env D
where

Plleny @ =4 Pl Env | Q
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The software component enjoys the form
7i(C) =4 always (ns C;—ny)

where C' is a process from CP(r,a); the hardware com-
ponent D is of the form:

D =g always (n, M;—1a)

We denote as DP(r,a) the set of processes of the
same form as D.

The following theorem ensures the synchronized ter-
mination between the kernel hardware and software spec-
ifications.

Theorem 3 We have

(C1;C2; = me)|Do = ((C1; = me) || Do); ((C2; = me) || Do)
for any C1,Cy € CP.(r,a) and Dy € DP.(r,a). O
Proof By structural induction on Cj.

case 1 (7 is event control insensitive and does not
mention r or a.
(1.1) C; is an atomic command.

C1 = 1, the proof is trivial.

Cy = tg, where tg is Q(z := €) or =7, or #n,
LHS {(seq-6), (par-6), (quard-4)}
tg ((C2;—=n¢) || Do) {Proposition 1}
tg (skip; ((C2; —me) || Do)) {(par-6), (lvar-4)}
tg (= ne || Do); ((C2; =) || Do))

{(seq-6), (par-6), (guard-4)}

= RHS
(1.2) C; = 8118,y
LHS {(seq-3))}
((S15C2; =) N (S2; Ca5—=me)) || Do {(par-10)}

((S1;Ca5—=me) || Do) M ((S2; C25—me) || Do)
{hypothesis}

= (((S13=m¢) [| Do); ((C2;—=me) || Do)) M (((S25 = ne) ||

Dy); (C2; = 1:) || Do))

{(seq-3)}
= (((S1;—=n:) [| Do) 11 ((S2; = e) || Do)); ((C2;—n:) ||
Do) {(par-10)}
= (((S1;—=me) N (S2; =me)) || Do); ((C2; —ne) || Do)

{(seg-3)}
= RHS

(1.3) Ci = S1<4b>85;.

LHS {(sea-4)}
= ((S1;C25—me) Qb > (825023 =) [| Do {(par-9)}
= ((51;C2; = ne) || Do) < br> ((S25C2; = 1e) || Do)

{hypothesis, (seq-4)}

= ((S1;=m¢) || Do) <1b>((S2; = 1e) || Do); ((Co; —=7e) |l

Dy)
{(par-9), (seq-4)}
= RHS
(1.4) C1 = ;s (9 Si)-
LHS {(seq-5)}
(licr (9i (Si;C25—me))) | Do {(par-6), (guard-4)}

0
ier (9i ((Si;C2;5 =) || Do)) {hypothesis}

= lier (9: (((Sis = me) || Do); ((C2; = me) || Do))

)
{(seg-5)}

= lies (9: ((Si;—=me) || Do)); ((Ca; =) | Do)
{(par-6), (guard-4), (seq-5))}

RHS
(1.5) Ci = bxS
Let F(X) =4 (S;X) <bp> skip, and define

FO(J_) =df J_, and Fn+1(J_) =df F(FH(J_)), for
n > 0.
Then

LHS {; is continuous}
= (Upso (F™(L); C2;—=n2)) || Do {|] is continuous}
= uso (F™(L); C25 = me) || Do) {hypothesis}
> ((F™(L); = ne) || Do); ((C2; = me) || Do))

{|| and ; are continuous}

RHS
(16) 01 = 51;52.

(1.6.1) Sy is a non-deterministic choice or condi-
tional or guarded choice construct, we can respectively
convert C to a non-deterministic choice, or conditional
or a guarded choice construct by Laws (seq-3), (seq-5)
and (seg-4), which are the cases we have dealt with in
(1.2), (1.3) and (1.4).

(1.6.2) S; is an atomic command. It’s trivial when
S1 is L. We only demonstrate the proof when S; is a

timing guard tg.

LHS {(par-6), (guard-4)}
tg ((S2;C2; = n:) || Do) {hypothesis}
tg (((S25 =) || Do); ((C2; = me) || Do))

{(seq-6), (par-6), (guard-4)}
RHS

(1.6.3) S1 = bx*S. Similar to (1.5).
case 2 Cy = —-n;C;n,.
LHS {(par-6), (lvar-4), Proposition 1}
= (C;1a; C2; = me) || (M; =143 Do) {Lemma 1}
= (C || M);((na; C2; = e) || (=743 Do))
{(par-6), (lar-4)}
(C |l M); (skip; ((C2; =) || Do))

{(par-6), (lvar-4)}
= (C || M); (=ne || Do); ((C25 —=ne) || Do)

{(par-6), (lvar-4), Proposition 1}
= (€ I M);((1i= 1) || (5 10 Do) ((Cas = 2) |
Dy) {Lemma 1}
= ((C;ma; =ne) || (M5 =145 Do)); ((C2; =1e) || Do)

{(par-6), (lvar-4), Proposition 1}
= RHS
case 3 (' is a composite construct.

(3.1) ¢y = C%C", similar to (1.6).

(3.2) C; = C°NC, similar to (1.2).

(3.3) C1 = C° b Ct, analogous to (1.3).

(3.4) C1 = [;; (9: CY), similar to (1.4).

(3.5) C1 = bxC, analogous to (1.5). O

The following corollary is directly from theorem 3.
Corollary 1 Given C € CP(r,a) and Dy € DP.(r,a),
we have

(bxC; —=n:) || Do = bx((C; =ne) || Do) o



15

5.3 Hardware/Software Partitioning

This section specifies our hardware/software partitioning
process in detail. As mentioned in section 5.1, the task is
divided to two steps: hardware/software partitioning for
kernel specification; decomposition of the whole system’s
specification. The process will be investigated in detail
in the following two subsections.

5.8.1 Syntaz-Based Splitting Rules for Kernel
Specification

This subsection is meant to design program partitioning
rules. We explore a set of splitting rules which demon-
strate how to construct hardware and software parts of a
program construct from those of its constituents. Mean-
while, we show how to split atomic commands.

We introduce a predicate Split which plays a vital
role in formalizing the splitting rules.

Definition 6 (Split) Let V = {r, a, ¢, id}. Given a
program S in the source language, its hardware/software
partition ((C;— n.), D°) is specified by the following
predicate:

SpthV(S7 CJ DO) =df
(8 E (C;=n.) | D°) A
(C € CP.(r,a)) A (D° € DP.(r,a)) A
(V CVar(C;—=n:)NVar(D%) A
(VN OccVar(S) = 0)

where OccVar(P) denotes the set of variables occurred
in the program P. |

We design two set of syntax-based splitting rules in
two different styles: the bottom-up style and the top-down
style. The programmer can choose either of them to con-
duct hardware/software partitioning.

The Bottom-Up Splitting Rules The bottom-up approach
builds the hardware component from a marked program
in one step before partitioning, i.e., all services the hard-
ware should provide are integrated at the beginning.
However, it constructs the software component from those
of its constituents using the following rules.
Bottom-Up Rule for Sequential Composition

Splitv(S,-,C,-,DO),i =1,2
Var(S1) = Var(Sz2)
Splity (S1; S2, C1;Cs, D)

Proof Sy ; S2 {; is monotonic}
E ((C1;—=me) [l Do); ((C2;—=me) || Do) {theorem 3}
= (C1; Ca5=me) || Do =

Bottom-Up Rule for Conditional
SphtV(Sza Cia DO); i= 1; 2
Var(S1) = Var(S2)

Splitv(51 <ab> Sy, Cp b Oy, DO)

Proof S1<b> S, { conditional is mono.}
((C1;=me) || Do)<abp>((C2; —ne) || Do) {(par-9)}
((Cr;—=me) <b B> (Co5—me)) || Do {(seq-4)}
((Cr Qb Ca);—=ne) || Do 0

Bottom-Up Rule for Non-Deterministic Choice

SplitV(Si,C,-,DO),i = 1,2
Var(S1) = Var(Sz2)
Spl’itv(sl nSy, C;MNCQCsy, DO)

1

Proof S1M8s

C ((Ci;=m:) [l Do) M ((Co;—=me) || Do) {(par-8)}
= ((C15=n:) M (Ca5—1ne)) || Do {(seq-3)}
= ((C1NC2);—=n:) || Do ]

Bottom-Up Rule for Guarded Choice

SplitV(SiJCiJDO)ai =1,2
Var(S1) = Var(S2)

Splity ((g1.51) [ (92 S2), (91 C1)[(g2C2), D°)
Proof (g1 S1)[(g2 S2)
is mono.}

{
(g1 ((C1;—=1e) || Do))(g2 ((Ca; =) || Do))
{(par-6), (guard-4)}
({91 (Cr; = n2))](92 (C25 =) || Do
{(seq-5)}

(((g1 C1)l(g2 C2));—me) || Do O
Bottom-Up Rule for Iteration

Splity (S, C, D°)
Splity (b S, bx C, DY)
Proof bx S

C bx((C;—=n:) || Do)
(b* C;—n.) || Do

C

{loop operator is mono.}
{corollary 1}
O

The Top-Down Splitting Rules In the top-down style,
both the hardware and software components of the source
program are integrated from those of its constituents.

Before investigating the top-down splitting rules, we
introduce the notion of mergable on hardware compo-
nents from DP.(r,a).

Definition 7 Let
D' =g pX o ((nr M5 =n4; X) | (1 skip))
where
M =g case(id) (pi M7)... (0% ML), fori=1,2
D' and D? are said to be mergable, denoted by
mergable(D', D?)
if
Var(D') = Var(D?), and
(pi = pj) implies M} = M7, for 1<i<n;, 1<j<ns.
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In such a case, we define
D= Z'TLt(Dl,DQ) =a pX e ((771‘ M; _)na5X) |] (775 Skip))

where M =4 case(id) (t; My) ... (t, M,),

a‘nd {tla"'atr}:{p%a"'apkl}u{pga"wpiz}a

and {M,,...,M,} = {M},..., ML Y U{MZ,...,M2 }.
O

First of all, we present a basic rule for hardware aug-
mentation, from which and the bottom-up rules in the
former section we directly obtain the corresponding top-
down rules in all cases.

Rule for Hardware Augmentation

Splity (S, C, D)
mergable(D, D")
Splity (S, C, int(D,D"))

Proof The proof can be reached in the Appendix. |

The following top-down splitting rules are then straight-

forward based on the corresponding bottom-up rules and
the rule for hardware augmentation above.
Top-Down Rule for Sequential Composition

Splity (S, Ci, D;)
Var(S1) = Var(Ss)
mergable(D1, D)

SplitV(Sl; Sz, Cl; Cz, int(Dl, D2))

Top-Down Rule for Conditional

Splity (S;, Ci, Dy)
Var(S1) = Var(Ss)
mergable(D1, D3)

Splity (S1 <b> S2, Cy <b> Cq, int(Dy, D3))

Top-Down Rule for Non-Deterministic Choice

Splity (S;, Ci, D;)
Var(S1) = Var(Ss)
mergable(D1, D2)

Splitv(sl nSs, CyNCoy, int(Dl,Dg))
Top-Down Rule for Guarded Choice
Splity (S, Cs, D)

Var(S1) = Var(S2)
mergable(D1, D2)

Splity ((g1 S1) [ (92 S2), (91 C1) [ (g2 C2), int(D1,D2))

The top-down rule for iteration enjoys the exact form
with its bottom-up rule.

Splitting Atomic Commands The details for specific
blocks’ partitioning are similar to discussions in [24].

For the timed assignment (v := f(z,c))n, we only
concentrate on the cases where both the hardware and
software participate in the update of v.

start

Environment s System

Env finish wi(S)

-7,
start

T’ req
Environment s sw | 7 HW | i
finish WO |_ack |WAM)|

Env 7 e

Fig. 7 Hardware/Software Partition for the Whole System

Case 1: f is a busy function, and z is allocated to hard-
ware.

Splitg(S = ((v:= f(z,c))n), C, D), where
C =g ((id:=1)o; =9 nr;na; (v := ly)o), and
D =g pX o ((nrcase(id) (1(ly == f(z,c))n);—
1a; X) | (1 skip)).

Case 2: f is a busy function, but z is allocated to soft-
ware.

Splitg(S = ((v:= f(z,c))n), C, D), where

g =g ((id == L)o; (Iz := )o; = N5 Ma; (v 1= ly)o),
an
D =g pX o ((nrcase(id) (1(ly := f(lz,c))n);—

Na; X) [ (e skip)).

Case 3: f is not a busy function, but z is allocated to
hardware.

Splitg(S = ((v:= f(z,c))n), C, D), where

C =¢ ((id:=1)o; = mr;Ma; (v := f(lz,¢))n), and

D =4 pX o ((n, case(id) (1 (lz == z)0); 9703 X)
I (1 skip)).

5.3.2 Deriving Hw/Sw Partition for an
Environment-Driven System

Now we investigate hardware/software partitioning for
the whole system. The partitioning process is illustrated
in Fig. 7.

As discussed in sec. 5.2, suppose the whole system is
specified by

i(S) =4 always (s S;—ny)
which is driven by environment process
Env =g always (—ns;n5)

where S is the kernel specification for the system to be
designed, and 7, is the start signal, n; is the finish signal.

For a kernel specification S, suppose we have ob-
tained its hardware/software decomposition as follows
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by applying those rules in section 5.3.1:
Splity (S, C, D)
where V = {r,a,¢,id},

and D = pX e ((n. M;—14; X) [ (ne skip))-
We design the following rule to generate the result
for the partition of the whole system.

System Partitioning Rule

Part(¥3(5), ¥3(C), ¥;(M))

where Part(S,C,D) =4 ((S|| Env) C (C || D || Env))
W;’(P) =df always (nv P;_”?u)
Env =g always (—ns;n5)

Proof We define {always ,(S)} as follows, for all n > 0:
always o(S) =4 L, ahways ns1(S) = S always o (S)
then by law (always-1), we have
always S = |5, always »(S)

By continuity of the parallel operator and law (seg-2),
we only need to prove, for all n > 0,

(ZF(S)n || Bnvn) E ((F(C)ns —=7e) || D || Enwvn)

where W;(P)n =qr always »(ns P; —ny)
Envy, =4 always n(—ns;15)

By mathematical induction on n.
(1). Basic step (n = 0).
W;(S)O || ETLUO

(L;—=me) Il L
(@7 (C)o; =me) || D || Enwo

{(seq-2)}
{(par-3), (par-1)}

[1m

(2). Inductive step (n — n + 1).
We first prove, for all n > 0,

(TF(C)n; —=me) | Envn, = always (C); —ne )

By an induction on mn.
n = 0. It’s straightforward by law (par-3) and (seg-2).
n—=n+1.
(w;(c)n-l-l; —=ne) || Envnia
{(par-6), (lvar-4), Proposition 1}
= (C;=n7;93(C)n; = ne) || (ny; Envy)
{Lemma 1}
= C;((=n5;95(C)n; =) || (ny5 Envn))
{(par-6), (lvar-4), Proposition 1}
= C;((Z7(C)n; =) || Envy)
{hypothesis, (seq-1)}
= always n11(C); = e

Then, we have
W;(S)n—i-l | Envnis

{(par-6), (lvar-4), Proposition 1}
(S5 =597 (S)n) | (ng; Enwn)

= S;((=n7%7(S)n) || (ng; Envn))
{(par-6), (lvar-4), Proposition 1}
= 8 (#3(S)n || Ervn)

{Lemma 1}

{precondition, ; is mono.}
((C5=me) || D); (#(S)n | Envp)

M

{hypothesis}
((C;=me) [| D); (TF(C)ns —=me) | D || Envn)

M

((C;—=me) || D); ((always n(C); = ne) || D)
{Theorem 3}

{(N}

O

= (always n1+1(C); —ne) || D

(Z5(C)y1; 1) || D || Envpga

6 Related Work

Statecharts semantics Due to the involvedness of
formal semantics for Statecharts, there have been so many
related works that we can hardly discuss all here. Some
of them are presented in [7; 15; 18; 19; 22; 30]. Many of
these works adopt the simpler synchronous model. The
work in [7] takes into account a very large subset of Stat-
echarts, but the semantics is neither compositional nor
formal. In contrast, our operational semantics is formal,
compositional and supports asynchronous model.
Verilog semantics  Although it is reported that Ver-
ilog has been widely used in industry (especially in United
States) for years, its precise semantics has been ignored
until recently. The results [12; 32; 33; 8] are all based on
Gordon’s interpretation on simulation cycles [3]. A sim-
ple operational semantics is given in [12]. Zhu, Bowen
and He [32; 33] investigate the consistency between Ver-
ilog’s operational and denotational semantics, while He
[8] explores a program algebra for Verilog and its con-
nection with both operational and denotational seman-
tics. Most recently Zhu [31] provides a more complete
investigation on unifying different semantic models for
Verilog-like languages.

Linking Statecharts with other formalisms Some
of related works on connecting Statecharts with other
formalisms are presented in [1; 2; 20; 27; 29; 26]. Beauvais
et.al. [1] and Seshia et.al. [27] translate STATEMATE
Statecharts to synchronous languages Signal and FEsterel
respectively, aiming to use supporting tools provided in
the target formalisms for formal verification purposes.
However, all these translations are based on the informal
semantics [7] lacking correctness proofs. The authors of
[2; 20] transform variants of Statecharts into hierarchi-
cal timed automata and use tools (UPPAAL, SPIN) to
model check Statecharts properties. Also, [29] based on
the denotational semantics [15] aims to connect a subset
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of Statecharts with temporal logic FNLOG for theoret-
ically proving Statecharts’ properties. More recently, a
translation from Statecharts to B/AMN is reported in
[26]. However, no correctness issue has been addressed. In
comparison, the translation from Statecharts to Verilog
in this paper aims at code generation for system design.
Our mapping function is constructed based on formal se-
mantics for both the source and target formalisms and
has been proven to be semantics-preserving.

Algebraic approach to Hardware/software parti-
tioning The algebraic approach advocated in this pa-
per to verify the correctness of the partitioning process
has been successfully employed in the ProCoS project.
The original ProCoS project [11] concentrated almost
exclusively on the verification of standard compiler of a
high-level programming language based on Occam down
to a microprocessor based on Transputer [10]. Sampaio
showed how to reduce the compiler design task to pro-
gram transformation [25]. Towards the end of the first
phase of the project, Ian Page et al made rapid advance
in the development of hardware compilation technique
using an Occam-like language targeted towards FPGAs
[21], and He Jifeng et al provided a formal verification of
the hardware compilation scheme within the algebra of
Occam programs [9].

Some works have suggested the use of formal meth-
ods for the partitioning process [28; 24]. In [28], Silva et
al provide a formal strategy for carrying out the split-
ting phase automatically, and present an algebraic proof
for its correctness. However, the splitting phase delivers
a large number of simple processes, and leaves the hard
task of clustering these processes into hardware and soft-
ware components to the clustering phase and the joining
phase. Furthermore, additional channels and local vari-
ables introduced in the splitting phase increase the data
flow between hardware and software components. In our
former work [24], an algebraic approach is proposed to
partition a specification into hardware and software in
one step and as well verify the correctness of the parti-
tion process. However, that approach is based on alge-
braic laws of the high level communicating language Oc-
cam, which leaves rather a long distance to go through
in hardware/software co-synthesis phase. In this paper,
the distance has been shortened by adopting Verilog as
the language.

7 Conclusion

In this paper we present a formal approach to hard-
ware/software co-specification, starting from the Stat-
echarts visual formalism. We have made the following
main contributions.

— Compositional operational semantics for Statecharts.
We have explored a compositional operational seman-
tics to Statecharts which contains many powerful fea-

tures that Statecharts owns, but proved to be difficult
to be combined into a uniform formalism.

— A semantics-preserving linking between Statecharts
and Verilog. We have defined a syntax-directed func-
tion to map Statecharts to Verilog programs. Based
on the operational semantics for Statecharts and Ver-
ilog, we have proved the linking function is a semantics-
preserving homomorphism.

— An algebraic approach to hardware/software parti-
tioning in Verilog. We have worked out a collection
of formal rules to split a specification (in Verilog) into
hardware and software sub-specifications. The parti-
tioning process has been proved sound using Verilog
algebra.

We adopt a sequential imperative subset of Verilog
as our source language, and allow it to contain time
constraints, so as to describe timing specification.
We confine target hardware and software specifica-
tions in specially chosen subsets of Verilog, and use
Verilog’s event-trigger mechanism to synchronize be-
haviors between them. Whereas, communications be-
tween hardware and software are based on Verilog’s
shared variable mechanism, which will facilitate the
subsequent hardware/software co-synthesis, and make
it possible to adopt bus techniques to implement in-
teractions between hardware and software.
Moreover, this paper not only develops a collection
of splitting rules to partition a source program into
hardware and software components, but also discuss
hardware/software partitioning for the whole system
which takes the source program as its kernel speci-
fication. The system is specified by Verilog’s always
constructs and its execution is driven by an environ-
ment process. Such systems widely exist in our daily
life, embedded systems are of this kind. Developing a
partitioning rule for such systems will be very helpful
for us to investigate correctness-preserved design of
embedded systems.
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Appendix
Proof of Lemma 1

Proof (1). LHS {(par-6)}
= varu,v ¢ (nu (P2 [| @) | (=1u; (P [ (n0; Q2))))

{(guard-4)}
= varu,v e (=1u; (P [| (ns; Q2))) {(par-6)}
= varu,v e (=7; (M; (P2 [| 70 Q2))) [ (70 (P || Q2)))

{(var-4)}

= wvaru,v e (skip; (Py || 1y Q2)) {Proposition 1}
= RHS

(2). By structural induction on Q;.
(2.1) Q1 is an atomic command.
It is obvious when Q1 = stop or Q1 = L.

@1 = tg, where tg is one of the following forms
Q(z :=€), 9N, #n. We have
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LHS {(par-6)}

= wvaru,v e ((nu; (P2 || (Q1; Q) [ (tg; (P [| @)))
{(guard-4)}

= RHS

(2.2) Q1 = S1 M S,

LHS {(seg-3)}
= wvaru,ve (P || ((S1;Q)M(S2; Q))) {(par-1), (par-10)}
= varu,ve ((P | (5 Q)N (P (5:Q))) {hypothesis}
= varu,ve ((S; (P | Q)N (S (P [ Q) {(seg-3)}
= RHS
(23) Ql =5, <b> 8.

LHS {(seq-4)}

varu,ve (P || ((S1;Q) Qb > (S;Q))) {(par-9)}
var u, ve((P || (S1; Q) <1b>(P || (S2; Q))) {hypothesis}
?ﬁ%’v. ((S1; (P | Q) 2b>> (825 (P || Q))) {(seq-4)}

(24) Qv = [;er(9i50)-

LHS {(seg-5)}
= varu,ve (P || ([;¢; (9: (S55Q)))) {(par-6), (guard-4)}
= wvaru,ve ([;c; (9: (P || (S;;Q)))) {hypothesis}
= varu,v e (lic; (9: (S5 (P[] Q)))) {(seq-5)}
= RHS
(25) Q1 = bxS.

Let

F(X) =a (S;X)<1bD> skip,
For n > 0 we define

FO(L) =4 1,
Fi(1) =g F(FP(L).
Then

LHS { continuity of ;}
= vor w00 (P || (Upso (F™(1); @) {continuity of || }
= varu,ve (],5o (P || (F"(L1);Q))) {hypothesis}
= varu,ve (5o (F*(L); (P || Q) {continuity of |
and ; }
= RHS

(2.6) Q1 = 51;5:.

(2.6.1) S; is one of the following forms: Sy M S11, S1o <
b > S11, (g1 S10) [ (92 S11)- By laws (seg-8) (seq-5), and
(seg-4) we can convert ()1 to non-deterministic choice,
conditional, and guarded-choice, respectively. It then fol-
lows from (2.2),(2.3), and (2.4).

(2.6.2) S; is an atomic command. It is straightforward
when Sp is L or stop. Let us consider S1 = tg.

LHS {(par-6), (guard-4)}

= waru,v e (tg; (P || (S2;
= RHS

Q))) {hypothesis}

(2.6.3) 51 = bxS.
Similar to (2.5), we have

LHS {continuity of ; }
= varu,ve (P || (L,>o (F™(L); 52 Q)))

{continuity of ||}
var s, 0 (Lo (P | (F*(1);55; Q) {hypothesis}
var v e (s (F(L): 525 (P || Q)

{continuity of || and;}

RHS
(3). By structural induction on P;.

(3.1) P, is an atomic command. The proof can be done
by a structural induction on ;. Similar to the proof of

(2).

(32) P1 = Sl [l 52.

LHS {(seq-3)}
= varu,ve (((5 P)N(S2;P)) | (Q;Q))  {(par-10)}
= wvaru,v e (((S1;P) [ (Q1;Q)) N ((S2; P) [| (Q13Q)))

{hypothesis}
= wvaru,ve (((S1 || Q);(P [ @) M ((S2 || @1); (P ||
Q))) {(seg-3)}
= RHS
(33) Pr=5<4b>5,.

LHS {(seq-4)}
= varu,ve (((S1;P)<b> (S2; P)) || (Q1;Q)) {(par-9)}
= war u,ve((((S1; P) || (Q1; Q))<b>((S2; P) || (Q13Q)))

{hypothesis}
= varu,ve((((S1]1Q1); (PIIQ)) b > ((S2[|Q1); (PlIQ)))

{(seq-4), (par-9)}

= RHS

(34) v = [ics(9:Si)-

We first have LHS
= wvaru,v e (([;c; (9: (Si; P))) || (Q1;Q))

Then, apply structural induction on @;. The proof is
similar to the proof in (2).

{(seq-5)}

(3.5) P = bxS.

Let

F(X) =4 (S;X) b skip,
For n > 0 we define

FO(L) =4 1L,

Fri(L) =4 F(F"(1)).

Then
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LHS { continuity of ; }
= wvaru,v e ((,>o (F"(L); P)) || (Q1;@))

{continuity of ||}
= varu,ve (| ,5o (F"(L1); P) || (Q1;Q))) {hypothesis}
= varu,v e (L5 (F™(L) [| @1); (P || Q)))

{ continuity of || and;}
= RHS

(3.6) P1 = 51;52.

(3.6.1) Sy is one of the following forms: S19 M S11, S10 <
b > Si1, (91 S10) | (92 S11)- By laws (seq-3) (seq-5), and
(seq-4), we can convert P; to non-deterministic choice,
conditional, guarded-choice, respectively. The proof then
follows from (3.2),(3.3), and (3.4).

(3.6.2) S is an atomic command. It is obvious when S
is L or stop. For the case S; = tg, the proof follows from
a structural induction on Q1. The proof is similar to that
in (2).

(3.6.3) S; = bxS.

Similar to (3.5), we have

LHS {continuity of ; }

= wvaru,v e (5o (F"(L); S2; P)) || (Q1;Q))
{continuity of ||}

= varu,ve (Lo (F"(1); 925 P) || (Q1;Q)))
{hypothesis}

"(1);82) | Qu); (P 1| @)))

{continuity of || and;}
= RHS O

= varu,v e (I_anO (((

Proof of the Rule for Hardware Augmentation

Proof For simplicity, let us denote int(D,D') as D. We
need to prove

(C;=me) | D = (Ci=ne) | D
By structural induction on C.

case 1 ( does not contain r or a, and C' is event control
insensitive.

(1.1) C is an atomic command.
C = stop or C' = L, trivial.

C = tg, where tg is one of the following forms Q(z :=
€e), =1z, #n. We have

LHS {(par-6), (guard-4)}
= tg; (—=n: || D) {(lar-4) }
= tg; skip; {(lvar-4)}
= tg; (5 || D) {(par-6), (guard-4)}
= RHS

(1.2) C = Sl|_|82.

LHS {(seq-3)}
= ((S1;=me) N1 (S2; 2 7e)) || D {(par-10))}
= ((S1;—=n:) | D)1 ((S2; =) || D) {hypothesis}
= ((S1; =ne) | D) 11 ((S2;5 =) || D) {(par-10)}
= RHS

(13) C = 5.<4b>85,.

LHS {(seq-4)}
= ((S1;me) Q> (527—”75)) | D {(par-9)}
= ((S1;2n:) [| D) <b> ((S2;3—me) || D) {hypothesis}
= ((S;;—2n:) | D) <b> ((S252n:) | D) {(par-9)}
= RHS

(1.4) C = | (9 Sa)-

LHS {(seq-5)}
= (lier (9i (Sis=me))) | D {(par-6), (guard-4)}
= lier (9 ((Si;=7e) || D)) {hypothesis}
= lier (9: ((Si;=me) || D)) {(par-6)}
= RHS

(1.5) C = bxS.

Let

F(X) =4 (S;X)<bD> skip,
For n > 0, we define

FO(1) =4 41,
Fri(L) =g FE"(L).
Then
LHS {continuity of ; }

= (Upso F™(L);—me)) || D
|_|n20 (F™(L); —=me) |l 1?)
|_|n>0 ((Fn(J-);_)nE) || D)
RHS

{ continuity of ||}
{hypothesis}
{ continuity of ||}

(1.6) C = 51;52.

(1.6.1) Sy is one of the following forms Sio M Si1,
SIO b Sn, (91 510) |] (92 511). By laws (seq—3), (seq—
5), and (seg-4) we can convert C into non-deterministic
choice, conditional, and guarded-choice, respectively. The
proof then follows from (1.2), (1.3), and (1.4).

(1.6.2) S; is an atomic command. It is trivial when
St is L or stop. The case S; = tg is dealt with in what
follows.

LHS {(par-6), (guard-4)}
= tg; (S2 || Q) {hypothesis}
= tg; (S2 ]| D) {(par-6), (guard-4)}
= RHS

(16.3) S = bxS.

Similar to (1.5) we have
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LHS { continuity of ;}
= (Unso (F™(L); S2;—me)) || D {continuity of ||}
= Upso (F™(L); S2 —=ne) || Dz {hypothesis}
= Uuso (((F™(L); S25 =) [| D) { continuity of ||

and ; }
= RHS

case 2 C = —1n,;Co;1,.

LHS {(lvar-4), event control insensitive}
(Co3na; —=ne) | (M3 —ma; D) {Lemma 1}

(Co || M); (a5 = me) || (=103 D))
{(lvar-4), event control insensitive}

= (Co || M); skip; (= ne || D) {(lvar-4)}
= (Co || M); skip; (—ne || D) . {(lvar-4)}
= (Co || M); (a5 —ne) |l (_H”AaSD)) {Lemma 1}
= ((Co;ma; = me) || (M; =145 D))

{(lvar-4), event control insensitive}
= RHS

case 3 (' is one of the following forms.

(3.1) C = (C%C?*, analgous to that in (1.6).

(3.2) C = C°n (1, analgous to that in (1.2).

(3.3) C = C°<b>CH, analgous to that in (1.3).
(3.4) C = |;c; (9i C"), analgous to that in (1.4).
(3.5) C = bx*C, analgous to that in (1.5). O





