
ETH Library

Pattern Componentization
The Factory Example

Journal Article

Author(s):
Arnout, Karine; Meyer, Bertrand

Publication date:
2006

Permanent link:
https://doi.org/10.3929/ethz-b-000002151

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Innovations in systems and software engineering : a NASA journal 2(2), https://doi.org/10.1007/s11334-006-0001-0

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000002151
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s11334-006-0001-0
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Innovations Syst Softw Eng (2006) 2:65–79
DOI 10.1007/s11334-006-0001-0

ORIGINAL PAPER

Pattern componentization: the factory example

Karine Arnout · Bertrand Meyer

Received: 12 June 2005 / Accepted: 21 September 2005 / Published online: 6 May 2006
© Springer-Verlag London Limited 2006

Abstract Can Design Patterns be turned into reusable
components? To help answer this question, we have per-
formed a systematic study of the standard design pat-
terns. One of the most interesting is Abstract Factory,
for which we were indeed able to build a reusable com-
ponent fulfilling the same needs as the original pattern.
This article presents the component’s design and its les-
sons for the general issue of pattern componentization.

1 Patterns and components

In hardly more than a decade, Design Patterns have
established themselves as a major resource for effec-
tive software design. “Each pattern describes a problem
which occurs over and over again in our environment and
then describes the core of the solution to this problem”
[17]. Thanks to the published catalogs of such solutions,
starting with [17] itself, software designers can benefit
from the wisdom and experience of their predecessors.

K. Arnout
AXA Rosenberg Investment Management LLC,
Barr Rosenberg Research Center, 4 Orinda Way,
Building E, Orinda, CA 94563, USA
e-mail: karnout@axarosenberg.com

B. Meyer (B)
Computer Science Department, ETH Zurich,
Clausiusstrasse 59, 8092 ETH-Zentrum,
Zurich, Switzerland
e-mail: Bertrand.Meyer@inf.ethz.ch

B. Meyer
Eiffel Software,
356 Storke Road,
Goleta, CA 93117, USA

The idea that we should avoid reinventing the wheel
in software construction predates patterns by a long
time; reuse is a running theme in standard discussions
of software engineering. The idea of reuse is to pro-
vide software components covering standard needs and
make them available through a standard API (Abstract
Program Interface1) to any program that experiences
the corresponding needs.

For all the benefits of design patterns, it is hard to
ignore that the idea as usually expressed runs contrary
to decades of advances in reuse, which have profoundly
improved the state of software development. Pattern
advocates themselves often sound skeptical about reuse.
The preceding citation was actually truncated: the full
sentence states that a pattern describes the core of the
solution to the problem “in such a way that you can use
this solution a million times over, without ever doing it
the same way twice”. The pattern literature frequently
confirms this view that patterns are not reusable com-
ponents; for example [20]: “Patterns are not, by defini-
tion, fully formalized descriptions. They can’t appear as
a deliverable”.

Why not? It is hard to accept that patterns, however
useful, should force us to step back to pre-reuse times,
when sorting an array required finding a solution out-
line in an algorithms textbook and then adapting it to
your needs. Today we use library routines for such tasks.
Patterns should provide similarly reusable solution at a
higher level of granularity. Inexplicably, the pattern lit-

1 The original expansion of “API”, “Application Program Inter-
face”, apparently going back to old IBM software, is no longer
meaningful. The acronym itself remains well-understood and rel-
evant. We expand it as “Abstract Program Interface”, which cap-
tures the idea precisely.

66 K. Arnout, B. Meyer

erature rejects the idea, claiming that patterns are some-
how of a higher essence than components. We find this
view questionable in the absence of concrete evidence
and suspect that it may be influenced by the limitations
of the programming languages (typically C++ and Java)
in which patterns are generally described. Disproving
it, at least for some commonly used patterns, would be
beneficial, since it is almost always preferable to reuse
than to redo: everything else being equal, performance
in particular, relying on a reusable component through
a well-documented API provides better guarantees of
correctness and of general quality than if every devel-
oper must code the implementation anew; and it’s of
course much less effort.

In this view, while patterns as a whole are an admira-
ble advance, a pattern that remains just a pattern is an
admission of failure: the failure to abstract the idea to a
level where it can be turned into an off-the-shelf solution
— rather than studied, understood (or misunderstood),
and reimplemented separately by each potential bene-
ficiary. The failure can have various causes:

• Perhaps it is possible to derive a component covering
all cases of the pattern, but you did not work hard
enough.

• You may be facing a limitation of the programming
language you use; another programming language
would offer a solution.

• The general assertion (from the pattern literature, as
mentioned) that patterns somehow transcend com-
ponents may hold in the case of a particular pattern.

• For some patterns, you may be able to derive a par-
tial solution in the form of a component that doesn’t
cover all uses of the pattern, but provides a reus-
able basis, reducing the amount of specific adapta-
tion work that each user of the pattern must perform.

Patterns have become so important in the practice of
software design, and the benefit of reusable solutions
over endless individual reimplementation are so com-
pelling, that it is important to examine the principal de-
sign patterns in the light of this discussion. We may call
the overall goal componentization: turning design pat-
terns, whenever possible, into reusable components.

A previous article [28] showed that the “Observer”
pattern can be profitably replaced by a simple reusable
solution, the Event Library, taking advantage of Eif-
fel mechanisms (genericity, tuples, agents); the benefits
including ease of use and greatly improved generality.

Encouraged by that initial success, we set out to per-
form a systematic analysis [5] of the componentization
potential of all the design patterns of [17]. The results
include:

• An analysis of the challenge of componentization
and of the techniques that address it.

• A new classification of design patterns in terms of
their suitability, or resistance, to componentization.

• The application of componentization techniques to
the major design patterns, yielding full or partial
componentization in two thirds of the cases.

• Concretely, a Pattern Library providing reusable
implementations of the successfully componentized
patterns.

• For the remaining cases, a Pattern Wizard facilitating
the semi-automatic integration of the patterns into
an application.

Both the Pattern Library and the Pattern Wizard are
open-source, freely downloadable software available
from our download page [16].

We report here on some of the results of this effort,
with a special application to one of the best-known pat-
tern: Abstract Factory. (A companion paper [29] details
a similar study applied to the Visitor pattern, also result-
ing in a reusable solution as part of the Pattern Library.)
In the rest of this discussion:

• Section 2 presents the componentization effort,
describing the criteria we considered to determine
whether a pattern is componentizable and the over-
all results of the study.

• Section 3 presents the intent, advantages and limita-
tions of the Abstract Factory pattern.

• Section 4 describes the design and implementation
of our reusable solution: the Factory component of
the Pattern Library.

• Section 5 compares the two approaches: use of the
Factory Pattern vs. the reusable solution provided by
the Factory component of the Pattern Library.

• Section 6 explains the limitations of the componen-
tization approach.

• Section 7 presents some related work about the
implementation of design patterns using different
programming paradigms and the integration of pat-
terns as programming language features.

• Section 8 draws conclusion about the componenti-
zation approach and results.

• Section 9 gives some further research directions.

2 Pattern componentization

Before turning to the specific example of the Abstract
Factory pattern, we summarize the componentization
study, its assumptions and its results.

Pattern componentization: the factory example 67

Fully Componentizable (11)
48%

Partially Componentizable (4)
17%

Wizard or Library Support (6)
26%

Not Componentizable (2)
9%

Fig. 1 Componentization results for the patterns in “Design Pat-
terns”

2.1 Overview

Our first pattern analysis, targeting the Observer pattern,
led to successful componentization through the Event
Library [6,28] covering the general idea of publish-
subscribe and event-driven development. This provided
the basis for the componentization of other patterns
including Visitor [29], Composite, Factory as described
below, and others all yielding reusable components in
the Pattern Library. We confirmed the practical applica-
bility of these components by using them in a number
of production applications.

After this first experience we turned to the systematic
study of all the 23 patterns in “Design Patterns” [17], the
original reference on the topic.

2.2 Overall componentization results

Figure 1 summarizes the results; the precise definition
of the categories and the criteria retained are described
next.2

As the figure indicates:

• For two-thirds (65%) of the original patterns we are
able to provide a componentized replacement, en-
abling application developers to rely on an API from
the Pattern Library rather than reimplementing the
pattern. More precisely the solution is fully satisfac-
tory in 48% of the cases; in 17% of the cases, it leaves
out some cases of the original pattern.

• A quarter of the patterns have “Wizard or library
support”: we cannot provide a component ready
for off-the-shelf use, but we can help through some
combination of components addressing part of the
problem and the support of the Pattern Wizard to
integrate the pattern into an application.

• The remaining 9% are classified as “not componen-
tizable” to reflect that we were not able to make
any progress towards a reusable solution. This could

2 Figure 1 and part of the material in Sect. 2.2 also appear in [29].

Design pattern

Fully
Componentizable

Partially
Componentizable

Partial Library
Support Skeleton

New
Component

Library-
supported

Wizard or
Library Support

Language-
supported

Not
Componentizable

Fig. 2 Pattern componentizability classification

of course just reflect our own failure rather than a
problem inherent in the patterns themselves.

2.3 Evaluation criteria

In assessing the success of componentization we apply
the following criteria:

• Completeness: Does the reusable component cover
all cases described in the original presentation of the
pattern (as given for this study in [17])?

• Faithfulness: Does the component provide the same
benefits as the original pattern description?

• Usefulness: Is it useful to rely on the component
rather than merely implementing the pattern?

• Type-safety: Is the component type-safe?
• Performance: How does the efficiency of using the

component compare to a solution that implements
the pattern?

• Extended applicability: Does the component cover
more cases than the pattern?

2.4 Definition of the categories3

Figure 2 shows the classification, adapted from the fuller
discussion in [5].

The patterns in the first of the top-level categories,
Fully Componentizable (48% from Fig. 1), are the most
interesting result of this study: we can provide an API
that fully covers the need for implementing the pattern
in an application.4 There are three subcategories:

• Language-supported: no need to do anything at all,
the mechanism is already provided by the language.
This is the case with the Prototype pattern, for which
Eiffel’s built-in “clone” facility handles the issue.

• Library-supported: in this case the mechanisms of
an existing library do the job. This subcategory is

3 Figure 2 and part of the material in Sect. 2.4 also appear in [29].
4 The inclusion of one pattern, Memento, in the “Fully Compo-
nentizable” category is a matter of convention since in that case it
is simpler to use the pattern than the component.

68 K. Arnout, B. Meyer

Table 1 Eiffel language mechanisms and their use in the Pattern Library

P
ro

to
ty

pe

F
ly

w
ei

gh
t

O
bs

er
ve

r

M
ed

ia
to

r

A
bs

tr
ac

tF
ac

to
ry

Fa
ct

or
y

M
et

ho
d

V
is

it
or

H
is

to
ry

-e
xe

cu
ta

bl
e

C
om

an
d

A
ut

o-
ex

ec
ut

ab
le

C
om

m
an

d

Tr
an

sp
ar

en
tC

om
po

si
te

Sa
fe

C
om

po
si

te

C
ha

in
of

R
es

po
ns

ib
ili

ty

Tw
o-

pa
rt

B
ui

ld
er

T
hr

ee
-p

ar
tB

ui
ld

er

P
ro

xy

St
at

e

O
ri

gi
na

ls
tr

at
eg

y

St
ra

te
gy

w
it

h
ag

en
ts

M
em

en
to

Client/supplier
mechanism X X X X X X X X X X X X X X X X X X X

Simple
inheritance X X X X X X X X X

Multiple
inheritance X X

Unconstrained
genericity X X X X X X X X X X X X X

Constrained
genericity X X X X X X X

Design by
contract X X X X X X X X X X X X X X X X X X X

Type
conversion

Agents X X X X X X X X X X X
Cloning

facilities X

included for completeness since we have not so far
uncovered any example.

• New Component: this is the most original case, indi-
cating that we were able to develop a component
that removes the need for the pattern. The Factory
family of patterns, discussed below, is an example.

The second category, Partially Componentizable, covers
patterns for which we were also able to develop a com-
ponent for the Pattern Library, but the resulting solution
is not quite complete or faithful as defined above.

In the Wizard or Library Support category, there is no
reusable component in the Pattern Library, but we are
able to help developers integrate the pattern into their
application through either or both of two techniques:

• They can use the Pattern Wizard to produce a skel-
eton describing the architecture of the pattern, then
fill in the specific elements.

• They can rely on some partial component support
from existing libraries.

Patterns of the last category, Not Componentizable,
have resisted all our efforts: we can neither provide a

component, even partial, nor generate a skeleton. These
are the patterns truly justifying the reuse-skeptic atti-
tude of the pattern literature highlighted in the citations
at the beginning of this article. Fortunately for our ef-
fort, only two of the standard design patterns belong to
that category: Façade and Interpreter.

2.5 Role of specific language and library mechanisms

The results of componentization are clearly dependent
on the target programming language. The effort re-
ported here benefits from the mechanisms of Eiffel [26,
30], as described in the corresponding ECMA standard
[14]. The following language capabilities play a partic-
ularly important role; Table 1 shows their actual use in
the Pattern Library.

• Genericity: a basic Eiffel facility for defining classes
parameterized by types, and already used in all Eif-
fel data structure libraries. Genericity is constrained
if the actual generic parameter must be a descen-
dant of a specific type, unconstrained otherwise. All
the Pattern Library classes (for the fully compo-
nentized patterns) rely on unconstrained genericity;

Pattern componentization: the factory example 69

Fig. 3 Class structure for the
Abstract Factory pattern

*
FACTORY

+
FACTORY_1

+
FACTORY_2

*
PRODUCT_A

+
PRODUCT_A1

+
PRODUCT_A2

+
PRODUCT_B1

+
PRODUCT_B2

*
PRODUCT_B

new_product_a*

new_product_b*

new_product_a+

new_product_b+
new_product_b+

new_product_a+

*
A

+
A

Deferred (abstract) class
with name A

Effective (implemented)
class with name A

inherits from is a client of

f*
Deferred (abstract) feature
(member) called f f+

Effective (implemented)
feature (member) called f

three (Observer, Mediator and Flyweight) use the
constrained form.

• Agents [12]: objects encapsulating routines ready to
be called. 73% (8 out of 11) of the fully componen-
tized patterns use agents.

• Tuples: sequences of values of set types, similar to
classes but anonymous.

• Support for Design by Contract™ [23–25] to equip
the componentized patterns with precise semantic
properties. All Pattern Library classes take advan-
tage of contracts.

• Client-supplier relationships.
• Single and multiple inheritance.
• Automatic type conversion, which exists in all lan-

guages for basic types (as in converting from inte-
gers to reals) but benefit in Eiffel from a full-fledged
mechanism applicable to any user-defined type and
carefully combined with inheritance [28]. This facil-
ity is mentioned here even though it is not used in any
of the currently componentized patterns; informal

investigations of other patterns show that it can play
a useful role.

• Cloning: built-in facilities for duplicating objects.

3 “Abstract factory” as a pattern

The Abstract Factory design pattern is a widely used
solution to create object families without specifying the
concrete type of each object. In this section we describe
the pattern, its benefits and limitations.

3.1 Pattern description

The Abstract Factory pattern is intended to “provide an
interface for creating families of related or dependent
objects without specifying their concrete classes” [17].
Figure 3 (using, as other class diagrams in this article,
the conventions of the BON method [32], explained by
the legend below) shows the classes involved and their
relationships.

70 K. Arnout, B. Meyer

Fig. 4 Traffic simulation with the Abstract Factory pattern

In this example and others, some of the names and
conventions have been changed from [17] for consis-
tency with the rest of the discussion, but this does not
affect the substance of the patterns. A feature is “effec-
tive” if it is implemented, “deferred” if it is only specified
(with a contract if applicable). A class is effective if all
its features are effective, deferred otherwise. A deferred
class does not have to be fully abstract: it may contain a
mix of deferred and effective features.

The deferred class FACTORY declares the deferred
factory functions, new_ product_a and new_ product_b,
which create and return anew instance of PRODUCT_A
and PRODUCT_B. These functions are effected (made
effective) in FACTORY_1 and FACTORY_2, in a
covariant way: in FACTORY_1, new_ product_a returns
an instance of PRODUCT_A1 and new_ product_b of
PRODUCT_B1; in FACTORY_2, they produce a
PRODUCT_A2 or a PRODUCT_B2.

3.2 Using the pattern

Because the factory pattern is just a pattern, the above
software structure must be instantiated anew for each
application. Here is such an example, covering a traffic
simulation system. Cities have people and vehicles; we
will use factories for both of these kinds of objects. A
vehicle – car, bus, tram – has an engine, wheels, and
doors, which vary with the vehicle type.

Figure 4 shows the structure. The _FACTORY
classes implement the pattern; the others describe the

application domain. To create a new person, clients will
use the factory class PERSON_FACTORY; to create a
vehicle, they use VEHICLE_FACTORY, deferred but
with three effective descendants CAR_FACTORY,
BUS_FACTORY and TRAM_FACTORY. Note how
these mirror the VEHICLE hierarchy.

The example has been spelled out, including classes
such as VEHICLE, CAR, WHEEL and CAR_WHEEL
which have no direct relation to the pattern but help
make this application of the pattern complete and real-
istic. Here are possible versions of these classes, starting
with VEHICLE5:

note
description: "General notion of vehicle for traffic simulation"

deferred class
VEHICLE

feature {NONE} -- Initialization
make (e: like engine; w: like wheels; d:like doors)

-- Set engine to e, wheels to w, doors to d.
require

engine_exists: e /= Void
wheels_exists: w /= Void
wheels_does_not_contain_void: not w.has (Void)
wheel_count_positive: w.count > 0
wheels_valid: w.count = wheel_count

and w.count = w.capacity
doors_exists: d /= Void
doors_does_not_contain_void: not d.has (Void)
doors_valid: d.count = door_count and

d.count = d.capacity
do

engine := e ; wheels := w ; doors := d
ensure

engine_set: engine = e
wheels_set: wheels = w
doors_set: doors = d

end

5 All the program examples follow the Eiffel standard [14].

Pattern componentization: the factory example 71

feature -- Access
engine: ENGINE

-- Engine

wheels: ARRAYED_LIST [WHEEL]
-- Wheels

doors: ARRAYED_LIST [DOOR]
-- Doors

wheel_count: INTEGER
-- Number of wheels

deferred
end

door_count: INTEGER
-- Number of doors

deferred
end

invariant
engine_exists: engine /= Void
doors_exists: doors /= Void
wheels_exists: wheels /= Void
doors_does_not_contain_void: not doors.has (Void)
wheels_does_not_contain_void: not wheels.has (Void)
wheel_count_positive: wheel_count > 0
door_count_valid: door_count = doors.capacity and

doors.count = door_count
wheel_count_valid: wheel_count = wheels.capacity and

wheels.count = wheel_count
end

A typical descendant of VEHICLE:

note
description: "General notion of car for traffic simulation"

class
CAR

inherit
VEHICLE

redefine engine, wheels, doors end
create

make

feature -- Access
engine: CAR_ENGINE

-- Engine

wheels: ARRAYED_LIST [CAR_WHEEL]
-- Wheels

doors: ARRAYED_LIST [CAR_DOOR]
-- Doors

Wheel_count: INTEGER = 4 ; Door_count: INTEGER = 4
-- Number of wheels and doors

invariant
 four_wheels: wheel_count = 4

four_doors: door_count = 4
end

Other descendants include BUS, TRAIN etc. We also
need wheels:

note
description: "General notion of wheel for traffic simulation"

deferred class
WHEEL

feature -- Initialization
make (d: like diameter)

-- Set diameter to d.
require

diameter_valid: d >= minimum_diameter
and d <= maximum_diameter

do
diameter := d

ensure
diameter_set: diameter = d

end
feature -- Access

diameter: INTEGER
-- Diameter (in millimeters)

minimum_diameter: INTEGER
-- Minimum diameter (in millimeters)

deferred
end

maximum_diameter: INTEGER
-- Maximum diameter (in millimeters)

deferred
end

feature -- Status report
is_valid: BOOLEAN

-- Is wheel meaningful?
do

Result := (diameter >= minimum_diameter and
diameter <= maximum_diameter)

ensure
definition: Result = (diameter >=

minimum_diameter and diameter <= maximum_diameter)
end

invariant
minimum_diameter_positive: minimum_diameter > 0
min_and_max_valid: minimum_diameter <= maximum_diameter
ivalid: is_valid

end

Descendants of WHEEL may include CAR_WHEEL
etc.

Now the factory classes. VEHICLE_FACTORY, de-
ferred, contains the factory operations such as

new_vehicle (p,d,w,h: INTEGER): VEHICLE
-- New vehicle with engine power p, wheel diameter d,
-- door width w and door height h

require
power_valid: p >= minimum_power and p <= maximum_power
diameter_valid: d >= minimum_diameter and

d <= maximum_diameter
width_valid: w >= minimum_width and w <= maximum_width
height_valid: h >= minimum_height and

h <= maximum_height
deferred
ensure

vehicle_exists: Result /= Void
end

The contracts use features such as minimum_ power,
declared in class VEHICLE_FACTORY as deferred and
made effective in the descendants; these features will
in practice have to duplicate code that exists in classes
ENGINE, WHEEL, and DOOR.

Descendants of VEHICLE_FACTORY, such as
CAR_FACTORY, define their own factory features, this
time effective, for example:

new_car (p, d, w, h: INTEGER): CAR
-- New car with engine power p, wheel diameter d,
-- door width w and door height h

do
create Result.make (

new_engine (p), new_wheels (d), new_doors (w, h))
end

72 K. Arnout, B. Meyer

new_engine is another factory feature declared in VEHI-
CLE_FACTORY. new_wheels and new_doors are not
part of the class interface, but deal with the imple-
mentation; they use the factory features new_wheel and
new_door.

Using the Abstract Factory pattern, the root creation
procedure (feature make of class SIMULATION) has
such calls as:

zurich_city.vehicles.extend (car_factory.new_car (
power, wheel_diameter, door_width, door_height))

We can define car_ factory as a once function (creating
an object on first call, then returning on every subse-
quent call a reference to that object):

car_factory: CAR_FACTORY
-- Car factory object, shared

once
create Result

ensure
car_factory_exists: Result /= Void

end

This technique ensures that we have exactly one “car
factory” object in the system, and is applied to other
factories as well. The rest of the factory-based part of
the traffic simulation system follows directly from the
above models.

3.3 Abstract Factory as a pattern: an analysis

From a software engineering perspective, the Abstract
Factory pattern lends itself to criticism on two grounds:

• It causes considerable code redundancy; remember
in particular that (in the general model of
Sect. 3.1) classes FACTORY_1, PRODUCT_A and
PRODUCT_A1 are templates for m, n and m ∗ n
classes respectively, where m is the number of
factories (two in this example, 1 and 2) and n the
number of products (also two, A and B). [17] acknowl-
edges this problem by noting that the pattern
“requires a new concrete factory subclass for each
product family, even if the product family differs only
slightly”.
It is well known that code duplication is the source
of considerable trouble in software construction and
maintenance. Future changes made to one variant
must be carried over to the others; ditto for bug cor-
rections. The software becomes uselessly complex,

raising new challenges for project and configuration
management.

• Another problem is the solution’s lack of flexibil-
ity. The deferred class FACTORY must specify a
fixed number of factory functions and their signa-
tures. As a consequence, “supporting new kinds of
products is difficult”: introducing a new family of
products requires changing class FACTORY and all
its descendants. No wonder this leads to conclusions
that patterns are inherently non-componentizable.
To address these issues, [17] suggests combining Ab-
stract Factory with the Prototype pattern. In Eiffel
there is no need for this pattern, as its purpose, pro-
ducing clones of objects, is directly addressed by a
built-in language and library mechanism.

Combining cloning with genericity leads to the basic
idea behind the reusable solution – the Factory compo-
nents of the Pattern Library.

4 “Abstract Factory” as a component

We now examine the reusable solution devised for the
Abstract Factory pattern.

A reusable component lives or dies by its API – by
how easy it is for client programmers to take advantage
of the component through the purely abstract descrip-
tion of its interface. For this reason we first illustrate the
Abstract Factory component through a typical example
of its use; next we study how this solution compares,
for the application developer, with implementing the
pattern directly; then we look at the component’s inter-
nal design and implementation.

4.1 Using the Abstract Factory component

Instead of having to write one factory class per vehi-
cle type, users of the Pattern Library’s Abstract Factory
component rely on a single generic class FACTORY[G].
This is the only class we need to examine.

The root creation procedure make is similar to its
original version: the difference is that instead of calls
such as

zurich_city.vehicles.extend (car_factory.new_car
(power, wheel_diameter, door_width, door_height))

it suffices to call the factory function new_with_args from
class FACTORY[G]:

zurich_city.vehicles.extend (car_factory.new_with_args (
[car_power, car_wheel_diameter, car_door_width, car_door_height]))

Pattern componentization: the factory example 73

Function new_with_args returning a new instance of
G – the generic parameter type of FACTORY – created
by calling the creation procedures of G with the argu-
ment given. The function indeed takes a single argu-
ment, an Eiffel tuple, given by a list of values in square
brackets. The function car_ factory is defined simply as

car_factory: FACTORY [CAR]
-- Car factory

once
create Result.make (agent new_car)

ensure
car_factory_created: Result /= Void

end

and new_car as

new_car (p, d, w, h: INTEGER): CAR
-- New car with power engine p, wheel diameter d,
-- door width w and door height h

require
power_valid: p >= {CAR_ENGINE}.minimum_power and

p <= {CAR_ENGINE}.maximum_power
diameter_valid: d >= {CAR_WHEEL}.minimum_diameter and

d <= {CAR_WHEEL}.maximum_diameter
width_valid: w >= {CAR_DOOR}.minimum_width and

w <= {CAR_DOOR}.maximum_width
height_valid: h >= {CAR_DOOR}.minimum_height and

h <= {CAR_DOOR}.maximum_height
do

create Result.make
(car_engine_factory.new_with_args ([p]),
new_car_wheels (d), new_car_doors (w, h))

ensure
car_exists: Result /= Void

end

The notation {C}.m yields the value of a constant m
declared in a class C.

4.2 Discussion: pattern versus reusable component

On the basis of the API (even though we have not seen
the implementation yet) we can now compare, from a cli-
ent’s perspective, the component-based solution against
the original direct implementation of the pattern. The
traffic simulation program provides an appropriate
example.

On the negative side, the new solution loses some flex-
ibility: it no longer uses specific factory classes such as
CAR_FACTORY and BUS_FACTORY inheriting from
a common ancestor VEHICLE_FACTORY; the equiv-
alent code is in a single SIMULATION class. This may
cause some code redundancy, for example between fea-
tures new_car, new_bus, and new_tram; in addition class
SIMULATION can be bulky.

On the positive side we note:

• Reusability: the single remaining factory class,
FACTORY [G] is a library class that can be reused
in many applications whereas classes such as CAR_
FACTORY were specific to one application and
could not be reused without considerable changes.

• Ease of use: although simplicity of an API is partly
a matter of opinion, we think the traffic simula-
tion example demonstrates that the Pattern Library
makes it particularly easy to equip any application
with abstract factories.

• Fewer classes: there is now just one factory class,
the general-purpose FACTORY [G], instead of five
(VEHICLE_FACTORY and one for each other type
of vehicle).

• No code duplication for contracts: there is no more
need to duplicate in the root class SIMULATION
the constant features minimum_ power, maximum_
power etc. from ENGINE, WHEEL, and DOOR,
since we can now just use {CAR_ENGINE}.
minimum_ power etc. This was not possible in the
original version since {like new_engine}. minimum_
power is not a valid notation (a language limitation
which conceptually seems impossible to remove).

4.3 Towards a reusable component

We now examine the internal design of the Abstract Fac-
tory component of the Pattern Library. Before present-
ing the final version, which involves several advanced
language mechanisms such as constrained genericity and
agents, we briefly present a few intermediate attempts
and show why they were not completely satisfactory.
The reader who is only interested in the final version
can skip to Sect. 4.4.

In a first approach, the factory function new returns
a new instance of G by cloning a prototype, through
the built-in function cloned coming in Eiffel from the
universal ancestor class ANY and hence available to all
classes. (In earlier versions it was known as clone or
twin.)

note
 description: "[
 Mechanisms for creating objects of type 'G ' by shallow cloning of a prototype.
]"
 version: "Version 1, not final"
class

FACTORY [G]
create

make
feature -- Initialization

make (p: like prototype)
-- Set prototype to p.

require
prototype_exists: p /= Void

do
prototype := p

ensure
prototype_set: prototype = p

end

74 K. Arnout, B. Meyer

feature -- Factory function
new: G

 -- New instance of type G
do

 Result := prototype.cloned
ensure

 Result_exists: Result /= Void
end

feature {NONE} -- Implementation
prototype: G

 -- Prototype from which new objects are created
invariant
 prototype_exists: prototype /= Void
end

Function new uses shallow cloning, as provided by the
library feature cloned. It is possible to use deep cloning
instead (see [5] for more details on this and other vari-
ants). To define actual factory classes we provide actual
generic parameters, as in FACTORY[VEHICLE].

This solution, however, does not provide a direct way
to initialize newly created objects. For this we should rely
on Eiffel’s constrained genericity: we force the generic
parameter of FACTORY[G] to provide default_create as
creation procedure; Eiffel rules imply that in this case
the creation instruction create x (without an explicit cre-
ation procedure) is valid for x of type G; it will call
as creation procedure the version of default_create cor-
responding to the actual generic parameter. The class
becomes just:

note
description: "Object factory"
version: "Version 2, not final"

class
FACTORY [G -> ANY create default_create end]

feature -- Factory
new: G

-- Instantiate a new object of type G.
do

create Result
ensure

new_instance_exists: Result /= Void
end

end

In this version FACTORY[PRODUCT] is only valid if
class PRODUCT lists feature default_create as one of its
creation procedures. As a consequence, class PRODUCT
has to be an effective (non-deferred) class.

Whenever we need a product, we call the feature new
on the appropriate factory instead of creating the object
directly. As in the original pattern, this design helps sep-
arate the object creations from the application logic.
There is no more need for defining a prototype to be
cloned.

A number of drawbacks remain. In our example we
need factories of types FACTORY [CAR], FACTORY
[BUS] etc. A typical one reads:

car_factory: FACTORY [CAR]
-- Car factory

once
create Result

ensure
factory_exists: Result /= Void

end

(using a once function to guarantee sharing). CAR must
now provide default_create as a creation procedure. There
is no reason it did before since this is just an ordinary
application class. Even if we accept the prospect of mod-
ifying the class text, this could break a class invariant
clause such as

engine_exists: engine /= Void

which any creation procedure must ensure. This requires
redefining default_create in CAR :

default_create
-- Set up maze.

do
create engine.make (…)

end

This scheme may be made to work in this particular case,
but it does not generalize to classes with more sophis-
ticated invariants and creation procedures that (corre-
spondingly) require arguments. Updating such
classes to make them usable as actual generic param-
eters for FACTORY would break their existing clients.
In any case the prospect of modifying existing classes
from the application domain just to enable them to par-
ticipate in factories is not practical.

All this indicates that the reusable solution as ob-
tained so far does not scale up.

The root of the remaining problem is that the solution
as obtained so far requires creation to be specified stat-
ically. We can make the solution more dynamic thanks
to agents.

4.4 The factory component: using agents

An agent in Eiffel is an object that wraps a routine; for
a known routine r, agent r defines the associated agent;
another routine to which this agent has been passed as
the argument a does not need to know what the original
r was, but will be able to call it anyway through the call
feature available on all agents, in the form a.call ([…]),
where the argument is a tuple.

Pattern componentization: the factory example 75

By passing a creation procedure to the factory as an
agent, we can wait until run time to provide every factory
object with its tailor-made initialization mechanism.

This observation gives us the final version of the class
FACTORY as used in the Pattern Library.

note
description: "Object factory"
version: "Final version from the Pattern Library"

class FACTORY [G] create
make

feature -- Initialization
make (func: like factory_function)

-- Set factory_function to func.
require

func_exists: func /= Void
do

set_factory_function (func)
ensure

function_set: factory_function = func
end

feature -- Access

factory_function: FUNCTION [ANY, TUPLE, G]
-- Factory function creating instances of G

feature -- Factory functions
new: G

-- New instance of G
do

factory_function.call ([])
Result := factory_function.last_result

ensure
new_exists: Result /= Void

end

new_with_args (args: TUPLE): G
-- New instance of type G initialized with args

require
valid: factory_function.valid_operands (args)

do
factory_function.call (args)
Result := factory_function.last_result

ensure
new_exists: Result /= Void

end

feature -- Element change
set_factory_function (func: like factory_function)

-- Set factory_function to func.
require

func_exists: func /= Void
do

factory_function := func
ensure

function_set: factory_function = func
end

invariant
factory_function_exists: factory_function /= Void

end

4.5 Component properties

We note the following properties of the componentiza-
tion of the Abstract Factory pattern using the criteria of
Sect. 2.5:

• Completeness: The Factory component covers all
cases described in the original Abstract Factory pat-
tern. An apparent limitation is that it is possible to
create only one kind of product; but this is simply a
matter of convention: if you need to create two kinds
of product, you’ll just use two factories.

• Usefulness: The Factory component can indeed be
used in practice as an effective replacement for the
pattern.

• Faithfulness: While the architecture is different, the
Factory component retains the intent and spirit of
the original Abstract Factory pattern.

• Type-safety: The Factory component mainly relies on
type-safe mechanisms of constrained genericity and
agents.

• Performance: The main difference between the inter-
nal implementation of the Factory component and
the Abstract Factory design pattern is the use of
agent calls instead of direct calls to factory functions.
Agents carry a performance overhead, but that over-
head is very small on the overall application. Our
benchmarks on a typical application show a degra-
dation of only 7%.

• Extended applicability: The Factory component does
not cover more cases than the original Abstract Fac-
tory pattern.

5 Limitations of the approach

We have shown on the example of Abstract Factory
(confirmed by many others in our study) that it is pos-
sible to turn that design patterns into reusable com-
ponents. There are, however, some limitations to this
approach.

5.1 One pattern, several implementations

The first limitation does not apply to the example of
this article but to the approach as a whole: not all pat-
terns appear fully componentizable. Counter-examples
include “State”, “Builder” and “Proxy”. So we will in
the short term continue to need some patterns that are
only patterns, not components.

5.2 Language dependency

We heavily rely on Eiffel mechanisms. We have not tried
to transpose the approach to other languages. As an ini-
tial assessment for two recent languages:

• Genericity plays an important role and until recently
was specific to Eiffel (and C++ with its macro-like
“template” mechanism). Both Java and C# [21] are
in the process of adding a generic mechanism, which
will help.

• Neither Java nor C# support multiple inheritance
except from interfaces; this precludes the direct

76 K. Arnout, B. Meyer

imitation of the Eiffel solutions using multiple inher-
itance.

• Neither Java nor C# support contracts; this affects
the clarity of reusable solutions and the ease of mak-
ing arguments supporting their correctness, but not
the architecture per se. We may point here to our
earlier work [2, 3] on automatically extracting con-
tracts from non-contracted classes, for example on
.NET, which may prove useful here.

• C#’s “delegates” are a more limited form of agents,
which may be applicable to the many Pattern Library
solutions relying on agents.

• Java has explicitly rejected any form of agents or
delegates. This puts into question the applicability to
Java of most of the Pattern Library ideas (although
reflection might provide some solutions).

5.3 Usefulness

Some programmers may prefer to write their own cus-
tomized design pattern implementation for any of the
following reasons:

• Usage complexity: In some cases, using the reusable
component may be less user-friendly than a custom-
ized pattern implementation. It may also be some-
what overkill when the pattern implementation is
very simple. The Memento pattern is an example of
this case.

• Performance: Some componentized versions of de-
sign patterns imply a performance overhead com-
pared to a “traditional” pattern implementation.
This is not the case with Abstract Factory, but for
example the componentized Visitor may imply an
overhead of 30–50% over direct use of the pattern
[29]. Although the pattern typically accounts for only
part of the execution time of an entire application,
this overhead may be intolerable in some perfor-
mance-critical cases.

6 Related work

6.1 C++ implementation of design patterns

Alexandrescu explains [1] how to implement some de-
sign patterns in C++. Although related, his work only
addresses a few design patterns, and its focus is differ-
ent: providing different implementations of the patterns,
many of them relying on C++ templates, rather than
reusable (componentized) solutions.

6.2 Aspect implementation of design patterns

Hannemann and Kiczales [19, henceforth “H & K”]
explored how to take advantage of aspect-oriented pro-
gramming (AOP) [22] to implement aspects; they imple-
mented the same 23 patterns as our study, in both Java
and AspectJ [13], an aspect-oriented extension for Java.
They evaluated the resulting code according to four
properties:

• Locality: The pattern code is confined in aspects; it
does not extend to existing classes participating in
the pattern.

• Reusability: The abstract aspect can be reused (pro-
grammers still need to write concrete aspects).

• Composition transparency: Some classes can be in-
volved in many patterns transparently (because the
pattern code is located in an aspect and does not
touch the participant classes).

• (Un)pluggability: Adding or removing a pattern is
easy because participant classes do not know about
their involvement in the pattern implementation.

Using AspectJ sometimes came down to an implemen-
tation change and sometimes resulted in a completely
new design structure.

The reusability classification of the aspect implemen-
tations is the most closely related to this work. While
H & K’s definition of reusability differs from the one
presented in this article (abstract aspects vs. concrete
classes), it is interesting to see the similarities.

H & K note that Observer code usually spreads across
several classes, making maintenance harder. For exam-
ple, concrete subjects are likely to have many similar
features which call a procedure update_observers. Using
aspects solves the problem through the notion of point-
cut: one can define a set of points in the program exe-
cution where the feature update_observers needs to be
called – no need to pollute the code of all concrete sub-
jects anymore. As a result H & K categorize Observer
as reusable with AspectJ. They found eleven other pat-
terns for which “a core part of the implementation can be
abstracted into reusable code”. Comparing these results
with our componentizability classification:

• Our classification agrees on ten of their twelve reus-
able patterns. The Singleton and Iterator patterns
resisted componentization work; note however that
Iterator is already supported to some extent by exist-
ing Eiffel libraries and that the notion of “frozen
class” now introduced in standard Eiffel makes it
possible to generate skeleton classes for Singleton.

Pattern componentization: the factory example 77

• For Proxy, Builder and State we achieve partial com-
ponentization. The difference simply reflects that our
classification is more fine-grained; H & K only con-
sider “yes” or “no” answers.

• H & K’s results did not succeed in handling Abstract
Factory and Factory Method through AspectJ as-
pects; we were able to componentized them thanks
to Eiffel’s genericity and agents.

• Both classifications find Adapter, Decorator, Tem-
plate Method, Bridge, Interpreter and Façade not to
be componentizable.

H & K explain their results by the nature of design
patterns. They distinguish between patterns with defin-
ing roles (classes participating in the pattern have no
functionality outside the pattern) and those with super-
imposing role (participating classes have outside func-
tionality) and state that most reusability improvements
concern patterns of the second category, since superim-
posed pattern behavior can be moved into an indepen-
dent reusable module.

In addition to H & K there is considerable activity in
the area of applying aspects to patterns; see for exam-
ple [18]. The expected advantages include a reduction of
the number of pattern participants (typically one aspect
instead of several classes); better traceability of the code
and hence better documentation; more localized pattern
code; and more reuse. We may note, however the fol-
lowing limitations:

• Just as our componentization work depends on the
programming language used to write the compo-
nents, AOP approaches depend on the choice of
aspect language. For example [18] mentions the diffi-
culty of translating code from AspectJ to HyperJ.

• An aspect implementation typically introduces (as
also pointed out by [18]) many small aspects, which
are necessary to understand the design. As a result it
is not so clear to us what exactly is gained over a stan-
dard pattern implementation. With full componen-
tization, the pattern implementation resides entirely
in a class or a few classes from a library, understand-
able through the sole provision of its API.

6.3 Language support of design patterns

Chambers et al. write [11] that design patterns “have
proved so useful that some have called for their promo-
tion to programming language features”. As an example,
Bosch describes [8] a new language called LayOM with
original support for design patterns through such con-
structs as “layer” and “state”, which permit to represent
patterns.

Clearly, the inability to componentize patterns fully
is an interesting source of language design ideas. An
example is the introduction of “frozen” classes into stan-
dard Eiffel, which was motivated in part by the need
to support better componentization of Singleton [4].
But to avoid what Chambers et al. call the “kitchen
sink problem” one cannot add a language feature for
every need. The spirit behind Eiffel’s design is that
every new functionality should add a significant power
of expressiveness to the language at low cost on the
overall language complexity, avoiding “featurism” and
keeping instead a “high signal to noise ratio” [14,26,
30]. A programming language is, in any case, a com-
plex engineering construction; while it is possible and
pleasurable to play with tentative language constructs
in an academic environment with the hope of influenc-
ing future industrial languages, the industrial languages
themselves tend to evolve slowly, and the addition of any
new concept is a major endeavor that must be reconciled
with many engineering criteria: backward compatibil-
ity, consistency with other language constructs, imple-
mentability at reasonable cost, possible performance
hits (compile-time and run-time), teachability, insertion
into release schedules etc. So we cannot envision turning
every great language design idea, however attractive on
paper, into a realistic language feature.

Componentization, whenever applicable, seems the
more desirable approach. Only when it fails for reasons
that appear fundamental (rather than lack of insight on
the part of those attempting it) should one turn to the
investigation of possible language extensions.

6.4 Automatic code generation from patterns

Budinsky et al. [9] describe a tool (dating back to as
early as 1996) for generating code from design patterns;
this is a precursor to our Pattern Wizard. There are,
however, important differences. Some are of implemen-
tation (HTML browser and Perl scripts instead of an
object-oriented design, generation of C++ rather than
Eiffel). More fundamentally: our Pattern Wizard is sim-
pler to use and meant solely to complement the use of
the Pattern Library.

The “Presenter” part of the tool by Budinsky et al.,
on the other hand, provides more options and in general
more flexibility, from which the Pattern Wizard could
benefit.

7 Conclusion

The goal of this work was to explore a conjecture from
[27]: “A successful pattern cannot just be a book

78 K. Arnout, B. Meyer

description: it must be a software component, or a set of
components”; see also Pinto et al. [31]: “The Design Pat-
terns fail providing a solution because it is necessary to ap-
ply and implement the same design pattern over and over,
for each component”. The results obtained so far show
that, for a large part, patterns can indeed be replaced
by components. The success ratio cited in 2.2 (48% full
componentization, 17% partial) are encouraging. The
Abstract Factory example shows the process at work.

The results of componentization – the classes in the
Pattern Library – are of good quality: type-safe and con-
tract-equipped. Significant practical usage, including in
industrial applications, has demonstrated their practi-
cality.

Another directly usable result is the componentizabil-
ity classification, which gives programmers a reference
to know where to look for help: in the best case, just
go to the applicable API and do not bother any further;
otherwise, use the Pattern Wizard if applicable; in the
couple of remaining cases, you know you have no one
to turn to but yourself.

The progress of software engineering suggests that it
is usually better to reuse than to redo; the componenti-
zation results shows that, for design patterns, it is often
possible to use the better alternative.

8 Future work

The following directions appear interesting for continu-
ation of this work.

• Componentizing more design patterns: there are
plenty of patterns beyond those we studied so far;
see e.g. [10].

• Testing componentized patterns: testing the reusable
components resulting from pattern componentiza-
tion is essential because reuse increases both good
and bad aspects of the software. Robert Binder ex-
plains that “components offered for reuse should be
highly reliable; extensive testing is warranted when
reuse is intended” [7]. The AutoTest environment
[15] supports the automatic testing of contracted
components and could be fruitfully applied to the
results of pattern componentization.

Acknowledgements We are grateful to Éric Bezault for com-
ments on this article and the componentization work in general.

References

1. Alexandrescu A (2001) Modern C++ design, generic program-
ming and design patterns applied. Addison-Wesley, Reading

2. Arnout K, Meyer B (2003) Finding Implicit Contracts in .NET
Components. In: de Boer F, Bonsangue M, Graf S, de Ro-
ever WP (eds) Proceedings of FMCO 2002 (Ist international
symposium on formal methods for components and objects,
Leiden, The Netherlands, November 2002), LNCS vol 2852.
Springer, Berlin Heidelberg New York, pp 285–318,

3. Arnout K, Meyer B (2003) Uncoverring hidden contracts: the
.NET example. IEEE Comput 36(11):48–55

4. Arnout K, Bezault E (2004) How to get a Singleton in
Eiffel? In: Proceedings of TOOLS USA 2003 (44th inter-
national conference on the technology of object-oriented
languages and systems), Santa Barbara, CA, September 2003,
in J Object Technol 3(4), 75–95. Available (March 2006) at
http://www.jot.fm/issues/issue_2004_04/article5

5. Arnout K (2004) From patterns to components, PhD
thesis, ETH Zurich. Available (2006) at http://se.ethz.ch/
people/arnout/patterns/

6. Arslan V, Nienaltowski P, Arnout K (2003) An object-
oriented library for event-driven design. In: Böszörmenyi L,
Schojer P (eds) Proceedings of JMLC (joint modular lan-
guages conference), Klagenfurt, Austria, August 2003. LNCS
2789. Springer, Berlin Heidelberg New York, pp 174–183

7. Binder RV (1999) Testing object-oriented systems, models,
patterns and tools. Addison-Wesley, Reading

8. Bosch J (1998) Design patterns as language constructs. J Ob-
ject Oriented Programm 11(2): 18–32

9. Budinski F, Finnie M, Yu P, Vlissides J (1996) Automatic code
generation from design patterns. IBM Syst J, 35(2):151–171.
Available (March 2006) at http://www.research.ibm.com/de-
signpatterns/pubs/codegen.pdf

10. Bushmann F, Meunier R, Rohnert H, Sommerlad P, Stal M
(1996) Pattern-oriented software architecture: A system of
patterns, Vol 1. Wiley, New York

11. Chambers C, Harrison B, Vlissides J (2000) A debate on lan-
guage and tool support for design patterns. In Proceedings of
POPL 2000 (27th ACM SIGPLAN-SIGACT symposium on
principles of programming languages), Boston, ACM Press,
pp 277–289

12. Dubois P, Howard M, Meyer B, Schweitzer M, Stapf
E (1999) From calls to agents. JOOP (J Object Ori-
ented Programm), 12(6): 1999. Available (March 2006) at
http://www.inf.ethz.ch/∼meyer/publications/joop/agent.pdf

13. Eclipse (2006) Aspectj project. Available (March 2006) at
http://www.eclipse.org/aspectj

14. ECMA International (2005) ECMA Standard 367: Eiffel:
analysis, design and programming language, approved 21 June
2005. (Expected to become ISO standard in 2006)

15. ETH Zurich (2006) Chair of Software Engineering: Auto-
Test project pages and articles, available (March 2006) from
http://se.ethz.ch/people/leitner/auto_test/

16. ETH Zurich (2006) Chair of software engineering: pattern
library and pattern wizard; available (March 2006) from the
download page. http://se.ethz.ch/download

17. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design
Patterns. Addison-Wesley, Reading

18. Hachani O, Bardou D (2003) On Aspect-oriented technology
and object-oriented design patterns. In: Proceedings of the
workshop on Analysis of Aspect-Oriented Software, held in
conjunction with ECOOP 2003 (17th European conference
for object-oriented programming), Darmstadt, Germany.
Available (March 2006) at www.comp.lancs.ac.uk/comput-
ing/users/chitchya/AAOS2003/Assets/hachani_bardou.pdf

19. Hannemann J, Kiczales G (2002) Design pattern implementa-
tion in Java and AspectJ. In: OOPSLA 2002 (17th ACM con-
ference on object-oriented programming, systems, languages
and applications, Seattle 4–8 November 2002, ACM Press,
pp 161–173

Pattern componentization: the factory example 79

20. Jézéquel J-M, Train M, Mingins C (1999) Design patterns and
contracts. Addison-Wesley, Reading

21. Kennedy A, Syme D (2001) Design and implementation
of generics for the .NET common language runtime. In:
Proceedings of PLDI 2001 (ACM conference on program-
ming language design and implementation), Snowbird, UT.
Available (March 2006) at research.microsoft.com/projects/
clrgen/generics.pdf

22. Kiczales G, Lamping J, Mendhekar A, Maeda C, Videira
Lopes C, Loingtier J-M, Irwin J (1997) Aspect-oriented pro-
gramming. ECOOP 1997 (European conference for object-
oriented programming), Jyväskylä, Finland, 9–13 June 1997.
In: Aksit M, Matsuoka S (eds) LNCS 1241. Springer, Berlin
Heidelberg New York, pp 220–242. Available (March 2006,
registration required) at http://www.link.springer.de/link/
service/series/0558/papers/1241/12410220.pdf

23. Meyer B (1986) Applying ‘Design by Contract’. Technical
Report TR-EI-12/CO, Interactive Software Engineering Inc;
also in IEEE Comput 25(10):40–51

24. Meyer B (1988) Object-oriented software construction. Pren-
tice Hall, Eaglewood cliffs

25. Meyer B (1991) Design by contract. In: Mandrioli D, Meyer
B (eds) Advances in object-oriented software engineering,
Prentice Hall, pp 1–50

26. Meyer B (1991) Eiffel: the language. Prentice Hall, Eagle-
wood cliffs (second printing, 1992)

27. Meyer B (1997) Object-oriented software construction, 2nd
edn. Prentice Hall, Eaglewood cliffs

28. Meyer B (2004) The power of abstraction, reuse and sim-
plicity: an object-oriented library for event-driven design. In:
Owe O, Krogdahl S, Lyche T (eds) From object-orientation
to formal methods: essays in memory of Ole-Johan Dahl.
Lecture notes in computer science, vol 2635. Springer Berlin
Heidelberg New York, pp 236–271. Available (March 2006)
at http://se.ethz.ch/∼meyer/publications/lncs/events.pdf

29. Meyer B, Arnout K (2006) Componentization: The visitor
example, to appear in Computer (IEEE). Draft avail-
able (March 2006) at http://se.ethz.ch/∼meyer/publications/
patterns/visitor.pdf

30. Meyer B (2006) Eiffel sthe language, 3rd edn. Draft available
at http://se.ethz.ch/∼meyer/ongoing/etl/ (in preparation)

31. Pinto M, Amor M, Fuentes L, Troya JM (2001) Run-time
coordination of components: design patterns vs. component
& aspect based platforms. In: ASoC workshop (Advanced
Separation of Concerns), 18–22 June 2001, Budapest.
Available (March 2006) at http://www.lcc.uma.es/∼lff/papers/
pinto-asoc-eccop01.pdf

32. Waldén K, Nerson J-M (1995) Seamless object-oriented soft-
ware architecture. Prentice Hall, Englewood cliffs

