
Innovations Syst Softw Eng (2007) 3:75–102
DOI 10.1007/s11334-006-0011-y

ORIGINAL PAPER

Model-driven architecture-centric engineering of (embedded)
software intensive systems: modeling theories and architectural
milestones

Manfred Broy

Received: 14 April 2006 / Accepted: 18 August 2006 / Published online: 15 November 2006
© Springer-Verlag London Limited 2006

Abstract Today, in general, embedded software is
distributed onto networks and structured into logical
components that interact asynchronously by exchanging
messages. The software system is connected to sensors,
actuators, human machine interfaces and networks. In
this paper we study fundamental models of composed
embedded software systems and their properties, iden-
tify and describe various basic views, and show how
they are related. We consider, in particular, models of
data, states, interfaces, functionality, hierarchically com-
posed systems, and processes. We study relationships by
abstraction and refinement as well as forms of composi-
tion and modularity. In particular, we introduce a com-
prehensive mathematical model and a corresponding
mathematical theory for composed systems, its essential
views and their relationships. We introduce two meth-
odologically essential, complementary and orthogonal
concepts for the structured modeling of multifunctional
embedded systems in software and systems engineering
and their scientific foundation. One approach addresses
mainly tasks in requirements engineering and the speci-
fication of the comprehensive user functionality of mul-
tifunctional systems in terms of their functions, features
and services. The other approach essentially addresses
the design phase with its task to develop logical archi-
tectures formed by networks of interactive components
that are specified by their interface behavior.

M. Broy (B)
Institut für Informatik, Technische Universität München,
80290 München, Germany
e-mail: broy@in.tum.de
URL: http://wwwbroy.informatik.tu-muenchen.de

1 Motivation

Development of software in general, and in particular
of embedded software, is today one of the most com-
plex but at the same time most effective tasks in the
engineering of innovative applications. Software drives
innovation in many application domains. Modern soft-
ware systems are typically embedded in technical or
organizational processes, distributed, dynamic, and ac-
cessed concurrently by a variety of independent user
interfaces. Just by constructing appropriate software we
can provide engineering solutions that can calculate re-
sults, communicate messages, control devices, and illus-
trate and animate all kinds of information.

Making embedded systems and their development
more accessible and reducing their complexity in terms
of development, operation, and maintenance we use
classical concepts from engineering, namely abstraction,
the separation of issues, and appropriate ways of struc-
turing software. Well-chosen models and their theo-
ries support such concepts. Also software development
can be based on models of system behavior and, since
well-chosen models are a successful way to understand
software and hardware development, modeling is an
essential and crucial issue in software construction
(Fig. 1).

In the development of large, complex software sys-
tems it is simply impossible to provide one comprehen-
sive model for the system in only one step. Rather we:

• Specify a system or subsystem first in terms of its
functionality modeled by its interface, given in a
structured way in terms of a function hierarchy

• Add stepwise details by property refinement

76 M. Broy

Fig. 1 Schematic
architecture of an embedded
system. Top: an abstract view;
bottom: a concrete view

MMI sensor

actuator

system

component A component
B

component C

Hardware

Bus

controller

bus driver

schedule
r

component B
Task 1 component A

Task 1

controller

bus driver

scheduler

component D
Task 1 component C

Task 1

MMI sensor

actuator

system

component A component
B

component C

Hardware

Bus

controller

bus driver

schedule
r

component B
Task 1 component A

Task 1

controller

bus driver

scheduler

component D
Task 1 component C

Task 1

• Provide several views of the system in terms of states,
architecture and processes

• Decompose the system hierarchically into compo-
nents

• Construct a sequence of models on different levels
of abstraction

Each step in these activities introduces models, refines
them, verifies or integrates them. Figure 2 shows an ide-
alized process based on modeling. The most remarkable
issue is the independence of the architecture verification
from its implementation, the modularity (mutual inde-
pendency) of the component implementation, and the
guaranteed correctness of the integration, which follows
as a theorem from the correctness of the architecture
and the correctness of each of the realizations of the
components.

2 Comprehensive system modeling theory

In this section we introduce a comprehensive system
model. It is aimed at distributed systems that interact
by asynchronous message exchange in a time frame. It
introduces the following views of systems:

• The data view, which introduces the fundamental
data types

• The syntactic interface view, which shows through
which events a system may interact with its environ-
ment

• The state view, where systems are modeled by state
machines with input and output

• The semantic interface view, where systems are mod-
eled in terms of their interaction with their environ-
ment

• The architecture view, where systems are modeled in
terms of their structuring into components

• The service view, where the overall functionality of a
large system is structured into a hierarchy of services
and sub-services

We introduce mathematical models to represent these
views. In the following chapters we show how these
views are related.

This is to be seen as the basis of a theory of mod-
eling for the engineering of software-intensive systems.
Figure 3 gives an overview of these views in terms of the
models that represent them.

2.1 The data model: algebras

We believe, like many others, that data types (typing) are
a very helpful concept in structured modeling of appli-
cation domains and software structures (for details, see
[12]). From a mathematical point of view, a data model
consists of a heterogeneous algebra. Such algebras are
given by families of carrier sets and families of functions
(including predicates and thus relations). More techni-
cally, we assume a set TYPE of types (sometimes also
called sorts).

Given types we consider a set FUNCT of function
symbols with a predefined functionality (TYPE* stands
for the set of finite sequences over the set of types
TYPE)

fct : FUNCT → (TYPE* × TYPE)

The function fct associates with every function symbol
in FUNCT its domain types and its range type. Both
the sets TYPE and FUNCT provide only names for sets
and functions. The pair (TYPE, FUNCT) together with
the type assignment fct is often called the signature
of the algebra. The signature is the static (also called

Model-driven architecture-centric engineering of (embedded) software intensive systems 77

Fig. 2 Idealized modular
development Informal

requirements

formalisation

S

Formalized
system requirements

S1 S2

S4 S3

R
1

R2

R Rarchitecture

realization

deliver

R1 R2

R4 R3

Requirements
Engineering
Validation

Architecture design
Architecture verification
S = S1⊗S2⊗S3⊗S4

Component
implementation
verification
R1 ⇒ S1
R2 ⇒ S2
R3 ⇒ S3
R3 ⇒ S4

Integration
R = R1⊗R2⊗R3⊗R4

R

integration

System delivery
System verification

R ⇒ S

,

Feature model

Composition
Refinement
Time

Implementation

Implementation

uses

uses

uses

Abstraction

Data model:
Types/sorts and characteristic functions

State transition model:
States and state machines

Composition
Refinement
Time

Process transition model:
Events actions and causal relations

Composition
Refinement
Time

Interface model: components
Input and output

Composition
Refinement
Time

Abstraction

Hierarchy
and
architecture

Abstraction

Is sub-feature

Fig. 3 The structure of modeling elements

syntactic) part of a data model. Every algebra with a
signature (TYPE, FUNCT) provides a carrier set (a set
of data elements) for every type and a function of the
requested functionality for every function symbol. For
each type T ∈ TYPE we denote by CAR(T) its carrier
set. There are many ways to describe data models such
as algebraic specifications, E/R diagrams (see [29]) or
class diagrams.

2.2 Syntactic interfaces of systems and their
components

A system and also a system component is an active
information-processing unit that encapsulates a state
and communicates asynchronously with its environment
through its interface, syntactically characterized by a set

of input and output channels. This communication takes
place within a global (discrete) time frame. In this sec-
tion we introduce the notion of a syntactic interface of
systems and system components. The syntactic interface
models by which communication lines, which we call
channels, the system or a system component is connected
to the environment and which messages are communi-
cated over the channels. We distinguish between input
and output channels.

The channels and their messages determine the inter-
action events that are possible for a system or a system
component. In the following sections we introduce sev-
eral views such as state machines, semantic interfaces
and architectures that all fit the syntactic interface view.
As we will see, each system can be used as a compo-
nent in a larger system and each component of a system

78 M. Broy

is a system by itself. As a result there is no difference
between the notion of a system and that of a system
component.

2.2.1 Typed channels

In this section we introduce the concept of a typed chan-
nel. A typed channel is a directed communication line
over which messages of its specific type are communi-
cated.

A typed channel c is a pair c = (e, T) consisting of an
identifier e, called the channel identifier, and the type T,
called the channel type.

Let CID be a set of identifiers for channels. For a set

C ⊆ CID × TYPE

of typed channels we denote by SET(C) ⊆ CID its set
of channel identifiers:

SET(C) = {e ∈ CID : ∃T ∈ TYPE : (e, T) ∈ C}
A set C ⊆ CID × TYPE of typed channels is called a
typed channel set, if every channel identifier e ∈ SET(C)

has a unique type in C (in other words, we do not allow in
typed channel sets the same channel identifier to occur
twice with different types). Formally, we assume for a
typed channel set:

(c, T1) ∈ C ∧ (c, T2) ∈ C ⇒ T1 = T2

By TypeC(c) we denote for c ∈ C with c = (e, T) the
type T.

A typed channel set C1 is called a subtype of a typed
channel set C2 if the following formula holds:

(c, T1) ∈ C1 ⇒ ∃T2 ∈ TYPE : (c, T2)

∈ C2 ∧ CAR(T1) ⊆ CAR(T2)

Then SET(C1) ⊆ SET(C2) holds. We write then

C1 subtype C2

Thus, a subtype C1 of a set of typed channels carries
only a subset of the channel identifiers and each of the
remaining channels only a subset of the messages. The
idea of subtypes is essential for relating services (see
later).

The subtype relation is a partial order, since it is obvi-
ously reflexive, transitive, and antisymmetric. In fact, it
is a complete partial order on the set of typed channel
sets. For two sets of typed channels C1 and C2 there is
always a least set of typed channels C such that both
C1 subtype C and C2 subtype C hold. C is called the
least super-type of C1 and C2. Similarly there exists
always a greatest subtype for two sets C1 and C2 of typed
channels that is the greatest set of typed channels that

is a subtype both of C1 and C2. Actually the set of the
sets of typed channels forms a lattice. We denote by
glb{C1, C2} the greatest subtype and by lub{C1, C2} the
least upper bound (the least super-type) of the sets C1
and C2 of typed channels.

2.2.2 Syntactic interfaces

A syntactic interface of a system is defined by the set
of messages that can occur as input and output. Since
we assume that those messages are communication over
channels, we introduce a syntactic interface of systems
that consists of typed channels.

Let I be the set of input channels and O be the set of
output channels of the system F. With every channel in
the set I ∪O we associate a data type indicating the type
of messages sent along that channel. Then by (I � O)

the syntactic interface of a system is denoted. A graphi-
cal representation of a system with its syntactic interface
and individual channel types is shown in Fig. 4. It has
the syntactic interface

({x1 : S1, . . . , xn : Sn} � {y1 : T1, . . . , ym : Tm})
By (I � O) and SF[I � O] we denote the syntactic inter-
face with input channels I and output channels O. By SF

we denote the set of all syntactic interfaces for arbitrary
channel sets I and O.

In the following we give three versions of represen-
tations of systems with such syntactic interfaces, namely
state machines, stream functions, and architectures.

2.3 State view: state machines

One common way to model a system and its behavior
is to describe it by a state machine in terms of a state
space and its state transitions. This leads to a state view
of systems.

2.3.1 State machine model: state transitions

Often systems can be modeled in an easily understand-
able way by a state transition machine with input and
output. A state transition is one step of a system execu-
tion leading from a given state to a new state.

Given a state space � a state machine (�, �) with
input and output according to the syntactic interface
(I � O) is given by a set � ⊆ � of initial states as well
as a state transition function

� : (� × (I → M∗)) → ℘(� × (O → M∗))

For each state σ ∈ � and each valuation u : I → M∗
of the input channels in I by sequences we obtain by
every pair (σ ′, s) ∈ �(σ , u) a successor state σ ′ and a

Model-driven architecture-centric engineering of (embedded) software intensive systems 79

 x1: S1

 xn: Sn

y1: T1

ym: Tm

F
M M

Fig. 4 Graphical representation of a system as a data flow node
with input channels x1, . . . , xn and output channels y1, . . . , ym and
their respective types

valuation s : O → M∗ of the output channels consisting
of the sequences produced by the state transition. If the
output depends only on the state we speak of a Moore
machine.

By SM[I � O] we denote the set of all Moore
machines with input channels I and output channels O.
By SM we denote the set of all Moore machines.

2.3.2 Computations of state machines

In this section we define computations for state ma-
chines with input and output.

A computation for a state machine (�, �) and an
input {x.t + 1 ∈ I → M∗ : t ∈ N} is given by a sequence
of states

{σt : t ∈ N}

and an output history {y.t + 1 ∈ O → M∗ : t ∈ N} such
that for all t ∈ N we have:

(σt+1, y.t + 1) ∈ �(σt, x.t + 1) and σ0 ∈ �

The history y is called an output of the computation of
the state machine (�, �) for input x and initial state σ0.
We also say that the machine computes the output y for
the input x and initial state σ0.

The introduced state machines communicate a finite
sequence of messages on each of their channels in each
state transition. Thus a state transition comprises a set of
events. We therefore call a state transition a macro-step.
We assume that each macro-step is carried within a fixed
time interval. It subsumes all events of interaction in this
time interval and produces the state that is the result of
these events. Thus, state machines model concurrency
in the time intervals.

2.4 The interface model

In this section we introduce an interface model for sys-
tems. It describes the behavior of a system in the most
abstract way by the relation between its streams of input
messages and output messages.

E

e
q

q
e

Q

t t+1 t+2 t+3

‹a,d,a,b› ‹›
>

M = {a, b, c, ...}

content of channel
at time t

infinite channel
history

Message set:

Fig. 5 Streams as models of the interaction between systems

2.4.1 Streams

Let M be a set of messages, for instance the carrier set
of a given type. By M∗ we denote the finite sequences
of elements from M. By M∞ we denote the set of infi-
nite streams of elements of set M, which can be rep-
resented by functions N+ → M where N+ = N\{0}. By
Mω = M∗∪M∞ we denote the set of streams of elements
from the set M, which are finite or infinite sequences of
elements from M. A stream represents the sequence of
messages sent over a channel during the lifetime of a
system.

In fact, in concrete systems communication takes
place in a time frame; we often find it convenient to
be able to refer to this time. Therefore we work with
timed streams.

Our model of time is extremely simple. We assume
that time is represented by an infinite sequence of time
intervals of equal length. In each interval on each chan-
nel a finite, possibly empty sequence of messages is
transmitted. By (M∗)∞ we denote the set of infinite
streams of sequences of elements of set M. Mathemat-
ically, a timed stream in (M∗)∞ can also be understood
as a function N+ → M∗.

On each channel that connects two systems there
flows a stream of messages in a time frame as shown
in Fig. 5.

Throughout this paper we work with a few simple
notations for streams. We use, in particular, the follow-
ing notations for a timed stream x:

z∧x: concatenation of a sequence or stream z to a
stream x

x.k: the k-th sequence in the stream x
x ↓ k: prefix of the first k sequences in the timed stream

x
M©x: the stream obtained from the stream x by keep-

ing only the messages in the set M (and deleting
all messages not in M)

80 M. Broy

x̄: the finite or infinite (untimed) stream that is the
result of concatenating all sequences in x

Let r ∈ (M∗)∞; r̄ is called the time abstraction of the
timed stream r.

One of the advantages of timed streams is that we can
easily define a merge operator. Merging two streams is
a very basic concept. First, we introduce a function to
merge sequences

merge : M∗ × M∗ → ℘(M∗)

where (for s, s1, s2 ∈ M∗, a1, a2 ∈ M):

merge(〈〉, s) = merge(s, 〈〉) = {s}
merge(〈a1〉∧s1, 〈a2〉∧s2)

= {〈a1〉∧s : s ∈ merge(s1, 〈a2〉∧s2)}
∪ {〈a2〉∧s : s ∈ merge(〈a1〉∧s1, s2)}

This function is easily extended to timed streams x, y ∈
(M∗)∞ as follows (for t ∈ N)

merge(x, y).t = merge(x.t, y.t)

2.4.2 Channel valuations

A typed channel c is given by a channel type T and a
channel identifier e, which denotes a stream with stream
type Stream T. A channel is basically a name for a
stream. Let C be a set of typed channels. A channel
valuation is a mapping

x : C → (M∗)∞

that associates a timed stream x(c) with each channel
c ∈ C, where the timed stream x(c) carries only messages
of the type of c. The set of valuations of the channels in
C is denoted by �C.

The operators introduced for streams easily general-
ize to sets of streams and valuations. Thus we denote
for a channel valuation x ∈ �C by x̄, its time abstraction,
defined for each channel c ∈ C by the equation

x̄(c) = x(c)

Note that x̄ defines a time abstraction for the channel
valuation x.

We generalize the idea of merging streams to valua-
tions of channels by timed streams to the direct sum of
two histories.

Definition (Direct sum of histories) Given two sets C
and C′ of typed channels with consistent types (i.e., for
joint channel identifiers their types coincide) and histories
z ∈ H(C) and z′ ∈ H(C′) we define the direct sum of the

histories z and z′ by (z ⊕ z′) ⊆ H(C ∪ C′). It is specified
as follows:

{y.c : y ∈ (z ⊕ z′)} = {z.c} ⇐ c ∈ SET(C)\SET(C′),
{y.c : y ∈ (z ⊕ z′)} = {z′.c} ⇐ c ∈ SET(C′)\SET(C)

(z ⊕ z′).c = merge(z.c, z′.c) ⇐ c ∈ SET(C) ∩ SET(C′)

This definition expresses that each history in the set z⊕ z′
carries all the messages the streams z and z′ carry in the
same time intervals and the same order.

The sum operator ⊕ is commutative and associative. The
proof of these properties is rather straightforward.

Based on the direct sum we can introduce the notion
of a sub-history ordering. It expresses that a history con-
tains only a selection of the messages of a given history.

Definition (Sub-history ordering) Given two histories
z ∈ H(C) and z′ ∈ H(C′) where C subtype C′ holds,
we define the sub-history ordering ≤sub as follows:

z ≤sub z′ iff ∃z′′ : z ∈ z′ ⊕ z′′

In fact, the sub-history ordering relation between histo-
ries is a partial ordering on the set of channel histories.
Again the proof is rather straightforward. The empty
stream is the least element in this ordering.

2.4.3 Interface behavior

In the following let I and O be sets of typed channels.
We describe the interface behavior of a system by an

input/output (I/O) function that defines a relation be-
tween the input streams and output streams of a system.
An I/O function is represented by a set-valued function
on valuations of the input channels by timed streams.

F : �I → ℘(�O)

The function yields a set of valuations for the output
channels for each valuation of the input channels.

If F is called strongly causal it fulfills the following
timing property, which axiomatizes the time flow (for
x, z ∈ �I, y ∈ �O, t ∈ N) :

x ↓ t = z ↓ t ⇒ {y ↓ t + 1 : y ∈ F(x)}
= {y ↓ t + 1 : y ∈ F(z)}

Here x ↓ t denotes the stream that is the prefix of the
stream x and contains t finite sequences. In other words,
x ↓ t denotes the communication histories in the chan-
nel valuation x until time interval t. The timing property
expresses that the set of possible output histories for
the first t + 1 time intervals only depends on the input
histories for the first t time intervals. In other words, the
processing of messages in a system takes at least one
time tick.

Model-driven architecture-centric engineering of (embedded) software intensive systems 81

Strong causality implies that for every interface
behavior F either for all input histories x the sets F(x)

are not empty or that for all input histories x the sets F(x)

are empty. This is easily proved by choosing t = 0 in the
formula defining strong causality. In the case where for
all input histories x the sets F(x) are empty we speak of
a paradoxical interface behavior.

If F is called weakly causal it fulfills the following
timing property, which axiomatizes the time flow (for
x, z ∈ �I, y ∈ �O, t ∈ N) :

x ↓ t = z ↓ t ⇒ {y ↓ t : y ∈ F(x)} = {y ↓ t : y ∈ F(z)}
Weakly causal functions also show a proper time flow. A
reaction to input must not occur before the input arrives.
For them, however, there is no time delay required for
output that reacts to input. As a consequence, there is
no causality required within a time interval for the input
and output. This may lead to causal loops. In the fol-
lowing we rather insist on strong causality (which is the
counterpart to Moore machines as introduced above).
However, many of our concepts and theorems carry over
to the case of weak causality.

By CF[I � O] we denote the set of all I/O functions
with input channels I and output channels O. By CF we
denote the set of all I/O functions for arbitrary channel
sets I and O. For any F ∈ CF we denote by In(F) its
set of input channels and by Out(F) its set of output
channels.

2.5 The distributed system model: composed systems

An interactive composed system consists of a family
of interacting subsystems called components (in some
approaches also called agents or objects). These compo-
nents interact by exchanging messages via their chan-
nels, which connect them. A network of communicating
components gives a structural system view, also called
the system architecture. Architectures can nicely be rep-
resented graphically by directed graphs. Their nodes
represent components and their arcs communication
lines (channels) on which streams of messages are sent.
The nodes represent components, also called data flow
nodes. The graph represents a net, also called a data flow
net.

2.5.1 Uninterpreted architectures

We model architectures by data flow nets. Let K be a
set of identifiers for components and I and O be sets
of input and output channels, respectively. An unin-
terpreted architecture (composed system, distributed
system) (ν, O) with syntactic interface (I � O) is repre-

sented by the mapping

ν : K → SF

that associates with every node a syntactic interface. O
denotes the output channels of the system.

As a well-formedness condition for forming a net
from a set of component identifiers K, we require that
for all component identifiers k, j ∈ K (with k �= j) the
sets of output channels of the components ν(k) and ν(j)
are disjoint. This is formally guaranteed by the condition

k �= j ⇒ SET(Out(ν(k))) ∩ SET(Out(ν(j))) = Ø

In other words, each channel has a uniquely specified
component as its source.1 We denote the set of all (inter-
nal and external) channels of the net by the equation

Chan((ν, O))

= {c ∈ In(ν(k)) : k ∈ K} ∪ {c ∈ Out(ν(k)) : k ∈ K}
The channel set O determines which of the channels
occur as output. We assume that O ⊆ {c ∈ Out(ν(k)) :
k ∈ K}.

The set

I = Chan((ν, O))\{c ∈ Out(ν(k)) : k ∈ K}
denotes the set of input channels of the net. The chan-
nels in the set

Intern((ν, O)) = {c ∈ Out(ν(k)) : k ∈ K}\O

are called internal. By CUS[I � O] we denote the set
of all uninterpreted architectures with input channels
I and output channels O. CUS denotes the set of all
uninterpreted architectures.

2.5.2 Interpreted architectures

Given an uninterpreted architecture (ν, O) represented
by the mapping

ν : K → SF

we get an interpreted architecture by a mapping

η : K → CF ∪ SM

where η(k) ∈ SM[I′ � O′] or η(k) ∈ CF[I′ � O′] if
ν(k) = (I′ � O′). We write also (η, O) for the inter-
preted architecture.

By CIS[I � O] we denote the set of all interpreted
architectures with input channels I and output channels
O. CIS denotes the set of all interpreted architectures.

1 Channels that occur as input channels but not as output channels
have the environment as their source.

82 M. Broy

A fully interpreted hierarchical system is defined iter-
atively as follows: a hierarchical system of level 0 and
syntactic interface (I � O) is denoted by HS0[I � O]
and defined by

HS0[I � O] = SM[I � O] ∪ CF[I � O] ∪ CIS[I � O]
By HS0 we denote the set of all hierarchical systems of
level 0 with arbitrary syntactic interfaces. A hierarchical
system of level j + 1 and syntactic interface (I � O) is
denoted by HSj+1[I � O] and defined by an uninter-
preted architecture represented by the mapping

ν : K → SF

a mapping

η : K → HSj

where η(k) ∈ SM[I′ � O′] ∪ CF[I′ � O′] ∪ HSj[I′ � O′]
if ν(k) = (I′ � O′).

By HS[I � O] we denote the set of all hierarchi-
cal systems of arbitrary level with syntactic interface
(I � O). By HS we denote the set of all hierarchical sys-
tem of arbitrary level with arbitrary syntactic interfaces.

3 Structuring interfaces

Modern software systems offer their users large vari-
eties of different functions, in our terminology called
services or features. We speak of multifunctional distrib-
uted interactive systems.

3.1 Structuring multifunctional systems

In this section we concentrate on concepts supporting
the structuring of the functionality of multifunctional
systems. Our goal, in essence, is a scientific founda-
tion for the structured presentation of system functions,
organized in abstraction layers, forming hierarchies of
functions and subfunctions (we speak of services, some-
times also of features).

Our vision addresses a service-oriented software
engineering theory and methodology where services are
basic system building blocks. In particular, services
address aspects of interface behaviors and interface spec-
ifications. In fact, services induce also an aspect-oriented
view of the functionality of systems and their architec-
tures (see [23]).

Our approach aims at modeling two fundamental,
complementary views onto multifunctional systems.
These views are addressing the two most significant, in
principle independent, dimensions of a structured mod-
eling of systems in the analysis and design phases of
software and systems development:

• User functionality and feature hierarchy: structured
modeling of the user functionality of systems as done
in requirements engineering and specification:

• A multifunction system offers many different
functions (features or services often captured by
use cases); we are interested in a structured view
of the family of these functions and their logical
dependencies.

• The main result is structured interface specifica-
tions of systems.

• Logical hierarchical component architecture:
decomposition of systems into components as done
in the design of the architecture:
• A system is decomposed into a family of com-

ponents that mutually cooperate to generate the
behavior that implements the specified user func-
tionality of the system.

• The main result is the logical component archi-
tecture of the system.

These two complementary tasks of structuring sys-
tems and their functionality are crucial in the early
phases of software and systems development. The archi-
tectural view was introduced at the end of the previous
section. The functional hierarchy view is introduced in
this section.

3.1.1 Services

The notion of a service is the generalization of the notion
of an interface behavior of a system. It has a syntactic
interface just like a system. Its behavior, however, is
“partial”, in contrast to the totality of a non-paradoxical
system interface. Partiality here means that a service is
defined (has a nonempty set of output histories) only for
a subset of its input histories. This subset is called the
service domain.

Definition (Service interface) A service interface with the
syntactic interface (I � O) is modeled by a function

F : �I → ℘(�O)

that fulfills the strong causality property only for the input
histories with a nonempty output set (for x, z ∈ �I, y ∈
�O, t ∈ N) :

F(x) �= Ø �= F(z) ∧ x ↓ t = z ↓ t

⇒ {y ↓ t + 1 : y ∈ F(x)} = {y ↓ t + 1 : y ∈ F(z)}
Such a partial behavior function that fulfills this property
is called strongly causal too. The set

dom(F) = {x : F(x) �= Ø}

Model-driven architecture-centric engineering of (embedded) software intensive systems 83

Fig. 6 General
representation of a service
interface

Service interface

I O

is called the service domain of F. The set

ran(F) = {y ∈ F(x) : x ∈ dom(F)}
is called the service range of F. By

F[I � O]
we denote the set of all service interfaces with input chan-
nels I and output channels O. By F we denote the set of
all interfaces for arbitrary channel sets I and O.

Obviously we have CF ⊆ F and CF[I � O] ⊆
F[I � O]. In contrast to a system, where the causal-
ity property implies that for a system F either all output
sets F(x) are empty for all input histories x or none is, a
service is a partial function, in general, with a nontrivial
service domain.

To get access to a service, typically, certain access con-
ventions have to be observed. We speak of a service pro-
tocol. Input histories x that are not in the service domain
do not fulfill the service access assumptions. This gives a
clear view: a non-paradoxical system is total, while a ser-
vice may be partial. In other words, a non-paradoxical
system is a total service. For a non-paradoxical system
there exist nonempty sets of possible behaviors for every
input history.

From a methodological point of view, a service is
closely related to the idea of a use case as found in
object-oriented analysis. It can be seen as a formaliza-
tion of this idea (Fig. 6).

3.1.2 Structuring functionality into hierarchies
of services

Given a service, we can refine it by extending its
domain (provided it is not total). This means that we
allow for more input histories with specified output his-
tories and thus enlarge its service domain. Extending
service domains is an essential step in service devel-
opment for instance in making services error tolerant
against unexpected input (streams). It is also a step from
services to systems if the behaviors are finally made total.

We are, however, not only interested in specifying ser-
vices and their extensions in isolation, but also
interested in being able to specify such extensions in
a structured way on top of already specified services.
We are, in particular, looking for helpful relationships

between the different services, looking for relations that
are methodologically useful such as a refinement rela-
tion for services. These relations form the arcs of the
functional hierarchy.

3.1.3 Structuring the functionality of multifunctional
systems

In the following, we give a formal definition of the con-
cept of services. This formalization is guided by our basic
philosophy concerning services, which is briefly outlined
as follows:

• Services are formalized and specified by patterns of
interactions.

• Services are partial sub-behaviors of (interface)
behaviors of systems.

• Systems realize families of services.
• Services address aspects of user functionality.

This philosophy of services is taken as a guideline for
our way to build up a theory of services. We work out a
formal approach to services. We specify services in terms
of relations on interactions represented by streams. Con-
sequences of our formal definitions are, in particular, as
follows:

• A system is described by a total behavior.
• In contrast, a service is, in general, described by a

partial behavior.
• A system is the special case of a total service.
• Services are related to systems; systems offer ser-

vices.
• A multifunctional system/component is defined in

terms of its family of services.

Our theory captures and covers all these notions. Open
questions that remain are mainly of methodological and
practical nature.

Multifunctional systems can incorporate large fam-
ilies of different, in principle, independent functions,
which in our terminology offer different forms of ser-
vices. So they can be seen as formal models of different
use cases of a system.

Our basic methodological idea is that we should be
able to reduce the complexity of the user functionality
of a system, by describing the functionality of systems
as follows:

• First we describe each of its single use cases indepen-
dently by simple services

84 M. Broy

• Then we relate these services into a service hierarchy
and

• Specify relationships between these individual ser-
vices that show how the services influence or depend
on each other.

Typically some of the services are completely indepen-
dent and are just grouped together into a system that
offers a collection of functionalities. In contrast, some
services may restrict others. There is quite a variety of
relations between the individual services of a system.
While some services may just have small, often not very
essential side effects on others, other services may rely
heavily on other services that influence their behaviors
in very essential ways.

3.1.4 Structuring systems into a hierarchy of services

A system or a combined service may actually imple-
ment or offer many independent services. In fact, we
can structure the overall functionality of a multifunc-
tional system into the hierarchy of its sub-services. We
may decompose each system into a family of its sub-
services and each of these services again and again into
families of their sub-services.

Understanding the user functionality of a system
requires the understanding of the single services, but
also understanding of how they are related and mutu-
ally dependent. Our vision here is that we can introduce
a number of characteristic relations between the services
of a system such that in the end we describe a system
structure by just specifying which services are available
and how they are related. Each of the individual services
is then described in isolation. This can reduce the com-
plexity of the task of specifying a multifunctional system
considerably.

Today’s information processing systems offer many
services as part of their overall functionality. We speak
of multifunctional systems. We illustrate this idea by an
informal description of a simple example of a multifunc-
tional system.

Example (Communication unit) We look at the exam-
ple of a simple communication network. It has three
sub-interfaces and offers the following global services

• User identification, authentication and access con-
trol

• Communication
• User administration

At a finer-grained service level we may distinguish sub-
services such as

x1:Data r2:Data

x2:Datar1:Data

SAP
A

SAP
B

Adminstrator

Transmission Network
� User identification
� Password change
� Identification
� Communication Service
� Sending Message
� Receiving Message
� User administration
� Calibration quality of services
� User introduction
� User deletion

r3:Datax3:Data

Fig. 7 Service structure and interface

• User login and identification
• Password change
• Sending message
• Receiving message
• Calibration of the quality of services
• User introduction
• User deletion
• Change of user rights

All these extended services can be described in isolation
by specification techniques such as that introduced and
demonstrated above. However, there are a number of
dependencies between these services.

To obtain a comprehensive view of the hierarchy of
services, we introduce a notion of user roles, such as that
shown in our example:

• SAP A and B (SAP = service access point)
• Administrator

The set of services offered by a system can be informally
described as shown in Fig. 7. In fact, it can be structured
into a hierarchy of services and sub-services as shown in
Fig. 8. By such a service hierarchy we obtain a structur-
ing of a system into a hierarchy of services that are in
the sub-service relation.

In such a service hierarchy we can relate services by
introducing appropriate more specific relations between
services, converting the service hierarchy into a directed
graph.

3.2 Relating services

In this section we deal with a number of characteristic
relations between services. The most significant one for
requirements engineering is that of a sub-service, which
will be formally introduced later. There are, of course,
many more practically interesting relations between two
services A and B besides the sub-service relation as

Model-driven architecture-centric engineering of (embedded) software intensive systems 85

Fig. 8 Service hierarchy; the
lines represent the sub-service
relations

Transmission Network Service

User Identification Service User Administration Service Communication Service

Password Change Calibration QoS User Admin ReceivingSendingPassword Login

User Introduction User Deletion

introduced in the previous section. Informal examples
of such relations for services A and B are:

• A and B are mutually independent,
• A affects B,
• A controls B,
• A includes B.

Just characterizing the relations by well-chosen names
is helpful, but in the end is not sufficient, since it does,
of course, not fix their precise meaning. It is not diffi-
cult to dream up a number of further methodologically
useful relations. Typical further characteristic relations
between services are listed in the following:

• Uses
• Enables
• Changes
• Interferes (feature interaction)
• Is combined of
• Is sequentially composed of

Of course, just giving names to these relations is not
sufficient. Since we have a formal notion of service, we
are actually able to give formal definitions for such con-
cepts of relations between services. Later, in the section
on refinement, we introduce a few further examples for
precise characterizations of relations between services.

4 Relating system views

In the previous chapter we introduced three system
views: state machines, interfaces, and architectures. In
this chapter we show how to relate one view to the other.
Our basic goals are ways to go from one system view to
the other. So a state machine defines an interface behav-
ior and vice versa. An interpreted architecture defines
a state machine as well as an interface behavior. This
finally gives the flexibility of a truly hierarchical model-
ing method: every system – whether it is represented by
a state machine, an interpreted architecture, or directly
by an interface behavior – defines an interface behavior
and can in turn be used as a component of an inter-

preted architecture defining a larger system. In short,
every system is a component, which is itself a system.

4.1 From state machines to interfaces and back

In this section we study relationships between the state
view and the interface view. We first show how we may
derive an interface abstraction for a state machine and
then show how to construct a canonical state machine
for an interface behavior.

4.1.1 From state machines to interfaces

In this section we define the interface abstraction for
state machines. Each state transition function

� : (� × (I → M∗)) → ℘(� × (O → M∗))

induces a function

B� : ℘(�) → (�I → ℘(�O)).

B� provides the interface abstraction for the state tran-
sition function �. For each state set � ⊆ � and each
input channel valuation x ∈ �I, we specify the set B�(�)

(x) for the given state set � by set of all output histories
generated by computations of � for the input history x
starting with a state in �.

Based on these definitions we relate state machines
to their interface abstractions.

Given a state transition function � and
� ⊆ �, B�(�) provides the interface
abstraction of the behavior of the state
transition machine � for the
initial states from �.

In this way we define a function

absSM/F : SM[I � O] → F[I � O]
mapping state machines onto their interface behavior
by

absSM/F((�, �)) = B�(�)

86 M. Broy

Note that we get the interface abstraction B�(�) of a
state machine (�, �) in this way.

4.1.2 From interfaces to state machines

In this section we show that an interface abstraction
defines itself an abstract state machine. Given an inter-
face

F : �I → ℘(�O)

we define the state space by

� = F[I � O]
We get a state machine

�F : (� × (I → M∗)) → ℘(� × (O → M∗))

by the following definition (for G ∈ F[I � O],
a ∈ (I → M∗))

�F(G, a) = {(H, b) ∈ F[I � O] × (O → M∗) :

∀x ∈ �I : G(〈a〉∧x) = {〈b〉∧y : y ∈ H(x)}}
Note that for 〈b〉∧y ∈ G(〈a〉∧x) the value b does not
depend on x according to the causality assumption. The
function H in the formula above is called a resumption.
It represents the new state of the machine after the tran-
sition represented by an I/O function. The initial states
of the state machine are defined by the set {F}.

We define the function

embSM/F : F[I � O] → SM[I � O]
by

embSM/F(F) = (�F, {F})
Furthermore, we easily define a function

absSM/SM : SM[I � O] → SM[I � O]
for state machines by

absSM/SM((�, �)) = (�F, {B�(σ) : σ ∈ �})
In fact, in this way we get the most abstract refinement
of a state machine. We come back to this in the section
on property refinement.

4.2 From interpreted architectures to state machines

In this section we study the relationship between the
state view and the architecture view. We show how we
may derive a state machine for an interpreted architec-
ture.

Let an interpretation for the architecture (ν, O) be
given. It is represented by a function

η : K → CF ∪ SM

we refine this function into a function

η′ : K → CF ∪ SM

where η′(k) = η(k) if η(k) ∈ SM and η′(k) = embSM/F

(η(k)) if η(k) ∈ CF. As a result η′(k) is a state machine
for all k ∈ K. Now we construct a large state machine
for the architecture. A state of this machine is defined
by the mapping

β : K → USTATE

where USTATE is the universe of all state spaces of
state machines and for each k ∈ K the state β(k) is a
member of the state space of state machine η′(k). Let
STATE denote the set of all states of the architecture:

STATE = {β : K → USTATE}
The set of initial states is given by these functions, where
for each k ∈ K the state β(k) is a member of the set of
initial states of state machine η′(k). The state transition
function

� : (STATE × (I → M∗)) → ℘(STATE × (O → M∗))

is given by the following condition (let β, β ′ ∈STATE, a :
I → M∗, b : O → M∗)

(β ′, b) ∈ �(β, a)

if and only if there exists a valuation of all channels by
sequences of messages z : Chan((ν, O)) → M∗

(β ′(k), z|Out(ν(k)) ∈ �k(β(k), z|In(ν(k))

and

b = z|O a = z|I
Here by z|C we denote the restriction of the channel set
C. Formally if z is the evaluation of the channels in C′
where C ⊆ C′ we define z|C ∈ �C by (for each channel
c ∈ C)

z|C(c) = z(c)

Since all machines β(k) are Moore machines, this defi-
nition is consistent.

We can generalize this construction to hierarchical
systems by an inductive definition over the hierarchy.

4.3 From interpreted architectures to interfaces

In this section we study the relationship between the
interface view and the architecture view. We show how
we may derive an interface abstraction for an inter-
preted architecture.

Model-driven architecture-centric engineering of (embedded) software intensive systems 87

Let an interpretation for the uninterpreted architec-
ture (ν, O) be given. It is represented by a function

η : K → CF ∪ SM

We refine this function to a function

η′ : K → CF ∪ SM

where η′(k) = η(k) if η(k) ∈ CF and η′(k) = absSM/F

(η(k)) if η(k) ∈ SM. As a result η′(k) is an interface
behavior for all k ∈ K.

Each data flow net describes an I/O function. This
I/O function is called the interface abstraction of the
composed system described by the data flow net. We
get an abstraction of a composed system to its inter-
face by mapping it to an interface behavior in F[I � O]
where I denotes the set of input channels and O denotes
the set of output channels of the data flow net. This
interface view is represented by the system behavior
F ∈ F[I � O] specified by the following formula (note
that y ∈ �C, where C ≡ Chan((ν, O)) as defined above):

F(η,O)(x) = {y|O : y|I = x ∧ ∀k ∈ K : y|Out(ν(k))

∈ η′(k)(y|In(ν(k)))}
The formula essentially expresses that the output his-
tory of a data flow net is the restriction of a fixpoint for
all the net equations for the output channels of all the
components of the architecture.

We define a function

absCIS/F : CIS → F

by

absCIS/F((η, O)) = F(η,O)

This defines the interface abstraction for the interpreted
architecture.

We can generalize this construction to hierarchical
systems by an inductive definition over the hierarchy.
This yields the interface abstraction absHS/F : HS → F.

4.4 Design: from interfaces to state machines
and architectures

In the previous section we have demonstrated how to go
from an interpreted architecture to an interface
behavior. This defines an interface abstraction for an
interpreted architecture. In system design we go in the
other direction: given the specification of an interface
behavior as the result of requirements engineering, in a
design step we aim at the decomposition of the system
into an interpreted architecture or the implementation
of the interface behavior by a state machine. This is a
step of creative engineering.

For designing an implementation of the interface
behavior by a state machine the schematic way of defin-
ing a state machine for an interface behavior as shown
above does not help at all; it is of rather theoretical inter-
est. For an implementation a well-chosen representation
of the state space is needed, on top of which the state
transitions are defined.

For the design of an interpreted architecture or an
implementation of the interface behavior by a state
machine the definitions above that define interface
abstractions are crucial, however. The design is correct,
if the interface abstraction of the interpreted architec-
ture or the state machine coincides with the specified
interface behavior. Actually, the interface abstraction
needs not be exactly the specified interface behavior,
but only has to be a refinement of it. What refinement
precisely means is defined in the following section.

5 Refinement

In requirements engineering, in the design and imple-
mentation phase of system development many issues
have to be addressed such as requirements elicitation,
conflict identification and resolution, information man-
agement as well as the selection of a favorable software
architecture. These activities are connected with devel-
opment steps. Refinement relations are the medium to
formalize development steps and in this way the devel-
opment process.

We formalize the following basic ideas of refinement
of interfaces:

• Property refinement – enhancing requirements –
allows us to add properties to a specification,

• Glass-box refinement, implementation refinement –
designing implementations – allow us to decompose
a system into a composed system or to give a state
transition description for a system specification,

• Interaction refinement – relating levels of
abstraction – allows us to change the representa-
tion of the communication histories, in particular,
the granularity of the interaction as well as the num-
ber and types of the channels of a system.

In fact, these notions of refinement describe the steps
needed in an idealistic view of a strictly hierarchical
top-down system development. The three refinement
concepts mentioned are formally defined and
explained in detail in the following.

88 M. Broy

5.1 Property refinement

Property refinement is a classical concept in program
development. It is based – as is deduction in logics –
on logical implication. In our model this relates to set
inclusion.

5.1.1 Property refinement of interfaces

Property refinement allows us to replace an interface
behavior or an interface with one having additional
properties. This way interface behaviors are replaced
by more restricted ones. An interface

F : �I → ℘(�O)

is refined by a behavior

F̂ : �I → ℘(�O)

if

F ≈>F F̂.

This relation stands for the proposition

∀x ∈ �I : F̂(x) ⊆ F(x)

Obviously, property refinement is a partial order and
is therefore reflexive, asymmetric, and transitive. Note
that the paradoxical system logically is a refinement for
every system with the same syntactic interface.

A property refinement is a basic refinement step
adding requirements as it is done step by step in
requirements engineering. In the process of require-
ments engineering, typically the overall services of a sys-
tem are specified. Requiring increasingly sophisticated
properties for systems until a desired behavior is speci-
fied, in general, does this.

5.1.2 Property refinement of state machines

Property refinement can easily be extended to state
machines by referring to their interface abstractions.
Given two state machines M1 = (�1, �1) and M2 =
(�2, �2) we call M2 a property refinement of M1 and
write

M1 ≈>SM/SM M2

if

absSM/F(M1) ≈>F absSM/F(M2).

In this way we require only that the interface abstrac-
tions of both machines are in the property refinement
relation. The two machines may have completely differ-
ent state spaces.

Two state machines are called equivalent if for each
input history their sets of output histories coincide. A
state machine is called equivalent to a behavior F, if for
each input history x the state machine computes exactly
the output histories in F(x).

A state machine (�2, �2) with transition function

�2 : (�2 × (I → M∗)) → ℘(�2 × (O → M∗))

is called a transition refinement or a simulation of a state
machine (�1, �1) with the transition function

�1 : (�1 × (I → M∗)) → ℘(�1 × (O → M∗))

if there is a mapping ρ : �2 → �1 such that for all states
σ ∈ �2, and all input α ∈ I → M∗ we have:

{(ρ(σ ′), β) : (σ ′, β) ∈ �2(σ , α)}
⊆ �1(ρ(σ), α), {ρ(σ) : σ ∈ �2} ⊆ �1

A special case is given if ℘ is the identity; then the equa-
tion simplifies to:

�2(σ , α) ⊆ �1(σ , α) ∧ �2 ⊆ �1.

In this way we define refinement directly on the state
space.

5.1.3 Property refinement of composed systems

As for state machines, property refinement can easily
be extended to interpreted architectures by referring
to their interface abstractions. Given two interpreted
architectures S1 and S2, we write

S1 ≈>CIS S2

if

absCIS/F(S1) ≈>F absCIS/F(S2)

Here we require only that the interface abstractions of
both systems are in the property refinement relation.
The two systems may have completely different compo-
sition structures, however.

If the uninterpreted architectures of S1 and S2 coin-
cide, then we can define a more specific refinement by
requiring that each component of S2 is a refinement of
the respective component of S1.

5.1.4 General property refinement of hierarchical
systems

It is the idea of property refinement that we do not
take care of the internal structure of systems, but only
compare their interface abstractions. Given two hierar-
chically composed systems S1 and S2 in HS, we write

S1 ≈> S2

Model-driven architecture-centric engineering of (embedded) software intensive systems 89

if

absF(S1) ≈>F absF(S2)

Property refinement is a straightforward concept. Basi-
cally we can always see property refinement as combined
with interface abstraction.

If the uninterpreted architectures of S1 and S2 coin-
cide, then we can define a more specific refinement by
requiring that each component of S2 is a refinement of
the respective component of S1.

5.2 Compositionality of property refinement

In our case, the proof of the compositionality of prop-
erty refinement is straightforward. This is a consequence
of the simple definition of composition. Let (ν, O) be an
uninterpreted architecture with interpretations η and η′
with the set K of components given by their interfaces.
The rule of compositional property refinement reads as
follows:

∀K ∈ K : η(k) ≈> η′(k)

F(η,O) ≈> F(η′,O)

.

Compositionality is often called modularity in system
development. Modularity allows for a separate devel-
opment of components.

Modularity guarantees that separate
refinements of the components of a
system lead to a refinement of
the composed system.

The property refinement of the components of com-
posed systems leads to a property refinement for the
composed system independently of the question
whether the components are described by interfaces,
state machines or processes.

5.3 Implementation refinement

Implementation refinement is formally only a special
case of property refinement. While we may change many
aspects of a system in property refinement, such as the
uninterpreted architecture or the structure of the state
space, implementation refinement has two restrictions:
it maintains certain implementation aspects and it sup-
ports steps towards a design or implementation.

5.3.1 Design: implementation refinement of interfaces

Implementation refinement of interfaces is given by the
replacement of an interface behavior, described by a

refined function on streams, by a state machine or an
interpreted architecture. Thus implementation refine-
ment represents a design or implementation step. For
an interface behavior

F : �I → ℘(�O)

a system S is an implementation refinement of F if

• S is an interface behavior and

F ≈>F S

• S is a state machine and

F ≈>F absSM/F(S)

• or S is a composed system and

F ≈>F absHS/F(S).

We then write

F ≈>> S

We get an abstract implementation (for the formal
definition of the relation embSM/F see Sect. 4.1.2)

F ≈>>F/SM embSM/F(F)

Again, implementation refinement is a partial order and
therefore reflexive, asymmetric, and transitive. More-
over, the inconsistent specification logically described
by false refines everything.

5.3.2 Implementation refinement of state machines

Given two state machines M1 = (�1, �1) and M2 =
(�2, �2) over the same state space we call M2 an imple-
mentation refinement of M1 and write

M1 ≈>> M2

if

�1 ⊆ �2

and

�2(σ , x) ⊆ �1(σ , x)

for all σ ∈ �, x ∈ (I → M∗). In this case we maintain
the structure of the state spaces and only reduce the sets
of states in the transitions.

90 M. Broy

5.3.3 Implementation refinement of composed systems

Given two interpreted architectures S1 and S2 in CIS
[I � O] with S1 = (η1, O) and S2 = (η2, O) we write

S1 ≈>> S2

if S1 and S2 have the same set K of components and for
all k ∈ K

η1(k) ≈>> η2(k)

Each component in S2 is an implementation refinement
of the respective component in S1. This is the relation
of stepwise hierarchical decomposition if extended to
hierarchical composed systems.

5.4 Granularity refinement: changing levels
of abstraction

In this section we show how to change the levels of
abstractions by refinements of the interfaces, state
machines and processes. Changing the granularity of
interaction and thus the level of abstraction is a clas-
sic technique in software system development.

5.4.1 Refinement of interfaces

Interaction refinement is the refinement notion for mod-
eling development steps between levels of abstraction.
Interaction refinement allows us to change for a compo-
nent

• The number and names of its input and output chan-
nels

• The types of the messages on its channels determin-
ing the granularity of the communication

An interaction refinement is described by a pair of func-
tions

A : �C′ → ℘(�C) R : �C → ℘(�C′)

that relate the interaction on an abstract level with cor-
responding interaction on the more concrete level. This
pair specifies a development step that is leading from
one level of abstraction to the other one as illustrated
by Fig. 9. Given an abstract history x ∈ �C each y ∈ R(x)

denotes a concrete history representing x. Calculating a
representation for a given abstract history and then its
abstraction yields the old abstract history again. Using
sequential composition, this is expressed by the require-
ment:

R ◦ A = Id

abstract level

concrete level

R A

.

.

Fig. 9 Communication history refinement

abstract level

concrete level

FI1 O1

AI

. . .

. . .

RO

. . .

. . .

F̂I2 O2

Fig. 10 Interaction refinement (U−1 simulation)

Let Id denote the identity relation and ‘◦’ the sequential
composition defined as follows:

(R ◦ A)(x) = {y ∈ A(z) : z ∈ R(x)}
A is called the abstraction and R is called the representa-
tion. R and A are called a refinement pair. For untimed
systems we weaken this requirement by requiring R ◦ A
to be a property refinement of the untimed identity, for-
mally expressed by the following equation:

(R ◦ A)(x) = {x̄}.
This defines an identity under time abstraction.

Interaction refinement allows us to refine systems,
given appropriate refinement pairs for their input and
output channels. The idea of an interaction refinement
is visualized in Fig. 10 for the so-called U−1 simulation.
Note that here the components (boxes) AI and Ao are
no longer definitional in the sense of specifications, but
rather methodological, since they relate two levels of
abstraction.

Given the refinement pairs

AI : �I2 → ℘(�I1) RI : �I1 → ℘(�I2)

AO : �O2 → ℘(�O1) RO : �O1 → ℘(�O2)

for the input and output channels we are able to relate
abstract to concrete channels for the input and for the
output. We call the interface

F̂ : �I2 → ℘(�O2)

an interaction refinement of the I/O behavior

F : �I1 → ℘(�O1)

if the following proposition holds: ≈>

AI ◦ F ◦ Ro ≈> �F U−1 − simulation

Model-driven architecture-centric engineering of (embedded) software intensive systems 91

This formula essentially expresses that F̂ is a property
refinement of the system AI ◦F◦RO. Thus for every con-
crete input history x̂ ∈ I2 every concrete output �y ∈ O2
can be also obtained by translating x̂ onto an abstract
input history x ∈ AI · x̂ such that we can choose an
abstract output history y ∈ F(x) such that ŷ ∈ Ro(y).

5.4.2 Granularity refinement of state machines

Also for state machines we can define a refinement both
of the input and output channels and of the states. Given
two state machines (�k, �k) for k := 1, 2 where �k is a
state transition function

�k : (�k × (Ik → M∗)) → ℘(�k × (Ok → M∗))

we call �2 a granularity (or vertical) refinement of �1 if
there exists a mapping

abs : �2 → �1

such that

{abs(σ) : σ ∈ �2} ⊆ �1

and we have for all ⊆ �2

AI ◦ B�1({abs(σ) : σ ∈ }) ◦ RO ≈> B�2()

This formula expresses that for every state σ the inter-
face abstraction is a refinement of the interface abstrac-
tion of abs(σ). Using a state machine refinement the
state space, the types of messages and the granularity of
interaction can be refined.

If this holds we write:

(�k, �k) ∼>F (�k, �k)

In this way we establish the relation of vertical refine-
ment in terms of interfaces of the state machines.

5.4.3 Granularity refinement of composed systems

Composed systems are refined in levels of abstraction by
refining their components. Of course, we have to make
sure, that all channels are refined consistently. Since a
composed system can be seen either as one big inter-
face or one big state machine the refinement notions
introduced carry over in a straightforward manner.

Given two composed systems S1 and S2, we write

S1 ∼>CIS S2

if

absCIS/F(S1) ∼>F absCIS/F(S2)

Again this is a straightforward concept.

5.4.4 General refinement of systems through levels
of abstractions

It is the idea of granularity refinement that we do not
take care of the internal structure of systems, but only
compare their interface abstractions in terms of refine-
ment pairs. Given two systems S1 and S2 in HS, we write

S1 ∼> S2

if

absF(S1) ∼>F absF(S2)

Again this is a straightforward concept. Basically we can
always see granularity refinement in terms of interface
abstraction.

The idea of granularity refinement is of particular
interest from a methodological point of view. It formal-
izes the idea of levels of abstraction as found in many
approaches to software and systems engineering. This
includes the classic International Standard Organiza-
tion’s open systems interconnection (ISO/OSI) protocol
models (see [28]) as well as the idea of layered architec-
tures (see [16]).

5.5 Formalizing relationships between services

In this section we study refinement relations and more
general relations between services. Our approach, in
fact, offers the possibility to give a precise formal defi-
nition of relations between services. In the following,
we deal formally with only a few most fundamental in-
stances of such relations to demonstrate what useful
relations are and how they can be formally captured.

5.5.1 Property refinement and domain extension
of services

An essential notion to relate services and also systems
is that of refinement. Note that a system is a special
case of a service (which is either a total function or
paradoxical) and therefore all the following concepts of
property refinement work both for services and systems.
Refinement was already introduced for systems in the
beginning of the section on refinement.

Definition (Property refinement) Given two service
interfaces F1, F2 ∈ F[I � O] the service F2 is called a
property refinement of service F1 if the following for-
mula holds:

∀x ∈ �I : F2(x) ⊆ F1(x)

Property refinement is a straightforward notion and
corresponds to (is guaranteed by) logical implication

92 M. Broy

between the specifying assertions of the services F2
and F1.

As a relation between services to be used in require-
ments engineering, property refinement as defined
above appears to be both too restrictive and too liberal.
On the other hand, the property refinement relation
allows us to decrease the service domain. For systems,
this is not a problem, since systems are either total or
paradoxical. For services this situation is more intricate.
We introduce therefore a more suitable relation called
a sub-service relation.

5.5.2 Projection of histories and services

To be prepared to define service refinement, we intro-
duce some auxiliary notions beforehand. First recall the
idea of a subtype as introduced in Sect. 2. Based on
the subtype relation between sets of typed channels we
define the concept of a projection.

Definition (History projection) Let C and C′ be sets of
typed channels where C subtype C′ holds. We define for
history x ∈ C′ its restriction x|C ∈ �C to the channels in the
set C and to the messages of the types of the channels in C.
For channels c ∈ C with type T we specify the restriction
by the equation:

(x|C)(c) = CAR(T)©(x(c))

The mapping α : �C′ → �C, where

α(x) = x|C
is called a sub-history projection.

A sub-history is the projection of a history with respect
to a subset of its channel set and their types. To obtain
the sub-history x|C, keep those channels and types of
messages in the history x that belong to the typed chan-
nels in C.

5.5.3 Service refinement and domain extension
of services

Based on the concept of projection, we define the con-
cept of the restriction of interfaces and services. It allows
for the concentration on a certain sub-behavior of a
given more comprehensive behavior.

Definition (Restriction of a service) Given syntactic
interfaces (I1 � O1) and (I2 � O2) where (I1 � O1)

subtype (I2 � O2) holds, we define for F2 ∈ F[I2 � O2]
its restriction F2 † (I1 � O1) ∈ F[I1 � O1] to the syntac-
tic interface (I1 � O1) by the following equation (for all
input histories x ∈ H[I1]):

F2 † (I1 � O1). x = {
y|O1 : ∃ x′ ∈ H[I2] :

x = x′|I1 ∧ y ∈ F2. x′}

This notion of restriction applies both to services and to
system specifications.

A restriction F2 † (I1 � O1) may introduce nondeter-
minism into the behavior F2 since we may abstract away
some input messages that determine the output. On the
other hand, by abstracting away certain output mes-
sages, we may eliminate nondeterminism.

In the following definition we introduce service refine-
ment. It is defined in a way that is appropriate for the
stepwise refinement of services as part of the develop-
ment process.

Definition (Service refinement) Given two service inter-
faces F1 ∈ F[I1 � O1] and F2 ∈ F[I2 � O2], where I1
subtype I2 and O1 subtype O2, we call the service F2 a
service refinement of F1 if, for all input histories x ∈ �I1,

F2 † (I1 � O1)(x) ⊆ F1(x).

Then we write

F1 ≈> F2.

This notion of refinement applies again both to services
and to systems.

Note that this refinement notion is a generalization of
the notion of property refinement as introduced in [15].
In contrast to the refinement notion in [15], where the
syntactic interfaces of the two systems are required to
be identical, we permit the enlargement of the number
of channels and their types in a service refinement step.

Service refinement introduces a partial order on the
set of services: the least element in this ordering is the
service with no channels, the largest element the service
with all channels as input and output channels where
each channel has the largest type and each input history
is in the service domain and is mapped onto all output
histories.

The set of services in fact forms an ordered lattice
with service refinement as its ordering. Given two ser-
vices F1 ∈ F[I1 � O1], F2 ∈ F[I2 � O2] we define its
least upper bound by the service F ∈ F[I � O], where I
is the least upper bound of I1 and I2, O is the least upper
bound of O1 and O2, and F(x) is the least service in the
set F[I � O] that has both F1 and F2 as sub-services.
Greatest lower bounds are defined analogously.

Unfortunately, this notion of refinement for services
is still far too liberal. The paradoxical service, where
all sets of possible outputs are empty, always defines
a service refinement. In a service refinement, we may
reduce the service domain. Methodologically, however,
we rather insist that the service domains are not de-
creased by refinement. A service F1 is implemented by
a service F2, if in F2 all the messages relevant for the

Model-driven architecture-centric engineering of (embedded) software intensive systems 93

service F1 occur in F2, as in F1. The service domain must
not be made smaller. For input histories x ∈ �I1 outside
of the domain of F1, we can introduce additional out-
put histories. This idea is formalized by the concept of a
sub-service.

Definition (Sub-service relation) A service F1 ∈ F[I1 �
O1] is a sub-service of a service F2 ∈ F[I2 � O2], if F2 is
a service refinement of F1 and we have in addition

dom(F1) ⊆ dom(F2 † (I1 � O1))

Then we say that the service F2 offers the service F1 or
that F1 is a sub-service of F2. We write F1 ⊆sub F2, then.

The sub-service relation, in fact, implies service refine-
ment. In other words, the sub-service relation is a spe-
cialization of service refinement.

The refinement relations represent partial orders on
the set of services. One service may be the refinement
of several quite unrelated services.

The sub-service relation is very significant from a
methodological point of view. However, it is only one
example of the many relations that exist and are meth-
odologically useful between services. To give a compre-
hensive set of methodologically useful relations between
the services of a system and to specify the precise seman-
tics of these relations is a major piece of work. In the
following we give only formal definitions for some of
these relations.

5.5.4 Vertical relationship between services

The sub-service relation defines a vertical relationship
between two services. We speak of a vertical relation-
ship between a service F2 and F1, if F1 is contained in
some way in the services offered by F2.

In a vertical relationship between services, we are
interested in generalizations and variations of the sub-
service relation. By vertical relationships we get service
hierarchies. The sub-service relation ⊆sub introduced so
far is rather straightforward. Now we study another
more sophisticated vertical relationship between ser-
vices.

Given services F1 ∈ F[I1 � O1] and F2 ∈ F[I2 � O2],
where I1 subtype I2 and O1 subtype O2 holds and we do
not necessarily (as for the sub-service relation) assume

F2 † (I1 � O1) = F1

there exists a subset R ⊆ dom(F2) such that

F1 ⊆sub F2|R
In other words F1 is a sub-service only for input from a
subset of the domain of F2. F1 is then called a restricted
sub-service of F.

Definition (Restricted sub-service relation) Given ser-
vices F1 ∈ F[I1 � O1] and F2 ∈ F[I2 � O2] where I1
subtype I2 and O1 subtype O2 hold, service F1 is called
a restricted sub-service of the service F2, if there exists a
subset R ⊆ dom(F2) such that

F1 ⊆sub F2|R
F2 is then called a super-service of F1.

Obviously if F1 ⊆sub F2 holds, then F1 is a restricted
sub-service of F2. The reverse does not hold, in general.

The restricted sub-service relation is a much looser
relation than the sub-service relation. There are many
ways in which the delivery of the service F1 as a sub-ser-
vice of F2 may be influenced by the messages outside the
domains of F1 in F2. The key question in the restricted
sub-service relation of a service is how we can get access
to the service F1 in F2. To get such access in F2, we do
not only have to follow the patterns in dom(F1) but also
observe the rules in the histories in R.

5.5.5 Horizontal relationships between services

In this section we discuss horizontal relationships be-
tween services. Informally, a horizontal relationship
refers to a situation where two services are offered side
by side by some super-service. In some cases we can
discuss their relationship independently of the super-
service. Sometimes a particular super-service has to be
considered to study their horizontal relationship.

In a horizontal relationship between two services F1
and F2 we do not deal with sub-service relations (nei-
ther F1 is a super-service of F2 nor vice versa) but with
services that are either independent or where there is
some relationship between these services (called a fea-
ture interaction).

Based on our definition of sub-services we define
the methodologically important notions of combinabil-
ity and independence of services. The definition of com-
binability basically uses the following idea. Two services
are called combinable if there exists a system that offers
both services. This does not mean that the services are
independent. If combinable services share input mes-
sages we cannot select the input triggering the output
for both services independently. The same holds if the
services share output messages.

Definition (Combinability of services) The combinabil-
ity of two services F1 and F2 is formalized as follows.
Services F1 and F2 are called combinable, if there exists
a service F such that:

F1 ⊆sub F ∧ F2 ⊆sub F

Otherwise we speak of feature in-combinability or fea-
ture inconsistency of the services F1 and F2.

94 M. Broy

Combinability basically means that the services do
not show contradictory requirements for their output
histories. Services with disjoint sets of channels or dis-
joint sets of input and output messages are trivially com-
binable. Note that combinable services may nevertheless
have joint input and output messages as long as these
messages are processed in a consistent manner. Feature
inconsistency can be seen as a special form of feature
interaction (for details, see [22]).

Often combinability can be achieved by choosing
different representations and channels for the input mes-
sages. For output messages this may be different. The
two services may have contradictory effects captured by
particular output messages.

Combinability does not imply or guarantee the logi-
cal independency of services. Since combinable services
may share some input and output messages they might
not be independent. A careful investigation shows that
the formalization of the notion of independency of ser-
vices is not obvious. Actually there are several ways in
which we may define the independency of services in a
meaningful and useful way.

A very general and strict notion of independency is
formalized as follows.

Definition (Independent combinability of services) Let
F1 ∈ F[I1 � O1] and F2 ∈ F[I2 � O2] be combinable
services. The services F1 and F2 are called independently
combinable, if there exists a service F such that F1 ⊆sub F
and F2 ⊆sub F such that for all histories x1 ∈ dom(F1)

and x2 ∈ dom(F2) we have

F(x1 ⊕ x2) = {y1 ⊕ y2 : y1 ∈ F1(x1) ∧ y2 ∈ F2(x2)}
F is called the independent combination of F1 and F2.

Independent combinability of services F1 and F2 means
that we can design a multifunctional system incorporat-
ing both the services F1 and F2 where the selection of
the service F1 by choosing the particular input messages
is completely independent of the selection of service F2
and vice versa. By this definition the independent sub-
services are accessed and offered in a concurrent or an
interleaved manner and do not share any of their input
or output messages. Independent combinability of ser-
vice F1 and of service F2 means that whatever input we
choose for the services F1 and F2 we can get any behav-
ior for service F1. This behavior of F1 does not depend
on the chosen input to trigger the input of the service
F2.

Independent combinability of two services F1 ∈
F[I1 � O1] and F2 ∈ F[I2 � O2] implies that the two
services are mutually independent. This means that we
do not have to refine or to change the services F1 or F2
to be able to combine them. This independency does not

mean that the input histories of the services are disjoint.
There are situations where a service is only available or
can only be accessed under certain conditions.

Service independency is a very simple and general
notion. However, often services are not mutually inde-
pendent. Independent combinability of services is not
always what is required when combining services into
systems. There are many examples for this fact. If we
change the password, this affects the password service,
if we introduce a new user or delete a user, this may also
affect the communication service or the cash machine
services but not vice versa. This leads to another rela-
tion between services, namely that they may depend on
each other.

5.5.6 Equivalence of services

There are many ways to introduce different concrete
services that in an abstract sense offer the same func-
tionality. The relation

“service A is a granularity refinement of service B”

as defined above induces an equivalence relation if we
say “A is equivalent to B” if both “A is a granularity
refinement of B” and vice versa. This relation captures
equivalence of services in terms of different service mes-
sages, different service access dialogs and different ways
to represent the messages in the input and the output
channels.

Equivalence of services is of major interest not only
from a theoretical point of view but also from a very
practical and methodological point of view. When com-
paring multifunctional systems it is a practically relevant
question, whether two systems offer the same family of
services modulo the representation of the exchanged
information in terms of their messages.

6 Composition and combination

In this section we study forms of composition for sys-
tems. To cope with large systems, composition should
always be hierarchical. This means that we can com-
pose systems and the composition yields systems that
are units of composition again. As a result we get trees
or hierarchies of subsystems. We study to operations on
systems and system components: composition and com-
bination. In principle, we have introduced both opera-
tions already, when studying

• Functional enhancement by service combination:
the notion of a sub-service yields a notion of a

Model-driven architecture-centric engineering of (embedded) software intensive systems 95

de-combination of the functionality of a larger multi-
functional system into a set of sub-services; this leads
again to an operation to compose – we rather say to
combine systems into larger systems,

• System composition: the relationship between archi-
tectures and interfaces as well as state machines; this
yields a form of composition of systems.

The two operations on systems are fundamental in sys-
tem development. Functional enhancement addresses
requirements engineering while system composition
addresses architecture design.

6.1 Functional enhancement: combining services

In principle, there are several ways to combine services
out of given services. First of all we can try to combine
more elaborate services from given ones. In the simple
case we just put together services, which are more or less
independent within a family of services of a multifunc-
tional system. We have introduced the concept of inde-
pendency of services. In this section we are interested in
a combination of services that are not necessarily inde-
pendent.

Definition (Service combination) The combination of
the two services F1 ∈ [I1 � O1] and F2 ∈ [I2 � O2] is
only defined if they are combinable; then we denote them,
w.r.t. the subtype relation by

F1 ⊕ F2 ∈ [I � O]
where I is the lub of {I1, I2} and O is the lub of {O1,
O2}. We define F1 ⊕ F2 = F with the service F with the
property

F(x) = {y : y|O1 ∈ F1(x|I1) ∧ y|O2 ∈ F2.(x|I2)}
such that

F1 ⊆sub F ∧ F2 ⊆sub F

F1 ⊕ F2 is called the service combination of F1 and F2.

By service combination we can build up multifunctional
systems from elementary services.

A service provides a partial view of the interface
behavior of a system. The characterization of the ser-
vice domain can be specified and used in service speci-
fications by formulating assumptions characterizing the
input histories in the service domain.

In our interface model a system is a set-valued func-
tion on streams. As a consequence all operations on
sets are available. The interface model forms a com-
plete lattice. This way we can form the union and the
disjunction of interfaces. In other words, we may join or
intersect specifications.

 UM

a: M

b: M c: { ack, fim}

The Syntactic Interface of the Component UM

Sender UM Receiver Sender UM Receiver

 a: m

a: m

 a: m

 a: m

 c: ack b:m c: fim

Fig. 11 MSCs for the component UM

Example (Unreliable medium) We specify an unreli-
able transmission component UM. It receives messages
of type M on channel a and either forwards them on
channel b, sending some acknowledgment to the sender
via channel c, or it may forget them sending a failure
indication message (fim) to the sender. The syntactic
interface of the component UM is described in Fig. 11.
We assume that a message has to be sent twice to be
either transmitted or rejected. This is expressed by the
message sequence charts (MSCs) shown in Fig. 11 (for
details, including notation, see [18]).
The two MSCs translate into the specification

{〈〉} = f̄UM(〈a : m〉)
∧(〈c : ack〉∧〈b : m〉∧f̄UM(x) = f̄UM(〈a : m〉∧〈a : m〉∧x)

∨〈c : fim〉∧f̄UM(x) = f̄UM(〈a : m〉∧〈a : m〉∧x))

This is an example of the composition of two process
descriptions in terms of interface abstractions.

This example shows how to translate a graphical
description technique into logics in terms of our system
model.

6.2 Architecture design: composition of interfaces

Architectures consist of sets of components that are con-
nected via their channels. If these components work to-
gether in interpreted architectures according to their
interface specifications architectures generate behav-
iors. In fact this shows that in architecture design we have
two concepts of composition: the syntactic composition
of syntactic interfaces into uninterpreted architectures
forming data flow nets and the semantic composition of
semantic interfaces in the sense of interpreted architec-
tures into interface behaviors of the interpreted
architecture.

96 M. Broy

F

...

...

F

...

...

F1⊗F2

1 2

Fig. 12 Parallel composition with feedback

6.2.1 Composing interfaces

Given I/O behaviors with disjoint sets of output chan-
nels (O1 ∩ O2 = Ø)

F1 : �I1 → ℘(�O1), F2 : �I2 → ℘(�O2)

we define the parallel composition with feedback as it is
illustrated in Fig. 12 by the I/O behavior

F1 ⊗ F2 : �I → ℘(�O)

with a syntactic interface as specified by the equations:

I = (I1 ∪ I2)\(O1 ∪ O2), O = (O1 ∪ O2).

The resulting function is specified by the following equa-
tion (here we assume y ∈ �C, where the set of all channels
C is given by C = I1 ∪ I2 ∪ O1 ∪ O2):

(F1 ⊗ F2)(x) = {y|O : y|I = x|I ∧ y|O1

∈ F1(y|I1) ∧ y|O2 ∈ F2(y|I2)}
Here for a channel set C′ ⊆ C we denote for y ∈ �C by
y|C′ the restriction of y to the channels in C′.

As long as F1 and F2 have disjoint sets of input and
output channels the composition is simple. Given x1 ∈ �I1
and x2 ∈ �I2 we get

(F1⊗F2)(x1⊕x2)={y1 ⊕ y2 : y1 ∈ F1(x1) ∧ y2 ∈ F2(x2)}
Now assume

I1 = O1 and I2 = O2 = Ø

We write μ.F1 for F1 ⊗ F2 since F2 is then the system
without input and output. We get I = Ø (μ.F1 has no
input channels) and

μ.F1 = {y : y ∈ F1(y)}
This somewhat special construction shows that compo-
sition with feedback loops corresponds to a kind of fix-
point equation. We call y ∈ F1(y) a fixpoint of F1. Note
in case of a deterministic function f1 : �O1 → �O1 we get
y = f (y).

The operator is a rather general composition opera-
tor that can be easily extended from two systems to a
family of systems.

F1 F2

Fig. 13 Pipelining

A more specific operation is sequential composition,
also called pipelining. It is a special case of the composi-
tion operator where O1 = I2 and the sets I1 and O2 are
disjoint. In this case we define

F1 ◦ F2 = F1 ⊗ F2

where the composition is illustrated by Fig. 13.
Pipelining is the special case of composition without

feedback. It can easily be generalized to the case where
the channel sets I1 and O2 are not disjoint. The general-
ized definition reads as follows

(F1 ◦ F2)(x) = {z ∈ F2(y) : y ∈ F1(x)}
This composition is also called relational composition
if F1 and F2 are represented as relational or functional
composition if F1 and F2 are deterministic and thus func-
tions.

6.2.2 Composition and architecture

Each interpreted architecture (η, O) describes an inter-
face behavior F(η,O) ∈ F[I � O]. This behavior is basi-
cally the composition of all interface behaviors of the
systems F1, F2, F3, . . . of the architecture F1⊗F2⊗F3 · · · .
This shows that system composition is the basis for
deriving interface behaviors of architectures from the
interface behaviors of the components of architectures.

Example (Giving meaning to message sequence charts
(MSCs))

To show how easy it is in this model to give a pre-
cise meaning, for instance, to MSCs we look at a simple
example.

Let us assume that TR is a deterministic system. Then
it is modeled by a function on streams. The two MSCs
in Fig. 14 are translated into the following equations for
the system TR (for details, including notation, see [18]).

fTR(〈a : m〉) = 〈b : ready〉
fTR(〈a : m〉∧〈c : Y〉∧x) = 〈b : ready〉∧〈d : Y〉∧〈b : m〉∧fTR(x)

fTR(〈a : m〉∧〈c : N〉∧x) = 〈b : ready〉∧〈d : N〉∧fTR(x)

This translation is based on the understanding that, for
every thread in an MSC, incoming arrows denote input
and outgoing arrows denote output. Here we assume the
system is deterministic in the sense that it reacts to every
input pattern by a uniquely defined output pattern.

Model-driven architecture-centric engineering of (embedded) software intensive systems 97

msc success

Sender TR Receiver

msc failure

Sender TR Receiver

TRSender Receiver
a
d

b
c

d:Y

c:Y

a:m

b:ready

b:m

d:N

c:N

a:m

b:ready

Fig. 14 System architecture and MSCs

MSCs can easily be related to system architectures as
shown in Fig. 14.

This is only one example that demonstrates the flexi-
bility of the system model to give meaning to graphical
description techniques.

7 Modeling time

In this section we show how to model and work with
different time granularities and time scales. We show, in
particular, how we can work with different time scales
for the different components within architectures. This is
of interest when running several functions in multiplex-
ing mode on one hardware node (CPU) with different
sample time requirements.

7.1 Changing the time scale

We first show how to make the time scale coarser.

7.1.1 Coarsening the time scale

Let n ∈ N and C be a set of typed channels; to make the
time scale coarser by the factor n for a channel history
(or a stream)

x ∈ �C
we introduce the coarsening function

COA(n) : �C → �C
defined by (for all t ∈ N):

COA(n)(x).t + 1 = x(t ∗ n + 1)∧ . . .∧ x(t ∗ n + n)

COA(n)(x) yields a history from history x where for each
stream associated with a channel n successive time inter-
vals are concatenated (abstracted) into one. We forget

about some of the time distribution. The time scale is
made coarser that way.

Time coarsening obviously represents a form of
abstraction. We forget some information about the tim-
ing this way. Distinct histories may be mapped onto the
same history by time-scale coarsening.

It is not difficult to allow even a coarsening factor
n = ∞ in time coarsening. Then an infinite number of
time intervals is mapped into one. Timed streams are
abstracted into untimed streams:

COA(∞)(x) = x

On histories, coarsening is a function that is not injective
and thus there does not exist an inverse.

We generalize the coarsening of the time scale from
channel histories to behaviors. To make a behavior

F : �I → ℘(�O)

coarser by the factor n, we define the coarsening opera-
tor that maps F onto

COA(F, n) : �I → ℘(�O)

which is defined as follows

COA(F, n)(x) = {COA(n)(y) : ∃ x′ :

x = COA(n)(x′) ∧ y ∈ F(x′)}
Coarsening maps behavior functions onto behavior
functions. On one hand, coarsening may introduce some
kind of further nondeterminism and underspecification
into behaviors due to the coarser time scale of the input
histories. Certain different input histories are mapped
by the time coarsening onto the same coarser input his-
tories. Then their sets of output histories are defined by
the union of all their coarsened output histories. In this
way the nondeterminism may grow.

On the other hand some nondeterminism and under-
specification may be removed in behaviors by coarsen-
ing, since different output histories may be mapped by
the time coarsening on the same coarsened output his-
tory.

A special case is the coarsening COA(·), which
abstracts completely away all time information. If the
output of F depends on the timing of the input, then the
coarsening COA(F, ·) introduces a lot of nondetermin-
ism, in general. However, if the output produced by F
does not depend on the timing of the input messages at
all but only on their values and the order in which they
arrive, COA(F, ·) will rather be more deterministic.

If F is weakly causal, the behavior of COA(F, n) is
obviously weakly casual, too. However, strong causality
is not maintained, in general. We will come back to more
explicit rules of causality and coarsening later. Reactions

98 M. Broy

to input at later time intervals may be mapped into one
time interval.

7.1.2 Making the time scale finer

We can also map a history as well as a behavior onto
finer time granularities. Let n ∈ N; to make the time
scale finer by the factor n for a history (or a stream)

x ∈ �C

we use the function

FINE(n) : �C → ℘(�C)

defined by the equation:

FINE(n)(x).t + 1

= {x′ ∈ �C : ∀t : x.t = x′.(n∗t + 1)∧ . . .∧ x′.(n∗t + n)}

FINE(n)(x) yields a set of histories where for each time
interval the sequences of messages in this interval are
arbitrarily subdivided into n sequences that are associ-
ated with n successive time intervals. Thus the sequence
on each time interval for each channel is nondeterminis-
tically divided into n sequences. The time scale is made
finer in this way.

Making the time scale finer is a form of concretiza-
tion. Each history is mapped onto a number of histories
by making its time scale finer. Each of these histories
represents one version of the history with the finer time
granularity.

Along this line of discussion another way to define
the function FINE is given by the following formula

FINE(n)(x) = {x′ : COA(n)(x) = x′}

This equation shows more explicitly the relationship
between making the time scale coarser and making the
time scale finer. They are inverse operations. Changing
the time scale represents an abstraction, if we make the
time scale coarser, and a concretization, if we make it
finer.

The idea of making a time scale finer can also be
applied to behaviors. We specify

FINE(F, n)(x) = {FINE(n)(y) : ∃x′ :

x = FINE(n)(x′) ∧ y ∈ F(x′)}

Due to the nondeterminism in the way we make the
time scale finer, there is no guarantee that we get a
higher number of delays in the behaviors when moving
to a finer time scale.

7.1.3 Rules for time scale refinement

Changing the time scale is an operation on histories and
behaviors. In this section we study laws and rules for
changing the time scale.

Our first rules of changing the time scale show that the
functions COA(n) and FINE(n) form refinement pairs
in the sense of granularity refinement:

COA(n)(FINE(n)(x)) = x

x ∈ FINE(n)(COA(n)(x))

In other words, coarsening is the inverse of making the
time scale finer. We observe, in particular, the following
equations

COA(F, n) = FINE(n) ◦ F ◦ COA(n)

FINE(F, n) = COA(n) ◦ F ◦ FINE(n)

The proof is quite straightforward. The equations show
that time refinement in fact is a special case of interac-
tion granularity refinement (see [17]).

Both abstractions and refinements by factors n × m
can be seen as two consecutive refinements by the factor
n followed by m or vice versa.

We get the following obvious rules:

FINE(n ∗ m) = FINE(n) ◦ FINE(m)

COA(n ∗ m) = COA(n) ◦ COA(m)

7.1.4 Choosing the appropriate time scale

We have seen how closely the time scale is related to
the notion of causality. It depends very much on the
time scale if a behavior is causal as well as on the delay
properties of the systems. In a large system with many
components, different time scales may be appropriate
for different subsystems. In this section we therefore
study the following idea of flexible timing.

A complex hierarchical system requires a flexible
time model such that its time granularity can be adapted
individually to the needs of its various subsystems.

This leads to an interesting idea: we establish and
model different time scales for the subsystems of a com-
posed system. Then we can choose the time scales in a
flexible way, according to the following observations:

• For each system composed of strongly causal com-
ponents its time delay is greater than the length of
the shortest path of channels through the system of
components.

• Therefore we can coarsen the interface abstraction
of the system by the factor k without losing strong
causality.

Model-driven architecture-centric engineering of (embedded) software intensive systems 99

This leads to hierarchical system models that support
local islands of finer granularity of time. A system may be
composed of many subsystem with their own finer time
scales. To discuss this in detail we first have to introduce
a notion of composition.

7.2 Composition and the choice of the time scale

In this chapter we are interested in the question how
time abstraction and composition fit together. A com-
positional formula should read as follows:

COA(F1 ⊗ F2, n) = COA(F1, n) ⊗ COA(F2, n)

However, this formula does not hold, in general, since
making a behavior coarser is an information loss that
may result in the loss of strong causality and thus may
introduce causal loops. This abstraction is the origin of
the problems with causal loops in approaches advertised
under the name “perfect synchrony” such as Esterel (see
[7]). Moreover, the individual timing of the subcompo-
nents may be highly relevant for selecting the behaviors
(the output histories).

7.3 Strong causality and compositionality of coarsening

As long as COA(F1, n) and COA(F2, n) are still strongly
causal the equation above holds.

COA(F1 ⊗ F2, n) = COA(F1, n) ⊗ COA(F2, n)

We do not give the proof explicitly here. The proof uses
the stepwise construction of the fixpoint and the fact that
this construction is inductive as long as the behavior is
causal.

However, in contrast to problems when coarsening
the equation

FINE(F1 ⊗ F2, n) = FINE(F1, n) ⊗ FINE(F2, n)

does always hold, if only F1 and F2 are time independent.
Moreover, if a system is time independent, then the

following equation is valid

COA(F, n)(COA(n)(x)) = COA(n)(F(x)).

This proposition is proved as follows: a simple compu-
tation shows that

COA(F1, n) ⊗ COA(F2, n) ⊇ COA(F1 ⊗ F2, n).

The reverse holds if both COA(F1, n) and COA(F2, n)

are strongly causal.
Let C1 and C2 be the sets of channels defined by

C1 = O1 ∩ I2, C2 = O2 ∩ I1.

with

O = (O1\C1) ∪ (O2\C2), I = (I1\C2) ∪ (I2\C1)

We get by definition the equation

[COA(F1, n) ⊗ COA(F2, n)](x)

= {y : y|I = x ∧ y|O1 ∈ COA(F1, n)(x|I1) ∧ y|O2

∈ COA(F2, n)(x|I2)}
This proves the validity of the formula above.

A well-known effect of composition of systems is
the accumulation of their delays. This can be explained
nicely for pipelining.

We write delay(F, n) if F is a behavior with a delay by
(at least) n time units. More precisely we define:

delay(F, n) ≡ [∀ x, z, t : x ↓ t = z ↓ t

⇒ (F(x)) ↓ t + n = (F(z)) ↓ t + n]

In other words, F is (weakly) causal if delay(F, 0) holds
and strongly causal if delay(F, 1) holds.

Obviously we have for all n, m ∈ N:

n ≤ m ∧ delay(F, m) ⇒ delay(F, n)

If delay(F, ∞) holds then the output does not depend
on the input at all. For a weakly causal system there
is always a maximal number n ∈ N ∪ {∞} such that
delay(F, n) holds. This number is called the guaranteed
delay.

Let the behaviors

F1 : I1 → ℘(O1), F2 : O1 → ℘(O2)

be given. We obtain

delay(F1, m) ∧ delay(F2, n) ⇒ delay(F1 ◦ F2, m + n)

In the case of two strongly causal functions F1 and F2
we get (at least)

delay(F1 ◦ F2, 2)

On one hand this fact is very satisfactory since it leads
to a useful delay calculus (see above).

On the other hand it shows an unfortunate inflexibil-
ity of the design calculus for timed systems. If we want
to represent a function by two functions with pipelining
we always have to accept delay by 2 if the functions are
strongly guarded. In fact, if we insist on a delay less than
2, a system cannot be implemented by a system con-
sisting of two components composed sequentially. This
sounds weird and seems a reason to reject our approach.
However, the operators that change the time granularity
allow us to deal with this issue. If delay(F1◦F2, 2) holds
we may replace F1 ◦ F2 by COA(F1 ◦ F2, 2).

100 M. Broy

8 Perspective, related work, summary and outlook

In this final section we put our modeling theory into
perspective with related issues of software and systems
engineering, refer to related work and give a summary
and an outlook.

8.1 Perspective

In this paper we concentrate on the modeling of soft-
ware intensive systems and a theory of modeling. Of
course, when engineering software intensive systems we
cannot work directly with the theory. We need well-
chosen notations, using textual or graphical syntax or
tables. In practical development it helps including nota-
tional conventions to make the presentations of the
models better tractable. Furthermore, we need logical
calculi to prove properties about relationships between
model descriptions. And finally we need tools that sup-
port our modeling theory in terms of documentation,
analysis, verification, and transformation.

Our theory is carefully designed to make such a sup-
port possible and some of what is needed is already
available. There exists a well worked out proof theory
(see [15]) as well as tool support (see [2,3,46]), that
includes a graphical notation for the model views. There
is plenty of research to apply and detail the presented
theory (see [13,14,16,18,28,41]).

8.2 Related work

Modeling has been, is, and will be a key activity in soft-
ware and systems engineering. Research in this area
therefore has always been of major interest for infor-
matics.

Early pioneering work in system and software mod-
eling led to Petri nets (see [39,40]), aiming at highly
abstract models for distributed concurrent systems. Early
work based on Petri nets led to data flow models (see
[34]). Another early line of research is denotational
semantics (see [52]) aiming at mathematical models of
programs. Also the work on programming logics (see,
for instance, [27]) always had a flavor of modeling issues,
albeit sometimes rather implicit. Also much of the early
work on data structures was a search for the appropriate
models (see [12]).

Very much influenced by work on programming lan-
guage semantics – and also by denotational semantics –
is the work on VDM (see [32]). Other work on formal
specification such as Z (see [51]) and B (see [1]) has also
a modeling flavor, although in this work often mathe-

matical concepts are more explicitly emphasized than
system modeling issues.

Very often in the history of software and systems
engineering, notations were suggested first – of course
with some ideas as to what they expressed – and only
later was it found that giving a consistent meaning to
these notations was much less obvious and much harder
than originally thought. Examples are CCS (see [38]),
CSP (see [30]), where it took several years of
research to come up with a reasonable semantical model,
and state charts. Recent examples along these lines are
approaches such as UML (see [19]). This way plenty of
interesting work on modeling was and still is triggered.

Much work in modeling and modeling theory was
carried out by research on formal techniques for dis-
tributed systems. Typical examples are CSP (see [30]),
CCS (see [38]), or more general process algebras (see
[4]), and later Unity (see [20]) as well as TLA (see [35]).
In Unity the underlying model is kept very implicit and
everything is explicitly done by some abstract program-
ming notation and a logical calculus. Nevertheless there
is a state machine model behind Unity. In TLA the
underlying model is explained more explicitly. All these
approaches do not define system views but rather one
system model. Sometimes the system model is enhanced
by a specification framework, which can be understood
as a complementary view. Also general work on tem-
poral logic (see [37]) always included some modeling
research. More recent developments are evolving alge-
bras (see [25]).

Other examples are the so-called synchronous lan-
guages such as Lustre and Signal (see [5]) or Esterel
(see [6,7]). They all aim at programming notations for
real-time computations rather than making their under-
lying models explicit.

A pioneer in modeling with a more practical flavor
is Jackson (see [33]). He related modeling issues with
engineering methods (see also [53]).

Another line of research related to modeling is the
field of architecture description languages (see [24,36]).
Also there we find the discrepancy between a suggestive
notation, an extensive terminology talking about com-
ponents and connectors, for instance, and a poor, often
rather implicit, modeling theory.

A completely different line of research aims at visual
modeling notations. State charts (see [26]) were sug-
gested as a graphical modeling language. It took a while
before the difficulties of giving meaning to these state
charts were recognized.

A quite different approach arose from more-
pragmatic work on system modeling. Graphical
notations were suggested first control flow graphs, later
in SA (see [21]) and SADT (see [42,43]). Early mod-

Model-driven architecture-centric engineering of (embedded) software intensive systems 101

eling languages were SDL (see [11,47–49]). Then the
object-oriented approaches (see [31,45]) came, includ-
ing OOD (see [8]), OADT (see [44]), ROOM (see [50])
and many others. Today UML (see [9]) is much advo-
cated, although in many aspects it is just a graphical
notation with many open problems concerning its mod-
eling theory.

None of the approaches explicitly tried to bring to-
gether the different views and to formally relate them
and to introduce, in addition, refinement as an additional
relation between the views.

8.3 Summary and outlook

Why did we present this setting of mathematical models
and relations between them? First of all, we wanted to
show how rich and flexible the tool kit of mathematical
modelling is and has to be, and how far we are in integrat-
ing and relating them. Perhaps it should be emphasized
that we first presented an integrated system model that
was very close to practical approaches such as SDL or
UML where a system is a tree or hierarchy of compo-
nents. In this tree of components the leaves are state
machines. In our case the usage of streams and stream
processing functions is the reason for the remarkable
flexibility of our model toolkit and the simplicity of the
integration.

There are many interesting directions for further re-
search on the basis of the presented theory of modeling.
One direction is to apply it to specific domains; this may
lead to domain-specific modeling languages.

Another interesting issue is the relationship to pro-
gramming languages and standard software infrastruc-
ture such as operating systems. In such an approach it
remains to be worked out how the introduced models
are mapped onto programs that are executed in an infra-
structure of the operating systems and middleware. For
an example in this direction, see [10].

Acknowledgments It is a pleasure to thank Markus Pizka, Leonid
Kof, Ingolf Krüger, and Bernhard Schätz for stimulating discus-
sions and helpful remarks on draft versions of the manuscript.
I thank Judith Hartmann for carefully proofreading the manu-
script.

References

1. Abrial JR (1996) The B-book. Cambridge University Press,
Cambridge

2. Website of AutoFocus with documentation, screenshots,
tutorials and download. http://autofocus.in.tum.de

3. Website AutoRAID, with documentation, screenshots and
downloads http://wwwbroy.in.tum.de/∼autoraid/

4. Baeten JCM, Bergstra J (1992) Process algebras with signals
and conditions. In: Broy M (ed.) Programming and mathemat-

ical method. NATO ASI Series, Series F: Computer and sys-
tem sciences, vol. 88. Springer, Berlin Heidelberg New York,
pp 273–324

5. Benveniste A, Caspi P, Edwards S, Halbwachs N, LeGuer-
nic P, De Simone R (2003) The synchronous languages twelve
years later. Proc IEEE 91(1):64–83

6. Berry G, Gonthier G (1988) The Esterel synchronous
programming language: design, semantics, implementation.
INRIA, Research Report 842

7. Berry G (2000) The foundations of esterel. MIT Press,
Cambridge

8. Booch G (1991) Object oriented design with applications.
Benjamin Cummings, Redwood City

9. Booch G, Rumbaugh J, Jacobson I (1998) The unified mod-
eling language for object-oriented development, version 1.0.
RATIONAL Software Cooperation

10. Botaschanjan J, Broy M, Gruler A, Harhurin A, Knapp S, Kof
L, Paul W, Spichkova M (2006) On the correctness of upper
layers of automotive systems. (in press)

11. Broy M (1991) Towards a formal foundation of the specifica-
tion and description language SDL. Formal Aspects Comput
3:21–57

12. Broy M, Facchi C, Hettler R, Hußmann H, Nazareth
D, Regensburger F, Slotosch O, Stølen K (1993) The
requirement and design specification language spectrum.
An informal introduction. version 1.0. Part I/II Technische
Universität München, Institut für Informatik, TUM-I9311 /
TUM-I9312

13. Broy M (1997) Refinement of time. In: Bertran M,
Rus Th (eds) Transformation-based reactive system devel-
opment. ARTS’97, Mallorca 1997. Lecture notes in computer
science vol 1231, pp 44–63 (To appear in TCS)

14. Broy M, Hofmann C, Krüger I, Schmidt M (1997) A graph-
ical description technique for communication in software
architectures. Technische Universität München, Institut für
Informatik, TUM-I9705, February 1997. http://www4.in-
formatik.tu-muenchen.de/reports/TUM-I9705. Also in:
Joint 1997 Asia Pacific Software Engineering Confer-
ence and International Computer Science Conference
(APSEC’97/ICSC’97)

15. Broy M, Stølen K (2001) Specification and development of
interactive systems: Focus on streams, interfaces, and refine-
ment. Springer, Berlin Heidelberg New York

16. Broy M (2003) Modeling services and layered architec-
tures. In: König H, Heiner M, Wolisz A (eds) Formal tech-
niques for networked and distributed systems. Lecture notes
in computer science, vol 2767. Springer, Berlin Heidelberg
New York, pp 48–61

17. Broy M (2004) Time, abstraction, causality, and modularity in
interactive systems. FESCA 2004. Workshop at ETAPS 2004,
pp. 1–8

18. Broy M (2004) The semantic and methodological essence of
message sequence charts. Sci Comput Program SCP 54:2–3,
213–256

19. Broy M, Cengarle MV, Rumpe B (2006) Semantics of UML.
Towards a system model for UML. The structural data model.
Technische Universität München, Institut für Informatik,
Report TUM-IO612

20. Chandy KM, Misra J (1988) Program design: a foundation.
Addison–Wesley, Reading

21. DeMarco T (1979) Structured analysis and system specifica-
tion. Prentice Hall, Englewood Cliffs

22. Deubler M (2006) Dienst-orientierte Softwaresysteme:
Anforderungen und Entwurf. Dissertation (To appear)

23. Filman R, Elrad T, Clarke S, Aksit M (2004) Aspect-oriented
software development. Addison–Wesley, Reading

102 M. Broy

24. Garlan D, Allen R, Ockerbloom J (1995) Architectural mis-
match: why reuse is so hard. IEEE Soft 12(6):17–26

25. Gurevich Y (1994) Evolving algebra. In: Pehrson B, Simson I
(eds) IFIP 1994 World Computer Congress, vol. I: Technology
and Foundations, Elsevier, Amsterdam, pp. 423–427

26. Harel D (1987) Statecharts: a visual formalism for complex
systems. Sci Comput Program 8:231–274

27. Hehne ECR (1993) A practical theory of programming.
Springer, Berlin Heidelberg New York

28. Herzberg D, Broy M (2005) Modeling layered distributed
communication systems. Applicable formal methods, vol. 17,
no. 1. Springer, Berlin Heidelberg New York

29. Hettler R (1994) Zur Übersetzung von E/R-Schemata nach
Spectrum. Technischer Bericht TUM-I9409, TU München

30. Hoare CAR (1985) Communicating sequential processes.
Prentice Hall, Englewood Cliffs

31. Jacobsen I (1992) Object-oriented software engineering.
Addison–Wesley, ACM, Reading

32. Jones C (1986) Systematic program development using VDM.
Prentice Hall, Englewood Cliffs

33. Jackson MA (1983) System development. Prentice Hall,
Englewood Cliffs

34. Kahn G (1974) The semantics of a simple language for par-
allel processing. In: Rosenfeld JL (ed.) Information process-
ing 74. Proceedings of the IFIP Congress 74. North Holland,
Amsterdam, pp. 471–475

35. Lamport L (1994) The temporal logic of actions. ACM Trans
Program Languages Syst 16(3):872–923

36. Luckham DC, Kenney JL, Augustin LM, Vera J, Bryan D,
Mann W (1955) Specification and analysis of system architec-
ture using rapide. IEEE Trans Softw Eng 21(4):336–355

37. Manna Z, Pnueli A (1992) A temporal logic of reactive sys-
tems and concurrent systems. Springer, Berlin Heidelberg
New York

38. Milner R (1980) A calculus of communicating systems. Lec-
ture notes in computer science, vol 92. Springer, Berlin
Heidelberg New York

39. Petri CA (1962) Kommunikation mit Automaten.Technical
Report RADCTR-65-377, Bonn, institut für Instrumentelle
Mathematik

40. Petri CA (1963) Fundamentals of a theory of asynchronous
information flow. In: Proceedings of IFIP Congress 62. North
Holland Publishing Company, Amsterdam, pp. 386–390

41. Romberg J (2006) Synthesis of distributed systems from syn-
chronous dataflow programs. PhD Thesis, Technische Univer-
sität München, Fakultät für Informatik

42. Ross DT (1977) Structured analysis (sa): a language for com-
municating ideas. IEEE Trans Softw Eng 3(1):16–34

43. Ross DT (1990) Applications and extensions of sadt. In:
Glinert EP (ed) Visual programming environments: par-
adigms and systems. IEEE Computer Society Press, Los
Alamitos, pp 147–156

44. Rumbaugh J (1991) Object-oriented modelling and design.
Prentice Hall, Englewood Cliffs

45. Rumpe B (1996) Formale Methodik des Entwurfs verteilter
objektorientierter Systeme. PhD Thesis, Technische Univer-
sität München, Fakultät für Informatik 1996. Published by
Herbert Utz Verlag

46. Schätz B (2004) Mastering the complexity of embedded
systems – the Autofocus approach. In: Fabrice Kordon F,
Lemoine M (eds) Formal techniques for embedded distrib-
uted systems: from requirements to detailed design. Kluwer,
Dordrecht

47. Specification and Description Language (SDL), Recommen-
dation Z.100. Technical Report, CCITT, 1988

48. ITU-T (previously CCITT) (1993) Criteria for the use and
applicability of formal description techniques. Recommenda-
tion Z. 120, Message Sequence Chart (MSC), 35p

49. ITU-T. Recommendation Z.120, Annex B: Algebraic seman-
tics of message sequence charts. ITU-Telecommunication
Standardization Sector, Geneva, Switzerland, 1995

50. Selic B, Gullekson G, Ward PT (1994) Real-time objectori-
ented modeling. Wiley, New York

51. Spivey M (1988) Understanding Z – a specification language
and its formal semantics. Cambridge tracts in theoretical com-
puter science 3. Cambridge University Press, Cambridge

52. Stoy JE (1997) Denotational semantics: the scott strachey
approach to programming languages. MIT Press, Cambridge

53. Zave P, Jackson M (1997) Four dark corners of requirements
engineering. ACM Trans Softw Eng and Methodol 6(1):1–30

	Model-driven architecture-centric engineering of (embedded) software intensive systems: modeling theories and architectural milestones
	Abstract
	Motivation
	Comprehensive system modeling theory
	The data model: algebras
	Syntactic interfaces of systems and their components
	Typed channels
	Syntactic interfaces
	State view: state machines
	State machine model: state transitions
	Computations of state machines
	The interface model
	Streams
	Channel valuations
	Interface behavior
	The distributed system model: composed systems
	Uninterpreted architectures
	Interpreted architectures
	Structuring interfaces
	Structuring multifunctional systems
	Services
	Structuring functionality into hierarchies of services
	Structuring the functionality of multifunctional systems
	Structuring systems into a hierarchy of services
	Relating services
	Relating system views
	From state machines to interfaces and back
	From state machines to interfaces
	From interfaces to state machines
	From interpreted architectures to state machines
	From interpreted architectures to interfaces
	Design: from interfaces to state machines and architectures
	Refinement
	Property refinement
	Property refinement of interfaces
	Property refinement of state machines
	Property refinement of composed systems
	General property refinement of hierarchical systems
	Compositionality of property refinement
	Implementation refinement
	Design: implementation refinement of interfaces
	Implementation refinement of state machines
	Implementation refinement of composed systems
	Granularity refinement: changing levels of abstraction
	Refinement of interfaces
	Granularity refinement of state machines
	Granularity refinement of composed systems
	General refinement of systems through levelsof abstractions
	Formalizing relationships between services
	Property refinement and domain extensionof services
	Projection of histories and services
	Service refinement and domain extensionof services
	Vertical relationship between services
	Horizontal relationships between services
	Equivalence of services
	Composition and combination
	Functional enhancement: combining services
	Architecture design: composition of interfaces
	Composing interfaces
	Composition and architecture
	Modeling time
	Changing the time scale
	Coarsening the time scale
	Making the time scale finer
	Rules for time scale refinement
	Choosing the appropriate time scale
	Composition and the choice of the time scale
	Strong causality and compositionality of coarsening
	Perspective, related work, summary and outlook
	Perspective
	Related work
	Summary and outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

