
1

Jane Huffman Hayes1 ���� Alex Dekhtyar ����
Senthil Sundaram ���� Ashlee Holbrook ����
Sravanthi Vadlamudi ���� Alain April

REquirements Tracing On target (RETRO):
Improving Software Maintenance through
Traceability Recovery

1 J. Huffman Hayes (�), A. Dekhtyar, S. Sundaram, A. Holbrook, S. Vadlamudi
Computer Science Department
University of Kentucky
{hayes, dekhtyar}@cs.uky.edu
{skart2,ashlee,Sravanthi.Vadlamudi}@uky.edu

A. April
Department of Software Engineering
Université du Québec, École de Technologie Supérieure
alain.april@etsmtl.ca

Abstract A number of important
tasks in software maintenance
require an up-to-date requirements
traceability matrix (RTM): change
impact analysis, determination of test
cases to execute for regression
testing, etc. Generation and
maintenance of RTMs is tedious and
error-prone, and hence it is often not
done. In this paper, we present
RETRO (REquirements TRacing On-
target), a special-purpose
requirements tracing tool. We
discuss how RETRO automates the
generation of RTMs and present the
results of a study comparing manual
RTM generation to RTM generation
using RETRO. The study showed
that RETRO found significantly
more correct links than manual
tracing and took only one third of the
time to do so.

1 Introduction

 Software maintenance is central to
the mission of many organizations. It
consumes a large part of the software

lifecycle costs and there are billions
of lines of code under maintenance
in the world [23]. One of the hardest
problems in software maintenance is
to understand the program and to
localize the program parts that
should be modified to complete the
maintenance task at hand. The
problem can be serious when
maintaining systems that have been
evolved by many different
individuals using agile
methodologies that yield little
documentation.
 Software traceability is becoming
recognized as a significant
contributor to efficient software and
system quality. However, as
empirical studies and quality audits
of industrial organizations have
indicated, its practice and
instrumentation is not always
satisfactory. An explanation often
stated to justify non-conformance of
keeping the traceability links
consistent is the process itself which
is time consuming, error-prone, and
labor-intensive.

2

 In many industries, the software
maintenance methodology
requirements state that documented
bi-directional traceability needs to be
maintained over the entire life of the
system. This facilitates software
change impact analysis, reuse
analysis, program comprehension,
regression testing, etc. The main
issue is that software maintainers
find the update of the system
documentation to be tedious and
hence it is often neglected. To verify
the accuracy of or to recreate a
traceability matrix that is not well-
maintained makes it necessary to
create traceability links and matrices
“after-the-fact.” This activity is
called traceability recovery.
 In addition, the process of creating
and maintaining a requirements
tracing matrix (RTM) is time
consuming and error-prone. The
tools that are available to assist with
tracing are aimed at developers who
are creating the trace as they develop
the system the first time. They do
not readily support the maintenance
of an RTM or after the fact
generation of an RTM. Clearly there
is a need for automation.
 In this paper, we present RETRO,
REquirements TRacing On-target, a
tool that we have built to address the
recovery of traceability for artifacts
containing unstructured textual
narrative. RETRO uses Information
Retrieval (IR) and text mining
methods to construct candidate
traces. To date, it has been used to
trace requirements and design
documents [2,3] and collections of
bug reports [4]. The tool has evolved
from a research only tool-kit into a
more industrial tool directed at
verification and validation (V&V)
analysts as well as maintainers in
several countries. The tool consists
of a set of information retrieval (IR)
and text mining methods as well as a
front-end that provides functionality

for the analyst to use during the
tracing process. Our work to date
has largely focused on the quality of
generated traces as a function of the
information retrieval methods used
[1,2,3].
 We have begun to venture into an
examination of how the analyst
interacts with such a tool, how usable
the tool is, and how this impacts the
quality of the final traceability
matrix. A preliminary result showed
that the analysts were satisfied with
the back-end, but wanted a better
front-end [5,6]. We set about to
address these concerns, and the latest
version of RETRO was developed
after a year-long effort of re-design
and improvement to the front-end
capabilities of RETRO. In this
paper, we report on the study we
undertook to evaluate the usability of
the resulting front-end.
 The paper is organized into six
sections. Information retrieval for
tracing is presented in Section 2.
The tracing tool, RETRO, is
presented in Section 3. The empirical
study undertaken to assess RETRO is
discussed in Section 4. Related work
is presented in Section 5. Finally,
conclusions and future work are
presented in Section 6.

2 Information Retrieval for
Tracing

 Since [1], we have observed that
Information Retrieval methods can
be adopted and, if necessary, adapted
for use in tracing textual artifacts.
Indeed, a typical IR problem
involves a document collection and a
user information need (expressed in
the form of a text query). The task is
to find documents in the collection
that are deemed relevant to the
query. When two artifacts are traced
to each other, elements of one of the
artifacts serve as “documents” in the
“document collection,” while the

3

elements of the other serve as
queries. In particular, when forward
tracing (from a parent artifact to a
child artifact) is considered, low-
level elements form the “collection”
while high-level elements become
the queries.
 We have incorporated a number of
different IR methods in RETRO. Our
prior work [5,6] suggests that analyst
satisfaction with the tool depends
mostly on the features/functionality
available through the GUI rather than
on the IR methods used. This paper
concentrates on the front-end
functionality of RETRO, but for
illustrative purposes we describe one
of the methods, vector space
retrieval with tf-idf term weighting
and with standard Rochio feedback
processing [7]. This method is the
default tracing technique in RETRO.
 Vector space retrieval methods are
the bread-and-butter of Information
Retrieval. These methods represent
each document in the document
collection and each query as a vector
of keyword weights, where keywords
(or terms) are the words found in the
documents. In particular, each
document and query are passed
through a stop word removal
procedure, removing words with no
significant importance, such as “a,”
“and,” “to,” and “shall.” After that,
the remaining text is stemmed to
ensure that words such as
“information,” “informational,” and
“informative” are treated as the same
term [7]. The vocabulary of the
document collection, D = {k1,…,kN}, is
formed as the union of all terms
found in all documents. Each
document, di, is then represented as a
vector, di=(wi1,…,wiK) of
term/keyword weights. Different
term weighting schemes can be used
to construct these vectors. The most
popular scheme, tf-idf, uses the

formula ,log













⋅=

j
ijij df

n
tfw where

tfij, called term frequency of keyword
kj in document di, is the normalized
frequency of occurrence of kj in di,

while














jdf

n
log , is called the inverse

document frequency of term kj. That
is, term weight is proportional to
how often the term is found in the
document and inversely proportional
to (the logarithm of) how often it is
found in the entire collection. Given
a document vector d and a similarly
computed query vector q, the
similarity between them is computed
as the cosine of the angle between
the two vectors:

.),cos(),(

1

2

1

2

1

∑∑

∑

==

=

⋅

⋅
==

N

j

N

j

N

j
jj

jj
qd

qd

qdqdsim

 It is well-known in IR that the
quality of retrieval can be improved
by using user relevance feedback,
i.e., the information about relevance
or irrelevance of specific retrieved
documents provided by humans back
to an IR system. RETRO includes
support for relevance feedback.
Relevance feedback techniques for
vector-space methods work by
adjusting the keyword weights of
query vectors according to the
feedback. Feedback consists of
“relevant” and “irrelevant”
qualifications for some of the
documents retrieved in the previous
step. More formally, for a query q,
let Dq be a list of document vectors
retrieved. The user feedback
identifies two subsets in Dq: Dr of
size R of documents relevant to q and
Dirr of size S of irrelevant
documents. Dr and Dirr are disjoint,
but do not necessarily cover the
entire set Dq. We use the Standard
Rochio [7] feedback processing
method:

4

.









−













+= ∑∑

∈∈ irrkrj Dd
k

Dd
jnew d

s
d

r
qq

γβα

 Here, query q is adjusted by adding
to its vector a vector consisting of the
document vectors identified as
relevant, and subtracting from it the
sum of all document vectors
identified as not relevant. The first
adjustment is designed to potentially
increase recall (defined below). The
second adjustment can potentially
increase precision (defined below).
The constants α, β, γ in the formulas
above can be adjusted in order to
emphasize positive or negative
feedback as well as the importance
of the original query vector (in this
paper, all values were set to 1). Once
the query vectors have been
recomputed, the selected IR
algorithm is re-run with the modified
query vectors. This cycle can be
repeated until the user is satisfied
with the results.

Fig. 1 Architecture of RETRO

Measuring the accuracy of IR
methods. Recall and precision are
two measures traditionally used to
evaluate the accuracy of the results
returned by IR methods. Informally,
precision measures the percentage of
retrieved documents that are
relevant, while recall measures the
percentage of relevant documents
that were retrieved. More formally,
if a document collection has N

documents, R of which are relevant
to query q, and an IR method
retrieves n documents, r of which
are relevant to q, then the precision
and recall of the method on query q
are defined as follows:

 ;
n

r
precision= .

R

r
recall =

 High recall of candidate link lists
generated by IR methods used for
traceability analysis means that the
methods successfully discovered
most of the links from the RTM, i.e.,
few errors of omission were
committed. High precision of
candidate link lists means that most
of the links retrieved by the method
were from the RTM, i.e., few errors
of commission were committed. In
our prior work [2,3,8], we argue that
it is easier for an analyst to discover
an error of commission, i.e.,
recognize that a retrieved candidate
link is incorrect, than to recognize an
error of omission, i.e., recognize that
a valid link has not been reported.

3 RETRO

 Originally, RETRO was designed
as a nameless research toolbox of IR
methods adopted and adapted, where
needed, for requirements tracing.
The name RETRO and the first
front-end appeared only about one
year after the original development.
The purpose of the first front-end
was simply to allow researchers to
browse the results of tracing
methods.
 Over time, our view of RETRO
has evolved. The concept of a
special-purpose requirements tracing
tool caught the eye of NASA and
analysts working on NASA
Independent Verification and
Validation (IV&V) projects. Our first
attempts to use RETRO in such
contexts, as well as our work on new
tracing methods [5,6,9], lead us to
the observation that IV&V analysts

5

were content with the RETRO
backend, but would like to see the
front-end of RETRO implement a
wider range of facilities for tracing.
Our most recent effort has lead to the
complete redevelopment of the
RETRO front end and development
of additional functionality.

3.1 Evolution of RETRO

 The first version of the current
RETRO GUI (RETRO 2.0) was
developed with basic functionalities
that allowed an analyst to work with
the IR methods, to view the results,
and then to provide some feedback.
The version didn’t provide support
for viewing the final trace or for
searching for any links that may have
been omitted by the IR methods.
Also, the basic functionalities
provided were not easy to use. As
this version was developed with
minimal options, it posed problems
for users such as lack of functionality
and lack of usability.
 The next version of RETRO, 2.3,
added the functionality required for
tracing a project and also fixed
problems from the first version. This
version allowed users to reject links
that were not correct (errors of
commission, i.e, errors made by the
IR methods in retrieving the
candidate linked lists), but did not
allow the user to report errors of
omission (links missed by the IR
methods).
 RETRO, 2.5, had additional
support for reporting errors of
omission using a separate tab called
‘Browse’ which also provided
support for manual tracing. This
version also provided filtering
functionality to allow the user to
control the display of candidate
links.
 The next version of RETRO, 2.7,
was developed to include
functionality for the analyst to

control the display of the
requirements and to allow the analyst
to view the completed projects in an
easy to understand way. This version
also added support for searching for
keywords in the Browse tab. This
version had some scalability issues
and failed to work when large
projects were loaded. In addition to
addressing these issues, the final beta
version of RETRO (2.N.N) added the
ability to assess an existing RTM and
also added enhanced functionality
for filtering the display of candidate
links.

3.2. Architecture of RETRO

 Figure 1 shows the architecture of
RETRO. The core part of RETRO
consists of the IR Toolbox, the
Feedback processing methods, and
the GUI front end. In addition to this,
methods for building representations
of traced documents are included. At
the present time, all components
except for the GUI are written in
C++, while the front end of RETRO
was developed in Java using
Eclipse’s SWT GUI library. The
components communicate with each
other in one of two ways: (i) by
changing the representation of the
documents stored on disk, or (ii) by
using XML files encoding candidate
link lists and user feedback
information. In particular, build
methods and the feedback processor
change the representation of the
documents on disk, while the toolbox
methods encode their results in an
XML file read by the GUI. The GUI
solicits user feedback, and based on
it, modifies the XML file, which it
then passes to the feedback processor
for a new round of tracing.

3.3. Functionality of RETRO

 The version of RETRO described
here, RETRO 2.5, has been

6

Fig. 2 RETRO User Interface and Features

developed with a single major use
case in mind. This use case involves
an IV&V analyst tasked to trace a
pair of documents from scratch. One
of the current development branches
of RETRO deals with additional use
cases involving assessment of
existing RTMs.
 RETRO allows analysts to work
on tracing projects. The work with

Table 1 Retro Features

ID Feature

1 Tracing entire dataset at once

2 Tracing elements one at a time

3 Filtering toolbar

4 Filtering option to show top number of
links

5 Killing the links that are hidden by the
filter

6 Global filtering of candidate link lists

7 Local filtering of candidate link lists

8 View of low-level elements one at a time

9 View of low-level elements in document
order

10 View of low-level elements in order of
similarity

11 “Freezing” of high-level element tracing

12 Assignment of “Link” and “Not a link” to
links

13 Feedback loop

14 Browse tab (Manual Tracing mode)

15 Text search in browse tab

16 Adding links to the RTM from the browse
tab

Fig.3 RETRO User Interface: BROWSE tab

RETRO must start with an analyst
either creating a new project or
loading an existing project. To
specify a project, the analyst must
indicate to RETRO the location of
the documents that need to be traced
(our GUI shows them as high- and
low-level, but any textual artifact
may be traced to any other textual
artifact). Optionally, the analyst may
choose the IR method that RETRO is
to use for tracing (the default is
vector space retrieval with tf-idf term
weighting [7]) and select the
feedback processing method (the
default is Standard Rochio [7]).
RETRO invokes the build
component to construct the
representations of the high- and low-
level elements for the selected IR
method, after which it displays the
main GUI and lets the analyst
conduct the tracing. Fig.2 and Fig.3
depict the GUI for the two tracing
modes provided by RETRO:
 Automatic Tracing Mode, the
default mode of RETRO (Fig.2), is
designed to let the analyst work with
the results of automated tracing
methods, and to provide the feedback
on the candidate links produced by
the automated methods.
 Manual Tracing/Browsing
Mode, (Fig.3), provides the analyst
with the ability to browse high- and
low-level documents for the purpose

7

of discovery of any links not found
by the automated tools.
 We have explicitly identified 13
features of RETRO available for
analyst use when tracing. We list
these features in Table 1. In Fig.2
and Fig.3, we indicate the GUI
location of access to these features.
The features are briefly described
below.
 Tracing all-at-once/One element
at-a-time, Feedback. Two buttons
on the main GUI screen, “Trace All”
and “Trace Current,” provide the
interface with the selected (at the
project start) IR method for tracing.
When pressed for the first time, the
IR method is executed, and the
results are displayed on the screen.
Any subsequent presses of either
button results in one round of user
feedback processing, followed by the
execution of the IR method on the
new dataset representation. When
“Trace All” is pressed, all high-level
elements (except those explicitly
“frozen” by the user – see below),
are traced/retraced. When “Trace
Current” is pressed, only the high-
level element currently selected in
the list of high-level elements is
traced (unless it is “frozen,” in which
case no action is performed).
 Filtering of candidate link lists.
The filtering tools allow the analyst
to reduce the display of the candidate
link lists. The analyst specifies a
threshold value and then only those
low-level documents with relevance
weights greater than the given
threshold are displayed. The other
way of applying filtering is by
entering the number of low-level
documents that need to be displayed
(for example, the “top 5”). The
threshold is controlled by a slider bar
that can be moved in increments of
0.01 from 0 to 1. The selected filter
can have either global or local effect.
When the Global radio button is
selected, the current filter value

applies to candidate link lists for all
high-level elements. When the Local
radio button is selected, the current
filter value applies only to the
candidate link list of the currently
selected high-level element.
 View of low-level elements.
There are three ways in which the
text of low-level candidate links can
be displayed in the tool. First, the
low-level links can be displayed one
element at a time. In this case, only
the text of the currently selected low-
level element is displayed. The
second option is to display the text of
all candidate links in the order
that they appear in the low-level
document. In this case, the currently
selected low-level element is
highlighted. Finally, the candidate
links can also be displayed in the
order of their similarity/relevance
value, i.e., in the order their IDs
appear in the candidate link list (low-
level element list).
 Positive/Negative feedback. The
main purpose of the RETRO GUI is
to solicit analyst feedback on the
candidate link lists suggested by the
automated methods. There are two
steps to the feedback loop. As
mentioned above, the “Trace All”
and “Trace Current” buttons serve to
start the feedback processing loop.
The actual feedback is provided by
selecting a low-level element, right-
clicking the mouse and selecting one
of the three options: “Link,” “Not A
Link,” or “Default.” Selection of
“Link” constitutes positive feedback:
the analyst is explicitly marking the
current link as belonging to the final
RTM. Selection of “Not A Link”
constitutes negative feedback: the
analyst explicitly excludes the link
from the final RTM. Selection of
“Default” means that the analyst is
not ready to provide explicit
feedback on the current link. All
links are marked “Default” when
they are first added to the candidate

8

RTM by the automated methods. The
analyst also has an option of
changing “Link” and “Not a link”
assignments back to “Default.”
“Links” are highlighted in green,
while elements classified as “Not a
link” are highlighted in red.
 “Freezing” of high-level
elements. Anytime the “Trace All”
button is pressed, the automated
methods retrace all candidate links.
To allow analysts more freedom in
how they approach tracing tasks,
RETRO allows the analysts to
“freeze” individual high-level
requirements – i.e., ensure that they
are not retraced when the “Trace
All” button is pressed. This feature
may be useful for analysts who
prefer to trace element-by- element,
rather than iteration-by-iteration. To
freeze a candidate link list for a high-
level requirement, the analyst needs
to select a high-level requirement,
right-click the mouse button, and
select the “Postpone Analysis”
option. The change of high-level
element status is reflected in the list
of high-level requirements.
 Browse tab functionality. The
“Trace” tab of RETRO lets the
analyst evaluate candidate links
returned by the automated methods
and fix any discovered errors of
commission. However, the “Trace”
tab interface is not convenient for
searching for errors of omission. The
“Browse” tab has been designed
specifically to address this
shortcoming of the “Trace” tab. The
“Browse” tab consists of the lists of
high- and low-level element IDs,
presented in the respective document
orders, and two text windows,
displaying the high- and low-level
requirements. The analyst can
browse both documents, select pairs
of high- and low-level requirements
and, if errors of omission are
discovered, add newly discovered
low-level elements to the RTM. The

list of discovered errors of omission
is shown on the right side of the tab,
and the links are added to the
candidate link lists in the “Trace”
tab, with the status set to “Link.”
RETRO also provides a simple text
search feature for both high- and
low-level documents in the “Trace”
tab.

4 Validation

 In this section, we present the design
of the case study, the results, as well
as evaluation of the results.

4.1 Case study design

 The case study was conducted
with a group of thirty (30) students
enrolled in a graduate-level
requirements engineering course
taught at the University of Kentucky
during the Spring 2006 semester.
There were two groups: those doing
tracing manually, and those using
RETRO. Students who had
previously performed tracing were
identified and put into the manual
group (there were four such
students). Next, the remaining
students were divided until two
groups of fifteen (15) students
existed.
 Each group was then taken to a
separate location where they
received written instructions and a
brief background of the task.
Students were also given a list of
common acronyms used in the data
set to assist with the task. Students
were not told anything about the task
of the other group. Both groups were
assigned the same tracing task: to
trace twenty-two (22) high-level
requirement elements to fifty-two
(52) design elements (a subset of the
CM-1 dataset, a NASA scientific
instrument[22]). Each group was
asked to use a different method.
Group 1 was asked to perform the

9

Table 2 Task Assessment Questions

Number RETRO Group MANUAL Group

1 The project was simple to complete

2 The project could be completed quickly

3 The project was tedious

4 RETRO was easy to use

5 If I were performing a similar task in the future, I
would want to use a software tool to assist

If I were performing a similar task in the future,
I would want to use a software tool to assist

6 I would rather have completed the project by
hand than use RETRO

I would rather have completed the project by
hand than use a software tool

7 It probably took less time to use RETRO than it
would have to complete the project by hand

It probably would have taken less time to use
a software tool to complete the project than it
did by hand

Table 3 Comparison of Means - 2 Groups

 Recall Precision Total Time

(minutes)

Manual

Group

(Group 1)

0.33 0.24 120.67

RETRO

Group

(Group 2)

0.70 0.13 41.88

T-Test (p-

value)

0.001 0.01 0.0004

tracing and produce an RTM
manually. The members of the
other group, Group 2, were given a
brief introduction to RETRO and
were asked to use it to complete the
tracing assignment.
 Students in both groups were asked
to record the amount of time spent on
the task. Group 2 students were
asked to record the time spent using
the tool, but not to include
installation time. Additionally, a
post-experiment survey was given to
students in both groups. The survey
consisted of common questions (to
both groups) as well as questions
specific to the nature of the process
employed by each group. Table 2
contains the list of questions from
the survey we have tracked in this
study. In all questions, student
response was measured on the five-
point scale: “strongly agree”(5),
“agree”(4), “no opinion”(3),
“disagree”(2), and “strongly
disagree”(1).

Table 4 Comparison of Means - 3 Groups

 Recall Precision Total Time

(minutes)

RETRO Gr,

Default=Link

(Group 2a)

0.979

0.040

42.5

RETRO Gr,

Default=No

link (Group

2b)

0.48

0.199

41.25

Manual Gr.

(Group 1)

0.330 0.243 120.667

T-Test (Group

2a and 2b)

0.0002 0.014 0.970

T-Test (Group

2a and 1)

9x10-09 3x10-05 0.002

T-Test (Group

2 b and 1)

0.019 0.301 0.005

 In addition, students in Group 2
were asked to identify which of the
14 features of RETRO they used,
and report how helpful the features
were, also using a five-point scale (5
– very helpful, 1 – annoying).
 In the end, 11 students from
Group 1 submitted the RTM and
survey, and 12 RTM and survey
submissions were collected from
Group 2 students. Out of these, we
eliminated two data points from
Group 1 (one student submitted an
incomplete task, two other students
worked together – we elected to treat
their submissions as one). In
addition, we encountered differences
in the interpretation of the task
within Group 2. Links that are not
explicitly marked as a link or not a
link are shown by RETRO as

10

“Default.” There was some
confusion as to whether default
entries would be considered to be
links (and would become part of the
final RTM submitted by the student)
or would not be considered links
(and would be excluded from the
final RTM).
 We administered a short one
question post-task survey, asking
how each student in Group 2 viewed
the “Default” links. Analysis showed
that some students did not fully
understand the task, which lead to
disqualification of three submissions.
Based on the treatment of “Default”
links, Group 2 was split into two
sub-groups , which we refer to as
Group 2a (“default” links included in
the RTM) and Group 2b (“default”
links not included in the RTM).
 There were four and five students
in these sub-groups, respectively.
This left us with nine (9) data points
in each of the groups. Data from the
qualitative survey was compiled and
the student RTM submissions were
checked against the answer set (the
actual RTM) for the data set. We
attempted to limit internal validity
threats by validating the tools and
processes we used for data collection
and analysis. Another possible threat
to internal validity is that of
selection. It is possible that some
students had prior experience with

tracing and/or with tools such as
RETRO that would give them an
unfair advantage in the study. We
attempted to mitigate this risk by
placing all students who said they
had prior tracing experience in the
manual group (Group 1).
 Another possible threat to validity
is that students may have felt that
they needed to provide positive
feedback on the surveys (specifically
about the tool). While it was
emphasized to both groups that the
task had no bearing on their grades,
it may still have been uncomfortable
for students to criticize work that
was known to be related to the
research of the professor. A threat to
external validity (generalization of
results) for our work is the use of
graduate students. However, Host et
al [26] found that students perform
the same as professionals on small
tasks of judgment.

4.2 Results

 Quantitative Results. The
quantitative results (recall, precision,
and total time to complete the
tracing) are shown in Tables 3 and 4.
We note that the CM-1 specification
used for this experiment was equally
unfamiliar to all students, and
contained requirements that were
hard for students to trace. We did not

Table 5 RETRO Features Used by Group 2

Student 1 2 4 5 6 7 8 9 10 11 12 13 14 Feature

A* 5 4 4 4 5 2 4 0 4 0 3 4 0 1. Trace All

B 0 4 0 0 3 4 5 0 4 0 4 0 0 2. Trace One

C 5 4 5 4 0 5 5 4 4 5 5 5 5 4 Global Filtering

D 4 4 0 0 5 5 5 0 5 0 5 0 5 5. Local Filtering

E* 5 4 4 4 0 0 0 0 0 0 0 0 0 6. Display: One Link

F* 5 0 4 0 5 5 5 0 4 0 0 0 0 7. Display: Document Order

G 4 3 0 0 4 0 0 0 2 0 4 0 0 8. Display: By Similarity

H 3 3 3 3 3 4 4 3 3 3 3 3 3 9. Freeze Elements

I* 5 4 5 4 3 4 4 5 5 4 5 3 2 10. Yes/No Links

#used 8 8 6 5 7 7 7 3 8 3 7 4 4 11. Feedback

Sum 36 30 25 19 28 29 32 12 31 12 29 15 15 12. Browse tab

Mean 4.5 3.75 4.16 3.8 4 4.14 4.57 4 3.87 4 4.14 3.75 3.75 13. Text Search in Browse

* Group 2a students (A.E.F.I). 14. Add links in Browse tab

11

Table 6 Survey Responses
(Group2:RETRO).

expect students to produce accurate
RTMs. Rather, we wanted to study
the process the students used, and
whether or not this process bore any
effect on the accuracy. Table 3
depicts the results when the Manual
(Group 1) and Tool (Group 2) groups
were analyzed. Table 4 depicts the
results when we consider three
groups: Group 1, Group 2a, and
Group 2b. In each table, we have
shown the means as well as the
results of the Student t-test
(statistical significance). We ran a
two-sided test with samples with
equal variance.
 As can be seen from Table 3, the
students with RETRO (Group 2)
built RTMs that had higher recall
(found a higher percentage of the
correct links) than those without
RETRO (70.1% recall versus 33%
recall). This result was statistically
significant (as were all results in
Table 3). The students doing manual
tracing built RTMs with much higher
precision (24.2% as compared to
12.8%) than those using RETRO.
That is, their final RTMs did not
contain as many “false positives” as
RETRO RTMs. Not surprisingly, it
took the Manual group almost three
times as long to complete the task
(120.66 minutes as compared to 41.8
minutes) as the RETRO group.
 Examining Table 4, we can see
that the students who used RETRO

and assumed that “default” was a link
had a much higher recall than any
other group, a statistically significant
result. Precision was much higher
for the RETRO group who believed
that “default” was not a link than for
those who believed it was a link
(19.8% versus 4%) and this was
statistically significant. This
difference is explained by the fact
that many of the default links
(counted for Group 2b but not for
Group 2a) were false positives,
however, default links also captured
many true links. There was not a
statistically significant difference in
precision between Group 2a and
Group 1, however (t-test of 0.30).
The total time was not statistically
different between the two sub-groups
using RETRO, but was statistically
significant between both RETRO
subgroups and the manual group.

Use of RETRO features. The results
of our survey on RETRO feature use,
conducted for Group 2 students, is
shown in Table 5. Each column lists
the students’ assessment of
usefulness of specific features of
RETRO on the 1-5 scale, with 5
being “useful” and 0 meaning that the
student reported not using the feature
(for convenience, we repeat the
feature list from Table 1, sans #3, in
the right-hand side of Table 5).
 We observe that five students used
over half of the tracked features (with
the mean number of features used
being 8.55, and median being 8),
while three students used only 4-5
features. Eight out of nine students
used “Trace All” and “Trace Current”
features and the assignment of “yes”
and “no” links. All but two students
visited the “Browse tab,” but only
four students tried either text searches
or link assignment in that tab.
 Relevance feedback loop, perhaps
the most powerful feature of RETRO,
was tried the least – only three

Stu

dent

Q#1 #2 #3 #4 #5 #6 #7

A* 4 4 2 4 4 2 4

B 4 4 3 4 4 3 3

C 5 4 2 4 4 2 4

D 3 2 3 2 3 4 3

E* 3 4 2 2 4 2 4

F* 3 3 3 2 4 2 4

G 4 4 4 4 3 3 3

H 3 2 2 4 4 1 4

I * 4 4 2 4 5 1 4

Mean: 3.67 3.44 2.56 3.33 3.89 2.22 3.67

12

students used it. Finally, we see that
students had an overall positive
impression of the features they used:
no feature was rated lower than 3.75
on average.

Task Assessment. Tables 6 and 7
show student answers to survey
questions specified in Table 2.
Group 2 students (Table 6) tended to
agree with most of the statements
presented to them. In particular,
students found the assignment
relatively simple (3.6), agreed that it
could be completed relatively
quickly (3.4), agreed that RETRO
was reasonably easy to use (3.33),
and specified that they would prefer
to use a software tool for similar
tasks in the future (3.67).
 In addition, they were in mild
disagreement with the statement that
the assignment was tedious (2.56),
and stated that they would not have
preferred to complete the assignment
by hand instead (2.22). Students
from Group 1 similarly agreed that
the task was relatively simple (3.44).
At the same time, Group 1, unlike
Group 2, thought that the task could
not be completed quickly, and
declared it to be rather tedious
(3.67).

Table 7 Survey Responses (Group

1:Manual).
Stu

dent

Q#1 #2 #3 #5 #6 #7

JJJJ 4 2 4 5 2 4

KKKK 4 2 4 4 2 4

LLLL 4 2 2 5 1 5

MMMM 2 2 4 4 2 4

NNNN 4 4 3 4 2 5

OOOO 2 3 4 4 2 4

PPPP 4 2 4 5 2 5

QQQQ 2 2 4 5 3 5

RRRR 5 2 4 5 2 4

Mean: 3.44 2.33 3.67 4.56 2 4.44

 Additionally, they all have voiced
strong support for the use of a
software tool for such projects in the
future, and expressed a strong
opinion that their task could have
been accomplished faster with the use
of a software tool.

4.3 Evaluation

 The study that we undertook had
two components: a quantitative
component and a qualitative
component. We observed that
students who used RETRO and
decided for themselves that only links
explicitly marked “yes” should be
reported produced the most accurate
results: better recall than Group 1
students, with similar precision. This
approach to tracing with RETRO is
the correct one for the default
RETRO use case – tracing of artifacts
for Verification and Validation
purposes.
 From the usability standpoint, we
observed that whenever students
chose to use specific features of
RETRO, they, in general, found them
useful. We also observed that the
majority of students chose to use
most of the RETRO features
available to them. Perhaps the only
negative observation is our relative
lack of data about the use of
relevance feedback in tracing: this is
an issue we are planning to
concentrate on in future experiments.
 We also observed that users of
RETRO, in general, felt much better
about the task, and felt much better
about their ability to deal with the
task than students who had to trace
manually. The latter group, on the
other hand, expressed very strong
feelings about the tedium of the
assignment and about their desire to
use an automated tool for future
tasks.

13

5 Related Work

 Ramesh et al. [10] propose a
reference model for requirements
tracing. In [10], Ramesh elaborates
on the factors influencing
requirements traceability practice.
Spanoudakis [11] uses heuristic
traceability rules to trace textual
requirements to object models.
Cleland-Huang et al. [12] propose an
event-based traceability technique to
perform impact analysis on proposed
changes. Using a prototype tool,
Zisman et al. [13] demonstrate their
approach for automatic generation of
bidirectional traceability links.
 Schneidewind defines
maintenance as the process of
designing and integrating consistent
changes to existing software [14].
Traceable software is implicitly
easier to maintain because one can
easily see how portions of
requirements, design, and code relate
through the RTM. Through tracing,
one can see how a change introduced
during maintenance will affect other
code portions. Bubel and Balser
describe requirements traceability as
a “continual alignment between the
stakeholder requirements and system
evolution… after each modification”
and show how context-based
constraints (CoCons) can support
automation of this process [15].
Research on methods used to trace
artifacts for maintenance purposes
has also been completed using Model
Driven Architecture where model
dependencies are encoded and model
relationships help ensure that
maintenance changes do not
introduce inconsistencies [16].
 Just as side-effects analysis [17,
18] is valuable during maintenance
to identify the impact of code
changes on the execution process,
tracing can help identify how
changes within one phase will affect
artifacts in other phases of the

software life cycle. Work has been
completed on tracing particular code
features in order to benefit the
maintenance phase of the software
life cycle [19, 20]. De Lucia et al.
address the usefulness of
requirements tracing tools over
discovering related artifacts by hand
during maintenance in [21].
Likewise, Greevy and Ducasse apply
tracing practices to discover change
impact during maintenance [20].
 Antoniol et al. [24,25] and Marcus
and Maletic [27] have used a variety
of traditional IR methods (vector
space retrieval and probabilistic IR
for Antoniol and Latent Semantic
Indexing for Marcus and Maletic) to
automate tracing of textual artifacts
to code. Their approach is similar to
our work on tracing between textual
artifcats [1,2,3], which lead to the
creation of RETRO.

6 Conclusions and Future Work

 As stated in the introduction, the
requirements traceability matrix is an
important artifact for software
maintenance. Unfortunately, it is not
often constructed or kept up-to-date.
We believe that automated methods
for generating RTMs (and hence
regenerating RTMs when changes are
introduced) can thus help to improve
software maintenance. We undertook
a study to see if our traceability tool,
RETRO, would ease the burden of
RTM generation. Further, we wanted
to examine the usability of the new
version of RETRO.
 We found that overall, students
using RETRO “correctly” (see
Section 4.3.) produced the most
accurate results. We also found that
the majority of the tracked RETRO
features were used by the students
and were deemed useful by them. In
addition, the surveys showed that the
RETRO group liked the tool and felt
that it made the task faster. Manual

14

tracers wished that they had a tool
and found their task to be tedious and
time consuming.
 We cannot make broad
generalizations of these results as we
undertook a small study with a small
dataset using graduate students.
However, the results do indicate that
information retrieval traceability
tools, such as RETRO, can assist
with RTM generation, which is an
important part of software
maintenance. Based on this study,
items for future work include
improving the precision of RETRO
methods and simplifying the tracing
process.

7 Acknowledgements

 This work is sponsored by NASA
under grant NNG05GQ58G. Our
thanks to Stephanie Ferguson,
Marcus Fisher, Wes Deadrick, Ken
McGill, and Tim Menzies. We thank
the students of CS 617, Spring 2006.
We thank Mike Chapman and the
Metrics Data Program for access to
the CM-1 dataset. We also thank
Sarah Howard and James Osborne,
who worked on early versions of the
software used for the evaluation.

References

[1] Jane Huffman Hayes, Alex
Dekhtyar and James Osborne,
(2003), Improving Requirements
Tracing via Information Retrieval, in
Proc., Intl. Requirements
Engineering Conference (RE’2003),
pp.151–161, September 2003,
Monterey, CA.
[2] Jane Huffman Hayes, Alex
Dekhtyar, K.S. Sundaram and Sarah
Howard, (2004), Helping Analysts
Trace Requirements: An Objective
Look, in Proceedings, International
Requirements Engineering
Conference (RE’2004), pp. 249-261,
September 2004, Kyoto, Japan.

[3] Jane Huffman Hayes, Alex
Dekhtyar and K.S. Sundaram, (2006),
Advancing Candidate Link
Generation For Requirements
Tracing: the Study of Methods, IEEE
Transactions of Software
Engineering, Vol 32, No 1., pp. 4-19,
January, 2006.
[4] Suresh Yadla, Jane Huffman
Hayes and Alex Dekhtyar, (2005),
Tracing Requirements to Defect
Reports, Innovations in Systems and
Software Engineering: A NASA
Journal., Vol. 1, No. 2 (September
2005), pp. 116–124.
[5] Jane Huffman Hayes, Alex
Dekhtyar, Senthil Sundaram*, “Text
Mining for Software Engineering:
How Analyst Feedback Impacts Final
Results,” Proceedings of Workshop
on Mining of Software Repositories
(MSR), associated with ICSE 2005,
St. Louis, MO, May 2005, pp. 58 -
62.
[6] Jane Huffman Hayes, Alex
Dekhtyar, and Senthil Sundaram,
(2006), Advances in Dynamic
Generation of Traceability Links:
Two Steps Closer to Full
Automation?, University of Kentucky
Technical Report TR 451-06,
Februrary 2006.
[7] Baeza-Yates, R. and Ribeiro-
Neto, B. Modern Information
Retrieval, Addison-Wesley, 1999.
 [8] Jane Huffman Hayes, Alex
Dekhtyar and K.S. Sundaram, (2005),
Improving After the Fact Tracing and
Mapping to Support Software Quality
Predictions, IEEE Software, Vol. 22,
No. 6 (November/December), pp. 30-
37.
[9] Ken McGill, Wes Deadrick, Jane
Hayes, Alex Dekhtyar, (2006),
Houston, We Have a Success Story:
Technology Transfer at the NASA
IV&V Facility, in Proceedings,
International Workshop on
Technology Transfer in Software
Engineering (WOTTSE’2006),
Shaghai, China, May 2006.

15

[10] Ramesh, B., Factors Influencing
Requirements Traceability Practice,
Communications of the ACM,
December 1998, Volume 41, No. 12,
pp. 37-44.
[11] Spanoudakis, G. Plausible and
Adaptive Requirement Traceability
Structures, in Proc. 14th
International Conference on
Software Engineering and
Knowledge Engineering, pp. 135–
142, Ischia, Italy, July 2002.
[12] Cleland-Huang, J., Chang, C.K.,
Sethi, G., Javvaji, K.; Hu, H., Xia, J.,
Automating speculative queries
through event-based requirements
traceability, in Proceedings of the
IEEE Joint International
Requirements Engineering
Conference (RE’02), Essex,
Germany, 9-13 September, 2002,
pages: 289- 296.
[13] A. Zisman, G. Spanoudakis, E.
Pérez-Miñana, and P. Krause.
Tracing Software Requirements
Artefacts, in Proc. 2003
International Conference on
Software Engineering Research and
Practice (SERP 2003), Las Vegas,
June 2003
[14] Schneidewind, NF: The State of
Software Maintenance. IEEE
Transactions on Software
Engineering, 13(1987)3, pp. 303-
310.
[15] Felix Bubel, Michael Balser,
Tracing Cross-Cutting Requirements
via Context-Based Constraints, in
Proc. Ninth European Conference
on Software Maintenance and
Reengineering (CSMR'05), pp. 80-
90, 2005.
[16] Igor Ivkovic, Kostas
Kontogiannis, Tracing Evolution
Changes of Software Artifacts
through Model Synchronization, in
Proc. 20th IEEE International
Conference on Software
Maintenance (ICSM'04), pp. 252-
261, 2004.

[17] Atanas Rountev, Precise
Identification of Side-Effect-Free
Methods in Java, in Proc. 20th IEEE
International Conference on Software
Maintenance (ICSM'04), pp. 82-91,
2004.
[18] B. G. Ryder,W. Landi, P.
Stocks, S. Zhang, and R. Altucher. A
schema for interprocedural
modification side-effect analysis with
pointer aliasing, ACM Trans.
Programming Languages and
Systems, 23(2):105–186, Mar. 2001.
[19] Andrew David Eisenberg, Kris
De Volder. Dynamic Feature Traces:
Finding Features in Unfamiliar Code,
in Proc. International Conference on
Software Maintenance, (ICSM’05),
pp. 337-346, 2005.
[20] Orla Greevy, Stephane Ducasse
and Tudor Girba Analyzing Feature
Traces to Incorporate the Semantics
of Change in Software Evolution
Analysis, in Proc. International
Conference on Software Maintenance
(ICSM’05), 2005.
[21] De Lucia A., Fasano F.,
Francese R., and Oliveto R.,
Recovering Traceability Links
between Requirement Artefacts: a
Case Study, in Proc. 16th
International Conference on Software
Engineering and Knowledge
Engineering - Workshop on
Knowledge Oriented Maintenance,
Banff, Alberta, Canada, Knowledge
Systems Institute, USA, pp. 453-456,
2004. [22] MDP Website, CM-1
Project,
http://mdp.ivv.nasa.gov/mdp_glossar
y.html#CM1.
[23] S. R. Schach, B. Jin, L. Yu, G.
Z. Heller and J. Offutt; Determining
the distribution of maintenance
categories: survey versus
management, Empirical Software
Engineering, 8, December 2003, pp.
351-366.
[24] G. Antoniol, G. Canfora, G.
Casazza, A. De Lucia, and E. Merlo.
Recovering Traceability Links

16

between Code and Documentation.
IEEE Transactions on Software
Engineering, 28(10):970-983, 2002.
[25] G. Antoniol, B. Caprile, A.
Potrich, and P. Tonella. Design-Code
Traceability for Object Oriented
Systems. Annals of Software
Engineering, 9:35--58, 1999.
[26] Høst M, Regnell B, Wohlin C.
Using students as subjects – A
comparative study of students and
professionals in lead-time impact

assessment. Empirical Software
Engineering, 5(3):210–214, 2000.
[27] A. Marcus and J. Maletic,
Recovering Documentation-to-
Source Code Traceability Links using
Latent Semantic Indexing. In
Proceedings of the Twenty-Fifth
International Conference on Software
Engineering (ICSE), 2003, pp. 125-
135, 2003.

