
HAL Id: inria-00527502
https://inria.hal.science/inria-00527502

Submitted on 21 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal executable semantics for conformance in the
MDE framework

Marina Egea, Vlad Rusu

To cite this version:
Marina Egea, Vlad Rusu. Formal executable semantics for conformance in the MDE framework.
Innovations in Systems and Software Engineering, 2010, 6, pp.73-81. �10.1007/s11334-009-0108-1�.
�inria-00527502�

https://inria.hal.science/inria-00527502
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Formal Executable Semantics for Conformance in the MDE

Framework
Marina Egea - marinae@inf.ethz.ch - ETH Zurich (Switzerland)
Vlad Rusu - Vlad.Rusu@inria.fr - INRIA Rennes (France)

the date of receipt and acceptance should be inserted later

Abstract In the MDE framework, a metamodel is a

language refering to some kind of metadata whose el-
ements formalize concepts and relations providing a

modeling language. An instance of this modeling lan-

guage which adheres to its concepts and relations, is

called a valid model, i.e., a model satisfying structural

conformance to its metamodel. However, a metamodel
frequently imposes additional constraints to its valid

instances. These conditions are usually written in OCL

and called well-formedness rules. In presence of these

constraints, a valid model must adhere to the concepts
and relations of its metamodel and fullfill its constraints,

i.e., a valid model is a model satisfying semantical con-

formance to its metamodel. In this work, we provide

a formal semantics to the notions of structural and se-

mantical conformance between models and metamodels
building on our previous work. Our definitions can be

automatically checked using the ITP/OCL tool.

1 Introduction

Software systems are constantly growing in complex-

ity, requiring software development teams to work at

higher levels of abstraction in order to cope with this

complexity. Modeling software is the key for software

engineer teams to work at those abstract levels, to com-
municate their ideas, to detect design errors, and to be

able to integrate their designs of different parts of a

system. Model driven engineering (MDE) is a software

development methodology [1] proposed by the Object
Management Group (OMG) [2] which focuses on creat-

ing technology-independent models that can be refined

to meet specific platforms. Their ultimate purpose is

Address(es) of author(s) should be given

to serve as a basis to generate code automatically. The

strength of this initiative are an increased productivity
by maximizing compatibility between systems and en-

abling the communication between individuals working

on a large system. Current practice has shown that in-

deed it is possible to automatically generate quite com-

plete (and runnable) code from well-specified designs.
Unfortunately, it has also shown that this automatic

generation process is still far from being a routine one.

In this context, the term “metamodel” is used to re-

fer to a model of some kind of metadata. Hence, we

may consider a metamodel as an “abstract language”

for describing different kinds of data, i.e., a metamodel
is a modeling language without a concrete syntax or

notation. We can argue that a metamodel defines a

“model type” and at the same time provides the means

to distinguish between valid and invalid models, that is,

“structural conformance”. Namely, the objects of a “con-
formant” model are necessarily instances of the classes

of the associated metamodel (possibly) related by in-

stances of associations between the metamodel’s classes.

Optionally, a metamodel may also define a set of valid-
ity conditions on the models. In this case, a valid model

must also fullfill the set of imposed constraints. This

is called “semantical conformance”. The language most

commonly used to add precision to the models is the

Object Constraint Language (OCL) [3].

Such semantical aspects are crucial for ensuring model

usability and for providing tool support. However, the
details of the semantics of meta-models, models, and

OCL have much been discussed in the literature, be-

cause their large specifications were not clear enough,

were not totally consistent or lead to misunderstand-
ings. To overcome these limitations, the use of formal

specification languages have been proposed. Such lan-

guages yield precise descriptions of software systems

2

and are amenable to formal analysis. On the other hand,

those languages require substantial expertise from de-

velopers, and they have been criticised for being un-

practical, as substantial work is required to formally

modeling and analysing systems. An effort to integrate
both informal and formal approaches is needed. In this

work we make a contribution to this effort by providing

a formal semantics to the notion of conformance that

can be automatically checked with existent tools. More
concretely, we propose formal definitions for the no-

tions of “structural conformance” and “semantical con-

formance” in order-sorted logic, building on our pre-

vious work [4] that defined an executable equational

semantics fo OCL. Our definitions can be automati-
cally checked using the ITP/OCL tool [5] written in

the Maude formal specification language [6].

In Section 2, we provide some background on mod-

els, metamodels and conformance relations through ex-
amples. We also capture the essential concepts of model

and metamodels, which we translate to order-sorted

theories in Section 3. Also, in Section 3, we provide

a formal definition of conformance as a theory interpre-

tation. In Section 4 we show how model and metamodel
theories are represented in Maude and how the confor-

mance relation can be checked using the ITP/OCL tool.

In Section 5, we provide some conclusions and discuss

related and future work.

2 Metamodels, models and conformance

In this section we provide some background on meta-

models, models, and conformance through examples.

Also, we capture the essential modeling elements as tu-
ple structures, setting up the language that we will use

for our formal definitions afterwards. We will consider

only MOF-compliant metamodels, i.e., only metamod-

els that can be described using MOF elements [7].

2.1 Metamodels

Metamodel descriptions define the structure and se-

mantics of metadata. In a nutshell, the MOF modeling

elements are: classes to hold metaobject information;
associations, which model binary relationships; inher-

itance or generalization relationships to refine model-

ing elements; operations, which are “hooks” for access-

ing behavior associated with a class1; attributes, which

define a value holder, typically in each instance of its
class; data types, which model other data (e.g., primi-

tive types); and packages, which are used to modularize

1 Operations specify the names and type signatures by which
the behavior is invoked, without specifying the behavior itself.

the models, and to ease model imports, merging and

extensions. From now on, to preserve the simplicity of

the presentation, we will assume that we are working

within just one package. The approach can be extended

in a natural manner to consider several packages. The
modeling concepts presented above adopt the shape of

a MOF-compliant metamodel in Figure 1.

In general, metamodel constraints establish addi-

tional consistency rules on modeling elements. The stan-
dard language used for write these constraints is OCL,

for instance, the well-formedness constraints for the UML

and MOF metamodels are written in OCL. This lan-

guage has an evaluation semantics and it has been shown

useful both as a constraint and as a query language.

Fig. 1Basic UML metamodel.

Some example constraints of application to our Ba-

sic UML metamodel are the following:

– Invariant 1: Neither direct nor indirect cycles are
allowed in the generalization relationship, namely,

self.allParents() → excludes(self), where

context Class :: allParents() : Set(Class) =

self.parents() → union(self.parents

→ collect(p|p.allParents)
and

context Class :: parents() : Set(Classifier) = self.general

– Invariant 2: (multiplicity) Each association is linked

to two classes.

context Association :

self.endType → size() = 2

Notice that to properly define Invariant 1, we needed

to define a recursive operation allParents(). This is typ-

ically the case in many metamodel invariants. Notice

also that we consider multiplicity constraints as OCL

invariants, like the example given in Invariant 2.

2.2 Models

Figure 3 shows a model of an automaton in UML class

diagram notation, i.e., in concrete syntax. Its counter-

3

Fig. 2 Model of an automaton as a metamodel instance.

part in abstract syntax, i.e., as a metamodel instance, is

shown in Figure 2. In this model, the boolean attribute

isActive of the class State expresses the fact that con-

trol is/is not in a given state. The InitState subclass of
State distinguishes initial states of automata. The class

Automaton owns the trace attribute - a string of char-

acters, generated by concatenating labels of transitions

fired by the automaton. The getTransitions operation
returns all the transitions of the automaton. Transitions

own the label attribute to hold transition names. They

are associated with their source and target states; their

opposite roles from states are in and out transitions.

2.3 Conformance

The model in Figure 2 is intuitively structurally con-

formant to the metamodel depicted in Figure 1, i.e., it

uses classes, associations, and attributes from the meta-
model in the correct way. Semantical conformance re-

quires, in addition to structural conformance, that the

model also satisfies the set of OCL invariants of its

metamodel. The model in Figure 2 is intuitively seman-
tically conformant to the metamodel in Figure 1 since

it obeys the invariants: it does not have cyclic general-

izations and it fullfills multiplicity constraints.

Fig. 3Model of an automaton as a class diagram.

2.4 Structures to hold metamodel and model

information

Let Dt be a set of basic types, e.g., Booleans, Integers,

and Strings. A MOF metamodel can be described using
the following elements:

Definition 1 (Metamodel structure)

MM = (C,Gen ,At ,Assoc,AsEnd)

where:

– C = {c | c is a metaclass} holds metamodel classes;

– Gen ⊆ C×C holds the generalization relationships;

– At = {At〈c,v〉}〈c,v〉∈C×Dt holds the class attibutes,
where

At〈c,v〉 = {at | at is an attribute of c of type Dt}.

– Assoc = {Assoc{c,c′}}{c,c′}⊆C holds metamodel as-

sociations, where

Assoc{c,c′} = {as | as is an association

between c and c′}.

– AsEnd = {AsEnd〈c,c′〉}〈c,c′〉∈C×C holds association

ends, where

AsEnd 〈c,c′〉 = {p | p is the role played

by c in an association as ∈ Assoc{c,c′}}.

In the previous definition, we only consider those
essential elements that are enough to build any MOF

metamodel. Other elements like cardinalities, aggrega-

tion or composition relations are often considered since

they are part of the UML metamodel. However, they do

not provide more expressiveness to the structural part
of metamodels as they can be equivalently expressed

using OCL constraints on associations.

Next, we provide a structure to hold model informa-

tion. We do not assume that a model always refers to

a certain metamodel but we do assume that it provides

instances, attributes, and links with type information.

Otherwise, without this information, the model is just
a drawing with a more or less intuitive meaning. Thus,

we assume a set C of instance types, with a subset of

basic types Dt ⊂ C, a set At = {At〈c,v〉}〈c,v〉∈C×Dt of

attribute types, and a set of association ends AsEnd =
{AsEnd〈c,c′〉}〈c,c′〉∈C×C , much like in Definition 1.

Definition 2 (Model structure)

OM = (OM,OAtM,OAsEndM),

where:

4

– OM = {Oc}c∈C holds instances of type C, hence

Oc = {o | o is an instance of type c ∈ C}.

– OAtM = {OAt<c,v>}<c,v>∈C×Dt holds attribute
values of type v provided in the instances of type

c, where

OAt<c,v> = {at : Oc → Ov | at ∈ At<c,v>}.

– OAsEndM = {OAsEnd<c,c′>}<c,c′>∈C×C holds the

roles played by the instances of type c when they are

linked to a set of instances of type c′. Hence,

OAsEnd<c,c′> = {p : Oc′ → P(Oc) | p ∈ AsEnd<c,c′>}.

In the previous definition we build only on model el-

ements that are essential to describe the structural part
of a system, i.e., on those modeling elements that are

enough to build what in UML is called a class diagram.

3 Metamodels and Models as Theories,

Conformance as a Theory Interpretation

Membership equational logic (MEL) is an expressive

version of equational logic. A full account of its syntax
and semantics is given in [8]. MEL is implemented in

the Maude system [6]. A MEL specification consists of

– a set of sorts (types);

– a partial order on sorts called the subsorting rela-

tion, which expresses the fact that some sorts can

be subsorts of others;
– a set of operations, which are functions between the

sorts. The number of input arguments of a function

is called its arity. Constants can be seen as 0-ary

functions.
– A set of axioms defining the operations. Axioms

are possibly conditional equations between terms or

memberships of terms into sorts.

A term is either a constant, a variable, or the applica-

tion of a n-ary function to n terms of appropriate sorts.

A ground term is a term without variables.

The MEL specification STATE-LIST, depicted in Fig-

ure 4 in Maude-like syntax, is an abstract language

to describe lists of elements of the sort State. The

sorts State and StateList are declared, and the sort
NonEmptyStateList is declared a subsort of StateList.

The nil constant and the cons function are the con-

structors of the sort StateList. The _excludes_ func-

tion in infix notation is intended to check the absence of
a class in a class list. Finally, notice that the specifica-

tion is in the so-called Order-Sorted Logic fragment of

MEL, since it does not contain any membership axioms.

spec STATE-LIST is
sorts State StateList NonEmptyStateList

subsort NonEmptyStateList < StateList
op nil : -> StateList

cons : State StateList → NonEmptyStateList
excludes : StateList State → Bool

Fig. 4 Order sorted specification STATE-LIST.

As an example of a membership axiom, notice that the

subsort declaration NonEmptyStateList < StateList,

can be equivalently written as the conditional member-
ship z:StateList if z:NonEmptyStateList,meaning

that every not empty state list (i.e., every element of

NonEmptyStateList) is also a state list (i.e., an element

of StateList).
MEL specifications can be related by theory inter-

pretations. We shall say that a theory T1 interprets a

theory T2 if the sorts and subsorting relation of T2 are

exactly those of T1, and the operations and axioms of

T2 include those of T1. For instance, the specification
given in figure 5, interpretStateList, interprets, in

the defined sense, the specification STATE-LIST.

spec interpretStateList is
sorts State StateList NonEmptyStateList

subsort NonEmptyStateList < StateList
op nil : -> StateList
cons : State StateList → NonEmptyStateList

excludes : StateList State → Bool
ops initState endState state3 : → State

cons(initState, cons(endState, nil) excludes state 3 = true

Fig. 5 An interpretation of STATE-LIST.

Finally, an order-sorted specification is confluent and

terminating if for any ground term, by applying the

equations (oriented from left to right as rewrite rules),

a unique canonical form (i.e., a ground term that can-
not be rewritten any further) is obtained after finitely

many rewrites. In such specifications the equality be-

tween ground terms is decidable: two ground terms are

equal iff their canonical forms are identical.

3.1 Metamodels and Models as Order-Sorted Theories

In this section we show how the metamodel and model

structures provided in Section 2 are translated to order-
sorted theories. We first describe the translation and

then provide the formal definition.

The structural part of a metamodel MM is trans-

lated to an order sorted specification as follows:

– We always include the sorts: Class , ClassCol and

Value with the constructors nil and col . Integer ,

String and Boolean are also included as subsorts
of V alue. These sorts allow us to define collection

constructors just once, to deal with partiality, and

to encode basic types;

5

– for each class c ∈ CMM in the metamodel, a sort

c, and a sort Col [c] for lists of terms of sort c are

created. Also, the following subsorting relations are

included: c ≺ Class and Col[c] ≺ ClassCol;

– for each pair 〈c1, c2〉 ∈ GenMM in the metamodel
structure, we add two subsort declarations: c1 ≺ c2

and Col[c1] ≺ Col[c2], i.e., we represent inheritance

by subsorting which provides us with a partial or-

dering on classes and collection of classes;
– for each attribute at ∈ At<c,v> with c ∈ C and v ∈

Dt in the metamodel MM, a function at : c → v is

declared, i.e., an attribute becomes a function from

the sort of the class to the sort of the attribute type;

– for each association as ∈ Assoc{c,c′} and association
ends r1 ∈ AsEnd<c,c′> and r2 ∈ AsEnd<c′,c> of as

in the metamodel MM, two function declarations

are created: r1 : c → c′Col and r2 : c′ → cCol ;

– The set of axioms ΓMM is empty.

Definition 3 Metamodel Theories. A metamodel

MM = (C,Gen ,At ,Assoc,AsEnd)

is specified by a theory MM = (Ω, Γ) in order sorted

logic, where Γ = ∅ and

– Ω = (S,≺, Σ), where

– S = {Class, ClassCol, Value}∪
SClass ∪ SClassCol ∪ SValue, with

• SClass = {c | c ∈ C},
• SClassCol = {Col[c] | c ∈ C},
• SValue = {Boolean, Integer, String},

– ≺ ⊆ C × C equals Gen ∪ (SClass × {Class}) ∪
(SClassCol × {ClassCol}) ∪(SValue × {Value}),

– Σ = {Σq,k}q∈S∗,k∈S , where
• Σc,Value =

⋃
〈c,v〉∈C×(Dt∪C){at | at ∈ At〈c,v〉},

• Σc,Col[c′] =
⋃

〈c,c′〉∈C×C{p | p ∈ AsEnd 〈c,c′〉},
• Σλ,ClassCol = {nil},
• ΣClass.ClassCol,ClassCol = {col},
• Σq,k = ∅, otherwise.

Example 1 Basic UML metamodel as a Theory.

BasicUML = (ΩBasicUML, ΓBasicUML), where

– ΩBasicUML = (SBasicUML,≺BasicUML, ΣBasicUML):

– SBasicUML is the union of the following sets:

• {Class, ClassCol, Value},
• SClass = {MClass, Association, Operation,

Attribute, ModelElement, DataType},
• SClassCol = {Col[MClass], Col[Association],

Col[Operation], Col[Attribute],

Col[ModelElement], Col[DataType]}, and

• SValue = {Integer, Boolean, String},
– ≺BasicUML contains, among others, the pairs

(MClass, Class), (Association, Class),

– ΣBasicUML is the union of the following sets:

• ΣModelElement,String = {name},
• ΣModelElement,Boolean = {isAbstract},
• ΣMClass,String = {name},
• ΣMClass,Boolean = {isAbstract},

. . .
• ΣAssociation,String = {name,

sourceAssocEnd, targetAssocEnd},
• ΣMClass,AssociationCol = {forward},
• ΣMClass,OperationCol = {operations},
• ΣOperation,MClassCol = {owner},
• ΣMClass,AttributeCol = {classattributes},
• ΣAttribute,MClassCol = {owner},
• ΣAttribute,DataTypeCol = {type},
• ΣDataType,AttributeCol = {attributes},
• ΣAssociation,MClassCol = {endType},
• ΣMClass,MClassCol = {specific, general},
• Σλ,ClassCol = {nil},
• ΣClassCol,ClassCol = {col},

– ΓBasicUML = ∅.

Next, we describe our translation of models to order-

sorted theories. The structure OM of a model M is
translated to an order-sorted specification as follows:

– For each type c of an object in the model, we declare
a sort c;

– for each element o of type c we declare a constant

(as a 0-ary function) of the sort c, i.e., o :→ c.

– for each attribute value v of the attribute at in the

instance o, we include an equation at(o) = v;
– for each association end r1 ∈ OAsEnd<c,c′> linking

an instance o and a collection of instances o′1, . . . , o
′
n,

we include an equation r1(o) = col(o′1, col(o
′
2, . . . , nil)).

Next, we provide the formal definition. Remember that

a model OM assumes a set C of instance types, with a

subset of basic types Dt ⊂ C, a set of attribute types
At = {At〈c,v〉}〈c,v〉∈C×Dt and a set of association ends

AsEnd = {AsEnd〈c,c′〉}〈c,c′〉∈C×C .

Definition 4 Model Theories.

A model OM = (OM,OatM,OAsEndM) is speci-

fied by an order-sorted theory OM = (ΩM, ΓM), where

– ΩM = (SM,≺M, ΣM), where

– SM = {c | c ∈ C},
– ≺M= ∅,
– ΣM = {Σq,k}q∈S∗,k∈S whose only nonempty com-

ponents are Σλ,c = {o :→ c|o ∈ Oc}, for c ∈ C,

– ΓM = ΓOAtM ∪ ΓOAsEndM
, where:

– ΓOAtM = ∪<c,v>∈C×Dt{at(o) = atOat<c,v>(o) |
o ∈ Oc, at ∈ At<c,v>}.

– ΓOAsEndM
= ∪<c,c′>∈C×C{p(o) =

⌊pOAsEnd<c,c′>(o)⌋ | o ∈ Oc′ , p ∈ As<c,c′>},

6

where (⌊_⌋) is a function that represents elements

in P(Oc). i.e., sets of objects in the type c, as terms

of sort Col[c]. The function (⌊_⌋) builds a list (using

the list-constructors col and nil) with the objects in

the given set, sorted by their names and without
repetitions.

Example 2 The Automaton Model.

– SAutomaton = {MClass, Association,

Operation,

Attribute, DataType}

– ΣAutomaton contains the following set:

– Σλ,MClass = {State, InitState, Transition,

Automaton};
– Σλ,Association = {out-transition, in-transition,

Ownership};
– Σλ,Attribute = {label, isActive, trace};
– Σλ,Operation = {getTransitions};
– Σλ,DataType = {String, Boolean}.

– ΓAutomaton =ΓOatAutomaton
∪ ΓOAsEndAutomaton

,

where

– ΓOatAutomaton
contains the axioms:

• name(State) = “State” ,

• name(InitState) = “InitState”,

• . . .

• isAbstract(ModelElement) = “true”,

• isAbstract(State) = “false”, . . .
– ΓOAsEndAutomaton

contains the axioms:

• endType(out-transition) = col(Transition,

col(State, nil)),

• forward(State) = col(out-transition, nil),
• forward(Transition) = col(out-transition, nil),

. . .

• forward(Automaton) = col(Ownership, nil),

• forward(Transition) = col(Ownership, nil),

• owner(isActive) = col(State, nil),
• attributes(State) = col(isActive, nil)

• . . .

• owner(getTransitions) = col(Automaton, nil),

• operations(Automaton) =
col(getTransitions, nil)

• type(isActive) = col(Boolean, nil),

• attributes(Boolean) = col(isActive, nil),

• . . .

3.2 Conformance as a theory interpretation

Now, we are ready to capture the notion of structural
and semantical conformance of a model to a metamodel.

These definitions capture the intuitive idea that models

are essentially interpretations of metamodels.

Definition 5 Structural conformance Given a model

M and a metamodel MM, we say that the model M has

structural conformance to MM if and only if the theory

OM is an interpretation of the theory MM.

Intuitively, this definition says that a model is con-

formant to a metamodel iff it preserves the structure of

the metamodel and provides an interpretation for the
sorts and the function symbols that are present in the

metamodel. As expected, according to our definition,

the model depicted in Figure 2 is conformant to the

metamodel depicted in Figure 1 since the specification
given in Example 2 is an interpretation of the specifi-

cation given in Example 1.

Next, we consider semantical conformance. In [4],

there exists a proposal of a formal executable equa-

tional semantics for OCL that extends the order-sorted

specifications of metamodels and models that we have

shown above. This equational semantics is defined for a
substantial subset of OCL, including many operations

on primitive types, collection operations, iterator op-

erations (except the most general one, i.e., iterate and,

quantifiers. It also considers how to interpret (possibly)
recursive user-defined operations. The standard library

of OCL specified in this semantics (without user-defined

operations) is proved to be convergent.

Recall the OCL invariant “Invariant 1” provided at

the begining of this work whose expression was context

Class invariant1 : self.allParents()− > excludes(self) in the

context of the on the BasicUML metamodel. This invari-
ant is first translated to one that is equivalent but more

convenient for the translation: Class.allInstances− >

forAll(c| c.allParents− > excludes(c)). Parsing and type

checking metamodel invariants is done in the theory
that extends the metamodel theory with OCL basic op-

erations plus the operations defined to interpret iterator

operations following the different operation bodies pro-

vided by the user. We call this theory MMOCL . To

evaluate the invariants, we join to this theory the in-
terpretation provided by the model (Automaton in our

example), we call it MOCL. Invariant1 is translated (au-

tomatically) to the term forAll1(allInstances(Class))

whose canonical form is obtained by rewriting in MOCL
2.

The possibility of translating user defined operations to

this semantics provides it with much flexibility, on the

contrary, its lack would have impeded defining many in-

variants included in MDE standards whose definitions

involve user-defined recursive functions in OCL.

Example 3 OCL executable equational specification. Ex-

cerpt.

2 Recall that this formal semantics has been proved to be con-
fluent and terminating.

7

. . .

allInstances(Class) = col(State, col(InitState,

col(Transition, col(Automaton, nil))))

general(State) = nil

general(InitState) = nil
general(Automaton) = nil

general(Transition) = nil

collect(nil) = nil

collect(col(x, xs)) = union(allParents(x), collect(xs))
allParents(x) = union(parents(x), collect(parents(x))

parents(x) = general(x)

forAll(col(x, xs)) = ifThenElse(excludes(

allParents(x), x),

forAll(xs), true)
forAll(nil) = true

. . .

It is obvious (taking into account also the meta-

model and model theories) that the user-defined func-

tions terminate, so we will obtain a normal form for

forAll(allInstances(Class)) that in our case, is true.

Remark 1 Let MM be a metamodel and let Inv be a set
of invariants written in OCL that parse and typecheck

correctly using the types and vocabulary of MM. We

call Φ the set that represents all the invariants inv in

the theory MOCL.

Definition 6 Semantical conformance Given a meta-

model MM , and a set of OCL invariants Φ which parse

and typecheck correctly in MM , we say that the model

M is semantically conformant to MM if and only if i)

OM is an interpretation of MM and, ii) the normal
form of every invariant in Φ is true in MOCL.

4 Representation in Maude

In this section we show how to automatically check the

definitions proposed in Section 2. We gain automatic

tool support because of Maude reflective capabilities

and because the system is able to actually execute the
equational specifications. The tool ITP/OCL [5] is able

to automatically generate the metamodel and model

theories from command lines inserted by a user. The

modules created by ITP/OCL in Maude notation are

shown in Figures 4 and 7. Notice, that they follow Def-
initions 3 and 4. Through these commands the user de-

clare a metamodel and according to these information,

the tool requires that the models inserted afterwards

are indeed structurally conformant to the metamodel
already provided. Also, the user can insert invariants

for his/her metamodel that may make use of user de-

fined recursive operations (in this case, the tool cannot

guarantee termination). Then the tool is able to au-

tomatically check whether all these invariants or only

some of them invariants are fullfilled by the model, i.e.,

the tool is able to automatically check semantical con-

formance of a model to a metamodel by rewriting the
terms corresponding to the invariants to their normal

form in the appropriate MOCL theory. In Figure 4, we

show an excerpt of this theory.

fmod BasicUML is

sorts s Class ClassCol Value .
sorts MClass Attribute Association ModelElement .
sorts Operation DataType .

subsort Operation MClass Attribute
Association DataType < ModelElement .

sorts MClassCol AttributeCol AssociationCol
ModelElementCol DataTypeCol .

subsort OperationCol ClassCol AttributeCol

AssociationCol DataTypeCol <
ModelElementCol .

sorts Integer Boolean String .
op name : ModelElement -> Value .

...
ops reverse forward : MClass -> AssociationCol .
op classatrributes : MClass -> AttributeCol .

op owner : AttributeCol -> MClassCol .
ops specific general : MClass -> MClassCol .

op nil : -> ClassCol .
op col : Class ClassCol -> ClassCol .
endfmod

Fig. 6 The metamodel BasicUML as a Maude module. Excerpt.

fmod Automaton is

including BasicUML .
ops State InitState Transition Automaton : -> MClass .

ops out-transition in-transition
Ownership : -> Association .

ops label isActive trace : -> Attribute .

ops string boolean : -> DataType .

eq name(State) = "State" .
...

eq target(out-transition) = col(Transition, nil) .
eq reverse(out-transition) = col(State, nil) .
eq source(out-transition) = col(State, nil) .

eq forward(out-transition) = col(Transition, nil) .
...

eq owner(isActive) = col(State, nil) .
eq classattributes(State) = col(isActive, nil) .
eq type(isActive) = col(boolean, nil) .

eq attributes(boolean) = col(isActive, nil) .
...

Fig. 7 The model Automaton as a Maude module. Excerpt.

5 Conclusion, Related, and Future Work

In this paper, we have proposed a formal definition of

the concepts of model to metamodel structural and se-

mantical conformance. Our approach formally captures

the intuitive idea that models are essentially interpreta-
tions of metamodels. Our definitions extend in a natural

way our previous work where we provided formal defi-

nitions for the notions of models and metamodels with

8

fmod OCLonAutomatonFromBasicUML is
including Automaton .

...
eq allInstances(Class) = col(State,col(InitState ,

col(Transition,col(Automaton,nil)))) .
eq general(State) = nil .
eq general(InitState) = nil .

eq general(Automaton) = nil .
eq general(Transition) = nil .

eq collect2(nil) = nil .
eq collect2(col(x,xs)) = union(allParents(x),collect1(xs)) .

eq allParents(x)=union(parents(x),collect2(parents(x)) .
eq parents(x)=general(x) .
eq forAll1(col(x,xs))=ifThenElse(includes(allParents(x),x),

true,forAll1(xs)) .
...

Fig. 8 The Automaton-OCL theory. Excerpt.

the aim of providing a formal semantics for the OCL

language. We also show how conformance can be auto-

matically checked using the ITP/OCL tool and discuss

on related and future work. In a nutshell,

– metamodels, possibly enriched with OCL invariants,
are represented as MEL specifications;

– models are represented as MEL specifications as well;

– structural conformance between a model and a meta-

model means that the model theory provides an ac-

tual interpretation of the MEL specification denot-
ing the metamodel;

– semantical conformance between a model and a meta-

model requires, in addition to structural conformance,

that all the invariants imposed on the metamodel
become true in its instance model.

Probably, the closest work to ours is in [9,10] where
they provide an algebraic definition for the notions of

conformance and model transformation in the moment2

framework. Perhaps, the major limitation of this ap-

proach concerning its definition of conformance is that
they have not shown how to deal with user defined (pos-

sibly recursive) operations which although we under-

stand that is not due to technical limitations, it pre-

vents their system of being used with real specifica-

tions which usually make use of these kind of opera-
tions. On the other hand, considering model transfor-

mations is a matter of future work for us. Although both

proposals share the same target formalism (equational

logic) to define a semantics for OCL, and the same sys-
tem (Maude) to develop tools based on these seman-

tics, these are actually the unique coincidences between

the two approaches. Concerning the used formalism,

although both works employ equational logic (notice,

however that [10] uses membership equational logic and
we use order-sorted equational logic), the transforma-

tions from UML diagrams with OCL expressions to

equational logic are completely different. They trans-

late UML diagrams to terms and the semantics for the
OCL expressions is given, basically, by an evaluating

function taking as an argument the term representing

the evaluation context; for each OCL expression, the

definition of this function is provided by two (meta-)

functions. Also, the equations generated by these func-

tions are said to be always executable but this affirma-

tion is not proven. In our work, however, UML mod-

els and OCL constraints are transformed into theories,
which directly define i.e., without requiring the help of

an evaluating function, the semantics of OCL expres-

sions. Furthermore, we have formally proven that this

semantics for OCL is indeed convergent.
There are also others academic and commercial tools

offering support to metamodeling tasks that allow or

grant some kind of conformance checking (only struc-

tural in the case of commercial tools except for Together

CC, whose OCL support is limited). The paper [11] pro-
vides a good description of other approaches less related

to ours. That work also presents how to do conformance

checking using the PVS theorem prover in an interac-

tive manner. The conformance checking supported by
the Coq theorem prover in [12] is similar in features and

methodology to the one supported by PVS.

References

1. Model-Driven Architecture. Available at
http://www.omg.org/mda/specs.htm .

2. The Object Management Group. http://www.omg.org.
3. Object Constraint Language (OCL). Available at

http://www.omg.org/spec/OCL/2.0/ .
4. M. Egea. An executable formal semantics for OCL with aop-

plications to model analysis and validation. PhD thesis, Uni-
versidad Complutense de Madrid, 2008.

5. M. Clavel and M. Egea. itp/ocl: A rewriting-based valida-
tion tool for uml + ocl static class diagrams. In Michael
Johnson and Varmo Vene, editors, AMAST, volume 4019 of
Lecture Notes in Computer Science, pages 368–373. Springer,
2006.

6. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J.
Meseguer, and C. L. Talcott. All About Maude, A High-

Performance Logical Framework, volume 4350 of Lecture

Notes in Computer Science. Springer, 2007.
7. Meta Object Facility (MOF) Core Specification. Available at

http://www.omg.org/spec/MOF/2.0/ .
8. A. Bouhoula, J.P. Jouannaud, and J. Meseguer. Specifica-

tion and proof in membership equational logic. Theoretical

Computer Science, 1-2(236):35–132, 2000.
9. A. Boronat and J. Meseguer. An algebraic semantics for

MOF. In José Luiz Fiadeiro and Paola Inverardi, editors,
FASE, volume 4961 of Lecture Notes in Computer Science,
pages 377–391. Springer, 2008.

10. A. Boronat. Moment: a formal framework for model man-

agement. PhD thesis, Universitat politecnica de Valencia,
2007.

11. Richard F. Paige, Phillip J. Brooke, and Jonathan S. Ostroff.
Metamodel-based model conformance and multiview consis-

tency checking. ACM Trans. Softw. Eng. Methodol., 16(3),
2007.

12. Iman Poernomo. The meta-object facility typed. In Hisham
Haddad, editor, SAC, pages 1845–1849. ACM, 2006.

http://www.omg.org/mda/specs.htm
http://www.omg.org
http://www.omg.org/spec/OCL/2.0/
http://www.omg.org/spec/MOF/2.0/

	Introduction
	Metamodels, models and conformance
	Metamodels and Models as Theories, Conformance as a Theory Interpretation
	Representation in Maude
	Conclusion, Related, and Future Work

