
Innovations Syst Softw Eng
DOI 10.1007/s11334-009-0113-4

ORIGINAL PAPER

URDAD as a semi-formal approach to analysis and design

Fritz Solms · Dawid Loubser

Received: 30 November 2009 / Accepted: 4 December 2009
© Springer-Verlag London Limited 2009

Abstract The Use Case, Responsibility Driven Analysis
and Design (URDAD) methodology is a methodology for
technology neutral design generating the Platform Inde-
pendent Model of the Object Management Group’s Model
Driven Architecture. It requires the core modeling to be done
in the problem space by domain specialists and not in the
solution space by technology specialists. URDAD allows for
formal elements to be added by different role players at differ-
ent stages of the model refinement, whilst aiming to preserve
agility of the outputs and low cost of the process generating
the outputs. This paper discusses the semi-formal aspects of
URDAD which facilitate model validation and testing, doc-
umentation generation and automated implementation map-
ping as well as aspects which promote agility and low cost.

Keywords URDAD method · Formal methods ·
Agile processes

1 Introduction

Formal methods aim to provide unambiguous requirements
and a design which can be proven to be correct and reli-
able [14]. These methods, however, are typically perceived

This paper is part of an ongoing PhD project by F. Solms under the
supervision of Stefan Gruner at the Department of Computer Science
of the University of Pretoria. We would like to thank Stefan Gruner for
the fruitful discussions we had on this topic.

F. Solms (B)
Department Computer Science, University of Pretoria,
Pretoria, Republic of South Africa
e-mail: fritz@solms.co.za

D. Loubser
Solms Training and Consulting, 113 Barry Hertzog Ave,
Emmarentia, Johannesburg, South Africa

as difficult and expensive: historically their use has largely
been confined to a relatively small class of problems where
safety and reliability are paramount (such as the aviation [6]
and defense industries, where testing and debugging costs
can contribute more than 50% of the development costs [17]).

Agile methods [2,11], on the other hand, accept that
the initial requirements are potentially incomplete, partially
incorrect and volatile. They aim to provide a process which
can operate successfully within such an environment. Mod-
eling is seen largely as a tool used to facilitate domain explo-
ration and simplification of the solution whilst the primary
output of the process is working code.

Model-driven development (MDD) [5,21] has been influ-
enced by both, formal [16] and agile [9,20] methods. The
formal approach is required for model transformation and
code generation. The agile aspect is important for business
and system agility, i.e. to cost effectively address require-
ments evolution.

The OMG’s vision of MDD is MDA [18]. It is sup-
ported by an elaborate technology suite including support for
modeling via the Unified Modeling Language (UML), meta
language specification via the Meta-Object Facility (MOF),
constraint specification, model querying and transformation
via the Object Constraint Language (OCL) and the Query-
View Transformations (QVT) specification. MDA aims to
provide a level of agility whilst being sufficiently formal to
be able to automate large parts of the implementation map-
ping by enabling domain experts to perform a semi-formal
analysis and design in UML which can then be incrementally
formalized through model refinement and the use of OCL.

The value obtained from MDA based projects has been
limited by [20]

– the lack of standards for specifying the implementation
architecture and technologies,

123

F. Solms, D. Loubser

– the lack of a well defined analysis and design method-
ology used to generate the platform independent model
(PIM), and

– the wide variation in model structure and content permit-
ted by the UML, increasing the complexity of the imple-
mentation mapping.

Various attempts have been made to both simplify and
increase the formality of UML models by restricting the num-
ber of diagrams and UML elements used and adding formal
specification techniques to the UML model [4,12]. URDAD
similarly restricts the use of UML constructs to a small but
sufficient subset of UML, and enforcing a specific model
structure with specified model elements. However, with the
availability and growing support for the OCL, a lot of for-
malization is done within UML and OCL.

A number of service oriented design methodologies have
been proposed [10,15]. Ma et al. [10], like URDAD, inte-
grates the services oriented approach within a model-driven
approach. Many of these services oriented design methodol-
ogies use BPMN and often these approaches are technology
specific. URDAD aims to provide a more formal, technol-
ogy neutral approach based on the use of UML and OCL.
OCL is used to formalize both the contract and the process
specifications. This semi-formal approach facilitates model
validation and transformation including documentation and
code generation.

In this paper, we point out the semi-formal aspects of
URDAD facilitating model validation, automated genera-
tion of functional testing, documentation generation and sim-
plified implementation mapping as well as aspects of an
URDAD model and approach which improve agility.

2 URDAD

URDAD [19,20] is a service-oriented analysis and design
methodology which has been adopted by a number of orga-
nizations, particularly in the financial and insurance sectors,
for their technology neutral business process design [8]. It
aims to provide a simple repeatable engineering process for
generating MDA’s PIM, in the sense that the outputs from dif-
ferent domain experts with similar domain knowledge would
be very similar. To achieve this, URDAD provides a step-
by-step process for analysing and designing the technology
neutral solution with well-defined inputs and outputs for each
step.

2.1 The methodology

Instead of following a waterfall approach within a particular
service/use case (i.e. performing analysis, design, implemen-
tation, testing and deployment for each use case), URDAD

requires the one which performs analysis and design across
levels of granularity. This is illustrated in Fig. 1 which shows
that for any use case, the high-level requirements analysis
and formalization within a services contract is followed by a
design which assembles processes realizing the higher level
service from lower level services for which the lower level
analysis and design is done as one traverses to the next lower
level of granularity.

Services are recursively constructed from lower level ser-
vices with the lowest level services being neither domain spe-
cific (generic services like numeric addition, or infrastructure
services such as persistence) nor services which are sourced
externally. For these externally sourced services, the meth-
odology still requires the specification of a full services con-
tract, but are otherwise handled as black boxes. Figure 1 also
points out that one terminates the analysis and design as soon
as all required services are available.

One of the core aspects of URDAD is that it requires anal-
ysis and design to be done across levels of granularity, with
both these done by domain experts from different specializa-
tion areas. Thus, instead of requiring a (business) analyst to
specify the entire requirements for a new service, this respon-
sibility is distributed across the domain experts touched by
the service requirements.

For example, the business process for processing an
insurance claim may require services for assessing the claim
coverage and value, as well as for settling the claim and recu-
perating any losses. Those are very different responsibility
domains and it is unreasonable to expect a business analyst
to be able to provide the detailed requirements for a business
process across levels of granularity. Instead a business analyst
from claims could specify the high-level requirements (such
as that the losses need to be recuperated) without having to
specify the detailed requirements and process for those lower
level services. He/she is assembling the higher level business
process across level services sourced from other domains of
responsibility whose detailed requirements and designs are
done by domain experts from those domains of responsibility.

2.2 The analysis phase

Figure 2 shows the steps for the URDAD analysis phase.
URDAD requires that one first identifies the stakeholders
which have an interest in and hence requirements for the use
case/service. These are represented as interfaces.1

Next one identifies the pre- and post-conditions as well as
quality requirements the different stakeholders have for the

1 URDAD uses interfaces for roles because they conceptually represent
roles. Actors are problematic as the object may or may not be exter-
nal depending on the level of granularity and that actors cannot absorb
any service requirements. For example, a user may have to do certain
things when using a service. Using interfaces enables us to absorb these
service requirements for external objects in a contract for that role.

123

URDAD as a semi-formal approach to analysis and design

Fig. 1 High-level view of
URDAD showing analysis and
design across levels of
granularity

Fig. 2 The steps for the
analysis phase of URDAD

service. As these are independent, this can be done concur-
rently. The aggregated service requirements for the current
level of granularity are ultimately encapsulated in a contract
for the service which is visually represented in UML as a
class diagram. Initially, the domain experts may specify the
pre- and post-conditions and quality requirements in English.
These are incrementally formalized by mapping the pre- and
post-conditions onto OCL and the quality requirements onto
the UML Quality of Service (QOS) profile [22]. A simplified
example of such a class diagram is shown in Fig. 3.

Note that URDAD requires the linkage between stake-
holders and their functional and non-functional requirements
via <<requires >> dependencies in the UML model main-
taining the information on who requires what.

URDAD also requires that there is a single request and a
single result object for each service. This improves under-

standability and maintainability, avoiding scenarios where
change requests result in direct interface changes and poten-
tially in long, sparsely populated parameter lists with dif-
ferent scenarios requiring different sets of parameters to be
provided. The data structure for the result object is popu-
lated from the user requirements. The data structure for the
request object is, however, initially left blank and is incre-
mentally populated as one does the design across levels of
granularity and identifies the need for certain information in
order to render the required service.

2.3 The design phase

The steps for the design phase of URDAD are shown in
Fig. 1. One first identifies the services required for the
enforcement of each pre- and post-condition. Next one tries

123

F. Solms, D. Loubser

Fig. 3 A simplified services
contract for a process claim use
case

to group services into cohesive higher level services. This is
required to fix the level of granularity in a repeatable way. One
then assigns services to separate services contracts. Finally,
one assembles the process realizing the service from these
lower level services (Fig. 4).

The URDAD model can be populated through the use of
two diagrams, a class diagram for the required services and
the services contracts to which these services are assigned
and an activity diagram for the process specification (Fig. 5).

The service requirements diagram shows the services used
to realize the various pre- and post-condition as well as the
services contracts to which these services have been assigned.

The process specification shows how the process is
assembled across services sourced from the various service
providers (Fig. 6).

2.4 UML concerns

URDAD requires the linkage between stakeholders and their
requirements (pre- and post-conditions and quality require-
ments) via << requires >> dependency defined in the
URDAD profile as well as the linkage between pre- and
post-conditions and the services required to address them
via standard UML <<uses >> dependencies. Whilst this is
all fine within the UML model, the UML specification does
not specify any standard notation for rendering constraints
like pre- and post-conditions. The support for rendering con-
straints is thus tool dependent and may be non-existent. This
deficiency may require domain specialists to insert the depen-
dency relationships at the model level.

3 Semi-formal elements of URDAD

The two aspects of URDAD introduced enforce a level of
formality on the model. First, it is the requirement that the
requirements for any service are specified as a formal ser-
vices contract from which tests which assess whether any
designed or implemented service fulfills the contract. The
second aspect of URDAD is the formal definition of the
URDAD model structure and content which is verifiable
through a model validation suite.

3.1 Formal contracts-based approach

Since the model should preferably be developed in the prob-
lem/requirements domain and not in the technical/solution
domain, an axiomatic/contracts-based approach is natural
to model-driven development [3]. URDAD uses this formal
contracts-based approach, facilitating the auto-generation of
algorithm-independent tests [13]. This is done recursively,
by assuming at any particular level of granularity, that the
lower level services used within the algorithm do realize their
respective services contracts.

3.2 Well-defined, verifiable model structure

In addition to the service contracts across levels of granu-
larity, URDAD enforces a number of other elements which
formalize the outputs of the methodology including

– an OCL validation suite which validates that the UML
model complies to the constraints of an URDAD meta-
model, and

123

URDAD as a semi-formal approach to analysis and design

Fig. 4 The steps for the design
phase of URDAD

Fig. 5 The service
requirements and responsibility
allocation step

– OCL validation suites for model completeness and con-
sistency.

These validation suites enforce

– the linking of pre- and post-conditions to functional/ser-
vice requirements (use cases) through which these pre-
and post-conditions are addressed,

– the linking of functional requirements (use cases) to ser-
vices in services contracts which formalize the service
requirements,

– the linking of service process specifications to the service
contracts they realize,

– the construction of request objects for each service from
the information available to the (business) process at the
stage of service request,

123

F. Solms, D. Loubser

Fig. 6 Process specification for
process claim service

– the construction of result objects from the information
available at the end of the process realizing the ser-
vice,

– the specification of contracts for all role players including
users and service providers across levels of granularity,

– that for each pre-condition a corresponding exception is
raised, informing the user that the service requested is not
going to be provided. All other scenarios satisfying the
pre-conditions for the service lead to the provision of the
result object.

The first three provide bi-directional requirements traceabil-
ity. Black-box tests can be auto-generated from the services
contracts.

Note that if the levels of granularity are not carefully man-
aged, the specification of some of the above constraints can
become very complex. The methodology, however, aims to
provide a repeatable algorithm through which the levels of
granularity are fixed in a way which minimizes complexity
at any particular level of granularity, and which maximizes
re-use of services.

The validation suites enforces a complete, consistent
model which has sufficient information to perform a com-
plete implementation mapping, provided the semantics
for the implementation architecture and technologies are
provided.

3.3 Incremental formalization of model

The requirements specification in the form of formal con-
tracts using the OCL is, however, non-trivial. It is generally
not feasible to expect domain specialists like business ana-
lysts to specify formal services contracts. URDAD allows
for domain experts to specify services contracts informally
(using natural language to specify constraints, for example),
with OCL experts subsequently mapping such statements
onto OCL.

In order to automate the full code generation, OCL experts
will have to formalize the following aspects of the design:

– One needs to specify in OCL constraints how request
objects are formally constructed from the available infor-
mation.

– The formal specification of guard conditions in OCL.

4 What makes an URDAD-based approach agile?

Agile approaches [2,11] like Extreme Programming [1]
accept and even welcome continuously changing require-
ments in the context of continuously changing business
opportunities and continuous growth of knowledge on how
better to generate stake holder value. They aim to be able
to provide better business value by being able to effectively

123

URDAD as a semi-formal approach to analysis and design

operate in an environment of continuously changing require-
ments.

In such a high-risk environment, it is critical to manage
and mitigate risk. This is done through practices like short
feedback cycles via short releases, on-site customer, pair-
programming, enforced, automated functional (unit) test-
ing across levels of granularity and continuous integration
testing.

Agile methodologies typically handle the removal of
any unnecessary complexity arising from an agile approach
through peer reviews and continuous refactoring facilitated
through non-ownership of all artifacts generated by the
process.

4.1 Applying agile principles and practices in MDD

MDD decouples the requirements and design from the imple-
mentation architecture and technologies and increases the
level of abstraction of development. However, continuously
changing requirements are core to business agility and many
of the agile practices have been ported to this higher level
of abstraction including on-site customer (with the cus-
tomer communication simplified as the design is done in
the problem/business domain), pair design, enforced and
automated functional testing at the design level either via
proving the design or executing the design in model execu-
tion environments [7], peer reviews and non-ownership of
designs.

In addition, MDD and MDA, in particular, aim to improve
agility around technology and architecture by decoupling the
design from these and automating the implementation map-
ping onto the target architecture and technologies.

4.2 How does URDAD aim to achieve agility?

URDAD itself is not a development process but a process
for performing the technology neutral analysis and design
generating MDA’s PIM. It is typically embedded within a
model-driven development process within which some of the
agile principles and practices can be absorbed.

However, the URDAD methodology aims to increase agil-
ity through a number of intrinsic process elements

– enforced decoupling across all levels of granularity
facilitated through enforced binding to services con-
tracts, implied adapters to concrete service providers
and localization of process in separate work flow con-
trollers,

– explicit search step for service reuse resulting in lower
cost and complexity reduction,

– automated documentation (including UML to natural lan-
guage mapping and UML diagram generation) from the
URDAD compliant UML model, and

– complexity reduction through enforced responsibility
localization.

– rapid informal contract and design specification by
domain specialists followed by incremental formaliza-
tion of the design by technical specialists.

5 Conclusions and outlook

Over the years URDAD has strengthened its formal aspects
through the introduction of model validation and formal
model structure specification as well as the use of OCL to for-
malize the contracts specification. This has simplified model
testing and transformation tasks like documentation genera-
tion and implementation mappings.

However, using standard UML modeling tools results in
a lot of unnecessary overheads for modelers who have to
construct the appropriate URDAD model structure them-
selves, obtaining only guidelines from the results of the
model validations. The agility of URDAD can be consid-
erably improved by

– developing a URDAD front-end to UML which enforces
the URDAD model structure directly and which guides
modelers explicitly through the URDAD process,

– extending the range of documentation generation trans-
formations to provide suitable modelviews for different
role players, and

– developing URDAD specific implementation mapping
transformations for widely used implementation technol-
ogies in infrastructures.

References

1. Beck K, Andres C (2004) Extreme programming explained, 2nd
edn. Addison-Wesley, Reading

2. Beck K, Fowler M, Martin RC et al (2001) The agile manifesto.
http://agilemanifesto.org/

3. Briand LC, Labiche Y, Di Penta M, Yan-Bondoc H (2005) An
experimental investigation of formality in uml-based development.
IEEE Trans Softw Eng 31(10):833–849

4. Bruel J-M, Cheng B, Easterbrook S, France R, Rumpe B (1998)
Integrating formal and informal specification techniques. why?
how? In: 2nd IEEE workshop on industrial strength formal speci-
fication techniques, 1998. Proceedings, pp 50–57

5. Ghosh S, Dinh-Trong T, France RB, Solberg A (2006) Model-
driven development using UML-2: promises and pitfalls. Computer
39(2):59–66

6. Hall A, Isaac D (1992) Software in air traffic control systems.
In: IEE colloquium on the future, Jun 1992, pp 7/1–7/4

7. Kirshin A, Dotan D, Hartman A (2007) A UML simulator based on
a generic model execution engine. In: Lecture notes in computer
science, vol 4364/2007. Springer, Berlin, pp 324–6

8. Klopper R, Gruner S, Kourie D (2007) Assessment of a framework
to compare software development methodologies. In: Proceedings
of the 2007 annual research conference of the South African

123

http://agilemanifesto.org/

F. Solms, D. Loubser

institute of computer scientists and information technologists on
IT research in developing countries. ACM international conference
proceeding series, vol 226. ACM Press, New York, pp 56–65

9. Lazar I, Parv B, Motogna S, Czibula I-G, Lazar C-L (2008) An
agile mda approach for the development of service-oriented com-
ponent-based applications. In: CANS ’08: proceedings of the 2008
first international conference on complexity and intelligence of the
artificial and natural complex systems. Medical applications of the
complex systems. Biomedical computing. IEEE Computer Society,
Washington, DC, pp 38–44

10. Ma Z, He X, Kang L (2009) A model driven development plat-
form for service-oriented applications. In: World conference on
services—II, SERVICES-2 ’09, pp 17–24

11. Martin RC (2002) Agile software development, principles,
patterns, and practices. Prentice-Hall, Englewood Cliffs

12. McCumber WE, Cheng BHC (2001) A general framework for for-
malizing UML with formal languages. In: Proceedings of the 23rd
international conference on software engineering, pp 433–442

13. Meyer B, Fiva A, Ciupa I, Leitner A, Wei Y, Stapf E (2009) Pro-
grams that test themselves. Computer 42(9):46–55

14. Monin JF, Hinchey MG (2003) Understanding formal methods.
Springer

15. Moosavi S, Seyyedi MA, Moghadam N (2009) A method for ser-
vice oriented design. In: Sixth international conference on infor-
mation technology: new generations, 2009. ITNG ’09. pp 290–295

16. Oquendo F (2006) Pi-method: a model-driven formal method for
architecture-centric software engineering. SIGSOFT Softw Eng
Notes 31(3):1–13

17. Platzer A (2009) Verification of cyberphysical transportation sys-
tems. IEEE Intell Syst 24(4):10–13

18. Siegel J (2001) Developing in OMG’s model-driven architecture.
White paper, Object Management Group

19. Solms F (2007) Technology neutral business process design using
URDAD. In: Fujita H, Pisanelli D (eds), New trends in software
methodologies, tools and techniques, frontiers in artificial intelli-
gence and applications. IOS Press, Amsterdam, pp 52–70

20. Solms F, Loubser D (2009) Generating mda’s platform indepen-
dent model using urdad. Knowl Based Syst 22:174–185

21. Stahl T, Voelter M (2004) Model-driven software development.
Wiley, London

22. UML Quality of Service profile (2004) UML Profile for modeling
quality of service and fault tolerance characteristics and mecha-
nisms. document ptc/04-06-01, 2004

123

	URDAD as a semi-formal approach to analysis and design
	Abstract
	1 Introduction
	2 URDAD
	2.1 The methodology
	2.2 The analysis phase
	2.3 The design phase
	2.4 UML concerns

	3 Semi-formal elements of URDAD
	3.1 Formal contracts-based approach
	3.2 Well-defined, verifiable model structure
	3.3 Incremental formalization of model

	4 What makes an URDAD-based approach agile?
	4.1 Applying agile principles and practices in MDD
	4.2 How does URDAD aim to achieve agility?

	5 Conclusions and outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

