
Innovations Syst Softw Eng (2010) 6:83–90
DOI 10.1007/s11334-009-0116-1

ORIGINAL PAPER

Towards model checking executable UML specifications
in mCRL2

Helle Hvid Hansen · Jeroen Ketema · Bas Luttik ·
MohammadReza Mousavi · Jaco van de Pol

Received: 30 November 2009 / Accepted: 5 December 2009 / Published online: 7 February 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract We describe a translation of a subset of execut-
able UML (xUML) into the process algebraic specification
language mCRL2. This subset includes class diagrams with
class generalisations, and state machines with signal and
change events. The choice of these xUML constructs is dic-
tated by their use in the modelling of railway interlocking
systems. The long-term goal is to verify safety properties
of interlockings modelled in xUML using the mCRL2 and
LTSmin toolsets. Initial verification of an interlocking toy
example demonstrates that the safety properties of model
instances depend crucially on the run-to-completion assump-
tions.

Keywords Software verification and validation ·
Specification languages · Model checking ·
Executable UML · Process algebra

1 Introduction

We translate a subset of executable UML (xUML) [15] into
the formal specification language mCRL2 [12] with the

Helle Hvid Hansen · Bas Luttik · MohammadReza Mousavi
Eindhoven University of Technology, Eindhoven,
The Netherlands
e-mail: h.h.hansen@tue.nl

Bas Luttik
e-mail: s.p.luttik@tue.nl

MohammadReza Mousavi
e-mail: m.r.mousavi@tue.nl

Jeroen Ketema (B) · Jaco van de Pol
University of Twente, Enschede, The Netherlands
e-mail: j.ketema@ewi.utwente.nl

Jaco van de Pol
e-mail: j.c.vandepol@ewi.utwente.nl

purpose of verifying safety properties. The xUML constructs
covered include class diagrams with class generalisations
and object associations, and state machines which consist of
composite and concurrent states and have signal and change
events.

The mCRL2 language extends the process algebra ACP
[3] with abstract data types. Its process algebraic foundation
makes mCRL2 suitable for specifying dynamic, concurrent
behaviour. Moreover, it enables the use of compositional ver-
ification methods and provides a clear, formal semantics [12].
Our use of mCRL2 is strongly motivated by the availability
of powerful verification tools: The mCRL2 toolset1 provides
for explicit model checking, state space analysis and simu-
lation. Symbolic model checking is provided by the LTSmin
toolset2 [4,5].

Our work is part of INESS3, an EC FP7-funded project,
which aims at developing uniform specifications for future
railway interlockings. Briefly, an interlocking prevents con-
flicting routes from being set by monitoring and controlling
the operation of signals, points and other trackside elements.
Here, a “route” is the concept used by railway signallers to
guide trains over arrangements of tracks, points, etc. The
high-level safety requirements of interlockings are to ensure
that trains neither collide nor derail. In INESS, the functional
requirements of interlockings are expressed as an xUML
model, and one of the project tasks is to formally verify
safety properties of such xUML interlocking models. Sev-
eral approaches to this task are explored within the project.
Our approach is based on model checking using mCRL2,
and the current paper provides a first step by presenting a
translation from xUML to mCRL2.

1 http://www.mcrl2.org.
2 http://fmt.cs.utwente.nl/tools/ltsmin/.
3 http://www.iness.eu.

123

http://www.mcrl2.org
http://fmt.cs.utwente.nl/tools/ltsmin/
http://www.iness.eu

84 H. H. Hansen et al.

As in most real-world applications, the xUML models
arising from the interlocking domain are of considerable size.
One of our secondary aims in the current paper is therefore
to investigate the feasibility of performing verification on the
models resulting from translation. Moreover, we would like
to explore the kind of behaviours contained in xUML inter-
locking models, and expose any kind of semantic assump-
tion that is either underspecified or beyond the scope of the
model. To this end, we also report on a small experiment
using a toy interlocking specification, which was kindly pro-
vided to us by KnowGravity Inc.4 This toy specification is
almost as simple as it gets, but it shows, in particular, how
different run-to-completion assumptions give rise to a wide
variety of model sizes and observable traces.

The rest of this paper is organised as follows. In Sect. 2, we
describe and motivate the use of model checking in the verifi-
cation of xUML interlocking models. In Sect. 3, we introduce
the xUML constructs covered by our translation, and discuss
different types of run-to-completion assumptions. In Sect. 4,
we describe our translation to mCRL2 and, in Sect. 5, we
expose some issues related to model checking xUML models
and report on our observations made in translating and ver-
ifying a toy xUML interlocking model. Finally, we discuss
related work and conclude in Sects. 6 and 7, respectively.

2 Model checking xUML interlocking models

In model checking [2], a formal model describes all possi-
ble executions of the system being modelled, and verifica-
tion is carried out by an exhaustive state space exploration
of this model. In our case, we obtain a formal model as the
mCRL2 translation of an instance of the xUML model. More
precisely, a model is obtained by instantiating the classes
and associations of the xUML interlocking model according
to a particular track layout. A track layout is a configura-
tion of physical and logical railway elements such as tracks,
points, signals and routes (see Sect. 5.1 for an example).
Model checking of xUML interlocking models is thus always
carried out with respect to a particular instantiation of the
model. Consequently, model checking cannot prove that all
instances of the xUML model satisfy a given set of safety
requirements.

In spite of the above limitation, model checking can
provide valuable information: First, for a fixed track lay-
out, verification is exhaustive, in contrast with simulation
and testing. Second, the violation of a safety property in
a particular model instance shows that the xUML model
is not correct in general; traces that witness this undesired
behaviour can be used to improve the model. Finally, we can
increase confidence in the correctness of the xUML model by
verifying particularly significant model instances. For

4 http://www.knowgravity.com.

example, ProRail5, the Dutch railway infrastructure manager,
has designed three track layouts that together are supposed to
capture all features of track layouts found in the Netherlands.
Proving that the model instances arising from these track lay-
outs satisfy certain properties would increase the confidence
that the properties also hold for other instances.

3 Executable UML

Executable UML (xUML) [15] consists of UML class dia-
grams, UML state machines and an action language which
complies with the UML action semantics. There are several
action languages in use; we refer to [15] for a—somewhat
limited—overview.

The xUML models to be translated are expressed in the
Cassandra/xUML dialect [14], as developed by KnowGravity.
We briefly describe the modelling constructs relevant to us,
following the UML 2.2 standard [17] wherever possible, and
Cassandra/xUML otherwise.

3.1 Constructs

In class diagrams, we allow for class generalisations (inher-
itance) and associations between classes (specifying which
class instantiations may reference each other). Association
classes, however, may not occur, i.e. no objects may be related
to instances of associations.

State machines may contain concurrent and composite
states (AND- and OR-states) and initial pseudo-states. Cur-
rently, we do not translate history and final pseudo-states. All
UML-defined transitions may occur as far as they involve the
allowed (pseudo-)states. A transition is labelled with a trig-
ger and a sequence of actions, both of which may be empty.
A trigger must be a signal event or a change event.

Signals are communicated asynchronously. A signal can
be sent either by an object within the system (an internal
signal) or by the environment (an external signal). Each state
machine is accompanied by an event pool which stores
received signals until dispatched, i.e. until they are taken from
the event pool by the state machine [17, Section 13.3.25].

A change event [17, Section 13.3.7] is an event which is
generated when a certain condition becomes true. The condi-
tion typically refers to the states of objects referenced through
associations. Contrary to the other modelling constructs rel-
evant to us, the UML 2.2 semantics of change events [17,
Section 13.3.7] is rather underspecified. For example, it is not
detailed when a change event is evaluated or how a change
event is detected. Also, implementations may or may not let
change events remain in case their condition becomes false
again after having been true. In Cassandra/xUML, change

5 http://www.prorail.nl.

123

http://www.knowgravity.com
http://www.prorail.nl

Towards model checking xUML in mCRL2 85

events are denoted by when(cond), where cond is a Bool-
ean expression. Given a state machine X with a transition
t labelled by a change event when(cond), the Cassandra/
xUML simulator adds an event ewhen(cond) to the event pool
of X whenever cond changes from false to true (personal
communication with KnowGravity). The event ewhen(cond)

triggers transition t once dispatched and remains in the event
pool even in case cond becomes false before ewhen(cond) is
dispatched.

If a dispatched event is not the trigger of an enabled transi-
tion, the event is discarded. Otherwise, the actions labelling
the transition are carried out. The only type of action we cur-
rently allow is the sending of a signal [17, Section 11.3.45],
where the target may either be an object within the system
or the environment.

3.2 Run-to-completion

An important aspect of concurrency is the interleaving of
process executions. Run-to-completion (RTC) assumptions
can help reduce the complexity of a concurrent system. A
local RTC step of a state machine X consists of processing
all actions labelling a transition triggered by some event. In
the literature, three different levels of RTC seem to be con-
sidered (no fixed terminology seems to exists and the names
are our own):

Local RTC: A local RTC step of a state machine X must be
completed before the next event can be dispatched to X .

Atomic RTC: While a state machine X is executing a local
RTC step, no event can be dispatched to any of the state
machines in the system.

Global RTC: External signals may only be dispatched to the
system in case all event pools are empty and there are no
remaining change events.

Local RTC is required by the UML specification [17,
Section 15.3.12]. It ensures that a state machine is in a well-
defined configuration before the next event is dispatched.
With atomic RTC, local RTC steps in different state machines
may not be interleaved (which is not forbidden by local RTC).
Global RTC separates internal system interactions (between
objects) from interactions with the environment. Note that
atomic RTC implies local RTC, but that global RTC implies
neither local nor atomic RTC. Atomic RTC is used in [9,20].
The Cassandra/xUML simulator employs both atomic RTC
and global RTC [14, Section 4.3.5].

4 Translation into mCRL2

The mCRL2 specification language [12] extends the process
algebra ACP [3] with abstract datatypes, including built-in

types such as Booleans, integers and lists. New structured
data types can be defined using the struct keyword. Cur-
rently, we use only enumerated data types, for example,

sort Elt_State = struct Ready | Not_Ready.

Functions over sorts can be defined by giving equations.
The process specification language of mCRL2 allows for

the definition of basic actions with zero or more parame-
ters. For example, act send, read : Message defines
the actions send and read which take a parameter of type
Message. Similarly, a process specification may take
parameters, for example,

proc Element(state : Elt_State).

Processes can be composed using sequential and parallel
composition and non-deterministic choice. Moreover,
actions can be hidden (turned into the silent action) and
blocked (disallowed). Synchronisation rules take the form
of the so-called multi-actions a1 | a2 | . . . | an → c, which
specify that the actions a1, a2, . . . , an must synchronise and
the result of this multi-party synchronisation is the action c.

An mCRL2 specification consists of data type definitions,
equations over the data types, process specifications and an
initial process. The above process specification proc
Element(state : Elt_State) could, for example, be
initialised as init Element(Ready).

4.1 Translation

In our translation from xUML to mCRL2, each class becomes
a process specification. Each of these process specifications
consists of two parallel parts: one part is the translation of
the state machine associated with the class and the other part
formalises the event pool associated with the state machine as
a buffer process. The buffer process essentially implements
a queue. An event is placed in the queue by a synchronous
communication between the sending process and the buffer
process. The sending process can be either the environment,
another process representing a state machine, or a process
monitoring change events (described at the end of this sec-
tion). Signals are dispatched on a FIFO basis through syn-
chronous communication between the buffer process and the
process representing a state machine.

4.1.1 Class diagrams

As mentioned in Sect. 3.1, we allow for class generalisa-
tions and class associations. In our translation, the first is
dealt with by flattening the class hierarchy; each superclass
Y of a class X occurs only once in this flattening, even in
case there are several is-a associations between X and Y in
the class diagram. Now, if X is a class with superclasses
Y1, . . . , Yn , the flattened class X ′ arising from X has all

123

86 H. H. Hansen et al.

attributes of X, Y1, . . . , Yn , and the state machine of X ′ is
defined as the concurrent composition of the state machines
of X, Y1, . . . , Yn .

Class associations are translated by defining an enumer-
ated data type consisting of identifiers (depending on the
instantiation of the model) and supplementing each mCRL2
representation of a class instance with one parameter (of the
enumerated type) for each of its associations.6 For example,
if each instance of a class X is associated with exactly one
instance of a class Y , then the process specification of X will
be of the form proc X(. . . , id_Y : Id, . . .), where Id is
the enumerated type consisting of identifiers.

4.1.2 State machines

The potential state configurations of a state machine X are
encoded as follows. For each non-concurrent composite state
(OR-state) S, we define an enumerated type ancS_states
where ancS identifies S in the state hierarchy. If S
has substates P, . . . , Q, then ancS_states has mem-
bers ancS_ substate_P, . . . ,ancS_substate_Q, and
ancS_substate_nop. The process specification of the
state machine X is then supplied with a parameter
ancS_state whose value represents the currently active
substate of S. In particular, the top state T of a state machine
for a class is always a non-concurrent state and gives rise
to a parameter T_state. We refer to ancS_state as a
state parameter. If S is not active, then ancS_state has
the value ancS_substate_nop.

The configurations of a concurrent state S are not modelled
by parameters, as they are determined by the state configura-
tions of the (direct) substates of the concurrent components of
S (the Cartesian product of these substates to be precise). To
illustrate, consider the state machine F in Fig. 1 (transitions
are unlabelled as we only wish to illustrate how composite
states are treated). In Fig. 2, we list the data type definitions
arising from F together with the declaration of state parame-
ters in the process specification of F (disregarding any class
attributes), and an initial process corresponding to the initial
state configuration.

Since we treat class generalisation by flattening, if a class
Y generalises a class X , then the process specification of the
state machine for X (which concurrently composes the state
machines for Y and X) will have the state parameters aris-
ing from both X and Y . This is completely analogous to the
handling of concurrent states within a state machine.

6 We actually employ macro preprocessing of the mCRL2 specification
before model checking. This is to avoid loop constructs when dealing
with one–many and many–many associations.

N

I J

L M

F

G
H

K

Fig. 1 A state machine

Fig. 2 Translation of the state machine in Fig. 1: data types for repre-
senting states, state parameters and initialisation

4.1.3 Transitions

Given the local RTC assumption, a process specifying the
state machine of a class X can obtain an event from its buffer
process (event pool) precisely when it is in a stable state, i.e.
when no other transition is currently being taken. One of the
transitions triggered by the obtained event is taken at random
(non-deterministic choice), assuming such a transition exists.
The actions labelling the chosen transition are executed and
the state parameters of the process are updated to reflect the
new state configuration. If no transition is triggered by the
event, then the event is discarded, as allowed by the UML
state machine semantics [17, Section 15.3.12].

4.1.4 Change events

We implement change events by introducing a process for
each such event. This process monitors the value of the condi-
tion in the change event. For example, if a state machine X has
a transition from a state S triggered by (in pseudonotation)

when(P.state = T & Q.state = U),

123

Towards model checking xUML in mCRL2 87

Fig. 3 A monitor process for a change event

where P and Q are state machines associated with X , then
we create a process

when_X_S(P_in_state_T : Bool,Q_in_state_U : Bool),

and let P and Q communicate synchronously with the mon-
itor process whenever they enter or leave the states T and U ,
respectively. This communication updates the values of the
Boolean parametersP_in_state_T andQ_in_state_U.
When an update results in the condition changing from false
to true, the monitor process places a signal in the buffer of
X . This signal remains in the buffer of X even when the con-
dition becomes false again. Whence, at the moment the state
machine reacts to the event, the condition might no longer
hold.

Concretely, the monitor process when_X_S described
above is specified as in Fig. 3. The process defined in the
figure can either receive an update from state machine P ,
represented by the action when_upd_P, or from Q, rep-
resented by the action when_upd_Q. We explain commu-
nication with P , the case of Q is analogous. The action
when_upd_P carries a Boolean data argument b which indi-
cates whether P entered or left state T . The sum ensures that
b can have either the value True or False. Upon recep-
tion of when_upd_P(b), the process checks whether P was
not in the state T before (!P_in_State_T), that P is in the
state T now (b) and that Q is in state U (Q_in_State_U).
If these conditions hold, a signal is put in the buffer of X
(send_when_to_X) and the state of the monitor process is
updated, written as when_X_S(b, Q_in_state_U), after
which the process is able to receive a state update again
from either P or Q. If one of the conditions does not hold,
the state of when_X_S is simply updated and again the
process is able to receive a state update from either P
or Q.

4.1.5 Architecture

We now summarise how the elements of an xUML model
are mapped onto the elements of an mCRL2 specification:
For each flattened class with associated state machine X ,
we define a process specification proc X_Complex(id :
Id, . . .) consisting of the parallel composition of X(id :
Id, . . .), X_buffer(id : Id, . . .), and X_wheni(id : Id,

. . .) where i ranges over the change events of X . The param-
eter id represents the unique identifier associated with an
instance of the represented class. The translation of the state
machine X is embodied by X, and the process X_buffer
represents the event pool. Each X_wheni monitors one of
the change events occurring in the state machine associated
with X , as described earlier.

An instance of an xUML model defines, in addition to
the above, an enumerated type with object identifiers and an
appropriate initialisation consisting of the parallel composi-
tion of the processes arising from the objects in the instantia-
tion, together with the required synchronisation constraints.

5 Model checking

From a model checking perspective, the UML 2.2 semantics
presents us with two problems:

1. Any instance of an xUML model has an infinite state
space; this comes about, as UML 2.2 neither limits the
size of event pools nor limits the number of events the
instance may accept from the environment at any point
in time.

2. Class instances may starve, i.e. a class instance may have
events in its event pool waiting to be dispatched, but the
instance may never get its turn; this comes about, as UML
2.2 does not impose any fairness restrictions concerning
event dispatching.

Since our translation to mCRL2 faithfully follows the UML
2.2 semantics, the obtained mCRL2 models will also have
both infinite state spaces and leave room for starvation. To
alleviate these problems, we propose two constraints on our
mCRL2 models:

A. Limit the size of buffers. This restriction will overcome
the first of the above problems. However, as an object
may send several signals to itself during a local RTC step
(cf. Sect. 3.2), we only impose this limit with regard to
messages coming from other objects and from the envi-
ronment in order to avoid deadlock.

B. Add a mechanism which ensures that the system can only
receive a message from the environment in case all mes-
sage queues are empty. In other words, implement global

123

88 H. H. Hansen et al.

Fig. 4 Class diagram for the Micro interlocking

t1 p1

t3

t2s1

Fig. 5 Track layout for an instance of the Micro model

RTC (cf. Sect. 3.2). This restriction addresses both of the
above problems under the assumption that external sig-
nals do not (directly or indirectly) trigger an unbounded
number of internal events. Consequently, each process
will eventually get the chance to empty its buffer.

It should be clear that both A and B only eliminate traces from
the translated model. Hence, as safety properties are vio-
lated by finite traces, any safety violation found in a model
restricted according to A or B is also present in the unre-
stricted model.

5.1 Model checking a toy specification

We have applied the translation from Sect. 4 to a toy inter-
locking specification which we refer to as the Micro model.
The Micro model has classes named element, track, point,
signal and route, where element is a generalisation of track,
point and signal. The class diagram for this model is depicted
in Fig. 4. An instance of the Micro model is obtained from
the track layout depicted in Fig. 5.

The layout consists of three tracks t1, t2, t3, one point p1

(positioned left in the picture), one signal s1 and two routes:
route r1 requires p1 to be positioned left and goes from track
t1 to track t3; route r2 requires p1 to be positioned right and
goes from t1 to t2; both routes have s1 as their entry signal.
The model instance thus contains three track objects, one
point object, one signal object and two route objects, and

Fig. 6 State machine for class Route

these objects are linked via the following associations:

tracks = {〈r1, t1〉, 〈r1, t3〉, 〈r2, t1〉, 〈r2, t2〉}
left_points = {〈r1, p1〉}

right_points = {〈r2, p1〉}
entry_signal = {〈r1, s1〉, 〈r2, s1〉}

The main functionality of the Micro model is route set-
ting and route cancellation. Informally described, when a
route receives a reserve request, it should signal to its left
and right points to move into position. When all points are
positioned, all tracks along the route are clear and the entry
signal is ready, the entry signal is set to show proceed. When
one of the elements associated with the route is no longer in
the required state, or the route is cancelled, the route entry
signal is set to show stop. The state machine describing the
behaviour of the class Route is shown in Fig. 6.

We translated the above instance of the Micro model into
mCRL2 in two different ways corresponding to constraints
A and B from the previous section. The state space resulting
from version A is huge (61 × 1012 states) even with buffer
size 1, but our symbolic tool LTSmin still computes the num-
ber of states within seconds. The mentioned state space was
explored in 113 seconds using 238MB memory of a machine
equipped with an Intel Xeon 2.66 GHz, 32GB of memory and
Linux 2.6.18. To obtain version B we used barrier synchro-
nisation. This version has a significantly smaller state space
with 8 million states. However, computing the number of
states takes longer and uses more memory (160 seconds and
311MB). The state space reduction that stems from a global

123

Towards model checking xUML in mCRL2 89

RTC assumption is thus significant, but run-time increases
for the symbolic tools.

We were able to prove the presence of certain (unwanted)
traces in both versions A and B by placing a monitor pro-
cess in parallel with the mCRL2 translation of Micro. The
monitor deadlocks the process in case a certain finite trace,
representing the violation of a safety property, is present. The
deadlock detection functionality of LTSmin was used to pro-
duce a trace. The trace shows that when the entry signal s1

has been set to show proceed, the system may command the
point p1 to move before it sets s1 to show stop, thus risking the
derailment of a train passing over p1. However, we point out
that the Micro model is merely intended to illustrate the type
of xUML model constructs that are used in the modelling of
interlockings, and it is not claimed to be a safe interlocking
specification. Our main point is that some of these traces can-
not be observed in the Cassandra/xUML simulator, because
it uses a stronger RTC assumption (atomic and global RTC)
than our versions A (local RTC) and B (local and global
RTC).

6 Related work

There is extensive work on the formalisation of executable
UML, and in particular, UML state machines, for the purpose
of carrying out formal verification [1,7,9,13,20]. Translation
of xUML into a process algebraic language occurs in [19,22].
More references can be found in [7] and in the survey article
[18].

In all aforementioned work, translation focuses on com-
posite and concurrent states, history pseudo-states, (conflict-
ing) transitions and the action language. We were not able to
locate any research that includes the formalisation of change
events. The reason for this could be that change events are
considered a problematic construct due to their underspeci-
fied semantics. An indication hereof is given by the fact that
the “foundational subset for xUML” (fUML) [16] forbids the
use of change events. Nonetheless, we want to include change
events, as they are an essential ingredient of the interlocking
specifications provided to us. Consequently, we cannot (com-
pletely) base our work on the formally better specified fUML.

Formal methods have been widely applied in the verifi-
cation of interlockings. The work can be divided into two
categories: verification of concrete interlockings (see, e.g.,
[11,6,10]) and verification of more high-level interlocking
specifications (see, e.g., [21,8]), as in our case.

7 Conclusion

We have presented a translation of a subset of xUML into the
process algebra mCRL2. Each of the elements of the xUML
subset is translated into a very simple mCRL2 construct,

with the translation of the change events being the most
complicated. Given the simplicity of the mCRL2 constructs,
we expect that our translation can be automated without too
much trouble. In fact, work on this automatic translation from
xUML (in the form of XMI files) to mCRL2 has already
begun.

Future work includes extending our translation to further
constructs that occur in larger xUML interlocking models
provided to us. These constructs include transition guards and
call events (synchronous communication), which we expect
are easily added. In fact, we expect that our translation can
also easily be extended to include history and final pseudo-
states, and even any chosen action language, bar operations
like object creation and destruction. These last operations
would correspond to on-the-fly process creation and destruc-
tion which are not possible in mCRL2. Other future work
includes defining a formal semantics of xUML interlocking
models, and proving the correctness of our translation with
respect to this semantics.

Our first steps towards verifying safety properties of
xUML interlocking specifications have demonstrated the fol-
lowing:

– The fairness and safety properties of an interlocking sys-
tem may depend crucially on the run-to-completion
(RTC) assumption employed in the implementation. Ver-
ification should therefore be relative to a particular choice
of RTC.

– Even for small xUML models, such as our toy specifi-
cation, the state space can be enormous. Still the sym-
bolic model checker seems to be able to deal quite well
with the mCRL2 translations obtained from the toy spec-
ification. However, in order to verify real interlocking
specifications, we expect it will be necessary to come up
with specific abstraction and decomposition techniques,
as well as reduce the number of event orderings, either
in a generic way (partial-order reduction) or specifically
(by using different RTC assumptions).

Acknowledgments This research is partially funded by the European
Comission (EC), as a grant to the FP7 project INESS, grant agreement
no. 218575. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the authors and do not
necessarily reflect the views of either the EC or the INESS consortium.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Alur R, Yannakakis M (2001) Model checking of hierarchical state
machines. ACM Trans Program Lang Syst 23(3):273–303

123

90 H. H. Hansen et al.

2. Baier C, Katoen J-P (2008) Principles of model checking. The MIT
Press, New York

3. Bergstra JA, Klop JW (1984) Process algebra for synchronous
communicati. Inf Control 60(1–3):109–137

4. Blom S, van de Pol J (2008) Symbolic reachability for process
algebras with recursive data types. In: Proceedings on theoretical
aspects of computing (ICTAC 2008). Lecture Notes in Computer
Science, vol 5160. Springer, Berlin, pp 81–95

5. Blom SCC, van de Pol JC, Weber M (2009) Bridging the gap
between enumerative and symbolic model checkers. Technical
Report TR-CTIT-09-30, CTIT, University of Twente, Enschede

6. Cimatti A, Giunchiglia F, Mongardi G, Romano D, Torielli F,
Traverso P (1998) Formal verification of a railway interlocking
system using model checking. Formal Aspects Comput 10(4):361–
380

7. Damm W, Josko B, Pnueli A, Votintseva A (2005) A discrete-time
UML semantics for concurrency and communication in safety-crit-
ical applications. Sci Comput Program 55:81–155

8. Eriksson L-H (1996) Specifying railway interlocking requirements
for practical use. In: Proceedings of the 15th international confer-
ence on computer safety, reliability and security (SAFECOMP’96).
Springer, Berlin

9. Xie F, Levin V, Browne J (2001) Model checking for an execut-
able subset of UML. In: 16th IEEE international conference on
automated software engineering (ASE 2001), pp 333–336

10. Fokkink W (1996) Safety criteria for the vital processor inter-
locking at Hoorn-Kersenboogerd. In: 5th conference on comput-
ers in railways (COMPRAIL’96). Volume I: railway systems and
management

11. Gnesi S, Latella D, Lenzini G, Abbaneo C, Amendola AM, Marmo
P (2000) An automatic SPIN validation of a safety critical rail-
way control system. In: Proceedings of the 2000 international
conference on dependable systems and networks. IEEE Computer
Society, Washington, DC, pp 119–124

12. Groote JF, Mathijssen A, Reniers MA, Usenko YS, van
Weerdenburg M (2007) The formal specification language mCRL2.
In: Proceedings of methods for modelling software systems,
Dagstuhl seminar proceedings, vol 06351

13. Hu Z, Shatz SM (2006) Explicit modeling of semantics associated
with composite states in UML statecharts. J Autom Softw Eng
13(4):423–467

14. KnowGravity (2008) Cassandra/xUML user’s guide. http://www.
knowgravity.com/eng/value/cassandra.htm

15. Mellor SJ, Balcer M (2002) Executable UML: a foundation for
model-driven architecture. Addison Wesley, Reading

16. Object Management Group (2008) Semantics of a foundational
subset for executable UML models. http://www.omg.org/spec/
FUML/1.0/Beta1/PDF/. Accessed Nov 2008

17. Object Management Group (2009) OMG unified modeling lan-
guage superstructure version 2.2. http://www.omg.org/spec/UML/
2.2/Superstructure/PDF/. Accessed Feb 2009

18. Purandar B, Ramesh S (2004) Model checking of statechart
models: survey and research directions. http://arxiv.org/abs/cs.SE/
0407038. Accessed July 2004

19. Turner E, Treharne H, Schneider S, Evans N (2008) Automatic
generation of CSP ‖ B skeletons from xUML models. In: Proc. of
Theoretical Aspects of Computing (ICTAC 2008), pp. 364–379

20. von der Beeck M (2001) Formalization of UML-statecharts. In:
Proceedings UML 2001. Lecture Notes in Computer Science,
vol 2185. Springer, Berlin, pp 406–421

21. Winter K, Robinson NJ (2003) Modelling large railway interloc-
kings and model checking small ones. In: ACSC ’03: Proceedings
of the 26th Australasian computer science conference, pp 309–316.
Australian Computer Society, Inc.

22. Yeung WL, Leung KRPH, Wang J, Dong W (2005) Improvements
towards formalizing UML state diagrams in CSP. In: Proceedings
of the 12th Asia-Pacific software engineering conference (APSEC
2005). IEEE Computer Society

123

http://www.knowgravity.com/eng/value/cassandra.htm
http://www.knowgravity.com/eng/value/cassandra.htm
http://www.omg.org/spec/FUML/1.0/Beta1/PDF/
http://www.omg.org/spec/FUML/1.0/Beta1/PDF/
http://www.omg.org/spec/UML/2.2/Superstructure/PDF/
http://www.omg.org/spec/UML/2.2/Superstructure/PDF/
http://arxiv.org/abs/cs.SE/0407038
http://arxiv.org/abs/cs.SE/0407038

	Towards model checking executable UML specifications in mCRL2
	Abstract
	1 Introduction
	2 Model checking xUML interlocking models
	3 Executable UML
	3.1 Constructs
	3.2 Run-to-completion

	4 Translation into mCRL2
	4.1 Translation
	4.1.1 Class diagrams
	4.1.2 State machines
	4.1.3 Transitions
	4.1.4 Change events
	4.1.5 Architecture

	5 Model checking
	5.1 Model checking a toy specification

	6 Related work
	7 Conclusion
	Acknowledgments
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

