Innovations Syst Softw Eng (2010) 6:219-231
DOI 10.1007/s11334-010-0129-9

ORIGINAL PAPER

Formally verifying human—-automation interaction
as part of a system model: limitations and tradeoffs

Matthew L. Bolton - Ellen J. Bass

Received: 8 March 2010 / Accepted: 25 March 2010 / Published online: 9 April 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Both the human factors engineering (HFE) and
formal methods communities are concerned with improving
the design of safety-critical systems. This work discusses
a modeling effort that leveraged methods from both fields
to perform formal verification of human—automation inter-
action with a programmable device. This effort utilizes a
system architecture composed of independent models of the
human mission, human task behavior, human-device inter-
face, device automation, and operational environment. The
goals of this architecture were to allow HFE practitioners to
perform formal verifications of realistic systems that depend
on human—automation interaction in a reasonable amount of
time using representative models, intuitive modeling con-
structs, and decoupled models of system components that
could be easily changed to support multiple analyses. This
framework was instantiated using a patient controlled anal-
gesia pump in a two phased process where models in each
phase were verified using acommon set of specifications. The
first phase focused on the mission, human-device interface,
and device automation; and included a simple, unconstrained
human task behavior model. The second phase replaced the
unconstrained task model with one representing normative
pump programming behavior. Because models produced in
the first phase were too large for the model checker to verify,
a number of model revisions were undertaken that affected
the goals of the effort. While the use of human task behavior
models in the second phase helped mitigate model complex-
ity, verification time increased. Additional modeling tools

M. L. Bolton (X)) - E. J. Bass

Department of Systems and Information Engineering,
University of Virginia, 151 Engineer’s Way,
Charlottesville, VA, USA

e-mail: mlb4b@virginia.edu

E. J. Bass
e-mail: ejb4n@virginia.edu

and technological developments are necessary for model
checking to become a more usable technique for HFE.

Keywords Human-automation interaction -
Task analysis - Formal methods - Model checking -
Safety critical systems - PCA pump

1 Introduction

Both human factors engineering (HFE) and formal methods
are concerned with the engineering of robust systems that will
not fail under realistic operating conditions. The traditional
use of formal methods has been to evaluate a system’s auto-
mation under different operating and/or environmental con-
ditions. However, human operators control a number of safety
critical systems and contribute to unforeseen problems. For
example, human behavior has contributed to between 44,000
and 98,000 deaths nationwide every year in medical practice
[18], 74% of all general aviation accidents [19], at least two-
thirds of commercial aviation accidents [28], and a number
of high profile disasters such as the incidents at Three Mile
Island and Chernobyl [22]. HFE focuses on understanding
human behavior and applying this knowledge to the design of
human—automation interaction: making systems easier to use
while reducing errors and/or allowing recovery from them
[25,29].

By leveraging the knowledge of both HFE and formal
methods, researchers have identified the cognitive precon-
ditions for mode confusion and automation surprise [7, 10,
16,23]; automatically generated user interface specifications,
emergency procedures, and recovery sequences [13,14]; and
identified human behavior sequences (normative or errone-
ous) that contribute to system failures [8,12].

@ Springer

220

M. L. Bolton, E. J. Bass

While all of this work has produced useful results, the
models have not included all of the components necessary to
analyze human—automation interaction. For HFE analyses
of human—automation interaction, the minimal set of com-
ponents are the goals and procedures of the human opera-
tor; the automated system and its human interface; and the
constraints imposed by the operational environment. Cogni-
tive work analysis is concerned with identifying constraints
in the operational environment that shape the mission goals
of the human operator [27]; cognitive task analysis is con-
cerned with describing how human operators normatively
and descriptively perform goal oriented tasks when interact-
ing with an automated system [17,24]; and modeling frame-
works such as [11] seek to find discrepancies between human
mental models, human-device interfaces (HDIs), and device
automation. In this context, problems related to human—
automation interaction may be influenced by the human
operator’s mission, the human operator’s task behavior, the
operational environment, the HDI, the device’s automation,
and their interrelationships.

We are developing methods and tools to allow human
factors engineers to exploit their existing human task
modeling constructs with the powerful verification capabil-
ities of formal methods in order to identify potential prob-
lems with human—automation interaction in safety critical
systems that may be related to human task behavior, the
automated device, the operational environment, or their inter-
action. To this end, we are developing a computational frame-
work (Fig. 1) for the formal modeling of human-automation
interaction. This framework utilizes concurrent models of
human operator task behavior, human mission (the goals the
operator wishes to achieve using the system), device auto-
mation, and the operational environment which are com-
posed together to form a larger system model. Inter-model

interaction is represented by variables shared between mod-
els. Environment variables communicate information about
the state of the environment to the device automation, mis-
sion, and human task models. Mission variables communi-
cate the mission goals to the human task model. Interface
variables convey information about the state of the HDI (dis-
played information, the state of input widgets, etc.) to the
human task model. The human task model indicates when and
what actions a human operator would perform on the HDI.
The HDI communicates its current state to the device auto-
mation via the interface variables. The HDI receives infor-
mation about the state of the device automation model via
the automation state variables.

For broader applicability, the analysis framework must
support modeling constructs intuitive to the human fac-
tors engineer in order to allow him to effectively model
human missions, human tasks, and HDIs. Because an engi-
neer may wish to rerun verifications using different missions,
task models, HDIs, environments, or automation behaviors,
these components should remain decoupled (as is the case in
Fig. 1). Finally, the modeling technique must be capable of
representing the target systems with enough fidelity to allow
the engineer to perform the desired verification, and do so in
a reasonable amount of time (this could mean several hours
for a small project, or several days for a more complicated
one).

This paper describes an instantiation of this framework
using a model of a Baxter Ipump Pain Management System
[2], a patient controlled analgesia (PCA) pump that adminis-
ters pain medication in accordance with constraints defined
by a health care technician (described in Sect. 2.1). Models
were developed in two phases. The first phase involved the
construction and debugging of the HDI, device automation,
and human mission models (an environmental model was not

System Model
Mission | _ Environment
Model Environment Model
Variables
Mission Variables
| ___Human Action Human- Interface .
Human Task Variables Device Variables Device
. Automation
Model Interface Interface Automation
- — . — Model
Variables Model State Variables

Fig. 1 Framework for the formal modeling of human—automation
interaction. Arrows between models represent variables that are shared
between models. The direction of the arrow indicates whether the rep-
resented variables are treated as inputs or output. If the arrow is sourced

@ Springer

from a model, the represented variables are outputs of that model. If the
arrow terminates at a model, the represented variables are inputs to that
model

Formally verifying human—automation interaction

221

included because of the general stability of the environment
in which an actual pump operates) with an unconstrained
human task model serving as a placeholder for a more real-
istic human task model. The second extended the model pro-
duced in Phase 1 with a realistic model of the human task,
completing the framework.

Even though the target device in this modeling effort was
seemingly simple, the system model that was initially devel-
oped in Phase 1 (Phase 1a) was too difficult for the model
checker to process quickly and too complex for it to verify.
Thus a number of revisions were undertaken [3]. In Phase
1b a reduced and abstracted model of the Baxter [pump was
produced which, while capable of being used in some ver-
ifications, did so at the expense of limiting the number of
goals represented in the human mission model. This Phase
1b model limited the usefulness of incorporating human task
behavior in Phase 2. Thus, in Phase 1c, the system model
was reduced to encompass the programming procedure for
a much simpler PCA pump. In Phase 2, the incorporation of
the more realistic human task behavior actually resulted in a
reduction of the total system model’s complexity, but did so
at the expense of an increase in verification time. This paper
discusses these modeling phases, the verification results pro-
duced in them, and their associated compromises in relation
to the goals of the modeling architecture. These are used to
draw conclusions about the feasibility of using formal meth-
ods to inform human—automation interaction.

2 Methods
2.1 The target system

The Baxter Ipump is an automated machine that controls
delivery of sedative, analgesic, and anesthetic medication
solutions [2]. Solution delivery via intravenous, subcutane-
ous, and epidural routes is supported. Medication solutions
are typically stored in bags locked in a compartment on the
back of the pump.

Pump behavior is dictated by internal automation, which
can depend on how the pump is programmed by a human
operator. Pump programming is accomplished via its HDI
(Fig. 2) which contains a dynamic LCD display, a secu-
rity key lock, and eight buttons. When programming the
pump, the operator is able to specify all of the following:
whether to use periodic or continuous doses of medications
(i.e., the mode which can be PCA, Basal+PCA, or Continu-
ous), whether to use prescription information previously pro-
grammed into the pump, the fluid volume contained in the
medication bag, the units of measure used for dosage (ml,
mg, or pg), whether or not to administer a bolus (an initial
dose of medication), dosage amounts, dosage flow rates (for
either basal or continuous rates as determined by the mode),

LCD Display Interface Message
Cursor (_J\ Displayed Value / Start Stop
Button Button
/ N
Security / / / N\
Key 7 7 7\
| / o (o)
Start Stop
it Llodarmes
<! [0}
Enter On/Off
4| (4] > = \ \
Clear
& J
G \ \
\ \
Left Up (Scroll) Right Clear Enter On/Off
Button Button Button Button Button Button

Fig. 2 A simplified representation of the Baxter Ipump’s human-
device interface. Note that the actual pump contains additional controls
and information conveyances

the delay time between dosages, and 1 h limits on the amount
of delivered medication.

During programming, the security key is used to lock and
unlock the compartment containing the medication solution.
The unlocking and locking process is also used as a security
measure to ensure that an authorized person is programming
the pump. The start and stop buttons are used to start and
stop the delivery of medication at specific times during pro-
gramming. The on—off button is used to turn the device on
and off.

The LCD display supports pump operation options. When
the operator chooses between two or more options, the inter-
face message indicates what is being chosen, and the initial
or default option is displayed. Pressing the up button allows
the programmer to scroll through the available options.

When a numerical value is required, the interface message
conveys its name and the displayed value is presented with the
cursor under one of the value’s digits. The programmer can
move the position of the cursor by pressing the left and right
buttons. He or she can press the up button to scroll through
the different digit values available at that cursor position. The
clear button sets the displayed value to zero. The enter button
is used to confirm values and treatment options.

Aside from the administration of treatment, the pump’s
automation supports dynamic checking and restriction of
operator entered values. Thus, in addition to having hard lim-
its on value ranges, the extrema can change dynamically in
response to other user specified values.

2.2 Apparatus

All formal models were constructed using the Symbolic
Analysis Laboratory (SAL) language [9] because of its asso-
ciated analysis and debugging tools, and its support for both
the asynchronous and synchronous composition of different

@ Springer

222

M. L. Bolton, E. J. Bass

models (modules using SAL’s internal semantics). The task
model representations described next were translated into the
SAL language as a single module using a custom-built java
program [5]. All verifications were done using SAL-SMC
3.0, the SAL symbolic model checker.! Verifications were
conducted on a 3.0 GHz dual-core Intel Xeon processor with
16 GB of RAM running the Ubuntu 9.04 desktop.

Human task models were created using an intermediary
language called enhanced operator function model (EOFM)
[4], an XML-based, generic human task modeling lan-
guage based on the operator function model (OFM) [21,26].
EOFMs are hierarchical and heterarchical representations of
goal or mission driven activities that decompose into lower
level activities, and finally, atomic actions—where actions
can represent any observable, cognitive, or perceptual human
behavior. EOFMs express task knowledge by explicitly spec-
ifying the conditions under which human operator activi-
ties can be undertaken: what must be true before they can
execute (preconditions), when they can repeat (repeat con-
ditions), and when they have completed (completion condi-
tions). Any activity can decompose into one or more other
activities or one or more actions. A decomposition operator
specifies the temporal relationships between and the cardi-
nality of the decomposed activities or actions (when they can
execute relative to each other and how many can execute).

EOFMs can be represented visually as a tree-like graph
structure (examples can be seen in Figs.3, 4, 5, 6, 7).
In these representations, actions are represented as rect-
angles and activities are represented as rounded rectan-
gles. An activity’s decomposition is presented as an arrow,
labeled with the decomposition operator, extending below
it that points to a large rounded rectangle containing
the decomposed activities or actions. In this work, three
decomposition operators are used: (1) ord (all activities
or actions in the decomposition must execute in the order
they appear); (2) or_seq (one or more of the activities
or actions in the decomposition must execute); and (3)
xor (exactly one activity or action in the decomposition
must execute). Conditions on activities are represented as
shapes or arrows (annotated with the condition logic) con-
nected to the activity that they constrain. The form, posi-
tion, and color of the shape are determined by the type
of condition. A precondition is presented as a yellow,
downward-pointing triangle connected to the left side of the
activity. A completion condition is represented by a magenta,
upward-pointing triangle connected to the right side of the
activity. A repeat condition is depicted as an arrow recur-
sively pointing to the top of the activity. More details can be
found in [4].

! Some model debugging was also conducted using SAL’s bounded
model checker.

@ Springer

2.3 Verification specification

Two specifications were employed in each of the modeling
phases: both were written in linear temporal logic and eval-
uated using SAL-SMC. The first (Eq. 1), used for model
debugging, verifies that a valid prescription could be pro-
grammed into the pump:

ilnterfacemessage = TreatmentAdministering
A iMode = iPrescribedMode
A IFluidVolume = iPrescribedFluidVolume
A IPCADose = iPrescribedPCADose
G—-| A [Delay = iPrescribedDelay (1)
A IBasalRate = iPrescribedBasalRate
A llHourLimit = iPrescribedl HourLimit
A [Bolus = iPrescribedBolus
A [ContinuousRate = iPrescribedContinuousRate

Here, if the model is able to enter a state indicating
that treatment is administering (ilnterfaceMessage = Treat-
mentAdministering) with the entered (or programmed)
prescription values (iMode, [FluidVolume,..., [Continuous-
Rate) matching the prescription values generated by the
mission model (variables with the iPrescribed prefix), a
counterexample would be produced illustrating how that pre-
scription was programmed. Variables with an i prefix indicate
that the variable is an input to the human task model. Vari-
ables with an / prefix indicate that the variable is local to a
given model.

The second specification (Eq. 2) represented a safety prop-
erty that was expected to verify to true, thus allowing the
model checker to traverse the entire state space of each
phase’s model. Because such a verification allows SAL to
report the size of a model’s state space, verifications using
this specification would provide some means of comparing
the complexity of the models produced in each phase.

ilnterfaceMessage = TreatmentAdministering
G—| A iMode #* Continuous 2)
A [Delay = 0

Here, the specification is asserting that the model should
never enter a state where treatment is administering in the
PCA or Basal+PCA modes (iMode # Continuous) when
there is no delay between doses. Thus, if Eq. (2) verifies
to true, the pump will never allow a programmer to enter
prescriptions that would allow patients to continuously
administer PCA doses to themselves [2].

2 A delay can only been set when the PCA or Basal + PCA modes
have been selected by the human operator. There are no delays between
doses when the pump is in the Continuous mode.

Formally verifying human—automation interaction

223

3 Phase 1a: a representative model of the Ipump
3.1 Model description

An initial model was created to conform to the architectural
and design philosophy represented in Fig. 2: the mission was
represented as a set of viable prescriptions options; the mis-
sion, human operator, human-device interface, and device
automation were modeled independently of each other; and
the behavior of the automated system and HDI models was
designed to accurately reflect the behavior of these systems
as described in the user’s manual [2] and observed through
direct interaction with the device. An unconstrained human
operator was constructed that could issue any valid human
action to the human-device interface model at any given
time. Because the PCA pump generally operates in a con-
trolled environment, away from temperature and humidity
conditions that might affect the performance of the pump’s
automation, no environmental model was included. Finally,
because documentation related to the internal workings of
the pump was limited, the system automation model was
restricted to that associated with the pump programming pro-
cedure: behavior that could be gleaned from the operator’s
manual [2], correspondences with hospital staff, and direct
interaction with the pump.

3.2 Model coordination

Model infrastructure was required to ensure that human oper-
ator actions were properly recognized by the HDI model. In
an ideal modeling environment, human action behavior orig-
inating from the human operator model could have both an
asynchronous and synchronous relationship with the HDI
model. Synchronous behavior would allow the HDI model
to react to user actions in the same transition in which they
were issued/performed by the human operator model. How-
ever, both the human operator and HDI models operate inde-
pendently of each other, and may have state transitions that
are dependent on internal or external conditions that are not
directly related to the state of the other model. This suggests
an asynchronous relationship. SAL only allows models to be
composed with each other asynchronously or synchronously
(but not both). Thus, it was necessary to adapt the models to
support features associated with the unused composition.
Asynchronous composition was used to compose the
human operator and HDI models. This necessitated some
additional infrastructure to prevent the human operator
model from issuing user inputs before the HDI model was
ready to interpret them and to prevent the human operator
model from terminating a given input before the interface
could respond to it. This was accomplished through the addi-
tion of two Boolean variables: one indicating that input had
been submitted (henceforth called Submitted) and a variable

indicating the interface was ready to receive actions (hence-
forth called Ready). This coordination occurred as follows:

— If Ready is true and Submitted is false, the human operator
module sets one or more of the human action variables to
a new input value and sets Submitted to true.

— If Ready and Submitted are true, the human-device inter-
face module responds to the values of the human action
variables and sets Ready to false.

— If Ready is not true and Submitted is true, the human oper-
ator module sets Submitted to false.

— If Ready and Submitted are both false and the automated
system is ready for additional human operator input, the
human-device interface module sets Ready to true.

3.3 Verification results

Attempts to verify this model using the specifications in
Egs. 1 and 2 resulted in two problems related to the feasibility
and usefulness of the verification procedure. First, the SAL—
SMC procedure for translating the SAL code into a binary
decision diagram (BDD) took excessively long (more than
24 h), a time frame impractical for model debugging. Second,
the verification process which followed the construction of
the BDD eventually ran out of memory, thus not returning a
verification result.

4 Phase 1b: a reduced Baxter Ipump model

As a result of the failed verification of the model produced
in Phase 1a, significant revisions were required to make the
model more tractable. These are discussed below.

4.1 Representation of numerical values

To reduce the time needed to convert the SAL-code model to
a BDD, a number of modifications were made to the model
from Phase 1a by representing model constructs in ways more
readily processed by the model checker. As such, the mod-
ifications discussed here did not ultimately make the BDD
representation of the model smaller, but merely expedited its
construction.

4.1.1 Redundant representation of values

Two different representations of the values programmed into
the pump by the operator were used in the HDI and device
automation models. Because the HDI required the human
operator to enter values by scrolling through the available
values for individual digits, an array of integer digits was
appropriate for the HDI model. However, because the system

@ Springer

224

M. L. Bolton, E. J. Bass

automation was concerned with dynamically checking limits
and using entered values to compute other values, a numer-
ical representation of the actual value was more convenient
for the automated system model.

This redundancy burdened the BDD translator. This was
remedied by eliminating the digit array representations and
using functions to enable actions from the human task model
to incrementally change individual digits within a value.

4.1.2 Real numbers and integers

In the model produced in Phase 1a, all numerical values were
represented as real values with restricted ranges. This was
done because most user specified values were either inte-
gers or floating point numbers (precise to a single decimal
point). No data abstractions were initially considered because
the nature of the human task (modeled in Phase 2) required
manipulation of values’ individual digits. However, repre-
senting values this way proved especially challenging for the
BDD translator. Thus, all values were modified so that they
could be represented as restricted range integers. For integer
variables representing floating point numbers, this meant that
the model value was ten times the value it represented. This
representation allowed the values to still be manipulated at
the individual digit level, while making them more readily
interpretable by the BDD translator.

4.1.3 Variable ranges

In the Phase 1a model, the upper bound on the range of all
value-based variables was set to the theoretical maximum of
any value that could be programmed into the pump: 99,999.3
However, to reduce the amount of work required for the BDD
conversion, the range of each numerically valued variable
was given a specific upper bound that corresponded to the
maximum value it could actually assume in the device.

4.2 Model reduction

To reduce the size of the model, a variety of elements were
removed. In all cases these reductions were meant to reduce
the number of state variables in the HDI or device automa-
tion models (slicing), or reduce the range of values a variable
could assume (data abstraction). Unfortunately, each of these
reductions also affected what human tasks could ultimately
be modeled and thus verified in subsequent model iterations.
All of the following reductions were undertaken:

— In the Phase la model, the mission model could gener-
ate a prescription from the entire available range of valid

prescriptions. This was changed so that fewer prescription

3 All lower bounds were set to 0.

@ Springer

options were generated in Phase 1b’s mission model: that
of programming a prescription with a continuous dosage
with two options for bolus delivery (0.0 and 1.0ml) and
two continuous flow rate options (1.0 and 9.0 ml/h). While
this significantly reduced the number of model states, it
also reduced the number of prescriptions that could be
used in verification procedures.

In the Phase 1a model, the HDI model would allow the
operator to select what units to use when entering prescrip-
tions (ml, mg, or ng). Only the ml unit option was included
in the Phase 1b model. This reduced the number of inter-
face messages in the model, allowed for the removal of
several variables (those related to the unit option selection,
and solution concentration specification), and reduced the
ranges required for several numerical values related to the
prescription. This eliminated the option of including unit
selection and concentration specification task behaviors in
the model.

In the Phase 1a model, both the HDI and device automation
models encompassed behavior related to the delivery of
medication solution during the priming and bolus admin-
istration procedures. During priming, the HDI allows the
operator to repeatedly instruct the pump to prime until all
air has been pushed out of the connected tubing. During
bolus administration, the HDI allows the operator to termi-
nate bolus infusion by pressing the stop button twice. This
functionality was removed from the Phase 1b models, thus
eliminating interface message states and numerical values
indicating how much fluid had been delivered in both pro-
cedures. This eliminated the possibility of incorporating
task behavior related to pump priming and bolus adminis-
tration in the model.

The Phase 1a model mimicked the security features found
in the original device which required the human operator
to unlock and lock the device on startup and enter a secu-
rity code. This functionality was removed from the Phase
1b model which reduced the number of interface messages
in the model and removed the numerical variable (with a
0-999 range) associated with entering the security code.
This eliminated the possibility of modeling human task
behavior related to unlocking and locking the pump as
well as entering the security code in the model.

In the Phase 1a model, the interface message could auto-
matically transition to being blank: mimicking the actual
pump’s ability to blank its screen after three seconds
of operator inactivity. Because further operator inaction
would result in the original device issuing a “left in pro-
gramming mode” alert, a blank interface message could
automatically transition to an alert issuance. This function-
ality was removed from the Phase 1b model, eliminating
several interface messages as well as variables that kept
track of the previous interface message. Thus, the option

Formally verifying human—automation interaction

225

of modeling operator task response to screen blanking and
alerts was removed from the model.

While these reductions resulted in the Phase 1b model being
much smaller and more manageable than the original, the
ability to model some of the task behaviors originally asso-
ciated with the device had to be sacrificed.

4.3 Results

The Phase 1b model was able to complete the verification
procedure with Eq. (1) and produce a counterexample with a
search depth of 54 in approximately 5.9 h, with the majority
of that time (5.4 h) used for creating the BDD representation
[3].% Not surprisingly, the model checker ran out of memory
when attempting to verify Eq. (2).

5 Phase 1c: a simpler PCA pump model

While the model developed in Phase 1b did produce usable
results and has subsequently been used in the verification of
additional properties (see [5]), this power came at the expense
of a reduction in the scope of the mission model. Since the
mission directly influences what human behavior will exe-
cute, this limited the human task behavior that could ulti-
mately be verified as part of the system model. Further, the
fact that the Phase 1b model was too complex for Eq. (2) to
be verified potentially limited any future model development
that might add complexity. To remedy these shortcoming,
the model produced in Phase 1b was further reduced to one
that encompassed the programming of the most basic PCA
pump functionality while the ranges of possible values for
the remaining mission model variables were expanded to be
more realistic.

5.1 Model reduction

To obtain a smaller PCA model, all of the following were
removed: the selection of mode and the ability to specify a
basal rate, continuous rate, bolus dosage, and fluid volume.
As aresult, associated interface messages and variables were
removed along with the ability to model their programming
as part of the human task behavior model. This resulted in a
model that only encompassed functionality for programming
a PCA dose, programming the delay between PCA doses,
turning the pump on and off, and starting and stopping the
administration of treatment: functionality compatible with
the most basic PCA pump operations (see [1]).

4 Completed models, SAL outputs, and counterexamples can be found
at http://cog.sys.virginia.edu/ISSE2010/.

Value ranges were further restricted to reduce the size of
the model. Specifically, the upper bound on the acceptable
delay between PCA dosages was changed from 240 to 60
minutes. This, coupled with the other reductions, had the
added benefit of allowing the number of digits required for
the programming of pump values to be reduced to 2 rather
than the original 4.

The reductions in other areas allowed the scope of the
delays and PCA dosages generated by the mission model to
be expanded to a more representative set. For PCA dosages,
the full range of values from 0.1 to 9.9 in 0.1 ml increments
were supported. For delay between dosages, five options
were available: delays of 10, 15, 30, 45, and 60 min.

All pump interface functionality was retained from the
previous models. Thus, the unconstrained human task model
was unchanged as was the human task and HDI models’
communication protocol.

5.2 Results

The Phase 1c model ran the verification procedure for Eq. (1)
(with the eliminated variables removed) in 6 s with a search
depth of 22, much faster than the model from Phase 1b. The
verification of the specification in Eq. (2) verified to true in
129 s with a search depth of 259 and 78,768,682,750 visited
states.

6 Phase 2: incorporating models of human behavior

In the second phase of modeling, we expanded our instantia-
tion of the framework by incorporating a realistic human task
behavior model. We therefore replaced the unconstrained
human operator in the Phase Ic model with a human task
behavior model derived from pump documentation [2] and
training materials. This model utilized the EOFM concepts
and thus required some additional infrastructure in order to
incorporate it into the formal system model. We describe the
behaviors that were modeled, how these were translated into
the formal model, and report verification results for the pro-
duced system model.

6.1 Human task behavior modeling and translation
The pump’s materials contained six high-level goal directed

behaviors for performing a variety of pump activities relevant
to the Phase 1¢c model as follows:

Turning on the pump.

— Stopping the infusion of medication.

Turning off the pump.

Entering a prescribed value for PCA dosage volumes (in
milliliter).

@ Springer

http://cog.sys.virginia.edu/ISSE2010/

226

M. L. Bolton, E. J. Bass

— Entering a prescribed value for the delay between PCA
doses (in minutes), and

— Selecting whether to start or review an entered prescrip-
tion.

The EOFM models describing each of these behaviors are
discussed below.

6.1.1 Turning On the pump

The model for turning on the pump is shown in Fig. 3.
Here, the EOFM can execute if the interface message indi-
cates that the system is off (ilnterfaceMessage = SystemOff;
a precondition). This high-level activity (aTurnOnPump) is
completed by performing the action of pressing the on/off
button (hPressOnOff). The ord decomposition operator indi-
cates that all of the decomposed activities or actions must be
completed in sequential order. The EOFM has accomplished
its goal (a completion condition) when the interface mes-
sage indicates that the pump is no longer off (ilnterfaceMes-
sage/ = SystemOff).

6.1.2 Stopping infusion

Infusion of medication can be stopped (Fig. 4) if the inter-
face indicates that treatment is administering (ilnterfaceMes-
sage = TreatmentAdministering). This is accomplished by
pressing the stop button (hPressStop) twice in quick suc-
cession with no other human inputs occurring in between.
The process has completed when the interface indicates that
treatment is not administering (ilnterfaceMessage /=Treat-
mentAdministering).

ilnterfaceMessage = SystemOff ilnterfaceM ge /= SystemOff

aTurnOnPump

ord

hPressOnOff

Fig. 3 The EOFM graphical representation for turning on the pump

@ Springer

ilnterfaceMessage = TreatmentAdministering
ilnterfaceMessage /= TreatmentAdministering

aStoplInfusing

ord

hPressStop hPressStop

Fig. 4 The EOFM graphical representation for stopping infusion

6.1.3 Turning Off the pump

The model for turning off the pump (Fig. 5) is relevant if the
interface message indicates that the system is not off (iln-
terfaceMessage | = SystemOff). The pump is turned off by
performing two lower level activities in sequential order:
stopping infusion (aStoplnfusion; explained above) and
pressing the keys necessary to turn off the pump (aPress-
KeysToTurnOffPump). This latter activity is completed by
pressing the on/off button (hPressOnOff) twice in sequence.
The entire process of turning off the pump completes when
the interface indicates that the pump is off (ilnterfaceMes-
sage = SystemOff).

6.1.4 Programming a value into the pump

The values for PCA dosage volume and delay between
dosages can be programmed into the pump using an EOFM
patterned after Fig. 6. Thus, for a given value X, the corre-
sponding EOFM becomes relevant when the interface for
setting that value is displayed (ilnterfaceMessage = SetX).
This is achieved by sequentially executing two sub-activities:
changing the displayed value (aChangeX Value) and accept-
ing the displayed value (aAccept). The activity for changing
the displayed value can execute, and will repeatedly execute,
if the displayed value is not equal to the prescribed value
(iCurrentValue | =iPrescribedX). The value is changed by
executing one or more (denoted by the or_seq decomposi-
tion operator) of the following sub-activities: changing the
digit currently pointed to by the cursor (aChangeDigit: com-
pleted by pressing the up key (hPressUp)), moving the cursor
to a different digit (aNextDigit: completed by pressing only
one of (the xor decomposition operator) the left (hPress-
Left) or right (hPressRight) buttons), or setting the displayed
value to zero (aClearValue: completed by pressing the clear
button(hPressClear)). The process of changing the displayed

Formally verifying human—automation interaction

227

ilnterfaceMessage /= SystemOff

ilnterfacel

aTurnOffPump

ord

je = SystemOff

ilnterfaceMessage = TreatmentAdministering

aStoplnfusing

ilnterfaceMessage /= TreatmentAdministering

aPressKeysTo
TurnOffPump

ora

hPressStop hPressStop

hPressOnOff hPressOnOff

Fig. 5 The EOFM graphical representation for turning off the pump

value completes when the displayed value matches the pre-
scribed value (iCurrentValue = iPrescribedX). The displayed
value is accepted by pressing the enter key. The entire pro-
cess ends when the interface is no longer in the state for
accepting X.

6.1.5 Starting or reviewing a prescription

After a prescription has been programmed the human opera-
tor is given the option to start the administration of that pre-
scription or to review it (where the operator works through the
programming procedure a second time with the previously
programmed options displayed at each step). The EOFM for
performing this (Fig. 7) becomes relevant at this point (ilnter-
faceMessage = StartBeginsRx). It is completed by perform-
ing only one of two activities: selecting the option to start
treatment (aStartRx—performed by pressing the start button
(hPressStart)) or selecting the review option (aReviewRx—
performed by pressing the enter button (hPressEnter)).

6.2 EOFM translation

The EOFMs representing the human task model were
translated into a SAL code module. This translation was
accomplished by creating a variable for each activity or action
node in each EOFM, each of which could assume one of three
enumerated values describing its execution state: ready, exe-
cuting, or done. Thus, in addition to handling the transitional
logic for the coordination protocol, this module handled

the transition logic for allowing the variables representing
activity and action nodes to transition between these three
values. All activity and action variables start in the ready
state. They can transition between execution states based on
the execution state of their children, parent, and siblings in
the EOFM structure; the evaluation of their conditions; and
their position within the EOFM hierarchy.

While the resulting human operator module and its associ-
ated unconstrained operator model both had the same inputs
and outputs, the logic associated with traversal of the human
task structures required 48 additional variables in the human
task behavior model.

6.3 Results

The specification in Eq. (1) verified (produced the expected
counterexample) in 57 s with a search depth of 42. The spec-
ification in Eq. (2) verified to true in 10.6h with a search
depth of 437 and 1,534,862,538 visited states.

7 Discussion

This work has shown that itis possible for human—automation
interaction to be evaluated using the architecture in Fig. 1.
However, this came as a result of tradeoffs between the goals
the architecture is designed to support:

@ Springer

228

M. L. Bolton, E. J. Bass

ilnterfaceMessage = SetX

ord

'

ilnterfaceMessage /= SetX

iCurrentValue /= iPrescribedX

iCurrentValue /= iPrescribedX

iCurrentValue = iPrescribedX

aChangeXValue aAccept

~ or_seq ord g
, U T

aChangeDigit aSelectNextDigit aClearValue hPressEnter
~ ord XOr ord 7N g
N T . S

hPressUp hPressLeft hPressRight hPressClear
L J \)\ J

Fig. 6 The EOFM graphical representation of the pattern for programming a value X into the pump

1. Model constructs need to be intuitive to human factors
engineers who will be building and evaluating many of
the models;

2. the sub-models should be decoupled and modular (as in
Fig. 1) in order to allow for interchangeability of alter-
native sub-models; and

3. the constructed models need to be capable of being ver-

ified in a reasonable amount of time.

We discuss how each of these goals was impacted and how
related issues might be addressed.

7.1 Goals 1: model intuitiveness
Many of the model revisions were associated with represent-

ing model constructs in ways that were more readily inter-
pretable by the model checker rather than the human factors

@ Springer

engineer. These primarily took the form of converting float-
ing point and digit array values into integers in Phase 1b.
Further, the extensive model reductions that were undertaken
in Phase 1c¢ would be very cumbersome for a human factors
engineer.

There are two potential ways to address this issue. One
solution would be to improve the model checkers themselves.
Given that the modifications would not actually change the
number of reachable states in the system, this would suggest
that the model checker need only optimize the BDD conver-
sion algorithms.

Alternatively, additional modeling tools could be used to
help mitigate the situation. Such tools could allow human
factors engineers to construct or import HDI prototypes, and
translate them into model checker code. This would allow the
unintuitive representations necessary for ensuring a model’s
efficient processing by the model checker to be removed from
the modeler’s view.

Formally verifying human—automation interaction

229

ilnterfaceMessage /= StartBeginsRx
ilnterfaceMessage = StartBeginsRx

aStartOrReview

xor

aStartRx aReviewRx

ord ord

hPressStart hPressEnter

Fig. 7 The EOFM for choosing to start or review a prescription

7.2 Goal 2: decoupling of architecture sub-models

Because the protocol used to coordinate human actions
between the HDI and human task models (discussed for
Phase 1a and used in all models produced in all subsequent
phases) assumes a particular relationship between variables
shared by these models, they are tightly coupled. Unless a
model checker can be made to support both asynchronous and
synchronous relationships between models more elegantly,
this coordination infrastructure cannot be eliminated.

However, a solution may be found in an additional level
of abstraction. A toolset for translating a HDI prototype into
model checking code, could handle the construction of the
coordination protocol, making this process effectively invis-
ible to the modeler. Such a process could also allow for more
efficient means of coordinating the HDI and human task mod-
els: one that might not require the use of separate models in
the actual model checker code.

While the extensive model reductions from Phase 1 greatly
diminished the fidelity with which the model represented the
actual PCA pump, this provides some advantages. Since the
model from Phase 2 does not suffer from the memory usage
problems encountered in Phase 1, this opens the door to the
addition of other model constructs to be added allowing for a
more complete system analysis. Future work can expand the
model developed in Phase 2 with environmental and device
automation models that are compatible with the formal PCA
pump reference model described in [1].

7.3 Goal 3: model verifiability

We are predominantly concerned with exploring how formal
methods can be used to provide insights into human factors
and systems engineering concerns. If our goal was to for-
mally verify properties of the Baxter Ipump, the modeling
compromises we made in order to obtain a verifiable model
might necessitate a change in modeling philosophy or veri-
fication approach.

There are many barriers to the verifiability of models of
realistic systems. These include large numbers of parallel
processes, large ranges of discrete valued variables, and non-
discretely valued variables. The modeling efforts described
here were so challenging because the target system was
dependent on a large number of user specified numerical
values, all of which had very large acceptable ranges. This
resulted in the scope of the model being reduced to the point
where it could no longer be used for verifying all of the origi-
nal human operator task behaviors: with the model produced
in Phase 1b making minor compromises and the model pro-
duced in Phase lc only allowing for behaviors associated
with basic PCA pump functionality.

As was demonstrated in Phase 2, the verifiability of the
model actually increased with the inclusion of the human
task behavior as indicated by the 98% reduction in the
reported state space from the Phase lc to the Phase 2
model. However, this came at the expense of the verifica-
tion process taking 284 times as long. Thus, in a context
where verification time is less important than the size of the
model’s state space, the inclusion of the human task behavior
model may generally prove to be advantageous in the for-
mal verification of systems that have a human—automation
interaction component, irrespective of whether the human
behavior is of concern in the verification process. Future
efforts should investigate the different factors that affect this
tradeoff.

Even exploiting this advantage, the relative simplicity of
the device that was modeled in this work makes it clear
that there are many systems that depend of human-auto-
mation interaction that would be even more challenging to
verify, if not impossible, using these techniques. While the
use of bounded model checkers may provide some verifica-
tion capabilities for certain systems, there is little that can be
done without either using additional abstraction techniques
or future advances in model checking technology and com-
putation power.

It is common practice in the formal methods community
to use more advanced forms of data abstraction than those
employed in this work to mitigate the complexity of vari-
ables with large value ranges (an overview of these methods
can be found in [20]). Because the nature of the modeled
human task behavior in this work was concerned with the
digit level editing of the data values, such abstractions were

@ Springer

230

M. L. Bolton, E. J. Bass

not appropriate for this particular endeavor. Additionally,
automatic predicate abstraction techniques like those used
in counterexample-guided abstraction refinement [6] could
potentially alleviate some of the complexity problems enco-
untered in this work without requiring changes to the models
themselves. Future work should investigate how these dif-
ferent abstraction techniques could be used when modeling
systems that depend on human-automation interaction in
ways that are intuitive to human factors engineers.

It is clear that the multiple, large-value-ranged variables
were the source of most of the model complexity problems
in the pump example, as shown in the drastic decrease in ver-
ification performance time between the models produced in
Phases 1b and 1c. Thus, had the target system been more con-
cerned with procedural behaviors and less on the interrela-
tionships between numerical values, the system model would
have been much more tractable. Future work should identify
additional properties of systems dependent on human—auto-
mation interaction that lend themselves to being modeled and
verified using the framework discussed here.

Finally, some of the performance issues we encountered
can be attributed to our use of SAL. For example, model
checkers such as SPIN [15] do not perform the lengthy pro-
cess of constructing the BDD representation before starting
the checking process. Future work should investigate which
model checker is best suited for evaluating human—automa-
tion interaction.

8 Conclusion

The work presented here has shown that it is possible to con-
struct models of human—automation interaction as part of a
larger system for use in formal verification processes while
adhering to some of the architectural goals in Fig. 1. Ithas also
shown that the incorporation of human task behavior models
into system models may help alleviate the state explosion
problem in some systems that depend on human—automation
interaction. However, this success was the result of a number
of compromises that produced a model that was not as rep-
resentative, understandable, or modular as desired. Thus, in
order for formal methods to become more useful for the HFE
community, the verification technology will need to be able to
support a more diverse set of systems. Further, new modeling
tools may be required to support representations that human
factors engineers use. These advances will ultimately allow
formal methods to become a more useful tool for human
factors engineers working with safety critical systems.

Acknowledgments The research described was supported in part by
Grant Number T15LM009462 from the National Library of Medicine
and Research Grant Agreement UVA-03-01, sub-award 2623-VA from
the National Institute of Aerospace (NIA). The content is solely the

@ Springer

responsibility of the authors and does not necessarily represent the offi-
cial views of the NIA, NASA, the National Library of Medicine, or the
National Institutes of Health. The authors would like to thank Radu I.
Siminiceanu of the NIA and Ben Di Vito of the NASA Langley Research
Center for their technical help. They would like to thank Diane Haddon,
John Knapp, Paul Merrel, Kathryn McGough, and Sherry Wood of the
University of Virginia Health System for describing the functionality of
the Baxter Ipump and for providing documentation, training materials,
and device access.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Arney D, Jetley R, Jones P, Lee I, Sokolsky O (2007) Formal meth-
ods based development of a PCA infusion pump reference model:
generic infusion pump (GIP) project. In: Proceedings of the 2007
joint workshop on high confidence medical devices, software, and
systems and medical device plug-and-play interoperability. IEEE
Computer Society, Washington, DC, pp 23-33

2. Baxter Health Care Corporation (1995) Ipump pain manage-
ment system operator’s manual. Baxter Heath Care Corporation,
McGaw Park

3. Bolton ML, Bass EJ (2009) Building a formal model of a human-
interactive system: insights into the integration of formal methods
and human factors engineering. In: Proceedings of the first NASA
formal methods symposium. NASA Ames Research Center, Moff-
ett Field, pp 6-15

4. Bolton ML, Bass EJ (2009) Enhanced operator function model:
a generic human task behavior modeling language. In: Proceed-
ings of the IEEE international conference on systems, man, and
cybernetics. IEEE, Piscataway, pp 2983-2990

5. Bolton ML, Bass EJ (2009) A method for the formal verification
of human-interactive systems. In: Proceedings of the 53rd annual
meeting of the human factors and ergonomics society. Human Fac-
tors and Ergonomics Society, Santa Monica, pp 764-768

6. Clarke E, Grumberg O, Jha S, Lu Y, Veith H (2003) Counterexam-
ple-guided abstraction refinement for symbolic model checking.
JACM 50(5):752-794

7. Crow J, Javaux D, Rushby J (2000) Models and mechanized meth-
ods that integrate human factors into automation design. In: Pro-
ceedings of the 2000 international conference on human-computer
interaction in aeronautics. Association for the Advancement of
Artificial Intelligence, Menlo Park, pp 163-168

8. Curzon P, Ruksenas R, Blandford A (2007) An approach to formal
verification of human—computer interaction. Formal Asp Comput
19(4):513-550

9. DeMouraL, Owre S, Shankar N (2003) The SAL language manual.
Technical report, Computer Science Laboratory, SRI International,
Menlo Park

10. Degani A (1996) Modeling human—-machine systems: on modes,
error, and patterns of interaction. PhD thesis, Georgia Institute of
Technology, Atlanta

11. Degani A, Kirlik A (1995) Modes in human—automation interac-
tion: Initial observations about a modeling approach. In: Proceed-
ings of the IEEE international conference on systems, man and
cybernetics. IEEE, Piscataway, pp 3443-3450

12. Fields RE (2001) Analysis of erroneous actions in the design of
critical systems. PhD thesis, University of York, York

13. Heymann M, Degani A (2007) Formal analysis and automatic gen-
eration of user interfaces: approach, methodology, and an algo-
rithm. Hum Factors 49(2):311-330

Formally verifying human—automation interaction

231

14.

15.

17.

18.

19.

20.

21.

Heymann M, Degani A, Barshi I (2007) Generating procedures and
recovery sequences: a formal approach. In: Proceedings of the 14th
international symposium on aviation psychology. Association for
Aviation Psychology, Dayton, pp 252-257

Holzmann GJ (2003) The spin model checker, primer and reference
manual. Addison-Wesley, Reading

Javaux D (2002) A method for predicting errors when interacting
with finite state systems. How implicit learning shapes the user’s
knowledge of a system. Reliab Eng Syst Saf 75(2):147-165
Kirwan B, Ainsworth LK (1992) A guide to task analysis. Taylor
and Francis, Philidelphia

Kohn LT, Corrigan J, Donaldson MS (2000) To err is human: build-
ing a safer health system. National Academy Press, Washington
Krey N (2007) 2007 Nall report: accident trends and factors
for 2006. Technical report. http://download.aopa.org/epilot/2007/
07nall.pdf

Mansouri-Samani M, Pasareanu CS, Penix JJ, Mehlitz PC,
O’Malley O, Visser WC, Brat GP, Markosian LZ, Pressburger TT
(2007) Program model checking: a practitioner’s guide. Techni-
cal report, Intelligent Systems Division, NASA Ames Research
Center, Moffett Field

Mitchell CM, Miller RA (1986) A discrete control model of oper-
ator function: a methodology for information dislay design. IEEE
Trans Syst Man Cybern A Syst Hum 16(3):343-357

22.
23.

24.

25.

26.

217.

28.

29.

Perrow C (1984) Normal accidents. Basic Books, New York
Rushby J (2002) Using model checking to help discover mode
confusions and other automation surprises. Reliab Eng Syst Saf
75(2):167-177

Schraagen JM, Chipman SF, Shalin VL (2000) Cognitive task
analysis. Lawrence Erlbaum Associates, Mahwah

Stanton N (2005) Human factors methods: a practical guide for
engineering and design. Ashgate Publishing, Brookfield

Thurman DA, Chappell AR, Mitchell CM (1998) An enhanced
architecture for OFMspert: a domain-independent system for intent
inferencing. In: Proceedings of the IEEE international conference
on systems, man, and cybernetics. IEEE, Piscataway, pp 3443—
3450

Vicente KJ (1999) Cognitive work analysis: toward safe, produc-
tive, and healthy computer-based work. Lawrence Erlbaum Asso-
ciates, Mahwah

Wells AT, Rodrigues CC (2004) Commercial aviation safety,
4th edn. McGraw-Hill, New York

Wickens CD, Lee J, Liu YD, Gordon-Becker S (2003) Introduction
to human factors engineering. Prentice-Hall, Upper Saddle River

@ Springer

http://download.aopa.org/epilot/2007/07nall.pdf
http://download.aopa.org/epilot/2007/07nall.pdf

	Formally verifying human--automation interaction as part of a system model: limitations and tradeoffs
	Abstract
	1 Introduction
	2 Methods
	2.1 The target system
	2.2 Apparatus
	2.3 Verification specification

	3 Phase 1a: a representative model of the Ipump
	3.1 Model description
	3.2 Model coordination
	3.3 Verification results

	4 Phase 1b: a reduced Baxter Ipump model
	4.1 Representation of numerical values
	4.1.1 Redundant representation of values
	4.1.2 Real numbers and integers
	4.1.3 Variable ranges

	4.2 Model reduction
	4.3 Results

	5 Phase 1c: a simpler PCA pump model
	5.1 Model reduction
	5.2 Results

	6 Phase 2: incorporating models of human behavior
	6.1 Human task behavior modeling and translation
	6.1.1 Turning On the pump
	6.1.2 Stopping infusion
	6.1.3 Turning Off the pump
	6.1.4 Programming a value into the pump
	6.1.5 Starting or reviewing a prescription

	6.2 EOFM translation
	6.3 Results

	7 Discussion
	7.1 Goals 1: model intuitiveness
	7.2 Goal 2: decoupling of architecture sub-models
	7.3 Goal 3: model verifiability

	8 Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

