Fully Employing Software Inspections Data

Forrest Shulll’*, Raimund L. Feldmannl, Carolyn Seaman1‘3, Myrna Regardiel,
Sally Godfrey”

! Fraunhofer Center for Experimental Software Engineering Maryland, College Park, MD 20740
2 NASA Goddard Space Flight Center, Greenbelt, MD 20771

3 University of Maryland Baltimore County, Baltimore, MD 21250

* corresponding author: fshull@fc-md.umd.edu / phone: +1-240-487-2904 / fax: +1-240-487-2960

Abstract

Software inspections provide a proven approach to quality assurance for software products of all
kinds, including requirements, design, code, test plans, among others. Common to all inspections
1s the aim of finding and fixing defects as early as possible, and thereby providing cost savings by
mimimizing the amount of rework necessary later in the hifecycle. Measurement data, such as the
number and type of found defects and the effort spent by the inspection team, provide not only di-
rect feedback about the software product to the project team, but are also valuable for process im-
provement activities.

In this paper, we discuss NASA’s use of software inspections and the rich set of data that has re-
sulted. In particular, we present results from analysis of inspection data that illustrate the benefits
of fully utilizing that data for process improvement at several levels. Examining such data across
multiple inspections or projects allows team members to monitor and trigger cross project im-
provements. Such improvements may focus on the software development processes of the whole
organization as well as improvements to the applied inspection process itself.

Keywords

Formal software inspections, measurement and analysis, process monitoring and
improvement, experience-based approach, management by data, NPR 7150.2

1 Introduction and Motivation

A long history of experience and experimentation has produced a significant body
of knowledge concerning the proven effectiveness of software inspections. A sub-
stantial portion of this body of knowledge has been gained at NASA Centers or on
NASA systems (e.g. [11], [12], [21]).

As a result, software inspections have become an integral part of today’s Veri-
fication and Validation (V&V) activities for software development projects. The
underlying technology is well established, and incorporated into the standard
software development procedures of many organizations. For example, software
inspections are included in the mandatory NASA Procedural Requirements for
Software Engineering (NPR 7150.2), issued by the Office of the Chief Engineer
[14].

Despite this successful record, experiences gathered from conducting training
courses and hosting technical exchanges have shown us that some teams still have
problems applying inspections in practice. Although metrics collection and analy-
sis need not be heavyweight to provide useful levels of insight, development
teams are often running hard to meet the next technical deliverable and find it
hard to get time for such activities. It can even sometimes be difficult for projects
to get the resources to keep a sufficient number of inspections in place at all, es-

pecially when developers see them as disconnected from their normal day-to-day
development activities. Our research work with NASA has focused on addressing
these difficulties while providing better results (in terms of defect detection effec-
tiveness and efficiency) for the effort spent on inspections.

An important factor in obtaining better results is the use of information
gained from an inspection to better understand the outcomes of the inspection; to
gain insight into what is working well or could be improved with the inspection
process itself; and to provide information that can be used to make decisions
about where to best allocate effort on projects. In this paper, using data from
NASA projects, we illustrate the use of inspection metrics for improvement activi-
ties at each of these levels. Moreover, we show that even relatively light metrics
collection can help achieve these goals, if a mechanism exists for comparing the
parameters of a given inspection against existing models or guidelines. We will
also consider tool support that makes these activities more feasible for projects.

1.1 The software inspection process

Data and experience from many years and many types of organizations have
shown that a properly conducted inspection can remove between 60% and 90% of
existing defects [23]. Other key benefits of using inspections for reviewing soft-
ware products are:

A well documented and technically sound approach

Improvement in quality by identifying faults and omissions

Cost savings through fault detection in early phases and before delivery
Avoiding repetition of common defects by clearly defining them and edu-
cating team members

Improved team communication

YVVVYV

v

Figure 1 illustrates an overall process model for software inspections. Al-
though many variants exist, the phases in this model have been defined based on
years of practical experience. This model incorporates process recommendations
made by seminal works on software inspection ([7], [8]). Although different
teams have some leeway to tailor the parameters of how they implement each
step, in training courses with NASA teams we have found it helps to have explicit
steps that remind the team to:

»

Select an appropriate excerpt from the technical documentation to be re-
viewed; select the appropriate team and mix of expertise to conduct the re-
view; plan and schedule resources so that the process can be conducted;
abort inspections of documents that are not ready, to avoid spending effort
without commensurate benefit. (Planning)

Provide needed background and/or technical information to the team
members, if needed, to ensure that all reviewers have the information they
need to conduct a useful inspection. (Overview)

Allow time for individual reviewers to read and become familiar with the
technical product under inspection, and begin finding issues that may need
to be reworked. (Preparation)

Review the document together and come to consensus, as a team, on the
list of issues that should be improved. (Inspection Meeting)

Optionally, allocate time to discuss how to fix those issues or investigate
outside the meeting whether certain issues require fixing. (Third Hour)
Allow time for the rework to be completed by the author. (Rework)
Explicitly close out the issues by verifying that they have been fixed and
none have been missed — to ensure that the time spent on the inspection
has not been wasted. (Follow-up)

inpuis Process
A /

Planning ' Overview Pieparation Inspection Rewark Follow-Up

Meating Ieating

— 3= | (Select el (Present fge | (Identify - (Find & - (Fix - (\!’erify - II
Inspection ackground Potential Recond Defects) Fixes) S
Wik Team) Information) Defects) D efects) <

Produgt

Y

Resources Third Hour
Procealines (Open

By-Products

Tusls Issues /
*Schedule & Solutions)
Sl Tiina

T alndng

Figure 1: Software Inspection Process

Looked at as a whole, such a process requires not only a work product to inspect,
but also a procedure that keeps the team on track, time to be allocated in the sche-
dule for the team to perform the inspection, training (in the sense that team mem-
bers need to have agreement on what is in- and out-of-scope for the inspection,
and a shared sense of how to productively investigate these issues). As an output,
if the process is followed an improved document is created. However, teams
sometimes fail to appreciate the benefits to be gained from examination of other
information that exists as a by-product of the inspection process: the defects them-
selves, and metrics that describe aspects such as how much effort was required to
find those defects, how they were distributed, or how many inspectors were in-
volved. These data can be central to improvement efforts, as they shed insight not
only on the inspection process itself, but also on the overall health (defect density)
of the development work.

1.2 Why improve?

Despite the numerous and well-documented benefits it can be difficult to imple-
ment effective software inspections in projects. There is a learning curve in-
volved, meaning that it takes some time for developers to understand how to ef-
fectively find defects on their own in software work products. Inspections can be
perceived as a heavyweight process that does not address the real issues of con-
cern to the team. And, for moderators who are trying to set up inspection
processes and get people to take part, there is little guidance on what types of
people are important to get involved and how much direction to give them.

However, while the process structure in Figure 1 has been shown to suit just
about any kind of inspection, there are many variations in how the individual steps
can be instantiated, and the wide range of software being developed across all of
the NASA Centers poses an interesting challenge regarding how to provide for
each team a detailed and effective process. A feasible solution has been to provide
generic inspection processes that yield good results when first applied, but that
can be tailored or improved based on the constraints of each project. Monitoring
the practice once it is in place helps address the learning curve by helping the
team understand where effort is being spent and whether the return is worth the
investment. This feedback can help the team focus on how to improve their im-
plementation or the process itself to be more effective. Monitoring can also help
provide better guidance to inspectors about which problem areas to focus on dur-
ing the review.

improvement aspecis focus

feedback to the project team

joaferd 3)6u)s

inspection process

s108[oud ssoiae

organization wide process improvement

Figure 2: Primary areas for improvement of software inspections

For example, previous studies, run both by ourselves [1] and by independent
researchers [[2], [5], [13], [16]], had shown that an inspection approach known as
Perspective-Based Inspections (PBI) resulted in improved defect detection effec-
tiveness. PBI does not apply “out of the box”; there are many choices that need to
be made about which sets of technical expertise to include, which quality issues to
focus on, and how much detailed guidance to provide, that must be made for each
project. However, PBI does provide a general strategy that has proven effective
and a mechanism for how that strategy can be better tailored and improved for
each team’s specific needs.

The ability to improve the inspection approach in context was demonstrated in
work funded by the NASA Technology Infusion program, in which we worked
with teams across several NASA Centers to tailor, implement, and evaluate the
perspective-based inspection approach. These projects gave us experience with
tailoring the general approach to teams building software for space station moni-
toring, satellite scientific instrument control, and flight software, as well as for in-
dependent verification and validation of scientific mission software, among oth-
ers. (Some of these experiences have been made available in the public literature
[6], [18].) These experiences show that improving this inspection approach within
each of these contexts provided multiple benefits for these teams, including im-
proved ability to find major defects and improved efficiency.

1.3 How to improve?

For software inspections, there are three aspects that improvement activities
should focus on. These areas are summarized in Figure 2.

Providing feedback to the project team about the outcome of each inspection
should always be a concern. While we typically do not know at the time of the in-
spection the true number of real defects in the document (and hence, how effec-
tive a particular inspection has been), if a baseline of similar inspections and their
results has been compiled we can at least compare the results to the baseline to see
if it 1s out of the ordinary. An unexpectedly high or low number of defects being
detected should cause the inspection moderator to double-check whether the in-
spection process was applied adequately.

The second aspect focuses on the inspection process itself. As indicated in the
general inspection process (see Figure 1) there are certain degrees of freedom. For
instance: project-specific entrance criteria should be used in the planning phase to
ensure that the work product is ready for inspection; it is not always mandatory to
conduct an overview meeting; the types of issues that inspectors should focus on

5

during their preparation will vary depending on the type of work product and the
team’s quality goals. Depending on the specific situation of a project team or the
overall maturity of the organization, there is room for improving, or fine-tuning
the process over time. These actions may provide some direct benefits to the
project team, if the improvements can be identified and implemented during the
life-cycle of the actual project. Otherwise such inspection process improvements
are a first step towards cross-project improvements.

The last aspect fosters on organization-wide process improvement activities
employing software inspections. To this end, the outcome of software inspections
may be used to trigger or monitor organization—wide process improvement activi-
ties as for instance required by the CMMI® [4]. Most of the time, the focus is
placed on trying to make better use of the gained inspection data across all
projects.

1.4 Structure of this paper

The remainder of this paper is organized as follows: First, we give a short over-
view of the background and existing work for software inspections (Section 2).
The focus is placed especially on existing work at NASA. We will describe how
the collected inspection data is used for providing project feedback and improving
overall inspection process by providing guidelines to the inspectors. In Section 3
we then will discuss how the collected inspection data can be used to move from
project specific improvements to cross-project improvements. Section 4 will de-
scribe tools to support these cross project improvement activities and how they
can be integrated into the project work. Finally, we conclude in Section 5 and
sketch an outlook for future work.

2 Software Inspection Research at NASA

In many cases, data collected from an inspection is used to assess the quality of
the current project. Hence, typically only the number of detected defects are rec-
orded. However, the collection of additional measurement data is strongly rec-
ommended for the feedback that can be gained for more effective inspection plan-
ning and execution. By the early 1990s, researchers led by Dr. John Kelly at
NASA’s Jet Propulsion Laboratory (JPL), had started to systematically track and
analyze key inspection metrics. Data on effort spent, on inspection team size, and
on the size of the inspected document were used to detect patterns in the variables
that led to more effective inspections. Based on hundreds of inspections, initial
guidelines to help moderators in planning and executing the inspection process
were formulated [11]. The guidelines focused on the inspection control metrics,
that is, the parameters over which the inspection planner has direct influence.
Modifying the values of these parameters is the mechanism by which an inspec-
tion moderator can affect the outcome of a given inspection. These parameters in-
clude:

» Team Size: The number of reviewers involved in the inspection. Teams
which are too small are likely to lack important perspectives on the docu-
ment, while teams which are too large are more likely to experience dy-
namics that make members less likely to participate effectively.

» Page Rate: The number of document pages that the inspectors examine
per hour of the inspection meeting. The maximum page rate will depend
on the type of document. Giving a team too much material to look through

will invariably result in a more superficial inspection, while giving too lit-
tle material often runs the risk of leaving out important connections to oth-
er parts of the system.

A 2001 report [22] that characterized the state-of-the-practice of software inspec-
tions at NASA by means of interviews across multiple NASA Centers found that
there were many recognized benefits of performing inspections. However, it also
identified causes for concern, including that, in the face of schedule pressures,
many projects found it difficult to keep the inspection process in place with an ap-
propriate degree of formality. In response to this, we began experimenting with a
particular approach to inspections, the Perspective-Based Inspection approach
(PBI) [24]. PBI augments the process model described in Section 1 with addition-
al guidelines that focus on defining the defect types targeted by the inspection
from the point of view of stakeholders in the work product being inspected, and
having each inspector represent a single stakeholder and use a scenario to actively
work through the information.

The specifics of the software inspection approach can clearly impact the
success of the inspection. In our previous work, we had demonstrated that the
Perspective-Based approach was effective in some circumstances at improving the
effectiveness of an inspection, increasing by up to 30% the amount of defects that
were found by both individual inspectors and teams of inspectors [1]. In the pe-
riod of 2000 — 2005, in work originally funded by a NASA SARP grant and later
continued as multiple research infusion projects, we continued to work with this
approach and adapt it to the needs of real project teams from multiple NASA Cen-
ters. Obviously, projects have specific needs and constraints that can be met with
process improvement activities. We were able to show that the approach could be
successfully tailored to the needs of diverse NASA project groups [[17], [6],
[18]].

One of the issues complicating this work with multiple projects was that,
in many instances, a solid measurement baseline was not available against which
the results of a Perspective-Based inspection could be compared. We have ex-
plored ways in which the results of a given inspection could be compared to base-
lines from the wider industry [25] or against simulated results of other process va-
riants [19], but clearly for use on NASA projects, the ideal would be a baseline
composed of similar projects within the Agency. In addition to being useful to re-
searchers, such a baseline would be useful to NASA personnel as well to provide
decision support for their own process choices.

3 From Project Improvement to Organizational Im-
provement
Our recent work has focused on creating such inspection baselines, and using

them to facilitate decision making ranging from the inspection process used by a
single project to larger questions of organization scope.

'yﬁJn:'_zsu B T =

i \
! L gatak(n=253) 4‘”” 23)

7 B R 8

'” _ l ﬁﬁ{@{{TZOG) . féﬁzzgél canform

s e B @

4. 1 134) | _355) conform

s U non-corform A non-conform
=1995 R =1995
<1985 <1995

Figure 3: Influence of “Team Size” on the

Figure 4: Influence of “Page Rate” on the
average number of overall defects found

average number of overall defects found

To do this, we worked to collect and unify inspection data from across NASA
into a single dataset. The goal was to use and compare historical inspection data
with data collected by recent programs. Such a centralized measurement database
is the starting point for constant evaluation of existing guidelines and models.

Unfortunately, not all data sets used the same defect classification schema.
Agegregation of the different taxonomies and heterogeneous inspection data sets
was necessary [20]. We started out by using a common defect classification
schema: The Orthogonal Defect Classification as described in [3]. By following a
defined process [20] of adopting, splitting, and merging the defect categories in
the measurement data using different classification schemes, we were able to
create a unified defect classification scheme into which all the others could be
mapped. This allowed us to then aggregate all of our inspection data into a
base with a total of 2,529 inspections from 81 projects across five NASA Centers.
This database uses three unified defect taxonomies (see appendix for details) for
mspections focusing on:

» Requirements
» Design and Source Code
» Test Plans

This combined dataset allowed us to study several improvement aspects at vari-
ous levels, described in the subsections below.

3.1 Feedback on a single inspection

() Requirements

W _aaein=3) -

) __33.5(n= 10
o -25. 0
a0 ¢

1w conform

NAT (n=7)
’ non-conform
=1995
<1995
(b) Design and Source Code

i -ZB.HTHQIZJ o=

9

Bow

" e e _- 524(r1=£0?)
-
’ [m(ﬁ 189) l‘?@mrz?s) conform

- non-conform
21995

<1985
(c)Test Plans
. 5545 (n=8)) B
Y k
40 —
- | A8d4 (1=25)
sl —) L
\
9+ i lﬁﬂ@"r"ﬁ 2) canform
TR nen-conform
> 1985

<1885

Figure 5: Influence of “Team Size” on the
average number of overall defects found
for different types of documents

We investigated whether we could use
our Agency-wide dataset to test the guide-
lines originally proposed by Kelly for use
on contemporary projects. We divided the
dataset into data describing inspections in
1994 and earlier (the projects that would
have been going on at the time the guide-
lines were originally formulated) and those
from January 1, 1995, and later (the con-
temporary dataset). Some of our findings
are displayed in Figure 3 and Figure 4. As
can be seen, the average number of overall
defects found when conforming to the
suggested “Team Size” (Figure 3), 1s sig-
nificantly higher than that seen on non-
conforming projects. This holds true for
both the historical measurement data
lected in 1994 or earlier) as well as in the
more contemporary ones (1995 and later).
Figure 4 displays the same information for
the suggested “Page Rate”.

We then tested whether these
lines should vary for different classes of
inspection, for instance, for different types
of documents. The initial results for the
fluence of the control metric “Team Size”
are displayed in Figure 5. The results re-
garding the defects that can be expected to
be found clearly varied between the differ-
ent document types. Please note that these
are provisional results owing to the rela-
tively small number of data points in some
of the categories at this time. At this point
we note that although the guidelines still

seem to be useful rules of thumb for contemporary projects, fewer and fewer
projects seem to be able to remain in conformance with them. Ongoing work is
aimed at investigating whether the bounds can be relaxed, so that we can give
guidelines that more projects may find it possible to conform to. As well, we are
investigating the extent to which the guidelines themselves vary by type of

project.

. Hence, these guidelines can serve as a

baseline against which to give feedback
on an individual inspection. We cannot
say that every inspection should conform
to these guidelines, of course; in many
. cases there are excellent reasons for non-
conforming. Inspections of particularly
complex portions of the system, for in-

) ” stance, may require a higher than average
I m 5 number of inspectors to cover the technic-

al areas of interest. However, moderators
. can find that comparing their inspection
ek deign code e ot parameters to the guidelines is a useful

exercise, in that when values are outside
Figure 6: Team Size analysis. Recommen- the range found in the guideline, the mod-

dati fi timal values for i i . .
catons for opima vaties Jor IMCreastils - o ator needs to verify that there is a sound
inspection effectiveness are shown in

green, with the slightly less optimal range 1€dS00 for planning the inspection in this
shown in yellow. The range of data from Way.
inspections at one NASA Center are

represented with the black boxes; the 3.2 Continuous monitoring and im-

mean value in this context in each catego- provement of the inspection
ry is represented with a dot. process

Once guidelines, such as those for the control metrics on “Team Size” and “Page
Rate”, have been defined, they should be monitored and periodically re-evaluated.
This is due to the fact that there might be changes in the overall process or the
context in which the technology is used (e.g., change in programming language or
better qualifications of development team). In many cases, as the number of in-
spections from within the specific context of interest grows, better guidelines that
are specific to the context can be formulated.

The charts in Figure 6 show the up-to date guidelines resulting from our re-
search for the “Team Size” control metric, broken out by the type of work product
being inspected. (The “other” category contains a mix of many different document
types, so we have no guidelines explicitly formulated.) Overlaid on these displays
are boxes representing the range of values seen in actual data from one NASA
Center, with the dot representing the mean value for the control metric from that
Center.

One of the things we recommend Centers and projects to do periodically is to
look at their aggregated data compared to the guidelines. In this case, we can see
that values for the “Team Size” metric from this Center generally track well with
the guidelines, except in the case of requirements, where larger than recommend-
ed teams seem to be the norm. While this analysis cannot point to issues that nec-
essarily should be changed, it should cause inspection planners to double-check
whether there is a valid reason for departing from the recommendations. Especial-
ly in the case of requirements documents, it can be the case that many stakehold-
ers need to be represented in the review to account for all the diverse technical
areas that have some bearing on what set of requirements may in fact be feasible
to build. Discussions with the personnel collecting data at this Center revealed
that this reasoning was exactly the cause for the discrepancy. In such cases, rather
than changing project behavior, it might be more worthwhile to create a tailored
set of guidelines that are more focused on the needs in this particular context.

10

However, the same graph also demonstrates that a recurring problem in this
environment was a tendency to create inspections of design, code, and test work
products with fewer inspectors than recommended. This comparison might serve
as a useful reminder to inspection planners to take the extra effort in formulating
larger teams.

3.3 Supporting organization-wide improvements

Collecting and analyzing software inspection data in a centralized inspection mea-
surement database is not only beneficial for improving the organization’s inspec-
tion process. The data collected as part of the ongoing software inspections are al-
so a valuable resource for process improvement activities and organizational
learning. Focusing on defect distribution, the defect classification schema used in
our inspection database allows for a comparison between software inspections (in
early lifecycle phases) and testing activities (in late lifecycle phases). The research
goal here is to monitor and improve the overall effectiveness of the verification
and validation strategy.

By taking a closer look at the defect distribution data, which can be easily col-
lected as a by-product of the inspections and testing processes, it becomes possi-
ble to identify issues in the overall software development process applied in the
organization. Such analyses then may trigger organization-wide process im-
provement activities. Furthermore, these activities help to satisty key CMMI re-
quirements at different maturity levels [4], for example:

» Level 2: Measurement and analysis (MAS)
» Level 3: Verification (VER) and Validation (VAL)
» Level 4: Quantitative project management (QPM)

11

100%

90% || .] —|] . -

OTest
80% - o — — . -

70% | — — — _— I | Olnspection

60% || .] - =

50% — — — — — — —

0% - S _— _— _— -

30% || |] | - — =

20% — — —— - — —

10% — - - - o - -

0%

Algorithm Data External Assignment Internal Logic
interface interface

Figure 7: Defects found by inspections (in early life cycle phase) and testing (in late life-
cycle phase

The results of these activities can then be used to help answer the following ques-
tions from the viewpoint of a development team:

» If I choose to apply inspections, what are the implications for the effort re-
quired to be spent on other non-optional activities, like system testing?

» Can I make an informed decision about what type or how many inspection
or festing activities to apply, based on the expected defect profile of a
project?

For example, a preliminary comparison between the defect types found as part of
the software inspection process and testing activities in one set of NASA projects
is displayed in Figure 7. The overall results can be summarized as follows:

» In the eight projects under study, on average 64% of the defects in the
software were removed through inspections

» More than 60% of the defects were removed by inspections in each defect

type

Inspections were nearly equally effective across all defect types

Inspections performed best on finding external interface defects

If we considered the number of defects remaining after inspections as an

approximation of the testing effort required, an analysis shows that testing

effort could have been reduced by 2/3 on the projects studied

YV VV

4 Necessary Tool Support

To make optimal use of the data collected in the course of a software inspection, a
number of analyses need to be performed. Such analyses should be completed in a
timely matter to provide quick feedback to the developers of the current project,
and to allow process improvement experts to contact the inspection team if they

12

® ' Inspection Dashboard Tool 0.9.5

T e |

Dashboard

[Pian Inspection % |

Inspections

Plan Inspection
Enter Results
Manage Inspection:

Projects

Enter Project
Manage Projects

Reports
Recurring Defects

Characteristics

Project: | praject 213

- Cocument Type:

Software Requirements Docur =

Documents
used

Fifter: | Checklists

Available Documents

marked

Total statistics
Product Types Natie

Type Action = Name
SY1 - System Re: POF View =
10 - Architecture PDF View = o
Revisw Checklist POF View

Type Action

Raview Checklist PDF View
Review Checklist PDF View

Checkdist forImg PDF Miew =

Parameters
Expected

Mestinig Date |6/22/2010 -

ExperienceBase

Settings

Hetp Barticipants 7

Contact

Document Size 12 pages -] 50

Press F1 for help Information: You have to select a- document type to get recommendations in gauges

E\ [Enter Resutts| @|

Figure 8: “Inspection Planning” screen of the Inspection Dashboard tool

have further questions regarding their work. To support such a quick analysis of
the inspection data, effective tool support is needed. Such a tool can be a standa-
lone solution, or preferably, a tailored version that is integrated into the overall in-
spection and software development process and coupled with the organization’s
experience base. There are two primary user types of such a tool: the developers
who plan and conduct actual inspections, and the Software Process Improvement
(SPI) group focusing on maintaining and evaluating the current guidelines and
models.

4.1 Dashboard tool for planning support and initial feedback

To support our research work, we have developed an initial prototype Inspection
Dashboard tool that leverages an organization’s existing knowledge regarding
software defects to improve strategies for software quality. The complex analyses
and models built from our centralized inspection measurement database are hid-
den behind a tool interface providing customized and context-sensitive recom-
mendations based upon a project’s domain, maturity, and other factors. The Dash-
board tool automates many of the analyses described in the prior sections. Among
others, it provides feedback to the project teams on how well a planned inspection
meets historical targets for the control metrics and how the actual outcomes (e.g.,
the number of defects found) can be compared to the historical guidelines. Users
are not only able to plan, store, analyze, and display inspection data for their cur-
rent project, but also contribute to the overall inspection measurement database to
allow improvement of the inspection process across the organization.

Developers can use the tool to plan an inspection, enter the results and
gain feedback on the performance of the inspection compared to similar past in-

13

spections. Thereby, the tool offers support
for the “Planning” and “Inspection Meet-
ing” steps of the Software Inspection
Process (see Figure 1).

In the “Planning” step, developers use
the input screen as displayed in Figure 8.
Initially, developers enter general informa-
tion such as the project name and the doc-
ument type to be inspected. Based on these
inputs the tool then suggests documents
(e.g., checklists or defect reporting sheets)
that can be reused for this task. The tool
accesses an Inspection Experience Base
(EB), which is also publicly available
through the FC-MD web server (http://fc-
md.umd.eduw/EB). The Inspection EB al-
lows inspection planners to benefit from
the past experiences of other projects that
have applied inspections. Specifically, the
EB provides access to inspection materials,
such as checklists and forms that can be
used by teams planning new inspections.
These materials are organized according to
the type of work product for which they
can be applied and the types of projects
that have applied them in the past. Teams
planning new inspections will be able to
see what resources might be appropriate
for their context and whether they have
been applied at NASA or in another con-
text. Other useful information related to
software inspections, such as definitions,
defect taxonomies, related literature, or ex-
isting tools are also available and up-dated
periodically.

Finally, the Developer enters the
planned date of the inspection meeting, the
number of participants, and the document
size. As soon as the document size and
number of participants are entered, the tool
uses the underlying control metrics to pro-
vide immediate feedback to the developer.
The dashboards next to the fields with the
entered values indicate whether or not the
planned parameters are within the sug-
gested range (green area) or above or be-
low the acceptable values (red and yellow
areas to the right and left).

% Inspection Dashboard Tool 0.9.5 [Bl e

Dashboard I % | Total Statistics X |

Inspections Overall Statistic Center Specific Project specific

Plan Inspection General Data #inspections: | 34 center: |jocation3 7| project: [project 210 ~|
Enter Results —
Manage Inspsction: # center: | 12 # inspections: | 34 #inspection: |5

Projects
Enter Praject
Manage Projects

#projects: | 2 # projects: |9

Reports
Recurring Defects Totals Document Type From [No T Measure [loc |
Total statistics . R
Product Types Focus | Current Center - Till [o ©

Inspectians Teamsize rerage Size of Inspecti- | Total Effart | Awerage Defects
cade | 1 | 3758 [o0 | 00} [19 03) ‘
design [4 [3734 [2860 (1) | 00 [6634
num. 16 [4.25 (16) | 450 (7) | oy [62.25(12)
requirements | 5 | 1056 (5) | 2280 (1) [00y [57(2)

test 5 5.2 (5) 1650 (4) 0 {0y 773

ExperienceBase
Settings
Help

Contact

Press F1 for help

Figure 9: “Total Statistics” overview screen of the Inspection Dashboard tool

At the end of the inspection meeting, the developers can use the tool to enter
the findings for the inspections. As discussed above, projects have used a wide
range of different terminologies and data collection mechanisms to collect their
defect data. Since a tool that asked projects to adapt to new vocabulary and new
mechanisms is less likely to be used than one that adapts to the existing project-
specific decisions, we offer a number of options for users to import their current
defect reports into the dashboard and get feedback. The mappings between differ-
ent data types, e.g., between the project-specific defect taxonomy and the unified
ones we have adopted for “Requirements”, “Design and Source Code”, and “Test
Plans” (see appendix), are done automatically and only the project-specific termi-
nology is shown to the user. Again, immediate feedback is available to the user,
whether the inspection meets the guidelines or not.

The SPI group members can use the tool to analyze the collected inspection
measurement data to validate, up-date, and improve the overall processes. To sup-
port the SPI team in their tasks, our Inspection Dashboard tool provides specific
information, such as the “Total Statistics” screen displayed in Figure 9. Using the
filter options (e.g., to select a specific time-frame, project, or Center), the tool au-
tomatically provides feedback on the entries in the inspection measurement data-
base which meet the selected criteria. This easy and fast feedback mechanism can,
for instance, be used to validate the existing guidelines.

4.2 Tool support for other steps of the inspection process

Many tools are available to support developers in performing steps of the Soft-
ware Inspection Process (see Figure 1). Among them, we would like to point out
the ISPIS framework [[9], [10]] and the ISI tool [15]. These tools support users in

15

conducting various inspection process steps that are currently not covered by our
Inspection Dashboard tool. As part of the support offered, these tools help in col-
lecting the measurement data and formulating the inspection reports.

The ISPIS framework helps to assign, schedule, track, and coordinate the dif-
ferent inspection activities. In the “Planning” step, it supports developers by as-
signing and distributing the different review materials and tasks (i.e., perspectives
and checklists) to the concrete developers. As part of the “Preparation” step, each
developer can then use the tool to report the potential defects. The defect lists are
compared and analyzed by the tool. Defects that are recorded by several inspec-
tors are ranked differently than ones that are only reported by a single inspector.
This consolidated ranking can be used as a starting point for the “Inspection Meet-
ing” step. The final meeting results as well as the different data points collected
during the process can be automatically consolidated by the tool. Aggregation of
the different measurement data points from each inspector is also supported by the
tool. Such a consolidated list, for instance, of the total effort spent, can then be
used as an input to our Inspection Dashboard tool. Hence, the ISPIS framework
fills a gap in the current tool support.

The ISI tool actually supports the inspectors in reading and inspecting code
documents. It uses rules to slice and highlight the code to be inspected according
to specific checklist points. For instance, if a checklist explicitly asks for a review
of variable declarations and initializations, the tool will highlight all lines of code
that have such initial assignments and declarations of variables. The inspectors
thereby are more likely to find all occurrences of variables in the code and can es-
pecially focus on each of the specific check-list items. The tool further helps to
generate a basic inspection report based on the checklist items inspected.

By supporting the inspectors in their work, tools such as ISI and ISPIS in ad-
dition collect and aggregate measurement data and information, which are a valu-
able input for the inspection improvement activities described in this paper.

5 Conclusions and Future Work

When estimating the overall cost and benefits of software inspections, organiza-
tions often only take into account the direct project costs and the estimated sav-
ings based on avoided rework and recalls. However, by fully employing all of the
collected measurement data, one has a powerful tool at hand for overall process
improvement and monitoring activities. In general, the cost of inspections should
not only be judged in the context of a single project, but also be considered as a
valuable input for the overall organization and its continuous improvement and
learning efforts across projects.

Software inspection data enable an organization to control and optimize their
overall development processes and help identify systemic problems. The classifi-
cation of defects, for instance, allows for a comparison between software inspec-
tions and testing activities, while at the same time monitoring and improving the
overall V&V effectiveness.

In this paper we detailed such cross project activities. The presented results
are based on historic and contemporary inspection measurement data collected
throughout NASA. Ongoing improvement initiatives are studying possible other
benefits from employing the collected software inspection data on a regular basis
as part of the daily software development activities — which then will be beneficial
for the project teams as well as the overall organization. In particular, we are con-
tinuing to investigate how to improve the guidelines we offer as starting points to

16

project teams in various contexts — for example, we would expect that the guide-
lines we offer to safety-critical missions would be different from those we offer to
projects with less constrained quality requirements. We are also looking at wheth-
er we can apply the same basic approach, with different guidelines, for inspections
in the realm of system engineering artifacts.

Acknowledgments

This work was sponsored by NASA grant NNGO5GE77G, "Full-Lifecycle Defect
Management Assessment." The authors wish to thank our collaborators at NASA
who helped us compile this data set from across many projects and Centers, with-
out whom this work would not have been possible.

References

[1] Basili, V., Green , S., Laitenberger, O., Lanubile, F_, Shull, F., Soerumgaard, S., Zelkowitz,
M. (1996) The Empirical Investigation of Perspective-Based Reading. Empirical Software
Engineering: An International Journal 1(2):133-164

[2] Ciolkowski, C., Differding, C., Laitenberger, O., Muench, J.(1997) Empirical Investigation of
Perspective-based Reading: A Replicated Expeniment. International Software Engineering Re-
search Network (ISERN), Technical Report ISERN-97-13

[3] Chillarege, R., Bhandan, 1.S., Chaar, J K., Halliday, M.J., Moebus, D.S_, Ray, B.K., Wong,
M.-Y. (1992) Orthogonal Defect Classification—A Concept for In-Process Measurements.
IEEE Transactions on Software Engineering 18(11):943-956

[4] Chrissi, M.B., Konrad, M., Shrum. S. (2007) CMMI® Second Edition — Guidelines for Process
Integration and Product Improvement. SEI Series in Software Engineering, Addison Wesley
Professional

[5] Conradi, R., Mohagheghi, P, Arif, T., Hegde, L.C., Bunde, G.A_, Pedersen, A. (2003) Object-
Oriented Reading Techniques for Inspection of UML Models—An Industrial Experiment. Eu-
ropean Conference on Object-Oriented Programming (ECOOP'03), Darmstadt, Germany

[6] Denger, C., Shull, F. (2007) A Practical Approach for Quality-Driven Inspections. IEEE
Software 24(2):79-86

[7] Fagan, M.E. (1976) Design and code inspection to reduce errors in program development.
IBM Systems Journal 15(3):182-211

[8] Gilb, T., Graham, D. (1993) Software Inspection. Addison-Wesley Publishing Company

[9] Kalinowski, M., Travassos, G.H. (2004) A computational framework for supporting software
inspections. Proceedings of the 19" International Conference on Automated Software Engi-
neering (ASE04), Linz, Austria, I[EEE Computer Society

[10]Kalinowski, M., Travassos, G.H. (2004) ISPIS: A framework supporting software inspection
processes. Proceedings of the 19" International Conference on Automated Software Engineer-
ing (ASE04), Linz, Austria, [EEE Computer Society

[11]Kelly, J.C., Shenif, J.S., Hops, J. (1992) An Analysis of Defect Densities Found During Sofi-
ware Inspections. Journal of Systems Software 17(2):111-117

[12] Kolkhorst, B.G. (1992) Space Shuttle Primary Onboard Software Development: Process Con-
trol & Defect Cause Analysis. IBM Corporation Technical Report, Houston, Texas, pp 1-15

[13]Laitenberger, O., El Emam, K., Harbich, T. (2000) An Intemally Replicated Quasi-
Experimental Comparison of Checklist and Perspective-based Reading of Code Documents.
TEEE Transactions on Software Engineering 27(5):387-421

[14]NASA Procedural Requirements7150.2 (2009) Subject: NASA Software Engineering Re-
quirements. Available at http:/nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=7150&s=2.
Accessed 30 Jun 2009

[15]Nick, M., Denger, C., Willrich, T. Experience-Based Support for Code Inspections. In Al-
thoff, K.-D., Dengel, A.. Bergmann, R., Nick, M., Roth-Berghofer, T. (Eds.): Professional
Knowledge Management, Third Biennial Conference, WM 2005, Kaiserslautern, Germany,
pp- 121-126

[16] Porter, A., Votta, L. (1998) Comparing Detection Methods for Software Requirement Inspec-
tions: A Replicated Experiment using Professional Subjects. Empirical Software Engineering:
An International Journal 3(4):355-379

17

[17] Pressburger, T., Hinchey, M., Feather, M.S., Markosian, L. (2006) Infusing Software Engi-
neering Technology into Practice at NASA. 2nd IEEE International Conference on Space
Mission Challenges for Information Technology (SMC-IT'06), pp.89—100

[18] Pressburger, T., Markosian, L. (2004) Software Engineering Research/Developer Collabora-

tions

2004 (CI104): Final Report. Available at:

http://t1.arc.nasa.gov/m/pub/806h/0806%20(Pressburger).pdf Accessed 30 Jun 2009

[19]Rus, 1., Shull, F., Donzelli, P. (2003) Decision Support for Using Software Inspections. 28th
Annual NASA Goddard Software Engineering Workshop (SEW'03), pp 3

[20] Seaman, C., Shull, F., Regardie, M., Elbert, D., Feldmann, R.L., Guo, Y., Godfrey, S. (2008)
Defect Categornization: Making Use of a Decade of Widely Varying Historical Data. Proceed-
mgs of the second ACM-IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEMO08), Kaiserslautern, Germany, The Association for Computing Ma-
chinery, New York

[21] Selby, R.W. (1990) Empirically based analysis of failures in software systems. IEEE Transac-
tions on Reliability 39(4):444-454

[22] Shull, F., Bachman, J., Van Voorhis, J., Larsen, P. (2001) “Lessons Learned Report for the
‘State-of-the-Art Software Inspections and Reading’ Initiative.” Deliverable to the NASA

OSMA

SARP, Available from

http://sarpresults.ivv.nasa.gov/DownloadFile/31/11/T essons%20L earned%20Report.doc

[23] Shull, F., Basili, V.R., Boehm, B, Brown, A W, Costa, P., Lindvall, M., Port, D., Rus, L, Te-
soriero, R., Zelkowitz, M.V. (2002) What We Have Leamed About Fighting Defects. Ottawa,
Canada, IEEE. 8th International Software Metrics Symposium, pp 249-258

[24] Shull, F., Rus, 1., and Basili, V. R, (2000) “How Perspective-Based Reading Can Improve
Requirements Inspections,” IEEE Computer 33(7):73-79

[25] Wohlin, C., Aurum, A, Petersson, H., Shull, F., Ciolkowski, M., (2002) Software Inspection
Benchmarking - A Qualitative and Quantitative Comparative Opportunity. In Proceedings
IEEE International Symposium on Software Metrics (METRICS02), Ottawa, Canada, pp.

118-130

Appendix

1. Requirements defects

Defect Type

Definition

clarity

A problem in the wording or organization of the document that makes it diffi-
cult to understand.

completeness

A missing requirement or other piece of information.

compliance A problem with compliance to any relevant standard.
. Two or more statements in the document that are not consistent with each
consistency . :
other, e.g., requirements that are mutually exclusive.
correctness Any statement in the document that is incorrect.
o A requirement that is not stated in a way that makes it clear how it can be
testability basterd
other Anything that does not fit any of the above categories that is logged during a

requirements inspection.

2. Design/code defects

Defect Type Definition
An error in the sequence or set of steps used to solve a particular problem or|
algorithm computation, including mistakes in computations, incorrect implementation
/ method of algorithms, or calls to an inappropriate function for the algorithm being im-

plemented.

assignment /

A variable or data item that is assigned a value incorrectly or is not initialized
properly or where the initialization scenario is mishandled (e.g., incorrect

hitialization publish or subscribe, incorrect opening of file, etc.)
. Inadequate checking for potential error conditions, or an inappropriate re-
checking : i e
sponse is specified for error conditions.
data Error in specifying or manipulating data items, incorrectly defined data struc-

18

ture, pointer or memory allocation errors, or incorrect type conversions.

external Errors in the user interface (including usability problems) or the interfaces
interface with other systems.
wletmal Errors in the interfaces between system components, including mismatched
X calling sequences and incorrect opening, reading, writing or closing of files
interface

and databases.

Incorrect logical conditions on if, case or loop blocks, including incorrect
logic boundary conditions ("off by one" errors are an example) being applied, or]

incorrect expression (e.g., incorrect use of parentheses in a mathematical
expression).

non-functional

Includes non-compliance with standards, failure to meet non-functional re-
quirements such as portability and performance constraints, and lack of

defects clarity of the design or code to the reader - both in the comments and the
code itself.

timing / Errors that will cause timing (e.g., potential race conditions) or performance

optimization problems (e.g., unnecessarily slow implementation of an algorithm).

other Anything that does not fit any of the above categories that is logged during

an inspection of a design artifact or source code.

3. Test plan defects

Defect Type

Definition

A problem in the wording or organization of the document that makes it diffi-

LRI cult to understand.
completeness | A missing test case or other piece of information.
compliance A problem with compliance to any relevant standard.
Any statement in the document that is incorrect, including incorrect expected
correctness
output for a test case.
testability An infeasible test case (e.g., one too costly to test).
Test cases or other information that is not necessary because it appears|
redundancy
more than once.
other Anything that does not fit any of the above categories that is logged during a

test plan inspection.

19

