Innovations Syst Softw Eng (2011) 7:53-69
DOI 10.1007/s11334-011-0144-5

ORIGINAL PAPER

A study to support agile methods more effectively through

traceability

Angelina Espinoza - Juan Garbajosa

Received: 8 September 2009 / Accepted: 19 January 2011 / Published online: 19 February 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract Traceability is recognized to be important for
supporting agile development processes. However, after ana-
lyzing many of the existing traceability approaches it can be
concluded that they strongly depend on traditional devel-
opment process characteristics. Within this paper it is jus-
tified that this is a drawback to support adequately agile
processes. As it is discussed, some concepts do not have
the same semantics for traditional and agile methodologies.
This paper proposes three features that traceability models
should support to be less dependent on a specific develop-
ment process: (1) user-definable traceability links, (2) roles,
and (3) linkage rules. To present how these features can be
applied, an emerging traceability metamodel (TmM) will be
used within this paper. TmM supports the definition of trace-
ability methodologies adapted to the needs of each project.
As it is shown, after introducing these three features into
traceability models, two main advantages are obtained: 1)
the support they can provide to agile process stakeholders
is significantly more extensive, and 2) it will be possible to
achieve a higher degree of automation. In this sense it will
be feasible to have a methodical trace acquisition and main-
tenance process adapted to agile processes.

Keywords Traceability methodology - Metamodeling -
Agile methods - Test-Driven Development (TDD) -
Storytest-Driven Development (SDD) - ISO-24744:2007
SEMDM

A. Espinoza (X)) - J. Garbajosa

Technical University of Madrid (Universidad Politecnica de
Madrid - UPM), Systems and Software Technologies Group,
E.U. Informatica, Ctra. de Valencia Km. 7, 28031 Madrid, Spain
e-mail: aespinoza@syst.eui.upm.es

URL: http://syst.eui.upm.es

J. Garbajosa
e-mail: jgs@eui.upm.es

1 Introduction

Methodologies such as XP [9] or Scrum [65], that can be
included into the agile group [1,32], aim to deal with evolving
requirements in a time-constraint scenario using a number of
techniques. Among these, we can find Test-Driven Develop-
ment (TDD) [8] and Storytest-Driven Development (SDD)
[55]. Ineveryday software development, requirements tend to
evolve quickly and towards obsolescence even before project
completion because of rapid changes in stakeholder prefer-
ences, technology, competitive threats, and time-to-market
pressures [53].

Agile development processes have a different perspective,
compared to traditional development processes which follow
amore lineal or waterfall model for performing tasks. This is
the case of the requirements engineering (RE) processes, as
is pointed out in [12]. One of the differences is that a detailed
requirements specification may be missing during a large part
of the project or even the whole project duration [72]. Agile
approaches such as TDD or SDD advocate the development
of code without waiting for formal requirements analysis and
design phases. Requirements emerge throughout the devel-
opment process [12]. Some other differences include the use
of stories as a source for requirements. Stories include many
details and may be more ambiguous than the conventional
requirements specification. A story may also be more coarse-
grained than the traditional requirements specification. They
are sometimes used together with user tests. User tests, to
some extent, become the fine-grained requirements. TDD
considers writing tests as part of the requirements/design
activity, in which a test specifies the code’s behavior. In prac-
tice, and according to [52], many organizations use tests to
capture complete requirements and design documentation,
that are linked directly to code production. This is an uncom-
mon scenario in a traditional development life cycle, in which

@ Springer

54

A. Espinoza, J. Garbajosa

requirements specification is prior to the system develop-
ment.

Traceability practices in traditional requirements engi-
neering advise setting up traces from requirements to other
development artifacts; and requirements are part of a formally
structured requirements specification [21,36]. The standard
ISO/IEC 12207:2008 [41], in bullet 7.1.5.3.1.5, explic-
itly specifies that the implementer shall evaluate software
code and test results, considering traceability, to software
requirements and design items. In fact, ISO/IEC 12207:2008
considers that the System Requirements Analysis has the
System Requirements Specification as outcome, which is
used in the System Qualification Testing Process to ensure
that the implementation of each system requirement is
tested for compliance [41, 6.4.6]. A similar scenario is
stated in SWEBOK [19, chapter 2], the Requirements Spec-
ification knowledge area (KA) describes that a Software
Requirements Specification has to be produced, and states
that such specification is to be performed before design
begins. In SWEBOK, the Requirements Validation KA
states that “the requirements may be validated to ensure
that the software engineer has understood the require-
ments, and it is also important to verify that a require-
ments document conforms to company standards, and that
it is understandable, consistent, and complete” [19, chap-
ter 2, Sect. 6]. That is, a requirements specification doc-
ument is strongly demanded by the software engineer-
ing community, as in the case of SEWBOK and ISO/IEC
12207:2008.

However, in an agile approach, requirements traceabil-
ity (RT) cannot be performed as it is established in tradi-
tional requirements management, as ISO/IEC 12207:2008
or SWEBOK demand. This is mainly because a formal sys-
tem/user requirements specification document is frequently
omitted. This situation, if improperly managed, can create
serious problems to other processes such as change man-
agement, impact analysis, and estimation, which are based
on a life cycle model that starts from a traditional require-
ments analysis process. Some authors think that a miss-
ing requirements specification might result in severe prob-
lems [56]. As a response to this, several practices should be
implemented together with agile requirements approaches
to address the lack of a detailed requirements specification
[12]. These include establishing a strong traceability practice,
together with using explicit requirements negotiation, coop-
erative strategies for requirements engineering, and incorpo-
rating aspect-oriented concepts [12].

Though agile methods do not require to develop a formal
requirements specification document, systems quality and
dependability are, for sure, a key concern. Traceability is
explicitly considered in agile methodologies as a fundamen-
tal issue to develop quality systems on time ([64], Sect.1;
[57]). A strong reason is that traceability is an excellent

@ Springer

support for accountability. Therefore, it is fundamental to
develop traceability approaches which tackle the complex
traceability requirements stated by agile methods. This paper
focuses on studying which traceability models can better
support agile development processes, particularly for those
methods which implement agile requirements.

Another key issue regarding traceability is link semantics.
Link semantics can also be different for agile development
methods compared to traditional development processes.
Before analyzing links semantics, let us try to understand
how some of the agile practices happen. XP commonly uses
the planning game. It puts a special focus on the requirements
negotiation and, likewise, on the their implementation plan-
ning; all the members of the project team meet and discuss
the requirements captured by the customer, in the so-called
user stories. Tests from user stories act as requirements, and
their execution can be regarded as a requirements engineer-
ing practice, a design practice and a test practice. Traceability
links must have a precise semantics to support this complex
scenario. If a requirement is linked to an acceptance test, its
semantics from the traditional perspective is clear. However,
the semantics is different if a requirement is linked to a user
story test, due to the several facets it has. Moreover, in the
context of a large project some subsystems may be developed
according to a traditional model and some following an agile
model. Tests may have a different meaning depending on
the lifecycle approach. If accurate link semantics is missing,
confusion may arise.

This paper studies some agile development processes
and methodologies, such as XP, TDD, and SDD, from a
traceability point of view. As a result of this study some
requirements for traceability models are obtained. These
requirements are needed so that traceability models can sup-
port agile development processes effectively. Some existing
and well-documented traceability models will be analyzed
from the perspective of these requirements. As it will be
next discussed, conventional traceability models are not able
to provide effective support to agile development processes.
These requirements are adequately considered in an emerg-
ing traceability model called traceability metamodel (TmM)
that is briefly described in Sect. 4. This model has been devel-
oped according to proper modeling principles described in
[27], and it is being validated at present. One case study is
on agile development that is presented in Sect. 5, to show
how the proposed ideas work in practice. In previous works
[29,30], fundamental issues to define a project-specific trace-
ability methodology were presented and discussed. Some of
those results were to include, as part of the traceability imple-
mentation, traceability types with linkage rules, support for
different granularity levels of the linking system artifacts,
and traceability weights to indicate the relationship depen-
dency force between two artifacts. All these concepts are
considered in the TmM definition.

Agile methods through traceability

55

This paper is organized as follows: after Sect. 1, Sect. 2
states basic traceability concepts and studies agile processes
from the traceability perspective. Section 3 presents some
basic traceability requirements to effectively support agile
processes; limitations of existing approaches with respect to
these requirements are discussed. Section 4 briefly describes
the TmM foundations, design criteria and the parts of the
metamodel, which are necessary to understand the rest of the
paper. Section 5 presents a case study to illustrate the con-
cepts already introduced with an example; a discussion on the
advantages and disadvantages of the approach is presented as
well. Section 6 analyzes some alternative approaches to the
problem under study. Finally, Sect. 7 states the conclusions
and future work.

2 Background
2.1 An overview of traceability

A trace is defined in the IEEE Standard Glossary of Software
Engineering Terminology [40] as “a relationship between
two or more products of the development process”, and trace-
ability as

1. The degree to which a relationship can be established
between two or more products of the development pro-
cess, especially products having a predecessor—successor
or master-subordinate relationship to one another.

2. The degree to which each element in a software develop-
ment product establishes its reason for existing.

The most-referenced traceability definition in literature is
provided by Gotel and Finkelstein in [36, pp. 4] as the abil-
ity to describe and follow the life of a requirement, in both
forward and backward direction, ideally through the whole
system life cycle (i.e., from its origins, through its develop-
ment and specification, to its subsequent deployment and use,
and through periods of on-going refinement and iteration in
any of these phases).

Traceability provides an essential support to produce trust-
worthy and high-quality software systems, as in the case
of embedded systems with critical components. Verification
and validation (V&V), release management or change impact
analysis play an important role to achieve the required level
of quality. The relevance of traceability for these areas has
already been outlined in [21, pp. 105-109]. Traceability is
also fundamental to implement model driven architecture
and, closely related, round trip-engineering [11].

Egyed and Grunbacher mention in [25] some important
goals of requirements traceability which are: to facilitate
communication, to support integration of changes, to pre-
serve design knowledge, to assure quality and to prevent
misunderstandings. RT is also crucial to establish and

maintain consistency between heterogeneous models used
throughout the system development lifecycle.

Numerous techniques have been used for providing RT,
and they differ in the quantity and diversity of information
they can trace, the number of interconnections they can con-
trol between information, and to the extent to which they can
maintain RT when faced with changes to requirements [36].
Some examples are as follows:

Cross referencing schemes [31]
RT matrices [44,59]
Graph-based representation [60]
Keyphrase dependencies [43]

— Hypertext [45]

Integration documents [47]

Many commercial tools and research products support RT,
primarily because they embody manual or automated forms
of the above techniques. Some examples of research tools are
detailed in [14,16,36,44,51,58]. The commercial tools most
used are IBM Rational Rose XDE (for model-driven engi-
neering users), IBM Rational RequisitePro and IBM Tele-
logic DOORS [5, pp. 4].

Different traceability models such as [4,7,33,50,54,61,
68,69] are available in literature. However, a number of
challenges such as link semantics, traceability methods and
tools, traceability process models, cost-benefit analysis, or
measurement and benchmarking, are still to be effectively
tackled. The “Center of Excellence for Traceability” in
the document Problem Statements and Grand Challenges
in Traceability (COET-GCT-06-01) [6], summarizes all the
remaining challenges.

2.2 Agile versus traditional from the traceability perspective

The differences between agile and traditional development
process models (such as waterfall or lineal models) are not
only in the way processes are performed, but also in the
artifacts produced as process outputs. TDD and SDD con-
sider writing tests as part of a requirements/design activity,
in which a test specifies the code behavior. In such situations,
the traceability activity requires linking test to code, and not
the opposite, indicating that the code realizes and/or satisfies
a test, which also acts as a user or system requirement. As
a consequence, many of the existing traceability models are
able to provide very limited support to some agile develop-
ment processes, as TDD and SDD. See Fig. 1 which shows
the TDD and SDD life cycle model for developing systems.
Here the Requirements Analysis stage is performed during
the Testing stage: test acts as the system requirements. In
more traditional development models as the waterfall life
cycle, the Requirements Specification Document is funda-
mental to start the design and code of the underlying system.

@ Springer

56

A. Espinoza, J. Garbajosa

Fig. 1 TDD and SDD
development life cycle model,
compared to a traditional life
cycle model

Requirements
Analysis
(Req.Document)

Testing
(unit, integration
tests)

Design Code

Waterfall Software Development Life-Cycle

Storytests as Business

Requirements

Design

An issue to take into account is, that according to [17]
every project needs its own personalized methodology, based
on non-technology characteristics such as team size, geo-
graphic separation, project criticality, and project priorities.
Many of the available traceability models, as it will be dis-
cussed in this paper, are monolithic and their adaptation to
individual project needs is very limited.

Following [12] it is strongly recommended to implement
a traceability practice in agile projects to prevent problems
due to the lack of a requirements specification. However,
current traceability approaches are based precisely on a com-
plete requirements specification document. As an example,
the acquisition of traces between requirements and design as
in [10,13,22,63], or the automation of traceability practices
asin[15,16,23,48]. Thus, the need to provide a new and spe-
cific approach for traceability in agile processes seems to be
a fundamental issue. Moreover, traceability models must be
able to support the acquisition of links between artifacts, for
which links semantics should be adapted to support an agile
rather than a traditional development. As it was mentioned in
Sect. 1, a link from a requirement to an acceptance test does
not relate the same type of artifacts, than a link from a user
story to a test.

Another issue to consider is granularity. A user story has a
non-formally defined structure. It might happen that, eventu-
ally, a user story could be mapped into several requirements.
Therefore a lower granularity items such as tests, become
essential to support accountability of development decisions.
This creates a new situation with respect to traditional pro-
cesses.

Additionally, another issue to consider is regarding the
security over the traceability information. Traditional devel-
opment processes are performed basically by software engi-
neers. Agile processes are performed by practitioners that are

@ Springer

Testing

Code tested by
Storytests

Code

TDD and SDD Development Life-Cycle

not only software engineers. In fact, user story tests may be
developed, executed and assessed by customers with business
expertise as described in [55, pp. 3] and [12, pp. 3]. This cre-
ates a number of new situations that have to do with process
performance and security. Roles have to be a fundamental
part of the traceability implementation.

A conclusion of this analysis, pointed out in [29,30], is that
traceability support for agile development practices can be
improved taking into account at least three modeling issues.
The first is that the traceability models must support user-
definable traceability types. Link semantics must function as
a potential tool to strongly support the development tasks
that extensively use traceability data. Methodologies must
change according to new challenges and technology changes,
as [18] indicates; traceability models and practices, that are
part of this methodology, accordingly. The second issue is
user-definable roles. Role information is more relevant in
agile processes than in traditional processes, due to some
stakeholders perform uncommon tasks and they must be exe-
cuted following a strict and secure plan. The third issue is
user-definable linkage rules. This concerns the automation
topic: links must be created automatically whenever possi-
ble. This is essential for agility. Therefore user-definable link-
age rules have to be introduced as a powerful mechanism to
improve automation and agility. User-definable linkage rules
can be supported by an improved semantics of the link types,
and roles.

3 Traceability requirements and agile processes
3.1 Traceability types for agile practices

A great majority of the existing traceability models and meth-
odologies, such as [10,13,38,49,63], assume that one of

Agile methods through traceability

57

the outputs of the development process is a formally struc-
tured requirements specification. Even more, the require-
ments specification would be an early output of the process.
Current traceability approaches do not consider that require-
ments may be expressed in terms of user stories or tests,
as it is used in agile approaches such as TDD and SDD.
Therefore, existing traceability approaches do not contem-
plate tracing a test acting as a requirement, or a user story
to a code item. One way to cope with this fact is that the
traceability model, whichever it is, supports user-definable
traceability link types, instead of providing merely a set of
pre-defined types. Link types would be defined according to
project needs. The traceability model should be capable of
being customized, since each project will have its own char-
acteristics according to [17].

To be really useful for the agile software development
process, traceability types must be able to relate any artifact
independently of the structure type and granularity. It must
be also considered that requirements artifacts could be sub-
jected to iterations, and described in an unusual way from
the point of view of the traditional development approaches.
That is the case of the FIT language [20] used by custom-
ers in TDD and SDD, to define tests that play the role of
user requirements. Traceability types must be featured by a
strong semantics; this way, testing techniques may become
more accurate, reliable and faster.

To be both useful and usable, a traceability system relies,
to a great extent, on a methodical trace acquisition and main-
tenance process. Trace acquisition and maintenance are also
essential for getting a good level of automation. User-defin-
able traceability types, as opposed to merely pre-defined
types, greatly facilitate methodical trace acquisition and
maintenance processes, because of the strong semantics they
provide. At present, some approaches manage to automate
a large number of traceability tasks, but they do not solve
the issue under discussion, since they use mainly natural lan-
guage processing, or information retrieval techniques, as in
[13,15,25,24,66,70,71].

3.2 Traceability roles for agile practices

How stakeholders are involved in agile processes is not the
same as in traditional processes; end user involvement is def-
initely greater in agile. For instance, in SDD the on-site stake-
holders may act as a test developers and assessors.

It is the on-site customer who is responsible for defining
and checking the acceptance tests for each user story, for
example with FIT [37,52,55]. Based on this situation, the
customer selects the user stories and allocates them to the
right releases. This is an uncommon scenario in traditional
development processes.

Agile processes will also require increasing security issues
on trace information with respect to traditional development

processes. This is because some roles, not necessarily tech-
nically skilled, will be performing activities that are tradi-
tionally assigned to technically skilled roles. For instance,
during a release planning meeting the on-site customer may
be supported by all success-critical stakeholders from the
customer side to refine the high-level requirements devel-
oped in the project planning meeting into lower granularity
and more measurable statements [37]. The on-site customer
re-checks the completeness, consistency, and reliability of
this document. These activities are traditionally assigned to
the analyst role. In TDD or SDD, the system analyst is fre-
quently eliminated as an explicit role, and the activities per-
formed by the analyst are spread across other roles, such as
programmers and testers. Thus, since several non-technical
skilled stakeholders may access and modify the traceability
information, it is fundamental to monitor it, and not only to
monitor the system artifact changes, as usually happens in
configuration management strategies.

Therefore, for agile scenarios, traceability models must
support the definition of user-definable roles. Each role will
be able to perform system development activities adapted for
agile practices, such as the on-site stakeholder performing
development activities.

3.3 Linkage rules for automation

Traceability is considered an important tool to build high-
quality systems using agile development processes [12].
However, although some techniques for generating and val-
idating requirements traceability are available, in practice,
creating and maintaining traces are often labour-intensive
and complex. Lago et al. in [46] assure that it is very expen-
sive to maintain accurate traceability information similarly
to the more general problem of software documentation.
If traceability links are kept manually, they are simply not
updated or just forgotten as soon as the development dead-
line approaches. This results in incomplete trace informa-
tion that cannot assist engineers with real-world problems
[25]. This topic is fundamental in agile processes for which
it is important to reduce effort during the traces acquisition
and maintenance process to empower agile software devel-
opment.

There are several approaches to automate traceability link
acquisition. To mention some, the authors of [67] demon-
strate the ability to automate traceability relations generation
at reasonable levels of recall and precision. In [13] syntac-
tic analysis of text documents written in natural language is
used to manage traceability links; these links are between
the initial software requirements and the formal object rep-
resentations resulting from the modeling processes. Refer-
ence [25] focuses on automatically generating dependency
links between requirements, design artifacts, test cases and
source code. These approaches offer an excellent level of

@ Springer

58

A. Espinoza, J. Garbajosa

automation; however, they propose techniques to generate
links between pre-defined development stages. As a result, a
traditional life cycle model with traditional software outputs
is assumed, and this is not the proper scenario for applying
agile development processes. As it was discussed in Sect. 2.2,
in TDD or SDD early writing of acceptance tests works actu-
ally as a requirements-engineering technique [52]. It is the
opposite to what happens in a traditional life cycle, where
requirements specifications are clearly different from tests
as described in ISO/IEC 12207:2008 [41], and discussed in
Sect. 1.

Current link acquisition approaches, then, have not been
devised to support linking an artifact that can be consid-
ered as a requirements specification, and at the same time a
test. Therefore, the concept of “user-definable linkage rule”
appears to be a fundamental part of a traceability model. The
concept specifies the rule or logics to create links between
an origin (source) artifact type and a destination (target) arti-
fact type. A lack of linkage rules will prevent to achieve the
full automation level in traceability model implementation,
deployment and management. On the contrary, linkage rules
will facilitate the automation of traceability tasks, particu-
larly link generation and maintenance, as in agile methods.

4 An overview of TmM metamodel for traceability
methodologies definition

Section 3 Traceability Requirements and Agile Processes,
identifies three issues where improvements in traceability
models are required to support agile processes effectively:
user-definable traceability types, user-definable roles, and
user-definable linkage rules. They will boost agility through
trace acquisition.

This section introduces a traceability metamodel called
TmM (Traceability metamodel for methodology definition),
introduced in [27], from which it is possible to develop pro-
ject-specific traceability methodologies. TmM supports the
three issues mentioned.

Next subsections introduce briefly the modeling principles
used to define TmM. The objective is to provide the neces-
sary background so that the reader can understand that, using
the TmM modeling features, this traceability metamodel can
widely provide a solution approach to the traceability require-
ments described in Sect. 3. The advantages of modeling these
aspects explicitly, compared to other existing approaches
which do not provide customized traceability types, roles
and support for linkage rules, are discussed as well.

4.1 TmM extended from SEMDM

TmM has been extended from the Software Engineer-
ing Metamodel for Development Methodologies (SEMDM)

@ Springer

g instances
o
g > Metamodel
®
=
Method Engineer
Instance_of Represents
follows
el
2
| Tz Methodology
s S

Developer

Enactment_of @ Represents

Uses colected data
——————— Enacted Methodology J

Project Manager

Fig. 2 Three modeling abstraction levels corresponding to the meta-
model applicability to three expertise domains (based on [39,34, Fig. 1])

defined in ISO/IEC 24744:2007 [42]. SEMDM is a com-
prehensive metamodel for defining methodologies and it has
been designed to support all kind of methodological concepts
and it is independent from a specific life cycle or method.
Hence, this feature assures that TmM can widely support
agile methodologies. The ISO-24744:2007 metamodel is
already backed on the MOF and UML architecture and nota-
tion, which warranties standardization in the metamodeling
process which was followed to define the TmM metamodel
(see [34], Sects. 2 and 4).

SEMDM makes use of a new approach to define meth-
odologies based on three-layer modelling hierarchy and the
concept of powertype patterns. Figure 2 shows the three-layer
modeling hierarchy managed in SEMDM: metamodel layer,
in which the methodology concepts are defined; methodol-
ogy layer, in which a methodology is adapted to the project
needs, and the project layer, in which the instantiated meth-
odology is used for a given project. A detailed definition of
these three abstraction levels for methodologies can be found
in [34,39].

The three-layer modeling hierarchy supports modeling
traceability concepts, at the three previous expertise levels.
Power-type patterns principle is the tool which makes pos-
sible to model these traceability concepts through the three-
layer modeling hierarchy. Actually, SEMDM provides meth-
odology concepts as powertype patterns and classes.

Powertype patterns is a modelling technique [34,35], to
represent a concept in a model with a duality. For instance,
to model the test case concept, a powertype pattern defines
the TestCaseKind class which is used to define all the test
cases types, which can be defined in a software development
project, such as unit test cases or system test cases. Also, the
pattern defines the TestCase class which is used to define the

Agile methods through traceability

59

Fig. 3 TestCase powertype

pattern
_ TestCase TestCaseKind
8 . -Tes_tingArtifacts Events
2 y-Defines— | |-Action Abstraction _|-Description
§ | EVents oo -TestingLanguage
o Meinod i TestingArtfactsT
) . K
il Engineer Result estingArtifactsTypes
Fig. 4 Traceability N ey o
methodology, represented with Template Conglomerate SEMDM I
e | Resource I
the TraceabilityConglomerate | ! -Name Classes
class \ -Description I
! e T_ ____________ _ 7
\
<<abstraction> TraceabilityConglomerate
‘ ’—<> <>—|
|
[—— TraceabilityTemplate TraceabilityResource
I ?
|1
| | |
| | | TraceabilityWorkUnitKind TraceabilityWorkProductKind TraceabilityProducerKind
|l
| | | |
| Feabstraction>> __iiractions> <<abstraction>> <<abstrhction>>
| I |
|
[A\ v V.
o TraceabilityWorkUnit TraceabilityWorkProduct TraceabilityProducer
|1
X g
! : TraceabilitySchema
[N
|1
I - i
L TraceabilityEndeavourElement
|
0 \
! [
SEMDM
: L - - - - - - - - - - >| EndeavourElement Classes |
I
|

specific test cases that are used in the project. Figure 3 shows
the TestCase powertype pattern.

Hence, each TmM diagram will contain powertype pat-
terns and classes, and diagrams will follow the same graph-
ical conventions than SEMDM defines. Classes in the top
correspond to the methodology definition, and classes in the
bottom correspond to the project development. In the dia-
grams those classes that are related with the abstraction rela-
tionship are actually, the powertype patterns of this paper’s
traceability proposal. The other classes that do not have the
abstraction relationship, are typical classes of a class dia-
gram.

The instantiation process which describes how to use top
and bottom classes through the layers, to generate project-
specific traceability methodologies, is detailed in Sect. 4.4.

According to the SEMDM extension rules, the Conglom-
erate class which “is a collection of related methodology
elements that can be reused in different methodological
contexts” [42] p. 19. Then, the TmM root class is Traceabili-
tyConglomerate, corresponding to all the items of a traceabil-
ity methodology (see Fig. 4). All TmM classes are actually
derived from a SEMDM’s classes, to be compliant with the
standard. This can be consulted in [26], but omitted here for
space reasons.

4.2 Traceability metamodel
The TmM metamodel provides the baseline for the system-

atic and formal definition of a project-specific traceabil-
ity methodology, and includes three aspects: the process

@ Springer

60

A. Espinoza, J. Garbajosa

to follow, the artifacts to use and produce, and the people
involved [27]. TmM covers the whole process lifecycle, and
does not enforce any process model, either classical or agile.

TmM includes a core set of traceability items, from which
a project-specific traceability methodology can be defined.
This core set consists of traceability project templates, and
resources. Templates are items that once they have been
defined in the methodology, they must be instantiated in the
projectdevelopment, such as traceability types which must be
instantiated to create links. Resources are items that once they
are defined in the methodology, they are used exactly as their
definition, such as traceability metrics. In TmM the templates
are represented by powertype patterns and the resources are
represented by classes. Figure 4 shows these concepts in the
top. The templates and resources represent common trace-
ability issues which were detected from the traceability state
of the art analysis as it is stated in [27].

This minimal core set supports the creation of traceabil-
ity methodologies for any project features types, such as
the application domain, project size, budget and particular
requirements of the development process. The reason is that
TmM is extended from SEMDM metamodel, which actually
does not determine any development process model, meth-
odology or life cycle. However, some other traceability items
can be added to the core set thanks to the extension mecha-
nisms provided by the definition of 7mM, according to the
project variations and specificities. TmM also includes the
modeling of the interaction between the core items. Addi-
tionally, TmM includes the modeling for its process usage:

1. Project-specific traceability methodology definition
2. Project-specific traceability methodology enactment.

4.3 TmM core: templates and resources

The TmM templates, which are represented with powertype
patterns in Fig. 4, are: traceability work products (marker
Twp), work units (marker Twu), and producers (marker Tp).
Each template category is subdivided in other patterns, to
get the core set of traceability items from which will be
defined the project-specific traceability methodologies. In
Fig. 5, in terms of powertype patterns, work products are rep-
resented with the TraceabilityWorkProduct pattern, which is
specialized into the TraceabilityLink, LinkageRule, and
TraceabilitySpecificationDocument powertype patterns. The
traceability producer is represented by the TraceabilityPro-
ducer powertype pattern, and the traceability role concept is
represented by the TraceabilityRole powertype pattern. The
TraceabilityWorkUnit pattern is a composition of traceability
tasks, which are represented with the TracingTask powertype
pattern. Note that the attributes for classes in the method level
(top) are different, from the attributes in the project level (bot-
tom).

@ Springer

In diagram of Fig. 5 again, classes in top are intended to
support the methodology definition, and classes in bottom
support the methodology usage. For instance, the Traceabil-
ityTypeKind class has attributes to support the definition of
traceability types before any link is created. Attributes such as
the link description, the rule to create the link of such type, or
the roles authorized to make changes to links of such type, are
presented in this class. Whereas, the TraceabilityType class
has attributes to manage the link during the software devel-
opment, such as the identification of the source and target
artifacts, indication whether the link is active, the version of
the link or the dependency level between the linked artifacts
(link weight).

The TmM resources, which are created during the method-
ology definition to support the traceability implementation
during the project development, are represented as classes
in Fig. 6, which are: GranuralityLevel, TraceabilityWeight,
TraceabilityMetric and ArtifactTracingGuideline.

TraceabilityLink powertype pattern represents all poten-
tial traceability link types to create links, and that might be
defined in the traceability methodology. Types such as task,
resource or goal dependency between two system artifacts, as
well as, evolution, satisfaction or rationale types, to mention
some. The traceability type definition will be according to the
project characteristics, for instance trustworthy systems need
to make emphasis on different variations of the dependency
and rationale traceability types, to maintain a high level of
system quality assurance.

Similarly, the LinkageRule pattern expresses all possible
linkage rules that might be defined to automate the trace-
ability links acquisition process. A linkage rule expresses a
customized linkage rule, with a specific logics to create links
of a given traceability type previously defined in the custom-
ized traceability methodology. The TraceabilityRole pattern
expresses all the roles that control the traceability informa-
tion access. Traceability data views that are built based on
traces information, are presented to the stakeholders depend-
ing on theirroles. The TracingTask pattern expresses the tasks
to manage traceability links. A traceability task causes an
action, in this case the LinkUpdating, to create, delete or
update traces.

The TraceabilitySpecificationDocument pattern represent
the traceability document, which specifies the traceabil-
ity methodology information. This includes traceability
resources according to project features such as granular-
ity levels of the artifacts to link, weights to indicate the
dependency level between two traced artifacts, traceability
metrics, or the guidelines to indicate the right artifacts to
link.

The instantiation process is detailed in the next section,
and describes how to use the top and bottom classes through
the three-layer hierarchy of TmM, to generate traceability
methodologies.

Agile methods through traceability

61

ITraceabilityCongIomerate I
[]

TraceabilityTemplate

“m. B’

-TargetArtifact_ID
-SourceGranularity_Level

-TargetGranularity_Level
-LinkWeight
-ActivityStatus = true

-BaselineNumber]
-ConfigurationNumber
i-inkVersioning

TraceabilityWorkPr oduct ‘

|
- - - - TraceablityWorkProductKind| | 1| TraceabilityProducerKind | | | TraceabilityWorkUnitKind
[. ' = ! ol Il |
<<abstraction>> [Pyl |
I ’ ‘ ‘ For! [
|| TraceabilityLinkKind i ificati i i ing| ! 1! ili i
| = TraceabilitySpecificationDocumentKind LinkageRuleKind u ‘TraceablhtyRoIeKlnd : TracingTaskKind
: -Eescrlptlon -Purpose | | 1| Description
-Purpose . -RuleLogics I |-Rights !
I [-MinimalTypeWeight : ! I 1 ' purpose [[
| |-AuthorizedRole | | oyl T | |
| |-LinkageRule) <<abstraction>> | | <<abstraction>>
| [@riority SEEEEES : I l <7.abstraction>>‘ : i
I : : ! <kabstractionsb
<<abstraction>> | [I I
' i [| [\ [
I TraceabilityLink v v I Vi v
I _-SourceArtifact 1D TraceabilitySpecificationDocument LinkageRule | TraceabilityRole TracingTask
| 0 |
| |
| |
| |
| |
| |
| |
| |
|

s EYESY
[]
" |
o _| TraceabilitySchema

TraceabilityWorkUnit

% TraceabilityProducer
|

|
|
|
|
|
|
|
|
|
|
|
|
<<abstraction>> |
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T
\

|
|
|
|
|
|
|
|
|
|
|
|
|
|
T
\

Fig. 5 TmM core (part I): traceability templates represented with powertype patterns

Fig. 6 TmM core (part II):
traceability resources
represented with classes

TraceabilityConglomerate

0

TraceabilityResource

JAN
I

[

[[|

GranularityLevel

ArtifactTracingGuideline TraceabilityMetric TraceabilityWeight

-Description
-Value

-Description -Description -Description
-Guideline -Metric -Value
-Constraints

4.4 TmM usage process

This section briefly introduces the process followed to instan-
tiate the TmM metamodel patterns, to define the traceability
methodology items. Since TmM is a SEMDM extension,
the process followed to instantiate the TmM patterns will be
aligned with the SEMDM instantiation process.

Figure 7 structures the usage process for the TmM
approach, in three-layer abstraction levels. In the metamodel
layer the TmM metamodel is defined, by the method engi-
neer. Here the project items for traceability are modelled
using powertype patterns (marker A, Fig. 7). The powertype
patterns are: work products identified with Twp, work units
identified with Twu, and producers identified with Tp.

In the methodology layer, several stakeholders participate
in the project features definition (marker B, Fig. 7), which

is made according to the bussines requirements stated by the
customer. The product features determine which traceabil-
ity work products will be used to produce the final system.
Hence, based on the project features, the method engineer
defines the traceability items required to support the system
development (process 1, Fig. 7). Additionally, the traceability
metamodel indicates how the traceability items interact with
the system items, during the software development effort.
Here, the outcome of the project-specific traceability meth-
odology definition process will be the specific items to imple-
ment traceability in the project (marker C, Fig. 7).

In the project layer, the developer uses the traceability
methodology items previously defined (process 2, Fig. 7).
Here, several traceability objects are produced (marker D,
Fig. 7). For instance the links will be created, and data are
used to produce views to present the traceability information

@ Springer

A. Espinoza, J. Garbajosa

TmM Core

Powertypes Patterns and Resources
L™

‘Twp‘ ‘Twu‘

62
N - o
5 ore Patterns Definition
o
o
E &
8
2 Method
Engineer

Methodology Items

Definition . -
,,,,,,,,,,,,,,,,,,,,,,,,,,, y Project Requirements Project-specific
& (application domain, Traceability
,,,,,,,,,,,,,,,,,,,,,, , development process, Methodology
3 Customer | methodology, etc) Definition
R} i
[o) :
°©
2
% Developer . Traceability Methodology ltems
o Traceability
Traces Types Traceability Roles Specification
Method Document
Engineer
Methodology
enactment _ 3
Projec-specific
Traceability
Methodology Items
Instantiation
'S Developer
2,
[
o

Traceability Work Products for the Project
Links Traceability Trac_eablllty
Measurements Views
Work | e > contribution — > Data flow
Product

Fig. 7 TmM usage process

to the stakeholders, according to their roles defined in the
project-specific traceability methodology. Moreover, some
traceability measurements are implemented to collect metrics
which are used to check for the links data consistency.

Note that, as the TmM metamodel is a set of power-
type patterns and classes, then there is no constraint to any
development software life cycle or methodology. Hence,
TmM widely supports the creation of the specific traceability
methodology, for an agile method. Even more, the TmM core
set of patterns fulfills the requirements stated in Sect. 3 that
were claimed as fundamental in any traceability model to
effectively boost agility. The TraceabilityLink pattern sup-
ports to customize the traceability types for a project; the
LinkageRule patterns is the platform which a priory restricts
to define the logics or rule to create links for customized

@ Springer

traceability types; and finally the TraceabilityRole patterns
restricts, during the roles definition, the rights that the stake-
holders can have, even before starting the project.

5 Case study

This case study discusses how some of the features provided
by TmM can significantly improve the support provided by
traceability models to agile methods, which are focused on
testing. A strong testing practice is essential if one is getting
on board on agile processes, this is the case of TDD and SDD
which take advantage of several testing techniques to build
systems. TDD and SDD use FIT, a frequently used language
to define functional requirements as tests [52], or the use
of business requirements as storytests [55]. This case study

Agile methods through traceability

63

particularly is centered on SDD and presents how TmM is
used to systematically create a traceability methodology with
those features described in Sect. 3.

5.1 TraceabilityLink instantiation

Storytests are an alternative to detailed requirements
[55, p. 3]. The system functionality expressed with a sto-
rytest is allocated into code components, related by traces
indicating that such storytest zests those components. This is
sufficient to perform testing through the story tests. However,
there is a lack of traces indicating degrees of satisfaction of
the storytest understood as a requirement.

Storytests help developers drive the overall, iterative
implementation of the new functionality. Developers take a
storytest as the starting point for their next piece of work,
and use TDD when they drive changes in the application
code [55]. However, if impact analysis for a change in a
storytest is performed, the lack of specific traces makes the
impact estimation more difficult. There are no specific traces
which indicate which components realize or satisfy a given
storytest, seen as a requirement. As a result, impact estima-
tion becomes an exhaustive manual task. Even more, one
of the SDD challenges is to keep storytests consistent with
the underlying application code’s structure and naming [55,
pg. 8]. Then satisfaction traces, and not only test traces, are
strongly necessary, and a traceability type with agile fea-
tures must be defined to adequately support SDD. The aim is
to make the change impact estimation task faster and more
accurate.

With this objective, the traceability type called satis-
fies_tests is defined using the TraceabilityLink pattern, to
relate code components to storytest bidirectionally. Thus, the
satisfies_tests type has the following semantics: on the one
hand, the component-storytest path indicates that the under-
lying code component satisfies the test seen as requirement.
On the other hand, the storytest-component path indicates
that the storytest tests the underlying code component.

The objective of a traditional fest type is different; a link
would simply indicate is_tested_by or tests. Hence, using a
relation of the satisfies_tests type it will be possible to relate
a code item with a test item, having two kinds of relation-
ships at the same time: satisfies and is_tested_by. A problem
is evident when a storytest is related to the underlying com-
ponents which realize it, using only the traces of the test type:
the impact must be estimated following only the fest traces.
This restricts the use of satisfaction degrees to indicate to
what extent a code component satisfies the given storytest.
Then, estimations about the coverage for the storytests will
be impossible to make.

Figure 8 shows the satisfies_tests types already instanti-
ated from the TraceabilityLink pattern (marker A, metamodel
layer). The satisfies_tests type is an item of the generated

traceability methodology (marker 1, method layer). From
the satisfies_tests type, traceability links are created to relate
code components to storytests at the project layer (marker D,
project layer).

Current traceability methodologies, as those indicated in
Sects. 2.1 and 6, could not support effectively the traceabil-
ity for SDD. None of them consider to link a test as it were
a requirement, to the underlying code which realize it. All
of them, foster the use of requirements properly agreed and
stated in a Requirements Analysis stage.

5.2 TraceabilityRole pattern instantiation

In SDD, a FIT-style specification can be regarded as both (1)
a requirement and (2) a test, and it is frequently executed,
in principle, by programmers, but written by the on-site cus-
tomers. However, the requirements and tests will probably
evolve while the system is developed. If continuous inte-
gration and rigorous testing are practiced, FIT-style require-
ments should be consistent with the produced code, through
traceability support. Otherwise, the build will fail [52]. In
this dynamic context, the on-site customer who writes and
checks storytests in FIT language must be capable of modi-
fying traces between a requirement and the refined require-
ments items, allocated in user-stories. In this sense, on-site
stakeholders are considered actual developers, who are per-
forming uncommon tasks in traditional development.
Similarly, code is continuously modified by programmers
who do not know how to modify the storytests, due to these
one are high-level requirements created by customers. Then,
aprocess goal must be necessary to keep consistency between
FIT-style specifications and code. With this aim in mind, the
SDD_tester role is defined as the person responsible for writ-
ing, modifying, and checking storytests, and for refining them
into fine-grained story-tests. This role can also be granted
with the rights to access and modify the traces between story-
tests, and then, producers with this role will be the only people
responsible for modifying the links between story-tests.
Therefore, the SDD_tester role must be defined as
part of the traceability methodology. The SDD_tester role
definition enables to control the changes throughout the
traceability implementation, by limiting the actions the cus-
tomer can take over only the traces between storytests. Then,
the security over the rest of the traceability items is increased,
and hence, the system information consistency is improved.
Currently, the change control for system artifacts and
links, is managed by a requirements management or a change
management tool. However, those tools have pre-defined
traceability types and roles and they do not offer facilities to
create new roles or types. It seems obvious just to add rights
to the customer role to modify specific storytests, but that it is
unpractical and time consuming. Then, the SDD_tester role

@ Springer

64

A. Espinoza, J. Garbajosa

Pattern

Selection TraceabilityLinkKind
[0 -Description
-8 -Purpose
S T > -MinimalTypeWeight |
o -AuthorizedRole
O Method -LinkageRule
= Engineer -Priority

——————————————————————————— -TargetGranularity_Level

TmM Core TraceabilityLink
-SourceAtrtifact
-TargetArtifact
Abstraction -SourceGranularity_Level

-BaselineNumber
-ConfigurationNumber

Instance of

-LinkVersioning
T

Methodology

Traceability Methodology

Items Definition

satisfies tests : TraceabilityLinkKind

Methodology

Description = Indicates that code satisfies the requirements stated in the storytest, and storytest tests the code.
Purpose = To make the impact estimation task for changes, more accurate
MinimalTypeWeight = 1 / code class number which implement the storytest

_tests

Met_hOd AuthorizedRole = SDD_tester
Engineer LinkageRule = satisfies_tests_rule
Priority = High
Instance of
Project Items B Traceability Work Products of the Project

instantiation
ST 6 : satisfies tests

ST 7: satisfies tests

SourceAtrtifact = ID_22
TargetArtifact = ID_26

Project

& -------------- >

Developer BaselineNumber = 2.0

ConfigurationNumber = 1.4
LinkVersioning = 1.0

SourceGranularity_Level = fine (class method)
TargetGranularity_Level = coarse (phrase in NL)

SourceAtrtifact = ID_25

TargetArtifact = ID_26

SourceGranularity_Level = fine (class method)
TargetGranularity_Level = coarse (phrase in NL)
BaselineNumber = 2.0

ConfigurationNumber = 1.5

LinkVersioning = 1.0

Fig. 8 Instantiating the the TraceabilityLink powertype pattern

is arequired issue in a traceability methodology to adequately
support SDD.

In terms of the TmM metamodel, subsection 4.3 intro-
duces the TraceabilityRole pattern to define the applicable
roles for the traceability activities in a project. Figure 9
shows how to use the TraceabilityRole pattern to define the
SDD_tester role, as follows:

Figure 9 shows the SDD_tester role instantiated from
the TraceabilityRole pattern (marker A, metamodel layer).
The SDD_tester is an item of the generated traceability
methodology (marker 1, method layer). Particular roles to
manage different storytest types can be defined, such as the
sad-pad_Storytest_tester role (marker D, project layer). This
specific role is defined to edit traces between sad-path work-
flow storytests. This storytest type accounts for an action’s
failure, such as when a user violates business constraints. In
[55, pg. 73] describes sad-path workflow storytests and other
storytests types in detail.

5.3 LinkageRule pattern instantiation
Storytests have a meaning duality: requirements and tests;

conversely, code items can include interfaces, components,
classes or even processes. A linkage rule specifies con-

@ Springer

ditional rules for artifacts relations in an automatic way,
indicating the potential artifact types to be linked. Thus,
the satisfies_tests_Rule has the logics to support the satis-
fies_tests links acquisition. The rule follows this logic: IF
class, method, component realizes a storytest THEN link the
item to the storytest USING the satisfies_tests type. It must
be pointed out that a storytest could have several code items
which realize it, and a code item could totally or partially
realize a functionality required by a unique storytest.

Even though this rule might look like a simple conditional
statement, once implemented in an automated tool or envi-
ronment, it will reduce effort during the acquisition link task.
This is because the rule works as a constraint for the traces
between storytests and code using only the satisfies_tests
type. Then, the rule prevents the possibility of relating sto-
rytests and code through the links of the fests type.

If is_tested_by links were exclusively used to relate a
storytest to the code that realizes it, change impact effort
estimation would be a more manual and exhaustive task and,
probably, a less precise analysis. In this case no indication
about the degree of satisfaction offered by the underlying
code would be provided. Other useful information for effort
estimation can not be obtained, such as the granularity levels
of the artifacts linked and the dependency degree between

Project’s ltems E

instantiation

Traceability Work Products of the Project

sathpad StorytestTester : satisfies tests Rule

f ?l »
WorkProduct_subtypes = Sad-path storytests, class methods

Developer

Agile methods through traceability 65
Pattern
— X TmM Core
[Selection TraceabilityRoleKind =
3 “Description Abstraction TraceabilityRole
£ ISR N——— N -Purpose oo ooToooT oo T oTo oo >
o -Rights
()
s EMet.hOd VAN
ngineer
Instance of
Py Methodology Traceability Methodology ltems
5 Ko ,
Items Definition - :
% SDD_tester : TraceabilityRoleKind SDD_tester
O &' """ ¥ Description = Responsible to write, modify, check and perform storytests, even edit traces between storytests
8 Purpose = To limit the actions the customer can take to only permit modifying traces between storytests.
o Method Rights = Access, modify, create, delete.
=l Engineer
Instance of
Project’s ltems E
5 instantiation Traceability Work Products of the Project
GO—J. - sathpad StorytestTester : SDD_tester business-constraint StorytestTester : SDD_tester
o ? ______________________
o
Developer
Fig. 9 Instantiating the TraceabilityRole powertype pattern
Pattern TmM Core
[Selection LinkageRuleKind -
_8 -Description Abstraction LinkageRule
= & -Rule 0 mm—m————--———————- >-WorkProduct_subtypes
_'g -WorkProductTypes
Tl Method VAN
= Engineer
Instance of
Methodology
=3 items Definition il
8‘: | Traceability Methodology E
fe) [- satisfies tests Rule : LinkageRuleKind satis I;SI_ ests_
-8 Description = To restrict linking storytests to the code which realizes it ONLY using the satisfies_tests type e
< Method Rule = IF class.method realizes a storytest THEN link them USING the satisfies_tests type.
&) . =
= Engineer WorkProductTypes = Class Methods, SDD storytests
Instance of
-
O
S,
[e]
S
o

Fig. 10 Instantiating the LinkageRule powertype pattern

them. Then, a rule such as satisfies_tests will ensure a cor-
rect semantics for the relationship between storytests and
code. In this sense, the linkage rules provided in TmM are,
therefore, less constrained than in other approaches, such as
the already discussed [13,15,25,24,66,70,71]. TmM widely
makes it possible the creation of specific rules for an agile-
featured project, as it is the case of SDD projects.

Figure 10 shows how to use the LinkageRule pattern,
defined in Sect. 4.3 to specify linkage rules for a pro-

ject (marker A, metamodel layer). The LinkageRule pat-
tern is used to define the satisfies_tests_rule, to create
traces between code components to storytest bidirectionally
(marker 1, method layer). The satisfies_tests_rule is an item
of the generated traceability methodology.

Particular linkage rules will be created from the satis-
fies_tests_rule, such as the sad-pad_Storytest_to_code rule
(marker D, project layer). This sub-rule relates sad-path
workflow storytests to the underlying code which realizes

@ Springer

66

A. Espinoza, J. Garbajosa

Fig. 11 A feature-oriented reference —
requirement tracing meta-model onY
based on [2, Fig. 1] and TraceabilityLinks Level{1...3}
[3, Fig. 1]
create has] Szt
FoRT Feature Operating Environment
group 1
Artifacts | source -Name
T I Domain Technology
refine | Relationship | _| Implementation Technology
| Testing Elements f

—>| Implementation Elements |

L Design Elements

them. For more details of the sad-path workflow storytest,
and other storytest types, see [55, pg. 73].

6 Related literature

Ahn and Chong in [2,3] introduce a meta-model for fea-
ture-oriented requirements tracing, shown in Fig. 11 based
on [2, Fig. 1] and on [3, Fig. 3]. They perform feature ori-
ented requirement tracing from user requirements to features,
creating the correspondings traceability links by connecting
artifacts to features. They also present an overview of a fea-
ture-oriented requirement tracing process. Some commonali-
ties can be found with the approach adopted within this paper.
Firstly, they use features with priorities, as an intermediate
item between requirements and design artifacts, to support
impact analysis. These features work as link attributes, simi-
lar to the link weight attribute of the TraceabilityLink pattern.
Secondly, they use granularity levels for implementing arti-
facts. However, even though this is an interesting approach
to support risk and value-based impact analysis, the proposal
has a limitation: the metamodel is strongly influenced by a
traditional development, in which requirements are artifacts
and have nothing to do with tests. As described in both fig-
ures, the links are restricted to relate requirements to design,
implementation and testing artifacts. It is not possible to
relate a test to code, to indicate that such code realizes require-
ments specified as a test. Thus, the metamodel instantiation to
provide traceability for agile methodologies, such as SDD or
TDD, is not supported following this approach’s metamodel.

Ramesh and Jarke [62] present traceability sub-models
specific to development stages: the requirements manage-
ment, rational, design allocation and compliance verifica-
tion models, described in Figs. 3, 4, 5 and 6, respectively
in that paper. The classification of these models presents a

@ Springer

Optional
Composed Of

Alternative

Generalization

Specialization

!

Inspection ECEITEED Change_Proposals

o

used_by
generates
>
- Compliance_Verification_Procedures I_
Test >
verified_by
Mandates based
ased_on developed| for
| Standards| | Policies| | Methods |

| System_Subsystems_Components satisfy Requirements

Fig. 12 Compliance verification submodel based on [62, Fig. 6]

clear dependency on traditional development stages; even
more, the compliance verification model, shown in Fig. 12
based on [62, Fig. 6], clearly separates the requirement arti-
facts type from the other artifacts types, referring to them
in the model as system components. In fact, the compliance
verification sub-model describes explicitly the traceability
link types as satisfy to indicate that system components
satisfy a requirement, and develop_for to indicate that a
test was designed, according to compliance verification pro-
cedures, to test a requirement. Thus, even though this is
a model frequently referenced by many researches of the
requirements engineering community, it does not support an
agile methodology which specifies a requirement as a test.
In [71], the authors present a conceptual trace model
depicted in Fig. 13 based on [71, Fig. 5], which describes
traces acquisition. This approach gives detailed guidance on
which traces should be established to support impact analysis
at a later stage. The approach defines who should establish

Agile methods through traceability

67

Fig. 13 Conceptual trace

model based on [71, Fig. 5] Change proposal

modify

derive elaborate

[| allocated of

Requirements System_subsystem_Components

traces and when, along with who should analyze traces and
how. An advantage of this approach is that it is supported by
their authoring tool: QuaTrace, which is based on the authors’
metamodel to perform traceability. The authors describe that
their approach brings about traces to be established, analyzed,
and maintained effectively and eficiently. However, the meta-
model is constrained in the sense that it relates requirements
to system components, and verification procedures explicitly
to verify such components. Requirements are never consid-
ered to be tests at the same time, as is required in some agile
processes. Again, this traceability model presents a strong
dependency on a traditional development cycle, limiting its
use in supporting agile methodologies.

All approaches analyzed fail to offer a platform to define
customized traceability methodology items, such as special
traceability link types or particular linkage rules to support
the links acquisition of such special traceability types. The
traceability types provided in those approaches are com-
pletely established and fixed, since the provided traceabil-
ity models determine what kind of traceability types can be
included in traceability implementation. They do not pro-
vide, therefore, traceability types general enough to create
customized types. This is the gap that TmM is covering.
Our approach is designed in three modeling levels, the meta-
model, methodology and enactment levels, which provide
the platform to design particular traceability types, roles and
linkage rules along with traceability resources. The trace-
ability patterns, which cover all the metamodeling levels,
are a solution to develop customized traceability methodol-
ogy items, without constraining our model to specific life
cycle, process models, or application domain. Therefore, a
traceability methodology with agile characteristics is totally
supported following a TmM instantiation.

7 Conclusion and future work

This paper has studied how some concepts in traditional and
agile processes may have different semantics. This paper jus-
tifies why traceability models should reflect the differences
between traditional and agile processes; as it is discussed,
otherwise, traceability models will be unable to effectively

‘i j‘ satisfy

depend on part of verified by

Compliance_Verification_Procedures

support agile processes. With this objective, a number of
issues that traceability models should consider are identified:
traceability links types, roles and linkage-rules. All these ele-
ments should be user-definable in traceability models. Pre-
defined elements, as it is commonly found in literature, lead
to complex models that do not really fit to real needs. To
show how this could work in a model, an emerging meta-
model for defining traceability methodologies, called TmM
is used. This metamodel specifically supports user-definable
traceability links types, roles and linkage-rules. Thanks to the
user-definable properties the support that can be provided to
agile processes stakeholders is significantly wider, as it has
been proved in a case study presented.

The case study shows that user-definable elements and
extensibility properties provided by TmM, become essential
to support issues such as the lack of a formal requirements
specification in TDD. To show how this works, TmM is used
to define a specific traceability link, role and linkage rule.
These are perfectly adapted to the used agile methods, TDD
and SDD. As it is explained in each Case Study subsection,
these specific traceability products could not be defined with
other current proposals, due to the pre-definition of the trace-
ability items in the third-party models.

Another advantage of the proposed approach is that it will
be possible to achieve a higher degree of automation. In this
sense it fosters a methodical trace acquisition and mainte-
nance process.

In conclusion, the TmM metamodel enables the definition
of a project-specific traceability methodology. This is possi-
ble because TmM clearly separates the metamodel, method-
ology and project expertise domains. This is useful for agile
processes, but not exclusively.

Future work includes improved support for agile processes
specifically for automation, together with further validation
of the TmM model. The semantics of links and linkage rules
is being further studied.

Acknowledgments This research work has been partially sponsored
by the Spanish MITyC (FLEXIITEA2 FIT-340005-2007-37), MICINN
(INNOSEP TIN2009-13849, DSDM TIN2007-00889-E) and MEC
(OVAL/PM TIN2006-14840). Special thanks to the Mexican National
Council of Science and Technology (CONACyT) for supporting this
research as part of the Doctoral Studies Financing Program.

@ Springer

68

A. Espinoza, J. Garbajosa

Open Access

This article is distributed under the terms of the Creative

Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Abrahamsson P, Warsta J, Siponen MT, Ronkainen J (2003) New
directions on agile methods: a comparative analysis. In: Pro-
ceedings of the international conference on software engineer-
ing (ICSE). IEEE Computer Society, Washington, pp 244-254.
ISBN:0-7695-1877-X

Ahn S, Chong K (2006) A feature-oriented requirements trac-
ing method: a study of cost-benefit analysis. In: Proceedings of
the international conference on hybrid information technology
(ICHIT). IEEE Computer Society, Washington. ISBN 0-7695-
2674-8. doi:10.1109/ICHIT.2006.17

Ahn S, Chong K (2007) Requirements change management on
feature-oriented requirements tracing. In: Proceedings of the inter-
national conference on computational science and its applications
(ICCSA), part 11, pp 296-307

Aizenbud-Reshef N, Nolan BT, Rubin J, Shaham-Gafni Y (2006)
Model traceability. IBM Syst J 45(3):515-526. ISSN:0018-8670
Alexander I, Robertson S, Maiden N (2005) What influences the
requirements process in industry? A report on industrial practice.
In: Proceedings of the 13th IEEE international requirements engi-
neering conference (RE0S). IEEE CS, pp 411415

Antoniol G, Berenbach B, Egyed A, Ferguson S, Maletic J, Zisman
A (2006) Problem statements and grand challenges in traceability.
Technical report COET-GCT-06-01-0.9. Center of Excellence for
Traceability, September 2006

Asuncion HU, Frangois F, Taylor RN (2007) An end-to-end indus-
trial software traceability tool. In: ESEC-FSE 2007. ACM, New
York, pp 115-124. ISBN:978-1-59593-811-4

Beck (2002) Test driven development: by example. Addison-Wes-
ley, Boston. ISBN:0321146530

Beck K, Andres C (2004) Extreme programming explained:
embrace change, 2nd edn. Addison-Wesley. ISBN:0321278658
Berenbach B, Wolf T (2007) A unified requirements model; inte-
grating features, use cases, requirements, requirements analysis
and hazard analysis. In: Proceedings of the international confer-
ence on global software engineering (ICGSE). IEEE Computer
Society, Washington, pp 197-203. ISBN:0-7695-2920-8

Brown AW (2004) Model driven architecture: principles and prac-
tice. Softw Syst Model 3(4):314-327

Cao L, Ramesh B (2008) Agile requirements engineering prac-
tices: an empirical study. IEEE Softw 25(1):60-67

Cerbah F, Euzenat J (2001) Using terminology extraction to
improve traceability from formal models to textual requirements.
Lect Notes Comput Sci 1959:115-126

Cleland-Huang J, Chang CK, Christensen M (2003) Event-based
traceability for managing evolutionary change. IEEE Trans Softw
Eng 29(9):796-810

Cleland-Huang J, Settimi R, Duan C, Zou X (2005) Utilizing sup-
porting evidence to improve dynamic requirements traceability. In:
Proceedings of the IEEE international conference on requirements
engineering (RE). IEEE Computer Society, Washington, pp 135-
144. ISBN:0-7695-2425-7

Cleland-Huang J, Berenbach B, Clark S, Settimi R, Romanova
E (2007) Best practices for automated traceability. IEEE Comput
40(6):27-35. ISSN:0018-9162

Cockburn A (2000) Selecting a project’s methodology. IEEE
Softw 17(4):64-71. ISSN:0740-7459. doi:10.1109/52.854070
Cockburn AAR (1993) The impact of object-orientation on appli-
cation development. IBM Syst J 32(3):420-444. ISSN:0018-8670

@ Springer

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31
32.

33.

34.

35.

36.

37.

. IEEE Computer Society Professional Practices Committee (2004)

Guide to the software engineering body of knowledge (SWEBOK).
IEEE

Cunningham W (2002) FIT: framework for integrated test. http://
fit.c2.com

Dahlstedt A, Persson A (2005) Requirements interdependencies:
state of the art and future challenges, chapter 5. Springer, Berlin,
pp 95-116. ISBN:10-3-540-25043-3, 13-978-3-540-25043-2
Dekhtyar A, Hayes JH, Larsen J (2007) Make the most of your time:
how should the analyst work with automated traceability tools? In:
Proceedings of the third international workshop on predictor mod-
els in software engineering (PROMISE). IEEE Computer Society,
New Delhi, p 4. ISBN:0-7695-2954-2

Duan C, Cleland-Huang J (2007) Clustering support for automated
tracing. In: Proceedings of the IEEE/ACM international confer-
ence on automated software engineering (ASE). ACM, New York,
pp 244-253. ISBN:978-1-59593-882-4

Egyed A (2004) Resolving uncertainties during trace analysis. In:
Proceedings of the ACM SIGSOFT international symposium on
foundations of software engineering (SIGSOFT FSE). ACM Press,
pp 3-12. ISBN:1-58113-855-5

Egyed A, Grunbacher P (2002) Automating requirements trace-
ability: beyond the record and replay paradigm. In: Proceedings
of the international conference on automated software engineering
(ASE). IEEE, pp 163-171

Espinoza A (2009) An advanced traceability schema as a baseline to
improve supporting life cycle processess. PhD thesis, Universidad
Politecnica de Madrid. http://oa.upm.es/2557/

Espinoza A, Garbajosa J (2008) Tackling traceability challenges
through modeling principles in methodologies underpinned by
metamodels. In: Proceedings of the CEE-SET WiP. Oficyna
Wydawnicza Politechniki Wroclawskiej, Brno, pp 41-54
Espinoza A, Garbajosa J (2008) A proposal for defining a set
of basic items for project-specific traceability methodologies. In:
Proceeding of 32nd annual IEEE software engineering work-
shop (SEW). IEEE Computer Society, Kassandra, pp 175-185.
ISBN:978-0-7695-3617-0

Espinoza A, Alarcén PP, Garbajosa J (2006) Analyzing and sys-
tematizing current traceability schemas. In: O’Conner L (ed)
Proceedings of the IEEE/NASA software engineering work-
shop (SEW). IEEE Computer Society, Columbia, pp 21-32.
ISBN:0-7695-2624-1

Espinoza-Limon A, Garbajosa J (2005) The need for a unify-
ing traceability scheme. In: Oldevik J, Aagedal J (eds) Proceed-
ings: ECMDA traceability workshop (ECMDA-TW). SINTEF
ICT, Nuremberg, pp 47-56. ISBN:82-14-03813-8

Evans MW (1989) The software factory. Wiley, New Jersey
Fitzgerald B, Hartnett G, Conboy K (2006) Customising agile
methods to software practices at intel shannon. Eur J Inf
Syst 15(2):200-213. ISSN:0960-085X. doi:10.1057/palgrave.ejis.
3000605

Fletcher J, Cleland-Huang J (2006) Softgoal traceability patterns.
In: Proceedings of the international symposium on software reli-
ability engineering (ISSRE). IEEE Computer Society, Washington,
pp 363-374. ISBN:0-7695-2684-5

Gonzalez-Perez C, Henderson-Sellers B (2006) A powertype-
based metamodelling framework. Softw Syst Model 5(1):72-90
Gonzalez-Perez C, Henderson-Sellers B (2007) Modelling soft-
ware development methodologies: a conceptual foundation. J Syst
Softw 80(11):1778-1796

Gotel OCZ, Finkelstein CW (1994) An analysis of the require-
ments traceability problem. In: Proceedings of the international
conference on requirements engineering (RE). Colorado Springs.
IEEE Computer Society Press, pp 94-102

Griinbacher P, Hofer C (2002) Complementing XP with require-
ments negotiation. In: Proceedings of the international conference

http://dx.doi.org/10.1109/ICHIT.2006.17
http://dx.doi.org/10.1109/52.854070
http://fit.c2.com
http://fit.c2.com
http://oa.upm.es/2557/
http://dx.doi.org/10.1057/palgrave.ejis.3000605
http://dx.doi.org/10.1057/palgrave.ejis.3000605

Agile methods through traceability

69

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

on eXtreme programming and agile processes in software engi-
neering (XP), Alghero, Sardinia, Italy, pp 105-108

Hayes JH, Dekhtyar A, Osborne J (2003) Improving requirements
tracing via information retrieval. In: Proceedings of the IEEE inter-
national conference on requirements engineering (RE). IEEE Com-
puter Society, Washington, p 138. ISBN:0-7695-1980-6
Henderson-Sellers B, Gonzalez-Perez C (2005) The rationale of
powertype-based metamodelling to underpin software develop-
ment methodologies. In: Proceedings: Asia-Pacific conference on
conceptual modelling (APCCM’05). Australian Computer Society,
Darlinghurst, pp 7-16. ISBN:1-920-68225-2

IEEE (1990) IEEE Std 610.12-1990 IEEE standard glossary of
software engineering terminology. Institute of Electrical and Elec-
tronics Engineers, 345 East 47th Street, New York

ISO/IEC (2008) ISO/IEC 12207:2008 systems and software engi-
neering—software life cycle processes. ISO/IEC

ISO/IEC 24744 (2007) ISO/IEC 24744:2007 software engineer-
ing—metamodel for development methodologies. ISO/IEC
Jackson J (1991) A keyphrase based traceability scheme. In: IEE
colloquium, computing and control division, professional group
CL., pp 2/1-2/4

Jane C-H, Habrat R (2007) Visual support in automated tracing. In:
Proceedings of the second international workshop on requirements
engineering visualization, 2007 (REV 2007). IEEE Computer Soci-
ety, New Delhi, p 4. ISBN:978-0-7695-3248-6

Kaindl H (1993) The missing link in requirements engineering.
ACM SIGSOFT Softw Eng Notes 18(2):30-39

Lago P, Muccini H, van Vliet H (2009) A scoped approach to
traceability management. J Syst Softw 82(1):168—182. ISSN:0164-
1212. doi:10.1016/j.js5.2008.08.026

Lefering M (1993) An incremental integration tool between
requirements engineering and programming in the large. In: Pro-
ceedings of the IEEE international symposium on requirements
engineering, 4-6 Jan 1993. IEEE, San Diego, pp 82-89

Lin J, Lin CC, Cleland-Huang J, Settimi R, Amaya J, Bedford G,
Berenbach B, Ben Khadra O, Duan C, Zou X (2006) Poirot: a
distributed tool supporting enterprise-wide automated traceability.
In: Proceedings of the 14th IEEE international requirements engi-
neering conference (RE’06). IEEE Computer Society, Washington.
ISBN:0-7695-2555-5

De Lucia A, Fasano F, Oliveto R, Tortora G (2007) Recovering
traceability links in software artifact management systems using
information retrieval methods. ACM Trans Softw Eng Methodol
16(4):13. ISSN:1049-331X

Maeder P, Philippow I, Riebisch M (2007) A traceability link
model for the unified process. In: Proceedings of the eighth ACIS
international conference on software engineering, artificial intel-
ligence, networking, and parallel/distributed computing (SNPD
2007). IEEE Computer Society, Washington, pp 700-705. ISBN:0-
7695-2909-7

Marcus A, Xie X, Poshyvanyk D (2005) When and how to visual-
ize traceability links? In: TEFSE *05: Proceedings of the 3rd inter-
national workshop on traceability in emerging forms of software
engineering. ACM, New York, pp 56-61. ISBN:1-59593-243-7.
doi:10.1145/1107656.1107669

Martin RC, Melnik G (2008) Tests and requirements, requirements
and tests: a mobius strip. IEEE Softw 25(1):54-59
Merisalo-Rantanen H, Tuunanen T, Rossi M (2005) Is extreme
programming just old wine in new bottles: a comparison of two
cases. J Database Manag 16(4):41-61

Morris SJ, Gotel OCZ (2007) Model or mould? A challenge for
better traceability. In: Proceedings of the international workshop
on modeling in software engineering (MISE). IEEE Computer
Society, Washington, p 1. ISBN:0-7695-2953-4

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Mugridge R (2008) Managing agile project requirements with
storytest-driven development. IEEE Softw 25(1):68-75
Nawrocki JR, Jasifiski M, Walter B, Wojciechowski A (2002)
Extreme programming modified: embrace requirements engineer-
ing practices. In: Proceedings: RE’02, pp 303-310

Pikkarainen M, Passoja U (2005) An approach for assessing suit-
ability of agile solutions: a case study. In: Proceedings: XP 2005,
pp 171-179

Pilgrim J, Vanhooft B, Schulz-Gerlach I, Berbers Y (2008) Con-
structing and visualizing transformation chains. In: ECMDA-FA
’08: Proceedings of the 4th European conference on model driven
architecture. Springer, Berlin, pp 17-32. ISBN:978-3-540-69095-
5. doi:10.1007/978-3-540-69100-6_2

Pinheiro FAC (2003) Requirements traceability. In: Perspectives
on software requirements. Springer, Berlin, pp 93-113

Pohl K (1996) PRO-ART: enabling requirements pre-traceability.
In: Proceedings of the second international conference on require-
ments engineering. IEEE, pp 76-84

Pohl K, Domges R, Jarke M (1997) Towards method-driven
trace capture. In: Proceedings of the international conference on
advanced information systems engineering (CAiSE ’97). Springer,
London, pp 103-116. ISBN:3-540-63107-0

Ramesh B, Jarke M (2001) Toward reference models for require-
ments traceability. IEEE Trans Softw Eng 27(1):58-93
Richardson J, Green J (2004) Automating traceability for generated
software artifacts. In: Proceedings of the 19th IEEE international
conference on automated software engineering (ASE ’04). IEEE
Computer Society, Washington, pp 24-33. ISBN:0-7695-2131-2
Van Schooenderwoert N, Morsicato R (2004) Taming the embed-
ded tiger—agile test techniques for embedded software. In:
Proceedings of the agile development conference (ADC’04).
IEEE Computer Society, Washington, pp 120-126. ISBN:0-7695-
2248-3

Schwaber K (2004) Agile project management with scrum. Micro-
soft Press, Redmond. ISBN:073561993X

Spanoudakis G (2002) Plausible and adaptive requirement trace-
ability structures. In: Proceedings of the 14th international confer-
ence on software engineering and knowledge engineering (SEKE
’02). ACM Press, New York, pp 135-142. ISBN:1-58113-556-4
Spanoudakis G, Zisman A, Pérez-Minana E, Krause P (2004)
Rule-based generation of requirements traceability relations. J Syst
Softw 72(2):105-127

Tabares MS, Moreira A, Anaya R, Arango F, Araujo J (2007) A
traceability method for crosscutting concerns with transformation
rules. In: Proceedings of the 29th international conference on soft-
ware engineering workshops (ICSEW °07). IEEE Computer Soci-
ety, Washington. ISBN:0-7695-2830-9

Tekinerdogan B, Hofmann C, Aksit M (2007) Modeling traceabil-
ity of concerns in architectural views. In: Proceedings of the 10th
international workshop on aspect-oriented modeling (AOM ’07).
ACM, New York, pp 49-56. ISBN:978-1-59593-658-5

Volzer H, MacDonald A, Hanlon A, Lindsay P (2004) (SubCM):
a tool for improved visibility of software change in an industrial
setting. IEEE Trans Softw Eng 30(10):675-693. ISSN:0098-5589
von Knethen A, Grund M (2003) Quatrace: a tool environment for
(semi-) automatic impact analysis based on traces. In: Proceedings
of the international conference on software maintenance (ICSM).
IEEE Computer Society, Washington, p 246. ISBN:0-7695-1905-9
Warden S, Shore J (2007) The art of agile development: with
extreme programming. O’Reilly Media, Inc. ISBN:0596527675

@ Springer

http://dx.doi.org/10.1016/j.jss.2008.08.026
http://dx.doi.org/10.1145/1107656.1107669
http://dx.doi.org/10.1007/978-3-540-69100-6_2

	A study to support agile methods more effectively through traceability
	Abstract
	1 Introduction
	2 Background
	2.1 An overview of traceability
	2.2 Agile versus traditional from the traceability perspective

	3 Traceability requirements and agile processes
	3.1 Traceability types for agile practices
	3.2 Traceability roles for agile practices
	3.3 Linkage rules for automation

	4 An overview of TmM metamodel for traceability methodologies definition
	4.1 TmM extended from SEMDM
	4.2 Traceability metamodel
	4.3 TmM core: templates and resources
	4.4 TmM usage process

	5 Case study
	5.1 TraceabilityLink instantiation
	5.2 TraceabilityRole pattern instantiation
	5.3 LinkageRule pattern instantiation

	6 Related literature
	7 Conclusion and future work
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

