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Abstract Cloud applications are often complex distributed applications com-
posed of multiple software components running on separate virtual machines.
Setting up, (re)configuring, and monitoring these applications are complicated
tasks because a software application may depend on several remote software
and virtual machine configurations. These management tasks involve many
complex protocols, which fully automate these tasks while preserving applica-
tion consistency as well as some key properties. In this article, we present two
experiences we had in formally specifying and verifying such protocols. The
first one aims at designing a reconfiguration protocol of a component-based
platform, intended as the foundation for building robust dynamic systems. The
second aims at automating the configuration task of a set of virtual machines
running a set of interconnected software components. Both applications are
specified using the LNT process algebra and verified using the CADP verifica-
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tion toolbox. The use of formal specification languages and tools was a success.
We conclude with a number of lessons we have learned while working on this
topic in the last three years.

1 Introduction

Cloud computing [16] emerged a few years ago as a major topic in mod-
ern programming. It leverages hosting platforms based on virtualization, and
promises to deliver resources and applications that are faster and cheaper with
a new software licensing and billing model based on the pay-per-use concept.
For service providers, this means the opportunity to develop, deploy and sell
cloud applications worldwide without having to invest upfront in expensive IT
infrastructure.

Cloud applications are often complex distributed applications composed
of multiple software components running on separate virtual machines
(VMs). Such applications benefit from several services provided in the cloud
such as database storage, load balancing, and so on. However, setting up,
(re)configuring, and monitoring distributed applications in the cloud is a
real burden since software may depend on several remote software and vir-
tual machine configurations. These management tasks involve many complex
protocols, which fully automate them while preserving application consis-
tency. In addition, some of these tasks are executed in parallel and tolerate
faults/failures. These characteristics of the management tasks (full automa-
tion, robustness, parallel execution, fault tolerance) complicate their devel-
opment compared to classical software. This explains why the use of formal
techniques and tools turned out to be necessary for them.

In this article, we present our experiences in designing two protocols, one
for dynamically reconfiguring component-based applications [8], and another
for self-configuring distributed systems consisting of interacting virtual ma-
chines [15,31]1. The first protocol is a robust reconfiguration protocol which
is part of the virtual machine. This protocol applies a number of architectural
changes to an assembly of components to reach a target assembly. This proto-
col preserves over its application some structural invariants and also tolerates
faults that may occur during the reconfiguration process. There is a clear need
in the cloud for dynamic reconfiguration of applications, and the first protocol
falls into this category. The second protocol is a solution for deploying a set of
components distributed over several virtual machines. This self-configuration
protocol fully automates this task in a decentralized and loosely-coupled way.
This means that this protocol does not require any centralized server and
each virtual machine starts itself without needing any information about the

1 This work results from a collaboration between experts in autonomic protocols and
cloud computing on the one hand, and an expert in formal techniques and tools on the
other. More precisely, the repartition of the work was as follows: The reconfiguration proto-
col (Section 2.1) was designed by F. Boyer and O. Gruber; The self-configuration protocol
(Section 2.2) was designed by X. Etchevers, N. De Palma, F. Boyer, and T. Coupaye; Spec-
ification and verification tasks (Section 3) were carried out by G. Salaün.
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current state of the other virtual machines. It is worth emphasizing that the
self-configuration protocol is one of the base components of a French project2

aiming at building an open software engineering platform for the collabora-
tive development of distributed applications to be deployed on multiple Cloud
infrastructures.

In both cases, we specified the protocol using LOTOS NT (LNT for
short) [11] and verified it with the CADP verification toolbox [17]. LNT is
a value passing process algebra that takes inspiration in imperative program-
ming languages, and supports the description of complex data types written
using a functional specification language. We chose LNT as our specification
language because (i) it provides expressive enough operators, in particular
rich datatype descriptions, for modelling the protocols, (ii) its user-friendly
notation simplifies the specification writing, and (iii) it is equipped with state-
of-the-art model checking tools in order to check that the protocols respect
some key properties. Since LNT relies on classical programming paradigms,
this simplifies the design and analysis process, and reduces the gap between
the specification and the real implementation of the system. These formal tech-
niques and tools helped in both cases to detect several issues and bugs in the
protocols, which were corrected in the corresponding Java implementations.

Our first goal in this article is to give an overview of our work in the last
three years3. We have chosen to introduce the specification and verification
tasks for the self-configuration protocol only because it would be too long to
describe them for both. We also present some lessons we have learned during
this work. In particular, we discuss some possible improvements of the formal
specification languages and tools we used. Some of these shortcomings are real
challenges, and pave the way for the development of formal techniques that
should be simple yet powerful enough to make verification mainstream in the
cloud computing area.

The rest of this article is organized as follows. Section 2 introduces the
two protocols analyzed in this experience report. We present in Section 3
specification and verification tasks for the self-configuration protocol. Section 4
reviews related work. Section 5 summarizes lessons we learned during these
experiences. We conclude this article in Section 6.

2 Protocols

In this section, we present informally the two protocols on which we worked.
The first one aims at dynamically reconfiguring an assembly of components.
The second one aims at deploying a system composed of interconnected soft-
ware components running on several virtual machines.

2 OpenCloudware is a French project that started in 2012, involving many companies and
research centers in France, see http://opencloudware.org for more details.

3 This work started in September 2009 and the first version of this article was submitted
in July 2012.
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2.1 Reconfiguration Protocol

Component Assembly. In the component paradigm, complex systems are
designed and built as a component assembly, depicted in Figure 1. Compo-
nents are independent fragments of software, assembled together by wiring
imports to exports. For each component, its exports (or server interfaces) de-
scribe services that the component is willing to provide and imports (or client
interfaces) describe service requirements, that is, services that the component
needs to function properly. A wire (or binding) from a client interface to a
server interface indicates that the service requirement described by the client
interface is to be satisfied by the provided service described by the server
interface.

Fig. 1 A Component Assembly

To be correct, a component assembly must respect certain invariants that
correlate the lifecycle of components, the different semantics of client inter-
faces, and the wiring of client interfaces to server interfaces. There are three
semantics for a client interface: vital, mandatory, and optional. Vital imports
represent services that are needed to construct and initialize a component.
Mandatory imports represent references to services that are needed by a com-
ponent to be functional. Finally, optional imports express that the component
may function without the corresponding services. There is no cycle of bindings
through vital (mandatory, resp.) imports (see [8] for more details). There are
four states to the component lifecycle: registered, constructed, resolved, and
failed. A client interface is said to be satisfied if it is wired to a server interface
and the component of that server interface is resolved. We give below the four
main invariants:

INV.1 A component is constructed if all its vital imports are satisfied.
INV.2 A component is resolved if all its mandatory and vital imports are
satisfied.
INV.3 There can be no binding from a resolved component to either a
constructed, registered, or failed component.
INV.4 If a component is failed or registered, none of its server interfaces
are wired.
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A component starts its life when it is registered in the assembly. It is con-
structed when its vital imports are satisfied. When constructed, a component
has created the services it exports, but they are not yet available to use by
other components. When a component is resolved, all its mandatory require-
ments are satisfied; it is therefore fully functional and the services it exports
are available to use.

The Reconfiguration Protocol. The role of the reconfiguration protocol is
to reconfigure the running system, called the concrete assembly. As depicted
in Figure 2, the reconfiguration to apply to the concrete assembly is given to
the protocol as two abstract assemblies: the current assembly and the target

assembly. The current assembly is an abstract description of the current state
of the running system. The target assembly is an abstract description of the
desired assembly for the running system. Comparing the current and target
assemblies, the protocol computes the ordered set of reconfiguration operations
that must be invoked on the concrete assembly in order to reconfigure it to
conform to the target assembly definition.

Fig. 2 Concrete and Abstract Assemblies

While computing the set of necessary operations is relatively straightfor-
ward, ordering these operations correctly is a real challenge. Correctness is de-
fined here as (i) invariants must be respected before and after each operation,
(ii) per component, the sequence of reconfiguration operations must respect
the grammar corresponding to the automaton depicted in Figure 3. These re-
quirements can be checked using model and equivalence checking as we will
see in Section 3.3. This correctness is crucial because it is the cornerstone of
the programming model exposed to component developers. Firstly, invariants
control the lifecycle of components that governs when a component is oper-
ational and when wired services may be used. Secondly, the grammar is the
behavioral contract given to component developers regarding reconfigurations.
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Fig. 3 Component Lifecycle / Reconfiguration Grammar

We present in Figure 4 the V-shape order in which the assembly must be
reconfigured in order to preserve the correctness constraints presented above.
During the down phase, it starts with down operations (unresolve, unwire,
and destruct) applied to all components in the depicted order. During the
up phase, it finishes with up operations (construct, wire, and resolve) in the
depicted order. This precise order ensures that all our invariants are never
violated. It is worth observing that parts of the protocol could be executed
in parallel, but this would have complicated the protocol implementation and
optimizing performance was not an objective in this work.

Fig. 4 Our V-shaped Protocol

Failures may happen during a reconfiguration and must be handled in a
way that continuously respects both the invariants and the reconfiguration
grammar. Any reconfiguration operation invoked on the concrete assembly
by the reconfiguration protocol may fail. Modeling such failures is important
because they happen in running systems, either because of exceptional situ-
ations or bugs. It is important to insist that these failures are not failures of
our protocol but the failure of individual concrete components. Our protocol
tolerates such faults, assists the running system to recover from them, and
then continues to make progress towards the target assembly.

More details on how the different client interface semantics (optional,
mandatory, vital) and the failure propagation are handled in the protocol
can be found in [8].
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2.2 Self-configuration Protocol

Application Model. The configuration of a cloud application is specified
using a global model composed of a set of interconnected software components
running on different VMs. A component is a runtime entity that has some
configuration parameters and one or more interfaces. An interface is an access
point to a component that supports a finite set of methods. Interfaces can
be of two kinds: server interfaces, which correspond to access points accepting
incoming method calls, and client interfaces, which correspond to access points
supporting outgoing method calls. Bindings make explicit connections between
components’ client interfaces and server interfaces. A binding is local if the
components involved in the binding are running on the same VM. A remote
binding is a binding between a client interface of a local component and a server
interface provided by a component located in another VM. A client interface is
also characterized by a property named contingency, which indicates whether
this interface is optional or mandatory (no vital or failed here). By extension,
the contingency of a binding corresponds to the contingency of its client side.
A component also has a lifecycle that represents its state (started or stopped).
Finally, an application model identifies each VM belonging to the application,
the set of components running on each VM, and their local/remote bindings.
A simple example of an application model is given in Figure 5 (left), where
c stands for client and s for server. An explanation of the application of the
self-configuration protocol on this example (Fig. 5, right) will be given later
on in this section.

Fig. 5 Example of Application Configuration (left) and Self-configuration Protocol Execu-
tion (right)

Self-configuration Design Principles. The configuration starts when a
deployment manager instantiates all VMs. Each VM embeds the applica-
tion model and a configurator which drives and encodes most of the self-
configuration behavior. A VM is also equipped with two buffers (one input
buffer and one output buffer) for communicating with the other VMs. All
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communications transit through a Message Oriented Middleware (MOM), see
Fig. 6 for an architectural view.

Fig. 6 Architectural View of the Protocol

The configurator manages the configuration of the components inside the
VM, and participates in the binding configuration between components and
in the application start-up. To this end, each configurator has the ability to
create and configure components, send server interfaces (for binding purposes),
bind component client interfaces to server ones, start components, and send
messages to other VMs indicating that a local component has been started. To
bind a client interface, the local configurator in charge of the component on
the client side needs the corresponding server interface, that is, the required
information to access to this interface (IP, port, etc.). This server interface can
be local (in this case the local configurator can manage this by itself), or it
can be remote (in this case the remote configurator sends the server interface
to the local configurator of the corresponding remote VM).

The configurators send their server interfaces and start messages, according
to the application model, through a MOM [5]. MOMs implement a message
buffering system that enables configurators to exchange messages in a reliable
and asynchronous way. From a local point of view, each VM is equipped with
two buffers, one output buffer storing messages destinated to other VMs and
one input buffer storing messages coming from other VMs.

It is worth observing that, for scalability purposes, the self-configuration
protocol used to configure distributed applications is decentralized. Once
the VMs are instantiated, the self-configuration protocol is able to con-
figure the whole application without requiring any centralized server. The
self-configuration protocol is also loosely-coupled. Each VM starts the self-
configuration protocol just after the boot sequence (instantiation of VMs by
the deployment manager) without needing to know about the state of other
VMs. The configuration of the distributed application will progress each time
a VM belonging to the application becomes available. This avoids the need for
global synchronization between VMs during the configuration protocol.
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Protocol Description. Self-configuration is driven by the configurators
within each VM. All configurators evolve in parallel, and each of them carries
out various tasks following a precise workflow that is summarized in Figure 7
where boxes identified using natural numbers (¶, ·, etc.) correspond to spe-
cific actions (CREATEVM, CREATECOMPO, etc.). Diamonds stand for choices, and
each choice is accompanied by a list of box identifiers that can be reached from
this point.

Based on the application model, the configurator starts (¶), successively
creates all the components described in the model for this VM (·), and binds
local components (¸). Note that diamonds in the workflow propose several
options, because a VM may not have local bindings for instance, and in such a
case, the configurator jumps to the next step. In order to set up remote bind-
ings, both VMs need to interact by exchanging messages through the MOM
(¹). For each binding associated to two components C1 and C2 (involved re-
spectively in the binding between a server interface and a client interface), the
configurator K1 (responsible for C1) sends the server interface to configurator
K2 (responsible for C2). This server interface includes all information required
by C2 to interact with C1, that is, when K2 receives a message containing such
an interface, it proceeds with the binding of C2 to C1.

Fig. 7 Configurator Workflow

Once the configurator has sent all its server interfaces, it can launch the pro-
cess for starting the application components. The configurator first launches
the local components that can be started (º). At that moment in the pro-
tocol execution, the only components that can be started are components
without mandatory client interfaces or components whose mandatory client
interfaces are all connected to local components. For each component Cserver

then started, the configurator sends to every remote component connected to
it through an application binding, a start message (») indicating to the remote
component that this Cserver component is started. When the configurator has
started all the local components that can be launched, it starts reading from
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its input communication buffer (¼). Two kinds of message can be received:
(i) upon receiving a binding request message, the configurator binds the lo-
cal component to the remote one (½), (ii) upon receiving a message indicating
that a remote component has been started, the configurator keeps track of this
information and goes back to º in order to check whether other local com-
ponents can be started (those with all mandatory client interfaces connected
and corresponding server components started).

Figure 5 provides an application example (left) and the corresponding self-
configuration protocol execution (right). This execution scenario shows the
communications exchanged between the VM configurators to start the appli-
cation. We can see that first the VM3 configurator (in charge of C4) sends
a binding message with the C4 server interface to the VM2 configurator (in
charge of C3). VM2 sends the C3 server interface to the VM1 configurator.
Upon receptions both configurators can make these bindings effective. When
VM3 starts C4, a message is sent to VM2. Upon reception, VM2 can start C3,
and sends a message to VM1 indicating that C3 has been started.

A more detailed description of this protocol can be found in [15].

3 Specification and Verification: Illustration with the

Self-configuration Protocol

In this section, we present the specification of the self-configuration protocol in
LNT [11] and its verification with the CADP verification toolbox [17]. We have
chosen to present these specification and verification tasks for one protocol
only because it would be too long to present them for both. In addition, the
approach was very similar for both experiences. The reader interested in more
details on the formal analysis of the reconfiguration protocol can refer to [8].

3.1 LNT and CADP

LNT is a simplified variant of the E-LOTOS standard [22] that combines the
best features of imperative programming languages and value-passing process
algebras. LNT supports both the description of complex data types and of
concurrent processes using the same user-friendly syntax. LNT formal opera-
tional semantics is defined in terms of LTSs (Labeled Transition Systems). An
LTS consists of a set of states and transitions, which are labeled with labels
chosen from an alphabet.

LNT processes are built from actions, sequential compositions (;), condi-
tions (if), assignments (:=), looping behaviors (loop), choices (select), and
parallel compositions (par). Communication is carried out by rendezvous on
a set of synchronization actions (multiway synchronization points) with bidi-
rectional transmission of multiple values. Synchronizations may also contain
optional guards (where) expressing Boolean conditions on received values.
Processes are parameterized by sets of actions (alphabets) and input/output
data variables.
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LNT specifications can be analyzed using CADP, a verification toolbox
dedicated to the design, analysis, and verification of asynchronous systems
consisting of concurrent processes interacting via message passing. LNT is
supported by the LNT.OPEN tool of CADP, which enables the on-the-fly
exploration of the LTSs corresponding to LNT specifications. The toolbox
contains about 70 tools and libraries that can be used to make different anal-
yses such as simulation, model checking, equivalence checking, compositional
verification, test case generation, or performance evaluation.

3.2 Specification

The specification consists of four parts: data types (300 lines), functions (1200
lines), processes (at least 600 lines), and MCL properties (at least 300 lines).
The number of lines for processes and MCL properties depends on the size
of the input application model, as explained later on in this section. There-
fore, the numbers given above are indicative and correspond to a very simple
application model (2 VMs and 2 components). These numbers grow with the
number of VMs and components involved in the application model.

Data types. They are used to describe the distributed application model,
that is, VMs, components, interfaces (client and server), bindings between
components, messages, buffers, etc.

Functions. They apply on data expressions which describe the distributed
application. These functions are necessary for three kinds of computation:
(i) extracting information from the application, (ii) describing buffers and
basic operations on them, (iii) keeping track of the started components to know
when another component can be started, i.e., when all its mandatory client
interfaces are connected to started components. Functions are also defined to
check that there is no cycle of mandatory client interfaces through bindings in
the initial application, and that all the mandatory client interfaces are bound.

Processes. They are used to specify VMs (configurator, input and output
buffer), the communication layer (MOM), and the whole system consisting
of VMs interacting through the MOM. Each VM consists of a configurator
and two buffers, namely bufferIn and bufferOut, which store input and out-
put messages, respectively. The configurator drives the behavior of each VM,
and encodes most of the protocol functionality. The MOM process reproduces
the communication media behavior used to make VMs interact together. The
MOM is equipped with a set of FIFO buffers in order to store messages be-
ing exchanged. There is a buffer for each VM, and messages transiting by the
MOM are temporarily stored in the buffer corresponding to the VM to which
the message is addressed.

For illustration purposes, we present the LNT process (named SELFCONFIG)
encoding the behavior of the whole protocol. We give in Figure 6 an archi-
tectural view of this process with the MOM and as many instances of the
configurator and buffer processes as there are VMs.
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The SELFCONFIG process takes as input an application model, similar to
the left-hand side of Figure 5. This application model is defined directly as
an LNT expression, which is the body of a function apply(). This function
does nothing but defines a concrete application model and returns it. A pair of
actions (CHECKCYCLE and CHECKMANDATORY) are introduced at the beginning
of the process body for verification purposes. These actions have Boolean pa-
rameters (returned values of called functions, e.g., check cycle mandatory),
which indicate whether the input application respects some structural con-
straints (e.g., absence of cycle through mandatory client interfaces).

The LNT parallel composition is expressed with the par construct fol-
lowed by the list of actions that must synchronize together (nothing for pure
interleaving). Two processes synchronize if they share the same action name
(see [11] for more details on the LNT synchronization mechanisms). The first
process called in the SELFCONFIG process is the MOM, which is composed in
parallel with the rest of the system, and synchronizes with the other processes
on BINDMSGi and STARTMSGi messages (i=1,2). More precisely, the MOM has
five possible behaviors, it can receive a binding (BINDMSG1) or a start message
(STARTMSG1), send a binding (BINDMSG2) or a start message (STARTMSG2) if
one of its buffers is not empty, or terminate (FINISH). Messages suffixed with
1 correspond to emissions from a VM to the MOM, and messages suffixed with
2 correspond to emissions from the MOM to a VM.

After the MOM, a piece of specification (deployer) is in charge of instanti-
ating the set of VMs (CREATEVM). Finally, as many VMs as are present in the
input application (two machines VM1 and VM2 in the specification below) are
generated4. Each machine consists of a configurator, which synchronizes with
two local buffers (bufferIn and bufferOut) on messages SEND and RECEIVE.
The two buffers as well as the MOM are initially empty.

It is worth noting that we use two kinds of action in our specification:
actions which correspond to communications between two processes (SEND
and RECEIVE for synchronizations within a VM, BINDMSG and STARTMSG for
synchronizations between VMs), and actions tagging specific moments of
the execution that will be useful in the next section to analyze the pro-
tocol (CHECKCYCLE, CHECKMANDATORY, CREATEVM, CREATECOMPO, LOCALBIND,
REMOTEBIND, STARTCOMPO, and FINISH). Here is the SELFCONFIG process gen-
erated for an application model involving two VMs:

process SELFCONFIG [CREATEVM:any, SEND:any, ..] is

var appli: TApplication in

appli:=appli();

CHECKCYCLE (!check cycle mandatory(appli));

CHECKMANDATORY(!check mandatory connected(..));

par BINDMSG1, BINDMSG2, STARTMSG1, .. in

MOM[..](vmbuffer(VM1,nil),vmbuffer(VM2,nil))

||

par CREATEVM, FINISH in

par FINISH in (* virtual machine deployer *)

4 Since the number of VMs depends on the application, this LNT process is generated
automatically for each new application by a Python program we wrote.
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CREATEVM (!VM1) ; FINISH

||

CREATEVM (!VM2) ; FINISH

end par

||

par FINISH in

(* first machine, VM1 *)

par SEND, RECEIVE, FINISH in

configurator [..] (VM1,appli)

||

par FINISH in

bufferOut[SEND,BINDMSG1,..](nil)

||

bufferIn[RECEIVE,BINDMSG2,..](VM1,nil)

end par

end par

||

... (* second virtual machine, VM2 *)

end par end par end par end var

end process

3.3 Verification

To verify the protocol, we use as benchmark a set of distributed applications to
be configured. From the LNT specification of the protocol and a specific target
application taken from that set, CADP exploration tools generate an LTS
describing all the possible executions of the protocol. In this LTS, transitions
are labeled with the actions introduced previously, and we use these actions to
check that the protocol works as expected. We identified three aspects of the
protocol that must be preserved by the protocol, namely temporal properties,
structural invariants, and lifecyles.

Properties. We use model checking techniques to verify that some key
properties are respected during the protocol execution. To do so, we formalise
14 safety and liveness properties in µ-calculus [29], the temporal logic used in
CADP, and such properties are verified automatically using the EVALUATOR
model checker. We give a couple of properties here for illustration purposes:

– A STARTMSG2 message cannot appear before a STARTMSG1 message with the
same parameters

[ true*.STARTMSG2 ?vm:String ?cx:String ?cy:String.

true*.STARTMSG1 !vm !cx !cy ] false

Note that we use the latest version of EVALUATOR (4.0) which enables
us to formulate properties on actions and data terms. Here for example, we
relate parameters in both messages saying that the VM (vm) and compo-
nents (cx and cy) concerned by this message must be the same. Variables
vm, cx, and cy capture the name of the virtual machine, and the name
of the two involved components (sender and receiver). Question marks are
used for extracting variables from an action (action name + values as pa-
rameter) and exclamation marks for matching values against expressions.
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Concretely, here for example, we mean that the virtual machine identi-
fier used as first parameter to STARTMSG2 must be the first parameter in
STARTMSG1 (same reasoning for component identifiers appearing as second
and third parameters).

– All components are eventually started

( mu X . ( <true> true and [ not ’STARTCOMPO !.* !C1’ ] X ) )

and

( mu X . ( < true > true and [ not ’STARTCOMPO !.* !C2’ ] X ) )

and ...

This property is automatically generated from the application model be-
cause the number of components and their identifiers depend on the appli-
cation model.

Invariants. We verify that each input application respects a few structural
properties, such as “there is no cycle in the application through mandatory

client interfaces” or “all mandatory client interfaces are connected”. This is
checked at the beginning of the protocol using functions which extract this
information from the application model given as input. These functions re-
turn Boolean values which are then passed as parameters to specific actions
(CHECKCYCLE and CHECKMANDATORY). Then, we use a safety property to check
that these actions do not appear in the LTS with the wrong Boolean parame-
ter.

Lifecycles. We check that each VM behavior isolated from the whole
LTS respects the correct ordering of actions. To do so, on the one hand, we
have specified an LTS corresponding to the configurator lifecycle. This LTS
is obtained by flattening the workflow presented in Figure 7 and consists of
8 states and 26 transitions. On the other hand, we apply successively hiding
and reduction techniques on the whole state space to keep configurator ac-
tions corresponding to a specific VM. Then, we check that the resulting LTS
is included (branching simulation pre-order) into the first one (configurator
lifecycle) using the Bisimulator equivalence checker [6].

3.4 Experiments

Experiments were conducted on about 150 quite different applications, which
enabled us to check boundary cases. For instance, we used applications where
components can be started in parallel (interleaving) and others where they
can only be started in a very precise order.

Table 1 summarizes some of the results obtained on application examples
of our dataset. Each example is characterized in terms of number of virtual
machines, number of components, and number of local/remote bindings (“b.”
stand for bindings in the table). We give the size of the LTS generated using
CADP by enumerating all the possible executions of the system, as well as the
time to obtain this LTS and verify all the features presented above (checking
invariants, properties, and lifecycles). The resulting LTS has been minimized
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Size LTS Time (m:s)
VMs compo. loc. b. rem. b. (states/transitions) LTS gen. Verif.

0010 2 15 2 2 1,788/4,943 0:09 2:23
0090 2 6 3 8 33,486/137,401 0:50 6:44
0092 2 6 9 10 81,822/349,319 1:20 27:20
0122 3 6 6 0 514/1,346 0:14 00:26
0086 3 6 34 4 60,851/226,217 8:14 19:30
0087 3 6 34 5 153,056/645,168 14:02 49:42
0088 3 6 34 6 306,136/1,392,439 25:53 98:42
0136 4 4 0 3 3,350/11,997 84:24 1:02
0145 4 7 4 2 18,314/78,206 191:20 6:02

Table 1 Experimental Results

using strong reduction. It is worth observing that strong reduction does not
importantly impact the resulting LTS. For example, the LTS obtained be-
fore minimization for example 0088 consists of 309,556 states and 1,405,249
transitions.

Experiments have been carried out on a Xeon W3550 (3.07GHz, 12GB
RAM) running Linux, and it takes about 3 days to generate and check all the
examples of our database. We can see first that systems involving only a couple
of virtual machines and a few remote bindings are generated and checked in
reasonable time (examples 0010 and 0090 in Table 1).

Computation times and LTS sizes grow exponentially as the number of
VMs and remote bindings increase. More precisely, we can see that when
we increase the number of VMs, the number of processes (configurator, local
buffers, etc.) evolving in parallel increases and therefore this induces more
parallelism in the system resulting in longer computation time for state space
exploration (from a few minutes for systems with 2 or 3 VMs to a few hours
for 4 VMs). The resulting LTSs are quite small though (see examples 0136 and
0145) and their verification pretty fast.

As far as remote bindings are concerned, the more bindings, the more mes-
sages exchanged among VMs. This results in larger LTSs (see, e.g., example
0092) which are generated quite rapidly because the number of processes in
parallel is reasonable (2 VMs in example 0092 for instance). However, verifi-
cation takes some time because LTSs have to be traversed exhaustively. It is
also interesting to note that the addition of a single remote binding in exam-
ples 0086, 0087, and 0088, approximately doubles the LTS size and verification
time. In contrast, we can see that the number of local bindings can be quite
high without really impacting size and time verification results. Similarly, the
number of components does not really affect the results (see, e.g., example
0010).

Fortunately, our goal here was not to fight the state explosion problem, but
to find possible bugs in the protocol. Most bugs do not come from the system’s
size, but from boundary cases where enumerative tools are very efficient by
exploring all the possible execution scenarios.
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3.5 Bug Detection

The specification and verification helped us to detect a major bug in the pro-
tocol. There was a problem in the way local components are started during
the protocol execution. After reading a message from the input buffer, the
configurator must check all its local components, and start those with manda-
tory client interfaces bound to started components. However, one traversal
of the local components is not enough. Indeed, launching a local component
can make other local components startable. Consequently, starting local com-
ponents must be done in successive iterations, the algorithm stops when no
more components can be started. If this is not implemented as a fix point,
the protocol does not ensure that all components involved in the architecture
are eventually started. This bug was detected thanks to one of the properties
presented in Section 3.3 (all components are eventually started). This property
turns out to be false for specific applications and specific scenarios for these
applications. Exhaustive exploration as used in model checking was therefore
convenient for detecting this issue, but other techniques (e.g., testing) could
have worked too. This problem was corrected in both the specification and the
Java implementation.

4 Related Work

A few recent projects [21,12,30] proposed languages and configuration proto-
cols for distributed applications in the cloud. [12] adopts a model driven ap-
proach with extensions of the Essential Meta-Object Facility (EMOF) abstract
syntax5 to describe a distributed application, its requirements towards the un-
derlying execution platforms, and its architectural constraints (e.g., concerning
placement and collocation). Regarding the configuration protocol, particularly
the distributed bindings configuration and the activation order of components
that are the core of the present article (Section 3), [12] does not work in a
decentralized fashion, and this harms the scalability of applications that can
be deployed. Moreover, that work does not consider the reliability of the pro-
posed protocol, whereas we focused here on the self-configuration verification
and showed its necessity to detect subtle bugs.

[30] suggests an extension of SmartFrog [21] that enables an automated
and optimized allocation of cloud resources for application deployment. It is
based on a declarative description of the available resources and of the com-
ponents building up a distributed application. Descriptions of architectures
and resources are defined using the Distributed Application Description Lan-
guage (DADL). This language describes, on the one hand, the applications con-
straints related to the resources in terms of Service Level Agreements (SLAs)
and, on the other hand, elasticity constraints. Compared to the present arti-
cle, [30] focuses on the language aspects and intends to address the optimal

5 This syntax has been defined by the Model Driven Architecture (MDA) initiative of the
Object Management Group (OMG).
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resources allocation. It does not give any details concerning the deployment
process itself.

There exist many approaches which aim at specifying and verifying dis-
tributed systems and component-based applications. Several works [24,25,
1,34,10] focused on dynamic reconfiguration of component-based systems,
and proposed various formal notations (Darwin, Wright, etc.) to specify
component-based systems whose architectures can evolve at run-time (addi-
tion/removal of components/bindings). Here, our goal was rather to verify
the protocols at hand, to be sure that the corresponding Java implementa-
tion worked as expected. In [25,28], the authors show how to formally analyze
behavioral models of components using LTSA (Labeled Transition System An-
alyzer). Another related work is [13], where the authors verify some temporal
properties using model checking techniques on a dynamic reconfiguration pro-
tocol used in agent-based applications. The main difference here is that we
focus on autonomic protocols, which makes their development and specifica-
tion/verification much more complicated. Handling failures of components, as
it is the case for the reconfiguration protocol for instance, makes the design
(hence the specification/verification) of such self-management protocols even
trickier.

In [4], the authors present a formal framework for behavioral specification
of distributed Fractal components. This specification relies on the pNet model
that serves as a low-level semantic framework for expressing the behavior of
various classes of distributed languages. They also propose a connection to
CADP tools in order to check properties on these specifications. A graphical
toolset for verifying AADL models is presented in [9]. This platform inte-
grates several existing tools such as the NuSMV symbolic model checker and
the MRMC probabilistic model checker. As far as autonomic systems are con-
cerned, a few recent solutions have been proposed to analyze such systems.
For example, in [33], the authors present the application of ASSL (Autonomic
System Specification Language) to the NASA Voyager mission. In their paper,
they show how liveness properties can be checked on ASSL specifications, and
plan to consider also safety properties. The toolbox we use here for verification
purposes already provides model checking techniques for any class of temporal
property.

Graph grammars, in particular Reo [3], have been used in [26] for modeling
dynamic reconfigurations of systems evolving in changing environments, and
verifying properties (safety, consistency) on them. In [2], the authors rely on
the Paradigm coordination language and propose an approach for dynamically
adapting the coordination model. They also translate the migration model into
ACP for analysis with the mCRL2 model checker. Our approach shares some
similarities with these papers, but the area (cloud computing) and inherently
the two protocols are quite different (e.g., import semantics, fault tolerance,
or component configuration).

In [23], the authors present the formal verification of an operating system
microkernel. They proved the functional correctness of the microkernel using
the Isabelle theorem prover. The formal specification was generated automat-
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ically from a Haskell prototype, and the final implementation was manually
encoded in C. This formal process helped to detect and correct many bugs
in the system algorithms. Here, we focused on an alternative approach which
requires much less effort in the verification process (automated versus semi-
automated verification). Nevertheless, although model checking techniques are
very suitable to detect bugs in any kind of application, they do not ensure cor-
rectness of the system as it may be achieved using theorem proving techniques.

5 Lessons Learned

In this section, we would first like to emphasize some positive feedback we had
during these experiences. In a second part, we will present some improvements
and challenges that have to be investigated (in our opinion) if we want formal
specification languages and model checking tools to become mainstream in
the development of autonomic protocols and component-based systems in the
cloud.

– Our experiences were successful due to the late introduction of specifica-
tion and verification techniques in the design process (Java implementa-
tions were already available, but still under development). Therefore, we
had several iterations between designing, specifying, and verifying the pro-
tocol on the one hand, and completing its implementation on the other
hand. Through these iterations, the specification and verification refined
our understanding of the finer points of the procotol, ultimately fixing bugs
in the most pathological cases that would have been impossible to identify
manually. The introduction of specification and verification tasks had to be
adapted in terms of methodology to the specific context of cloud computing
and protocol designers. It is worth observing that, to some extent, we relied
on a methodology very close to agile techniques with short and successive
iterations, but including formal methods in the software development pro-
cess. We could have started from the formal specification as advocated by
classical software development models, but this does not seem a good op-
tion for protocol designers who are not experts in formal methods. Coming
up with code generation techniques might be an argument for convincing
them to do so in the future (see the code generation item below in this sec-
tion). Another alternative could have been to start the specification and
implementation in parallel from the beginning, but this does not seem a
good solution either, because it can generate an unnecessary extra cost if
it turns out that the use of formal verification is finally not required for
the protocol under development (e.g., the protocol was much simpler than
expected). More generally, we can see that classical software development
models (such as the V-Model) are not adapted to recent computing areas,
and new solutions deserve to be proposed to take flexibility, variation, and
change into account.
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– LNT, thanks to its user-friendly and programming-like notation, makes
the formal specification accessible to non-experts and deeply simplifies the
specification writing. For instance, we noticed that even people who were
not familiar at all with LNT were able to understand LNT specifications
and interact with specifiers in order to clarify and refine finer points of the
protocols. Furthermore, the LNT expressive language enables the specifica-
tion of concurrent behaviors but also of complex datatypes. We believe that
LNT could become mainstream for specifying concurrent and distributed
systems.

– In the self-configuration protocol design, formal techniques were used not
only to chase bugs but also as a workbench for experimenting with differ-
ent communication features (point-to-point, broadcast, different ways of
implementing buffers, etc.). This can especially be of interest for optimiz-
ing an implementation (e.g., the number of buffers) while preserving the
same behavior (wrt. a bisimulation notion for example).

– Finally, this work shows that formal techniques and tools are not only of
interest for critical systems but are also necessary for the design and devel-
opment of complex system protocols existing in dynamically reconfigurable
and component-based autonomic systems.

The design of these protocols was also very helpful because it enabled us
to identify a set of extensions and improvements of the formal methods and
verification tools we used in our experiments:

– Specification languages: There is a clear need of simple and user-friendly,
yet expressive, specification languages. LNT is a first step in that direc-
tion, but it could be improved in various ways. This work helped to iden-
tify about 30 possible improvements, either in the LNT language or in the
LNT.OPEN tool, which will further simplify the specification and verifi-
cation steps for future LNT users. An example is the generalized parallel
composition operator originally proposed in [19], which makes the synchro-
nization of n processes among m possible (with n ≤ m). This feature would
have been very handy in the self-configuration protocol specification. In-
deed, the message bus can be implemented in a distributed fashion. In that
case it means that all virtual machines can interact together on the same
messages, but only two of them actually synchronize (binary communica-
tion). Unfortunately, this operator is not yet available in LNT and there is
no other simple solution to emulate this behavior. Therefore, we were only
able to specify the centralized version of the message bus.

– Model checking tools: In our experiments, we used a simulation tool (step-
by-step animation) and a model checker. Simulation tools are simple to use
but not powerful enough to find subtle bugs, particularly when state spaces
are huge and exhaustive exploration is therefore required. In contrast, tem-
poral logics and model checking techniques are powerful techniques but not
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intuitive enough to be used by non-experts. There is a clear need of au-
tomated, yet simple tools to analyze LTSs. An idea would be to identify
some common properties in autonomic systems in order to propose some
patterns in temporal logics for formalising these properties.

– Debugging techniques: When a bug is found by model checking tools, it is
identified with a counterexample (a sequence of actions violating the prop-
erty). This diagnostic can be quite long (up to one hundred actions when
verifying the reconfiguration protocol), and in this case it is rather com-
plicated to extract the configuration of the system when the error occurs.
Similarly to state-based techniques, a direct access to the data expressions
state would help debugging. Another issue comes from the lack of insight
concerning the parallelism of the system: the current state of each concur-
rent process would help to understand what each participant was doing
when the error occurred.

– Coverage analysis: In the classical verification setting, we have an LNT
specification of a system, a set of temporal properties to be verified on the
LTS model corresponding to the LNT specification, and a dataset of ex-
amples (test cases) we use for validation purposes. At this stage, building
the set of validation examples and debugging the system is a real burden,
in particular for non-experts. There are a few limitations of the approach.
First, we do not know whether the set of test cases covers all the possible
execution scenarios described in the specification. Second, the LNT speci-
fication might be refactored and improved but this cannot be deduced by
the counterexamples returned when applying model checking techniques.
Third, the set of properties may miss some interesting verification scenar-
ios.
Coverage analysis aims at proposing and developing techniques for auto-
matically detecting parts of an LNT specification not (yet) covered during
verification. Such LNT coverage analysis techniques would be very helpful
for (i) extending the set of test cases with new inputs covering parts of the
LNT specification that have not been analyzed yet, (ii) eliminating dead
code in the LNT specification, and (iii) extending the set of properties
with new formulas. We also plan to develop tool support for automating
the coverage analysis. To do so, we will rely on and extend some of the
tools available in CADP for compiling LNT into LOTOS and LTS, and
exploring the resulting LTS for verification purposes.

– Co-simulation and testing: In our experiences, specification/verification
and implementation (in Java) have been achieved in parallel. When a bug
was discovered on the specification, the reference implementation was sys-
tematically corrected, but we did not use formal techniques to check that
both levels were consistent. Co-simulation techniques could help and exist-
ing works, such as [20,27], could inspire further investigation for proposing
a simple and reusable solution for co-simulating a formal specification with
an implementation. Model-based testing [7] is another alternative that de-
serves to be studied.
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– Code generation: The existence of code generation techniques in OO pro-
gramming languages (which is the main paradigm used in this commu-
nity) would help for rapid prototyping purposes, but also for implementing
protocols starting from the formal specification and then generating code
automatically (both the specification and the implementation were devel-
oped at the same time and manually in our experiences). This would be a
good argument to convince users to start from the formal specification. An
interesting perspective in that direction is to generate some parallel code
to take advantage of the multiple servers available on cloud architectures.

– Scalability: The self-configuration protocol being highly-parallel, we had
to face an exponential growth in the time necessary for generating LTSs
for some examples from our database. A promising perspective is to ap-
ply recent techniques such as distributed model checking [18] or smart
composition/reduction, e.g., [14], to handle larger systems and generate
corresponding LTSs in a shorter time.

– Agile Software Development: We found out when working on the recon-
figuration protocol that we were following an approach very similar to
what is advocated in software development with agile methods. Nowadays
agile techniques are used daily in most software development companies.
However, formal methods are not yet part of these software development
processes. We would like to study more thoroughly how they could be intro-
duced in this development process, for instance in the Scrum method [32],
while preserving the basic principles of agile methods.

6 Concluding Remarks

We have overviewed in this article two protocols for applications deployed in
cloud computing environments. The first one is a robust reconfiguration pro-
tocol which is part of the virtual machine. This protocol applies a number of
architectural changes to a current assembly of components to reach a target
assembly. This protocol preserves over its application some structural invari-
ants and tolerates faults that may occur during the reconfiguration process.
The second protocol is highly parallel and aims at self-configuring a set of com-
ponents distributed over several virtual machines. Both protocols have been
specified in LNT and verified with the CADP toolbox. These state-of-the-art
verification tools enabled us to check that some key properties were ensured.
More importantly, during this verification stage, we found several bugs. In the
reconfiguration protocol, we detected several issues which enabled us to re-
vise several parts of the protocol, for instance: introduction of two additional
(un)wire phases (a single wire/unwire was originally present in the V-shaped
protocol), several corrections of the failure propagation algorithm, and sev-
eral corrections in the reconfiguration grammar and structural invariants. In
the self-configuration protocol, the use of these formal techniques and tools
helped to detect a bug in the protocol. All these issues were corrected in the
corresponding Java implementations.
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Our main perspective is to extend the self-configuration protocol to take
component failures into account. When a VM fails, the deployer starts a new
instance of it and warns the other VMs of this failure. In turn, they should
start over parts of their configuration behavior to consider this failure. Mul-
tiple failures are possible and we want the protocol to be robust and fault
tolerant. The extended protocol will be extensively validated using analysis
tools to check for instance that in spite of a finite number of failures, all com-
ponents are finally started. Another interesting perspective would be to use
other languages and tools for specifying and verifying these protocols. This
would enable us to compare them wrt. several criteria such as user-friendliness
of the input specification languages, efficiency of the formal analysis tools,
debugging techniques available, etc.
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