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Abstract
When a person is concurrently interacting with different systems, the amount of cognitive resources required (cognitive load)
could be too high andmight prevent some tasks from being completed.When such humanmultitasking involves safety-critical
tasks, such as in an airplane, a spacecraft, or a car, failure to devote sufficient attention to the different tasks could have serious
consequences. For example, using a GPS with high cognitive load while driving might take the attention away for too long
from the safety-critical task of driving the car. To study this problem, we define an executable formal model of human attention
and multitasking in Real-Time Maude. It includes a description of the human working memory and the cognitive processes
involved in the interaction with a device. Our framework enables us to analyze human multitasking through simulation,
reachability analysis, and LTL and timed CTL model checking, and we show how a number of prototypical multitasking
problems can be analyzed in Real-Time Maude. We illustrate our modeling and analysis framework by studying: (i) the
interaction with a GPS navigation system while driving, (ii) some typical scenarios involving human errors in air traffic
control (ATC), and (iii) a medical operator setting multiple infusion pumps simultaneously. We apply model checking to
show that in some cases the cognitive load of the navigation system could cause the driver to keep the focus away from driving
for too long, and that working memory overload and distraction may cause an air traffic controller or a medical operator to
make critical mistakes.

Keywords Human–computer interaction · Safety-critical systems · Human multitasking · Cognitive models · Real-Time
Maude · Model checking

1 Introduction

We often interact with multiple devices or computer systems
at the same time. It is now well known that the human brain
cannot do many things at once, which means that human
multitasking amounts to repeatedly shifting attention from
task to task. If some tasks are safety-critical, then failure
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to perform the tasks correctly and timely—for example due
to cognitive overload or giving too much attention to other
tasks—could have catastrophic consequences.

A typical scenario of safety-critical human multitasking
takes place when a person interacts with a safety-critical
device/system while using other less critical devices. For
example, pilots have to reprogram the flight management
systemwhile handling radio communications andmonitoring
flight instruments [23]. Operators of critical medical devices,
such as infusion pumps, often have to retrieve patient-specific
parameters by accessing the hospital database on a different
device while configuring the safety-critical device. A driver
often interacts with the GPS navigation system and/or the
infotainment system while driving. Finally, astronauts have
to navigate multiple (possibly safety-critical) tasks all the
time; e.g., in a docking scenario they need to control speed
via RCS rockets while estimating the distance to the docket
port, all while dealingwithweightlessness and possibly com-
municating in a foreign language.
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Human multitasking could lead to memory overload (too
much information to process/remember), resulting in for-
getting/mistaking critical tasks. For example, Lofsky [33]
reports that during a routine surgery, the ventilator helping
the patient to breathe was turned off to quickly take an X-ray
without blurring the picture. However, theX-ray jammed, the
anesthesiologist went to fix theX-ray but forgot to turn on the
ventilator, leading to the patient’s death. In another example,
Clark et al. [20] analyze the cause of 139 deaths when using
an infusion pump and find that operator distraction caused 67
deaths—much more than the 10 deaths caused by problems
with the device itself. Similar figures and examples can be
found in the context of aviation [6] and car driving [22].

In addition to memory overload, human multitasking may
also lead to cognitive overload when some tasks are too cog-
nitively demanding, which could lead to ignoring the critical
tasks for too long while focusing attention on less critical
tasks. For instance, while reprogramming the flight manage-
ment system, the pilot couldmiss something important on the
flight instruments. If the interface of the virtual clinical folder
requires the user’s attention for too long, it can cause the
operator to make some mistake in the infusion pump setup.
Likewise, an infotainment system that attracts the driver’s
attention for too long could cause a car accident.

There is therefore a clear need to analyze not only the
functionality of single devices (or networks of devices), but
also to analyze whether a human can safely use multiple
devices/systems at the same time. Such study requires under-
standing how the human cognitive processes work when
interacting with multiple systems and how human atten-
tion is directed at the different tasks at hand. In particular,
the main cognitive resource to be shared among concurrent
tasks is the human working memory, which is responsible
for storing and processing pieces of information necessary
to perform the concurrent tasks. The cognitive load of a task
is a measure of its complexity in terms of frequency and dif-
ficulty of the memory operations it requires to perform [8],
and is a crucial parameter when deciding which task gets
attention.

In this paper, we propose a formal executable model of
human multitasking in safety-critical contexts. The model
is specified in Real-Time Maude [38] and is a significant
modification and extension of the cognitive framework pro-
posed by Cerone for the analysis of interactive systems [18].
As in that work, our model includes the description of the
humanworkingmemory and of the other cognitive processes
involved in the interactionwith a device. Themain difference
is that Cerone only considered the interaction with a single
device, whereas we focus on analyzing human multitask-
ing. In contrast to Cerone [18], our framework also captures
the limitations of a human’s working memory (to enable
reasoning about hazards caused by memory and/or cogni-

tive overload) and includes timing features (to analyze, e.g.,
whether a critical task is ignored for too long).

This paper is a revised and extended version of our con-
ference paper [14], and extends [14] as follows:

– Much more detail about the formal model of humanmul-
titasking is provided, including sort definitions and many
function definitions.

– We show how to formalize a number of additional fea-
tures of humanmultitasking, including cognitive closure,
cognitive change, and the handling of interface timeouts.
(A cognitive closure arises when a goal has been reached
(e.g., the user has received the money from the ATM); a
cognitive change corresponds to a change in the mental
plan of the user resulting from acquiring knowledge and
understanding (e.g., when an air traffic controller under-
stands that two aircraft are getting too close to each other,
she adds to her memory a new plan: avoid a collision);
and an interface timeout arises when some action can no
longer be performed (e.g., when the user has not entered
a PIN code into the ATM for too long, she notices a
“Session closed” message and abandons the task of with-
drawing money from the ATM).

– We add a new case study about air traffic control (ATC),
which is based on a study of real ATC operator errors
described in [44]. This case study illustrates how our
framework can be used to uncover human errors in mul-
titasking that are due to working memory failures.

– The comparison to relatedwork is significantly extended.

Furthermore, this paper also includes a revised version of a
third case study, about calibrating and setting multiple infu-
sion pumps at the same time, that originally appeared in [13].

After providing some background on human attention and
multitasking andReal-TimeMaude in Sect. 2, we present our
Real-Time Maude model of safety-critical human multitask-
ing in Sect. 3. Section 4 explains how Real-Time Maude can
be used to analyze prototypical properties in human mul-
titasking. We illustrate our formal modeling and analysis
framework in Sect. 5 with three case studies: (i) using a GPS
navigator while driving; (ii) studying some typical scenarios
of human errors in air traffic control (ATC); and (iii) a doc-
tor or nurse calibrating and setting multiple infusion pumps
at the same time. We apply model checking to show that
in some cases: the cognitive load of the navigator interface
could cause the driver to keep the focus away fromdriving for
too long, and the working memory sharing between concur-
rent tasks can lead to overloading situations causing operator
errors in ATC and in the hospital. Finally, Sect. 6 discusses
related work, and Sect. 7 gives some concluding remarks.
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2 Preliminaries

2.1 Human selective attention andmultitasking

Human memory encodes, stores, and holds information, and
is one of the cognitive resourcesmost involved in interactions
with computers [5,37]. It can be differentiated into three sep-
arate components [5]: a sensory memory, where information
detected by the senses is temporarily stored; a short-term
memory (STM), where sensory information that is given
attention is saved; and a long-term store, where information
that has been rehearsed through attention in the short-term
store is held indefinitely. The term working memory (WM)
is often used to refer to the short-term memory. However,
some neuro-psychological studies show that the two forms
ofmemory are distinct: the STM is only involved in the short-
term storage of information,whileWMrefers to the cognitive
system responsible for temporary holding and processing of
information. The WM is the component most involved in
interactions with computers.

Different hypotheses about theWM agree that it can store
a limited amount of items, which, furthermore, decay over
time, and that it is responsible for both processing and storage
activities. The amount of information—which can be, e.g.,
digits, letters, words, or other meaningful items—that the
WM can hold is 7 ± 2 items [36].

Maintaining items in the WM requires human attention.
Memory items are remembered longer if they are periodically
refreshed by focusing on them. Even when performing a sin-
gle task, in order not to forget something stored in the WM,
the task has to be interleaved with memory refreshment. This
has been the subject of several psychological theories. The
most elaborate decay-theory and most successful in explain-
ing experimental data is the Time-Based Resource Sharing
Model [8]. It introduces the notion of cognitive load (CL) as
the temporal density of attentional demands of the task being
performed. The higher the CL of a task, the more it distracts
from refreshing memory. According to Barrouillet et al. [8],
when the frequency of basic activities in a task is constant,
the CL of the task equals

∑
aini/T , where ni is the number

of task basic activities of type i , ai represents the difficulty
of such activities, and T is the duration of the task.

Several studies show that the attentional mechanisms
involved in WM refreshment are also the basis of multitask-
ing. In particular, de Fockert et al. [24] describe the roles of
theWM, the CL, and attention when executing a “main” task
concurrently with a “distractor” task. It is shown that when
the CL of the distractor task increases, the interaction with
the main task could be impeded.

In [15], we use the cognitive load and two other factors,
the task’s criticality level and waiting time (the time the task
has been ignored by the user), to define a measure of task
attractiveness. The greater the task attractiveness, the more

likely the user will focus on it. Modeling attention switching
based on parameters like CL, criticality level, and waiting
time agrees with current understanding of human attention.
In [15], we use this task attractiveness measure to define an
algorithm for simulating human attention. We studied the
case of two concurrent tasks, and found that the task more
likely to complete first is the one with the highest cognitive
load,which is consistentwith relevant literature (e.g., [8,24]).

2.2 Real-TimeMaude

Real-TimeMaude [38,40] is a language and tool that extends
Maude [21] to support the formal specification and analysis
of real-time systems. The specification formalism is based
on real-time rewrite theories [39]—an extension of rewriting
logic [16,34]—, emphasizes ease and generality of specifica-
tion, and is particularly useful to model distributed real-time
systems in an object-based way. Real-TimeMaude specifica-
tions are executable under reasonable assumptions, and the
tool provides a variety of formal analysis methods, including
simulation, reachability analysis, and LTL and timed CTL
model checking.

2.2.1 Rewriting logic specification in Maude

A membership equational logic (Mel) [35] signature is
a triple Σ = (K , σ, S) with K a set of kinds, σ =
{Σw,k}(w,k)∈K ∗×K a many-kinded signature, and S =
{Sk}k∈K a K -kinded family of disjoint sets of sorts. The kind
of a sort s is denoted by [s]. A Σ-algebra A consists of a set
Ak for each kind k, a function A f : Ak1×· · ·×Akn → Ak for
each operator f ∈ Σk1···kn ,k , and a subset inclusion As ⊆ Ak

for each sort s ∈ Sk . The set TΣ,k denotes the set of ground
Σ-terms with kind k, and TΣ(X)k denotes the set ofΣ-terms
with kind k over the set X of kinded variables.

AMel theory is a pair (Σ, E)withΣ aMel-signature and
E a finite set of Mel sentences, which are either conditional
equations of the form

(∀X) t = t ′ if
∧

i

pi = qi ∧
∧

j

w j : s j

where t, t ′ ∈ TΣ(X)k and pi , qi ∈ TΣ(X)ki for some
kinds k, ki ∈ Σ , or conditional membership axioms (stat-
ing that a term has a given sort). In Maude, an individual
equation in the condition may also be a matching equation
pl := ql , which is mathematically interpreted as an ordi-
nary equation. However, operationally, the new variables
occurring in the term pl become instantiated by matching
the term pl against the canonical form of the instance of
ql (see [21] for further explanations). Order-sorted nota-
tion s1 < s2 abbreviates the conditional membership
(∀x : [s1]) x : s2 if x : s1. Similarly, an operator dec-
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laration f : s1 × · · · × sn → s corresponds to declaring
f at the kind level and giving the membership axiom
(∀x1 : [s1], . . . , xn : [sn]) f (x1, . . . , xn) :s if ∧

1≤i≤n xi :si .
A Maude module specifies a rewrite theory [16,34] of the

form (Σ, E ∪ A, R), where:

– (Σ, E∪A) is amembership equational logic theory spec-
ifying the system’s state space as an algebraic data type
with A a set of equational axioms (such as a combination
of associativity, commutativity, and identity axioms), to
perform equational deduction with the equations E (ori-
ented from left to right) modulo the axioms A, and

– R is a set of labeled conditional rewrite rules specifying
the system’s local transitions, each ofwhich has the form:

l : q −→ r if
∧

i

pi = qi ∧
∧

j

w j : s j ∧
∧

m

tm −→ t ′m,

where l is a label, and q, r areΣ-terms of the same kind.

Intuitively, such a rule specifies a one-step transition from a
substitution instance of q to the corresponding substitution
instance of r , provided the condition holds.

We briefly summarize the syntax of Maude (see [21] for
more details). Sorts and subsort relations are declared by
the keywords sort and subsort, and operators are intro-
duced with the op keyword: op f : s1 . . . sn -> s, where
s1 . . . sn are the sorts of its arguments, and s is its (value)
sort. Operators can have user-definable syntax, with under-
bars ‘_’ marking each of the argument positions, and are
declared with the sorts of their arguments and the sort of
their result. Some operators can have equational attributes,
such as assoc, comm, and id, stating, for example, that
the operator is associative and commutative and has a cer-
tain identity element. Such attributes are then used by the
Maude engine to match terms modulo the declared axioms.
An operator can also be declared to be a constructor (ctor)
that defines the data elements of a sort. Thefrozen attribute
declares which argument positions are frozen; arguments in
frozen positions cannot be rewritten by rewrite rules [21].

There are three kinds of logical statements in the Maude
language, equations,memberships (declaring that a term has
a certain sort), and rewrite rules, introduced with the follow-
ing syntax:

– equations: eq u = v or ceq u = v if condition;
– memberships: mb u : s or cmb u : s if condition;
– rewrite rules: rl [l] : u => v or
crl [l] : u => v if condition.

An equation f (t1, . . . , tn) = t with the owise (for “oth-
erwise”) attribute can be applied to a term f (. . .) only if
no other equation with left-hand side f (u1, . . . , un) can

be applied. The mathematical variables in such statements
are either explicitly declared with the keywords var and
vars, or can be introduced on the fly in a statement without
being declared previously, in which case they have the form
var : sort. Finally, a comment is preceded by ‘***’ or ‘---’
and lasts till the end of the line.

2.2.2 Object-oriented specification in Real-TimeMaude

A Real-Time Maude timed module specifies a real-time
rewrite theory R = (Σ, E ∪ A, R) [39], where:

– (Σ, E ∪ A) contains an equational subtheory (ΣTIME,

ETIME) ⊆ (Σ, E ∪ A), satisfying the TIME axioms that
specifies sort Time as the time domain (which can be dis-
crete or dense).Although a timedmodule is parametric on
the timedomain,Real-TimeMaude provides someprede-
finedmodules specifying useful time domains. For exam-
ple, themodulesNAT-TIME-DOMAIN-WITH-INF and
POSRAT-TIME-DOMAIN-WITH-INF define the time
domain to be, respectively, the natural numbers and the
nonnegative rational numbers. and contain the subsort
declarations Nat < Time and PosRat < Time.
The supersort TimeInf extends the sort Time with an
“infinity” value INF.

– The rules in R are decomposed into:

– “ordinary” rewrite rules specifying the system’s
instantaneous (i.e., zero-time) local transitions, and

– tick (rewrite) rules that model the elapse of
time in a system, having the form l : {t} u−→ {t ′} if
condition, where t and t ′ are terms of sort System,
u is a term of sort Time denoting the duration of
the rewrite, and {_} is a built-in constructor of sort
GlobalSystem.
In Real-Time Maude, tick rules, together with their
durations, are specified using the syntax

crl [l] : {t} => {t ′} in time u if condition.

The initial state must be reducible to a term {t0}, for t0
a ground term of sort System, using the equations in the
specification. The form of the tick rules then ensures uniform
time elapse in all parts of a system.

Real-Time Maude is particularly suitable to formally
model distributed real-time systems in an object-oriented
style. Each term t in a global system state {t} is in such
cases a term of sort Configuration (which is a subsort
of System), and has the structure of a multiset made up
of objects and messages. Multiset union for configurations is
denoted by a juxtaposition operator __ (empty syntax) that is
declared associative and commutative and having the none
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multiset as its identity element, so that rewriting is multiset
rewriting supported directly in Maude.

In object-oriented timed modules one can declare classes,
subclasses, and messages. A class declaration

class C | att1 : s1, . . . , attn : sn

declares a class C with attributes att1, . . . , attn of sorts
s1, . . . , sn . An object of class C is represented as a term
of sort Object and has the form

< O : C | att1 : val1,..., attn : valn >,

where O is the object’s identifier, and val1, . . . , valn are its
attribute values. A subclass, introduced with the keyword
subclass, inherits all the attributes, equations, and rules
of its superclasses. A message is a term of sort Msg.

The dynamic behavior of concurrent object systems is
axiomatized by specifying each of its transition patterns by
a rewrite rule. For example, the rewrite rule

crl [l] :
< O1 : C | a1 : x1, a2 : O2, a3 : z, a4 : p >
< O2 : C | a1 : x2, a2 : O1, a3 : w, a4 : q >

=>
< O1 : C | a1 : x1 + w + z, a2 : O2, a3 : z, a4 : p >
< O2 : C | a1 : x2 + z, a2 : O1, a3 : w, a4 : q >

if z <= w

defines a family of transitions involving two objects O1 and
O2 of class C, and updates the attribute a1 of both objects.
For example, the new value of the a1 attribute of object O2
is the old value of that attribute plus the old value of O1’s
attribute a3. By convention, attributes whose values do not
change and do not affect the next state of other attributes
or messages, such as a2 and a4 in our example, need not
be mentioned in a rule. Similarly, attributes whose values
influence the next state of other attributes or the values in
messages, but are themselves unchanged, such as a3, can be
omitted from right-hand sides of rules.

2.2.3 Formal analysis in Real-Time Maude

We summarize below some of Real-Time Maude’s analysis
commands. Real-TimeMaude’s timed fair rewrite command

(tfrew t in time <= τ .)

simulates one behavior of the system within time τ from the
initial state t . The timed search command

(tsearch [ [n] ] t =>* pattern [such that condition]
in time <= τ .)

analyzes all possible behaviors by using a breadth-first strat-
egy to search for (at most n) states that are reachable from

the initial state t within time τ , match the search pattern, and
satisfy the (optional) search condition. The untimed search
command

(utsearch [ [n] ] t =>* pattern [such that cond] .)

is similar, but without the time bound. If the arrow =>! is
used instead of =>*, then Real-Time Maude searches for
reachable final states, that is, states that cannot be further
rewritten.

Real-Time Maude’s linear temporal logic (LTL) model
checker checks whether each behavior from an initial state,
possibly up to a time bound, satisfies an LTL formula.
Real-Time Maude is also equipped with a timed CTL
model checker to analyze metric temporal logical proper-
ties [31,32].

Finally, the command

(find latest t =>* pattern [such that cond]
with no time limit .)

explores all behaviors from the initial state t and finds the
longest time needed to reach the desired state (for the first
time in a behavior).

3 A formal model of humanmultitasking

This section presents our Real-TimeMaude model of human
multitasking. We only show parts of our model, and refer to
the full executable model available at http://www.di.unipi.it/
msvbio/software/HumanMultitasking.html for more detail.

Wemodel humanmultitasking in an object-oriented style.
The state consists of a number of Interface objects, rep-
resenting the interfaces of the devices/systems with which a
user interacts, and an object of class WorkingMemory rep-
resenting the user’s working memory. Each interface object
contains a Task object defining the task that the user wants
to perform on that interface (such as, e.g., withdraw cash,
find a good rock music radio station, or find the route to
Aunt Bertha). We describe a task as a sequence of actions
that the user performs on the interface to reach some goal.
Our notion of task therefore corresponds to the notion of
scenario in software engineering.

3.1 Classes

This section defines the classes in our model and the data
types of their attribute values.

3.1.1 Interfaces

Wemodel an interface as a transition system. Sincewe follow
a user-centric approach, the state of the interface/system is
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given by what the human perceives it to be. For example, I
may perceive that an ATM is ready to accept my debit card
by seeing a welcoming message on the ATM display and I
can perceive that the machine is not ready for me by seeing
chewing gum in the card slot or an “Out of Order” message
on the ATM display. The human’s perception of the state of
an interface can be represented as a term of the following sort
InterfaceState:

sorts InterfaceState Perception ExpPerception .
subsort Perception < ExpPerception < InterfaceState .
op _for time_ :

Perception TimeInf -> InterfaceState [right id: INF] .
op expired : Perception -> ExpPerception .

A perception (i.e., the state of the interface the person is
interacting with) may not last forever: after entering my card
in the slot, I will only perceive that the ATM is waiting
for my PIN code for eight minutes, after which the ATM
will display a “Transaction canceled” message. The term
p for time t denotes that the user will perceive p for
time t , after which the perception becomes expired(p).
The right id: INF functional attribute of the _for
time_ operator means that Maude considers p for time
INF to be identical to p.

A interface transition has the form p1 -- action --> p2.
For example, if I perceive that the machine is ready to receive
my card, I can perform an action enterCard, and the ATM
will then display that I should type my PIN code:

ATMready -- enterCard --> typePIN for time 480

Interface transitions are represented as a ;-separated set
of single interface transitions:

sorts InterfaceTransition InterfaceTransitions .
subsort InterfaceTransition < InterfaceTransitions .

--- single transition:
op _--_-->_ : Perception DefAction InterfaceState ->

InterfaceTransition .
--- sets of transitions:
op noTransition : -> InterfaceTransitions .
op _;_ : InterfaceTransitions InterfaceTransitions ->

InterfaceTransitions [assoc comm id: noTransition] .

An interface is represented as an object instance of the fol-
lowing class:

class Interface | task : Object,
transitions : InterfaceTransitions,
previousAction : DefAction,
currentState : InterfaceState .

where the attribute transitions denotes the transitions
of the interface; task denotes the task object (see below)
representing the task that the user wants to perform with the
interface; previousAction is the previous action per-
formed on the interface (useful for analysis purposes); and
currentState is (the user’s perception of) the state of the
device.

3.1.2 Tasks

Instead of seeing a task as a sequence of basic tasks that
cannot be further decomposed, we find it more natural to
consider a task to be a sequence of subtasks, where each sub-
task is a sequence of basic tasks. For example, the task of
withdrawing money at an ATM may consist of the follow-
ing sequence of subtasks: insert card; type PIN code; type
amount; retrieve card; and, finally, retrieve cash. Some of
these subtasks consist of a sequence of basic tasks: the sub-
task “type PIN code” consists of typing 4 digits and then
“OK,” and so does the subtask “type amount.” We therefore
model a task as a ‘::’-separated sequence of subtasks, where
each subtask is modeled as a sequence of basic tasks:

sorts BasicTask Subtask Task .
subsort BasicTask < Subtask < Task .

--- Subtask is a list of BasicTasks:
op nil : -> Subtask .
op _ _ : Subtask Subtask -> Subtask [assoc id: nil] .

--- Task is a list of subTasks:
op emptyTask : -> Task .
op _::_ : Task Task -> Task [assoc id: emptyTask] .

Each basic task has the form

inf1 | p1 ==> action | inf2 duration τ difficulty d delay δ

where inf1 is some knowledge, p1 is a perception (state) of
the interface, τ is the time needed to execute the task, and
d is the difficulty of the basic task. If my working memory
contains inf1 and I perceive p1, then I can perform the inter-
face transition labeled action, and as a result my working
memory forgets inf1 and stores inf2. A basic task may not be
enabled immediately: you cannot type your PIN code imme-
diately after inserting your card. The ATM first reads your
card and does some other processing. The (minimum) time
needed before the basic task can be executed is given by the
delay δ, which could also be the time needed to switch from
one task to another. A basic task could be

needCash | ATMready ==> enterCard | cardInMachine
duration 3 difficulty 1/8 delay 0.

That is, after performing the action enterCard you “for-
get” that you need cash, and instead store inworkingmemory
that the card is in the machine. Basic tasks are declared

op _|_==>_|_duration_difficulty_delay_ :
Information Perception DefAction
Information Time PosRat Time -> BasicTask .

If the action “performed” in a basic task is noAction,
then the basic task describes an update of a WM entry that
is done without interacting with the device. For example,
while interacting with the ATM, I may suddenly realize that
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I actually do not need any money. We call such an “action-
less” basic task a cognitive basic task, and it represents an
autonomous change in the mental state of the user. The piece
of Information stored in theWM after the execution of a
cognitive basic task has to belong to the subsort Cognition
(described below).

As mentioned in Sect. 2.1, the next task that is given a
person’s attention is a function of: the cognitive loads of the
current subtasks,1 the criticality level of each task (a person
tends to focus more frequently on safety-critical tasks than
on other tasks), and the time that an enabled task has waited
to be executed. For example, driving a car has a higher crit-
icality level than finding out where to go, which has higher
criticality level than finding a good radio station. Likewise, if
a task has not been given attention for a long time, it should
be given attention soon. To compute the “rank” of each task, a
task object should contain these values, and is therefore rep-
resented as an object instance of the following class Task:

class Task | subtasks : Task,
waitTime : Time,
status : TaskStatus,
cognitiveLoad : Rat,
criticalityLevel : PosRat .

The subtasks attribute denotes the remaining sequence of
subtasks to be performed; the attribute waitTime denotes
how long the next basic task has been enabled; the attribute
cognitiveLoad is a rational number (Rat) denoting
the cognitive load of the subtask currently executing; and
the attribute criticalityLevel is a positive rational
number (PosRat) denoting the task’s criticality level. For
analysis purposes, we also add an attribute status denot-
ing the “status” of the task as a term of the following sort
TaskStatus:

sort TaskStatus .
ops notStarted ongoing completed : -> TaskStatus [ctor] .

3.1.3 Working memory

Theworkingmemory is used when interacting with the inter-
faces, and can only store a limited number of information
items. We model the working memory as an object of the
following class:

class WorkingMemory | memory : Memory,
capacity : NzNat .

1 Since we now consider structured tasks and add delays to basic tasks,

we redefine the cognitive load of a task to be
∑

di ti∑
ti+dlyi

, where di , ti
and dlyi denote the difficulty, duration and delay of each basic task i
of the current subtask. The cognitive load of a task therefore changes
every time a new subtask begins, and remains the same throughout the
execution of the subtask.

where capacity denotes the maximal number of ele-
ments that can be stored in memory at any time. The
memory attribute stores the content of the working mem-
ory as a map I1 |-> mem1; ... ;In |-> memn of sort
Memory, assigning to each interface I j the set mem j of items
in the memory associated with interface I j . An element in
memj is either a cognition, a basic piece of information, such
as, e.g.,cardInMachine, or a desired goal goal(action).
The goal defines the ultimate aim of the interaction with the
interface, which is to end up performing some final action,
such as takeCash. Cognitions are more of a mental state
(want to withdraw money, or do not want to do so?), and can
change without interacting with an interface, whereas basic
information cannot. The data type Memory specifying this
map is defined as follows, where the user must provide the
application-specific values of Cognition, BasicInfo,
and Action:

sorts Cognition BasicInfo Action . --- user-defined sorts
sorts Goal Information .
subsorts Cognition Goal BasicInfo < Information .

op goal : Action -> Goal .

sort InfoSet . --- sets of information elements
subsort Information < InfoSet .
op noInfo : -> Information .
op _ _ : InfoSet InfoSet -> InfoSet

[assoc comm id: noInfo] .

sort Memory .
op noMemory : -> Memory .
op _|->_ : InterfaceId InfoSet -> Memory .
op _;_ : Memory Memory -> Memory

[assoc comm id: noMemory] .

For example, the working memory of a person p who wants
to drive to X and likes to listen to NPR could be:

< p : WorkingMemory |
capacity : 7,
memory : car |-> goal(parkAtX) ;

gps |-> XlivesInaddr
goal(pushFindWay) ;

radio |-> NPRIsButton3
goal(pushButton(3)) >

3.2 Dynamic behavior

We formalize human multitasking with rewrite rules that
specify how attention is directed at the different tasks, and
how this affects the working memory. In short, whenever a
basic task is enabled, attention is directed toward the inter-
face with the highest task rank, and a basic task/action is
performed on that interface. The rank of each task is a func-
tion of:
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– the cognitive load of the “current” subtask, which is a
function of the durations and difficulty levels the basic
tasks in the subtask;

– the criticality level of the task; and
– the time that the task has beenwaiting (i.e., enabled being
executed).

The rank of a non-empty task is given by the function rank,
whose definition is shown after the declaration of the vari-
ables used in our model:

vars DACT DACT2 : DefAction . var ACT : Action .
vars INF1 INF2 INF3 : Information . var COG2 : Cognition .
vars INF-SET INF-SET2 : InfoSet . var MEMORY : Memory .
vars P P1 : Perception . var IS : InterfaceState .
vars I I2 : InterfaceId . vars TASK WM : Oid .
vars T T1 T2 T3 : Time . vars TI TI2 : TimeInf .
var NZT MIN-DELAY : NzTime . var CAP : NzNat .
var CL : Rat . vars PR PR2 : PosRat .
var OTHER-SUB-TASKS : Task . var TS : TaskStatus .
vars BASIC-TASKS BTL : Subtask . var OBJECT : Object .
vars REST ALL-INTERFACES OTHER-INTERFACES : Configuration .
vars NEC1 NEC2 : NEConfiguration .
var TRANSITIONS : InterfaceTransitions .

eq rank(< I : Interface | task :
< TASK : Task | subtasks :

((INF1 | P1 ==> DACT | INF2
duration NZT difficulty PR delay T2) BTL)

:: OTHER-SUB-TASKS,
waitTime : T,
cognitiveLoad : CL,
criticalityLevel : PR2 > >,

(I |-> goal(ACT) INFO-SET) ; MEMORY)
= if T2 == 0 then PR2 * CL * (T + 1) else 0 fi .

A task which is not yet enabled (the remaining delay T2 of
the first basic task is greater than 0) has rank 0. The rank
function refines the task rank function in [15], and should
therefore be consistent with results in psychology.

The tick rewrite rule in Fig. 1 models the user performing
a basic task (if it does not cause memory overload, and the
action performed is neither noAction nor the goal action)
with the interface with the highest rank of all interfaces
(bestRank(...)).

In this rule, the user perceives that the state of interface I
is P1. The next basic task can be performed if information
INF1 is associated with this interface in the user’s working
memory, and the interface is (perceived to be) in state P1.
The user then performs the basic task labeled DACT, which
leads to a new item INF2 stored in working memory, while
INF1 is forgotten. This rule is only enabled if the remaining
delay of the basic task is 0 and the user has a goal associated
with this interface. If the basic task performed is the last in
the subtask, we update the value of cognitiveLoad using
the following function cogLoad:

--- Compute a measure of the difficulty of a subtask as
--- (difficulty * duration of each BT):
op difficultyFactor : Subtask -> PosRat .
eq difficultyFactor(nil) = 0 .
eq difficultyFactor((INF | P ==> DACT | INF2

duration T difficulty PR delay T1) BTL)
= T * PR + difficultyFactor(BTL) .

--- Compute the total duration of a subtask as
--- (duration + waiting time of each BT):
op subtaskDuration : Subtask -> Time .
eq subtaskDuration(nil) = 0 .
eq subtaskDuration((INF | P ==> DACT | INF2

duration T difficulty PR delay T1) BTL)
= (T + T1) + subtaskDuration(BTL) .

--- Compute the cognitive load of a subtask:
op cogLoad : Subtask -> PosRat .
eq cogLoad(BTL)
= if BTL == nil then 0

else difficultyFactor(BTL) / subtaskDuration(BTL) fi .

The first conjuncts in the condition of the rewrite rule in
Fig. 1 say that the rule can only be applied when the action
performed is neither the goal action nor noAction. Since
INF1 could be the empty element noInfo, the rule may
increase the number of items stored in working memory
(when INF1 is noInfo, but INF2 is not). The third con-
junct in the condition ensures that the resulting knowledge
does not exceed the capacity of theworkingmemory. The last
conjunct ensures that the current interface should be given
attention: it has the highest rank among all the interfaces.

The duration of this tick rule is the duration NZT of the
executing basic task. During that time, every other task idles:
the “perception timer” and the remaining delay of the first
basic task are decreased according to elapsed time, and the
waiting time is increased if the basic task is enabled. The
definition of the idle operator is given in Fig. 2.

If performing the basic task would exceed the capacity
of the memory, some other item in the memory is nondeter-
ministically forgotten, so that items associated to the current
interface are only forgotten if there are no items associated to
other interfaces. (This is because maintaining information in
workingmemory requires the user’s attention, and user atten-
tion is on the current task, so it is more natural that items of
the other tasks are forgotten first.) The following rule shows
the case when an item for a different interface is erased from
memory. Since a mapping is associative and commutative,
any memory item INF3 associated with any interface I2
different from I could be forgotten. This rule is very similar
to the rule above, and we only show the differences:

crl [interactingForgetSomethingOtherInterface] :
{ ... < I : Interface | task :

< TASK : Task | ... > ... >
< WM : WorkingMemory |

memory :
(I |-> INF1 goal(ACT) INF-SET) ;
(I2 |-> INF3 INF-SET2) ;
MEMORY,

capacity : CAP >}
=>

{ ... < I : Interface | task :
< TASK : Task | ... > ... >

< WM : WorkingMemory |
memory :
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crl [interacting] :
{OTHER-INTERFACES
< I : Interface |

task :
< TASK : Task | subtasks : ((INF1 | P1 ==> DACT | INF2 duration NZT difficulty PR delay 0) BASIC-TASKS)

:: OTHER-SUB-TASKS,
waitTime : T1, cognitiveLoad : CL, criticalityLevel : PR2, status : TS >,

transitions : (P1 -- DACT --> (P2 for time TI2)) ; TRANSES,
currentState : (P1 for time TI), previousAction : DACT2 >

< WM : WorkingMemory | memory : MEMORY ; (I |-> INF1 goal(ACT) INF-SET), capacity : CAP >}
=>

{idle(OTHER-INTERFACES, NZT)
< I : Interface |

task :
< TASK : Task | subtasks : (if BASIC-TASKS =/= nil

then (BASIC-TASKS :: OTHER-SUB-TASKS) else OTHER-SUB-TASKS fi),
waitTime : 0,
status : (if TS == notStarted then ongoing else TS fi),
cognitiveLoad : (if BASIC-TASKS =/= nil then CL else cogLoad(first(OTHER-SUB-TASKS)) fi) >,

currentState : (P2 for time TI2), previousAction : DACT >
< WM : WorkingMemory | memory : MEMORY ; (I |-> INF2 goal(ACT) INF-SET) >}

in time NZT
if (DACT =/= noAction) /\ (DACT =/= ACT)

/\ card(MEMORY ; (I |-> INF2 goal(ACT) INF-SET)) <= CAP
/\ rank(< I : Interface | >, (MEMORY ; (I |-> INF1 goal(ACT) INF-SET)))

== bestRank(< I : Interface | > OTHER-INTERFACES, (MEMORY ; (I |-> INF1 goal(ACT) INF-SET))) .

Fig. 1 Rewrite rule modeling a basic interaction of the user with the interface with the highest rank

op idle : Configuration Time -> Configuration [frozen (1)] .

eq idle(none, T) = none .
eq idle(< I : Interface | task :

< TASK : Task | subtasks : ((INF1 | P1 ==> DACT | INF2 duration NZT difficulty PR delay T2) BASIC-TASKS)
:: OTHER-SUB-TASKS,

waitTime : T3 >,
currentState : IS > REST, T)

= < I : Interface | task :
< TASK : Task | subtasks : ((INF1 | P1 ==> DACT | INF2 duration NZT difficulty PR delay (T2 monus T) ) BASIC-TASKS)

:: OTHER-SUB-TASKS,
waitTime : T3 + (T monus T2) >,

currentState : idle(IS, T) > idle(REST, T) .

eq idle(< I : Interface | task : < TASK : Task | subtasks : emptyTask, waitTime : T3 >,
currentState : IS > REST, T)

= < I : Interface | task : < TASK : Task | waitTime : 0 >,
currentState : idle(IS, T) > idle(REST, T) .

eq idle(< WM : WorkingMemory | > REST, T) = < WM : WorkingMemory | > idle(REST, T) .

op idle : InterfaceState TimeInf -> InterfaceState .
eq idle(P1 for time TI, T) = if T < TI then P1 for time (TI monus T) else expired(P1) fi .
eq idle(expired(P1), T) = expired(P1) .

Fig. 2 Definition of the idle operator

(I |-> INF2 goal(ACT) INF-SET) ;
(I2 |-> INF-SET2) ;
MEMORY >}

in time NZT
if ...

/\ card((I |-> INF2 goal(ACT) INF-SET)
; (I2 |-> INF3 INF-SET2) ; MEMORY) > CAP

/\ ...

A similar rule removes an arbitrary item from the memory
associated with the current interface if the memory does not
store any item for another interface.

If each “next” basic task has a remaining delay, then time
advances until the earliest time when the delay of some basic
task reaches 0:

crl [tickAllIdling] :
{ALL-INTERFACES

< WM : WorkingMemory | memory :
MEMORY ; (I |-> goal(ACT) INF-SET) >}

=>
{idle(ALL-INTERFACES, MIN-DELAY)
< WM : WorkingMemory | >}

in time MIN-DELAY
if MIN-DELAY := minDelay(ALL-INTERFACES) .

where MIN-DELAY is a variable of a sort NzTime of non-
zero-time values and the function minDelay returns the
minimum of all delays among all first basic tasks of each
task in the configuration and it is defined as follows:

op minDelay : NEConfiguration -> TimeInf .
eq minDelay(OBJECT) = delay(OBJECT) .
eq minDelay(NEC1 NEC2)
= min(minDelay(NEC1), minDelay(NEC2)) .
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In the above rules, we did not reach our goal with the
interface. The following rule closure treats the case then
the action ACT performed is our goal action. Again, this rule
is quite similar to the above rules, so some parts are replaced
by ‘...’:

crl [closure] :
{OTHER-INTERFACES
< I : Interface | task :

< TASK : Task | subtasks :
((INF1 | P1 ==> ACT | INF2

duration NZT difficulty PR delay 0)
BASIC-TASKS)
:: OTHER-SUB-TASKS >,

transitions : (P1 -- ACT --> (P2 for time TI2))
; TRANSES,

currentState : (P1 for time TI) >
< WM : WorkingMemory | memory : MEMORY

; (I |-> INF-SET INF1 goal(ACT) >}
=>

{idle(OTHER-INTERFACES, NZT)
< I : Interface | task :

< TASK : Task | subtasks : emptyTask,
waitTime : 0,
cognitiveLoad : 0,
status : completed >, ... >

< WM : WorkingMemory | memory : MEMORY
; (I |-> INF2) >}

in time NZT
if ...

In the above rule closure, when the goal action ACT (e.g.,
takeCash) for the interface I is performed, we forget
everything associated to the interface I, except the mem-
ory item (if any) INF2 (e.g., feelingRich) resulting
from having performed the goal action ACT. Furthermore,
we remove all the remaining subtasks from the task associ-
ated to the interface I, and set the status of that task to
completed.

As mentioned, a person may change cognition (“men-
tal state”) without interacting with a device, or may acquire
knowledge through a cognitive process. For instance, a user
could understand that the ATM is out of order just looking
at an “out of order” message without interacting with it, and
he/she could change his/her mental state by deciding to use
another ATM. This can be modeled by a cognitive basic task,
which performs noAction and updates the WM without
synchronizing with any interface transition. The following
rule models the execution of a cognitive basic task:

crl [cognitive] :
{OTHER-INTERFACES
< I : Interface | task :

< TASK : Task | subtasks :
((INF1 | P1 ==> noInfo | COG2

duration NZT difficulty PR delay 0)
BASIC-TASKS)
:: OTHER-SUB-TASKS,

cognitiveLoad : CL,
status : TS > >

< WM : WorkingMemory | memory : MEMORY
; (I |-> INF-SET INF1 goal(ACT)),

capacity : CAP >}
=>

{idle(OTHER-INTERFACES, NZT)
< I : Interface | task : < TASK : Task | ... > >
< WM : WorkingMemory | memory : MEMORY

; (I |-> INF-SET COG2 goal(ACT)) >}
in time NZT

if ....

The following rule concerns only the interface: sometimes
the interface state comes with a timer (e.g., the ATM only
waits for a PIN code for eight minutes). When this timer
expires, an instantaneous rule changes the interface state
(e.g., display “Ready” when the machine has waited too long
for the PIN):

rl [timeout] :
{REST
< I : Interface | transitions :

(expired(P1) -- DACT --> IS)
; TRANSES,

currentState : expired(P1) >}
=>
{REST < I : Interface | currentState : IS,

previousAction : DACT >} .

4 Analyzing safety-critical human
multitasking

This section explains how Real-Time Maude can be used to
analyze whether a human is able to perform a given set of
tasks successfully. In particular, we focus on the following
key problems that could happen when multitasking:

1. A critical task may be ignored for too long because atten-
tion is given to other tasks. For example, it is not good if
a driver does not give attention to driving for 15 seconds
because (s)he is focusing on the infotainment system.

2. A task, or a crucial action in a task, is not completed
on time, since too much attention has been given to other
tasks. For example, a pilot shouldfinish all pre-flight tasks
before taking off, and a driver should have entered the
destination in the GPS before the first major intersection
is reached.

3. Other tasks’ concurrent use of working memory may
cause the user to forget/misremember memory items that
are crucial to complete a given task.

It is worth remarking that although each task is a sequence
of basic tasks, and at every step, the task with the best rank is
given attention next, a model may still exhibit nondetermin-
ism, since:

– If two or more transitions of an Interface object are
defined for the current state and action (possibly leading
to different next states), one of them is chosen nondeter-
ministically (see, e.g., rule interacting).
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{initializeCognLoad(
< wm : WorkingMemory | memory : interface1 |-> goal(action1) otherItems1 ; ... ;

interfacen |-> goal(actionn) otherItemsn,
capacity : capacity >

< interface1 : Interface | task :
< task1 : Task | subtasks : (b111 ... b11l ) :: ... :: (b1m1 ... b1m j

),

waitTime : 0, cognitiveLoad : 0, criticalityLevel : cl1, status : notStarted >
transitions : trans1, previousAction : noAction, currentState : perc1 >

...
< interfacen : Interface | task :

< taskn : Task | subtasks : ..., waitTime : 0, cognitiveLoad : 0, criticalityLevel : cln, status : notStarted >
transitions : transn, previousAction : noAction, currentState : percn >)}

Fig. 3 Initial state

– At a certain stage, more than one interface may have
the same best rank, in which case the task to be given
attention is selected nondeterministically among those
best-ranked tasks (see rule interacting).

– If memory becomes overloaded, the memory item that is
forgotten is selected nondeterministically (see, e.g., rule
interactingForgetSomethingOtherInter
face).

To analyze whether the desired properties hold for a set
of interfaces/tasks, we therefore need to analyze all possible
behaviors that may nondeterministically take place from the
initial state. To do so, we use Real-Time Maude reachability
analysis, and analyze whether it possible to reach a (possibly
final) state in which a desired property is violated.

4.1 Initial states

The initial state should have the form described in Fig. 3,
where: interfacek is the name of the k-th interface; taskk is
the task to be performed with/on interfacek ; bki j is the j-th
basic task of the i-th subtask of taskk ; clk is the criticality level
of taskk ; transk are the transitions of interfacek ; actionk is the
goal action to be achieved with interfacek ; otherItemsk are
other items initially present in the memory for interfacek ;
perck is the initial perception (“state”) of interfacek ; and
capacity is the number of items that can be stored in working
memory. The cognitiveLoad attributes of all interfaces
are initialized by the initializeCognLoad function,
which computes the cognitive load of the first subtask of
each task.

4.2 Model checking the properties

The first key property to analyze is: Is it possible that an
(enabled) task t is ignored continuously for at least time Δ?
This property can be analyzed in Real-Time Maude as fol-
lows, by checkingwhether it is possible to reach a “bad” state
where the waitTime attribute of task t is at least Δ2:

2 The variable A:AttributeSet captures the other attributes in
inner objects.

(utsearch [1] initialState =>*
{REST:Configuration
< I:InterfaceId : Interface | task :

< t : Task | waitTime : T:Time, A:AttributeSet > >}
such that T:Time >= Δ .

where the variable REST:Configuration matches the
other objects in the state.

The second key property is checking whether a certain
task t is guaranteed to finish before time T . This can be
analyzed using Real-Time Maude’s find latest com-
mand, by finding the longest time needed to reach status
completed:

(find latest initialState =>*
{REST:Configuration
< I:InterfaceId : Interface | task :

< t : Task | status : completed, A:AttributeSet > >}
with no time limit .)

We can also use the find latest command to find out
the longest time needed for a task t to complete the specific
action act:

(find latest initialState =>*
{REST:Configuration
< I:InterfaceId : Interface | previousAction : act >}

with no time limit .)

We can analyze whether it is guaranteed that a task t will
be completed by searching for a “bad” final state where the
status of the task is not completed:

(utsearch [1] initialState =>!
{REST:Configuration
< I:InterfaceId : Interface | task :
< t : Task | status : TS:TaskStatus, A:AttributeSet > >}

such that TS:TaskStatus =/= completed .)

If we want to analyze whether it is guaranteed that all tasks
can be completed, we just replace t in this command with a
variable I2:TaskId.

If a safety-critical task cannot be completed, or completed
in time, we can check whether this is due to the task itself, or
the presence of concurrent “distractor” tasks, by analyzing
an initial state without the distractor tasks.
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5 Case studies

This section illustrates the use of our modeling and analysis
framework with three safety-critical multitasking case stud-
ies: (i) a person who interacts with a GPS navigation device
while driving; (ii) an operator of an air traffic control system;
and (iii) a doctor or nurse calibrating and starting multiple
infusion pumps that inject drugs intravenously into a patient.

All the executable Real-Time Maude models of the case
studies,with analysis commands, are available at http://www.
di.unipi.it/msvbio/software/HumanMultitasking.html.

In each of the three case studies we provide what we think
are plausible task sets,with appropriate durations, delays, and
difficulty levels of the basic tasks, and appropriate criticality
levels of the tasks. However, the purpose is to illustrate our
framework, which can be used to analyze human multitask-
ing of a given set of tasks. We do not claim that the tasks that
we provide are “correct” with correct values of the various
parameters. As further discussed in Sect. 7, some param-
eter values, like durations and delays, could be obtained
experimentally, whereas the difficulty level might be a more
subjective value.

5.1 Interacting with a GPS device while driving

Our first case study deals with driving while interacting with
a navigation system. We have two interfaces: a car and a
navigation system. The task of driving consists of the three
subtasks (i) start driving, (ii) drive to destination, and (iii)
park and leave the car. The first subtask consists of the basic
tasks of inserting the car key, turning on the ignition, and start
driving; subtask (ii) describes a short trip during which the
driver wants to perform a basic driving action at most every
three time units; and subtask (iii) consists of stopping the car
and removing the keywhenwehave arrived at the destination.
The driving task can be formalized by the following Task
object:

< driving : Task |
subtasks :

((noInfo | carOff ==> insertKey | keyInserted
duration 1 difficulty 3/10 delay 0)

(noInfo | carOn ==> turnKey | noInfo
duration 1 difficulty 2/10 delay 0)

(noInfo | carReady ==> startDrive | noInfo
duration 1 difficulty 2/10 delay 2))

::
((noInfo | straightRoad ==> straight | noInfo

duration 1 difficulty 1/10 delay 3)
(noInfo | straightRoad2 ==> straight | noInfo

duration 1 difficulty 1/10 delay 3)
(noInfo | curveLeft ==> turnLeft | noInfo

duration 1 difficulty 4/10 delay 3)
(noInfo | curveRight ==> turnRight | noInfo

duration 1 difficulty 2/10 delay 3)
(noInfo | straightRoad3 ==> straight | noInfo

duration 1 difficulty 1/10 delay 3)
(noInfo | straightRoad4 ==> straight | noInfo

duration 1 difficulty 1/10 delay 3))
::
((noInfo | destination ==> stopCar | noInfo

duration 2 difficulty 2/10 delay 2)
(keyInserted | carStopped ==> pickKey | noInfo

duration 2 difficulty 1/10 delay 0)),
waitTime : 0,
status : notStarted,
criticalityLevel : 6/10,
cognitiveLoad : 0 >

The interface of the car is formalized by the object

< car : Interface |
transitions :

(carOff -- insertKey --> carOn) ;
(carReady -- startDrive --> straightRoad) ;
(carOn -- turnKey --> carReady) ;
(straightRoad -- straight --> straightRoad2) ;
(straightRoad2 -- straight --> curveLeft) ;
(curveLeft -- turnLeft --> curveRight) ;
(curveRight -- turnRight --> straightRoad3) ;
(straightRoad3 -- straight --> straightRoad4) ;
(straightRoad4 -- straight --> destination) ;
(destination -- stopCar --> carStopped) ;
(carStopped -- pickKey --> carOff) ,

task : < driving : Task | ... >, --- see above
previousAction : noAction,
currentState : carOff >

For the GPS navigator, we assume that to enter the desti-
nation the user has to type at least partially the address. The
navigator then suggests a list of possible destinations, among
which the user has to select the right one. Therefore, the GPS
task consists of three subtasks: (i) start and choose city; (ii)
type the initial k letters of the desired destination; and (iii)
choose the right destination among the options given by the
GPS.

If the user types the entire address of the destination, the
navigator returns a short list of possible matches; if (s)he
types fewer characters, the navigator returns a longer list,
making it harder for the user to find the right destination. We
consider two alternatives: (1) the driver types 13 characters
and then searches for the destination in a short list; and (2)
the driver types just four characters and then searches for
the destination in a longer list. The GPS task for case (1) is
modeled by the following Task object:

< findDestination : Task |
subtasks :

((noInfo | gpsReady ==> typeSearchMode | noInfo
duration 1 difficulty 1/10 delay 0))

::
((noInfo | chooseCity ==> selectCity | noInfo

duration 2 difficulty 5/10 delay 2))
::
((noInfo | typing1 ==> typeSomething | noInfo

duration 1 difficulty 3/10 delay 3)
(noInfo | typing2 ==> typeSomething | noInfo

duration 1 difficulty 3/10 delay 0)
.
.
.

(noInfo | typing13 ==> pushSearchBtn | noInfo
duration 1 difficulty 3/10 delay 0))

::
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((noInfo | searching ==> chooseAddress | noInfo
duration 2 difficulty 2/10 delay 0)),

waitTime : 0,
status : notStarted,
criticalityLevel : 3/10,
cognitiveLoad : 0 >

Case (2) is modeled similarly, but with only four typing
actions before pushing the search button. In that case, the
last basic task (choosing destination from a larger list) has
duration 5 and difficulty 6

10 .
The GPS interface in case (1) is defined by the following

Interface object:

< gps : Interface |
transitions :

(gpsReady -- typeSearchMode --> chooseCity) ;
(chooseCity -- selectCity --> typing1) ;
(typing1 -- typeSomething --> typing2) ;
(typing2 -- typeSomething --> typing3) ;

.

.

.

(typing13 -- pushSearchBtn --> searching) ;
(searching -- chooseAddress --> gpsReady),

task : < findDestination : Task | ... >,
previousAction : noAction,
currentState : gpsReady >

The initial state of the working memory is

< wm : WorkingMemory | capacity : 5,
memory :

(car |-> goal(pickKey)) ;
(gps |-> goal(chooseAddress)) >

We use the techniques in Sect. 4 to analyze our models, and
first analyze whether an enabled driving task can be ignored
for more than six seconds:

Maude> (utsearch [1] {initState} =>*
{< car : Interface | task :

< driving : Task | waitTime : T:Time,
A:AttributeSet > >

REST:Configuration}
such that T:Time > 6 .)

Real-Time Maude finds no such bad state when the driver
types 13 characters:

No solution

However, when the driver only types four characters, the
command returns a bad state:

Solution 1
T:Time --> 7
...

Here, the driver types the last two characters and finds the
destination in the long list without turning her attention to
driving in-between.

Sometimes even a brief distraction can be dangerous. For
example, when the road turns, a delay of three time units in

making the turn could be dangerous. We check the longest
time needed for the driver to complete theturnLeft action:

Maude> (find latest {initState} =>*
{< car : Interface | previousAction : turnLeft >
REST:Configuration }

with no time limit .)

Real-Time Maude shows that the left turn is completed at
time 24:

Result:
{< car : Interface | currentState : curveRight,

previousAction : turnLeft,
task : < driving : Task | cognitiveLoad : 1/24,

criticalityLevel : 3/5, status : ongoing,
subtasks :…, waitTime : 0 >,

transitions :… >
< gps : Interface | currentState : gpsReady,

previousAction : chooseAddress,
task : < findDestination : Task | cognitiveLoad : 3/5,

criticalityLevel : 3/10, status : completed,
subtasks : emptyTask, waitTime : 0 >,

transitions : … >
< wm : WorkingMemory | capacity : 5,

memory : car |-> keyInserted goal(pickKey) ;
gps |-> noInfo >}

in time 24

However, the same analysis with an initial state without
the GPS interface object and task shows that an undistracted
driver finishes the left turn at time 17:

Result: { ... } in time 17

Finally, to analyze potential memory overload, we modify
the GPS task so that the driver must remember the portion of
address already written: a new item is added to the working
memory after every three characters typed.

We then check whether all tasks are guaranteed to be com-
pleted in this setting, by searching for a final state in which
some task is not completed:

Maude> (utsearch [1] {initState2} =>!
{< I:InterfaceId : Interface | task :

< T:Oid : Task | status : TS:TaskStatus,
A:AttributeSet > >

REST:Configuration}
such that TS:TaskStatus =/= completed .)

This commandfinds such anundesired state:keyInserted
could be forgotten when the driver must remember typing;
in that case, the goal action pickKey is not performed, and
we leave the key in the car. The same command with our
“standard” model of GPS interaction does not find any final
state with an uncompleted task pending.

5.2 Air traffic control operators

Air traffic control (ATC) operators are personnel responsi-
ble for monitoring and controlling air traffic. They usually
work in ATC centers and control towers on the ground, by
monitoring the position, speed, altitude, and route of aircraft
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in their assigned sector, visually and by radar. In addition,
they also deal with radio communication with pilots to give
them instructions and to receive useful information about
the flights, which they report on flight progress strips (FPSs
or strips). Such FPS are paper strips used to record basic
information for each aircraft, such as call sign, aircraft type,
destination, altitude, planned route, flight level (FL), etc.
Controllers update strips dynamically as they control the
associated aircraft through their sectors. One of the main
tasks of ATC operators is to avoid flight collisions; i.e., to
avoid that the distance between aircraft goes below a mini-
mum prescribed distance. When this happens, they say that
the aircraft violates separation. Air traffic controllers can also
transfer an aircraft to the next sector controller when they are
too busy, or assign one of their tasks to an assistant.

Despite the availability of advanced radar and technolog-
ical support, strips and other aids, ATC operators heavily
rely on working memory, by encoding, storing and retrieving
information recently perceived about aircraft and the environ-
ment, such as pilot requests, information about the flights,
weather reports, and so on [44].

5.2.1 Modeling ATC tasks

We focus on the following three tasks that controllers have
to carry out concurrently:

1. Monitoring a radar sector to: (i) keep the distance
between aircraft under control and avoid possible col-
lisions; (ii) move an aircraft to the next sector controller
when they are too busy; and (iii) visually perceive new
information about flights.

2. Managing pilots’ calls to update information about
flights on strips.

3. Checking that an assistant carries out assigned tasks.

For the first of these tasks, we model a different moni-
toring task and consequently, a different radar interface, for
each critical zone of the radar sector to be monitored. The
monitoring task is essentially a set of three different subtasks;
we show each subtask of this task separately:

i. Controlling parts of the screen, possibly adding informa-
tion about flights to the memory:

< monitoring : Task | subtasks :
((noInfo | Screen1 ==> lookAtScreen1 | noInfo

duration 4 difficulty 4/10 delay 0)
(noInfo | Screen2 ==> lookAtScreen2 | updFL

duration 4 difficulty 4/10 delay 0)
(noInfo | Screen3 ==> lookAtScreen3 | noInfo

duration 4 difficulty 4/10 delay 0)) ::
…

This subtask consists of three basic tasks of looking at dif-
ferent parts of the screen. The second basic task models
that, while looking at a section of the screen, the ATC
operator notices that one of the aircrafts has changed
its flight level, and the operator adds this information
(updFL) to her memory.

ii. Monitoring a possible collision:

… ::
((noInfo | Screen3 ==> noAction | possibleClsn1

duration 3 difficulty 4/10 delay 0)
(possibleClsn1 | Collision1 ==> monitorClsn1 | noInfo

duration 4 difficulty 5/10 delay 0)) ::
…

This subtask consists of two basic tasks. The first is a cog-
nition basic task (the “action performed” is noAction)
which models that the ATC operator, while looking at the
screen, understands that a collision could happen. She
then adds the cognition possibleClsn1 to her mem-
ory. She therefore changes her mental plan by recovering
such a cognition from her workingmemory andmonitors
the possible collision in the second basic task.

iii. Moving an aircraft to the next sector controller, activated
by a cognition about the presence of too many aircrafts
on the screen:

… ::
((noInfo | Screen4 ==> lookAtScreen4 | noInfo

duration 4 difficulty 4/10 delay 0)
(noInfo | Screen4 ==> noAction | movingAircraft

duration 3 difficulty 4/10 delay 0)
(movingAircraft | Screen5 ==> move | noInfo

duration 4 difficulty 5/10 delay 0)),
waitTime : 0,
status : notStarted,
criticalityLevel : 8/10,
cognitiveLoad : 0 >

This subtask consists of three basic tasks. The first one
is explained above. The second one is a cognition which
models theATCoperator realizing that there are toomany
aircrafts in her sector, and she then adds the cognition
movingAircraft to her memory. In the third basic
task, she retrieves this cognition from her memory and
moves an aircraft to the next sector controller. (The end
of the code above shows the remaining attributes of the
Task object monitoring.)

The criticality level of the monitoring tasks could vary,
depending on the number of aircraft present in the sector
or their type: some of them could require little active con-
trol, such as overflights, “lows and slows,” and aircraft on the
pilots’ own navigation or on a radar route [44].
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The radar interface associated with such monitoring task
is defined by the following Interface object:

< radar : Interface |
transitions :

(Screen1 -- lookAtScreen1 --> Screen2) ;
(Screen2 -- lookAtScreen2 --> Screen3) ;
(Screen3 -- lookAtScreen3 --> Collision1) ;
(Collision1 -- monitorClsn1 --> Screen4) ;
(Screen4 -- lookAtScreen4 --> Screen5) ;
(Screen5 -- move --> stop),

task : < monitoring : Task | ... >, --- see above
previousAction : noAction,
currentState : Screen1 >

For the second task above, we model a radio com-
munication task, and consequently a radio interface, for
each communication with a different pilot. It consists of a
sequence of subtasksmodeling the pilot’s calls and the updat-
ing of strips with the information received, and is formalized
by the following Task object radioCommunication:

< radioCommunication : Task | subtasks :
((noInfo | call1 ==> communicating1 | updatingAltitude

duration 3 difficulty 4/10 delay 7))
::
((updatingAltitude | strip1 ==> updating1 | noInfo

duration 2 difficulty 3/10 delay 0))
::
((noInfo | call2 ==> communicating2 | updatingRoute

duration 3 difficulty 4/10 delay 5))
::
((updatingRoute | strip2 ==> updating2 | noInfo

duration 2 difficulty 3/10 delay 0))
::
((noInfo | call3 ==> communicating3 | updatingFL

duration 3 difficulty 4/10 delay 2))
::
((updatingFL | strip3 ==> updating3 | noInfo

duration 2 difficulty 3/10 delay 0))
waitTime : 0,
status : notStarted,
criticalityLevel : 4/10,
cognitiveLoad : 0 >

For example, first subtask

(noInfo | call1 ==> communicating1 | updatingAltitude
duration 3 difficulty 4/10 delay 7)

models a call from a pilot, who tells the ATC operator about
an update of the altitude (updatingAltitude), and the
following addition of this information to the ATC operator’s
memory. The operator then uses this information in the sec-
ond subtask

(updatingAltitude | strip1 ==> updating1 | noInfo
duration 2 difficulty 3/10 delay 0)

where the operator retrieves the information from memory
and updates the altitude on the flight’s strip.

The criticality level of the radio communication task could
vary according to the type of aircraft the controller is receiv-
ing information from. The radio interface associated to such
a communication task is formalized by the following object:

< radio : Interface |
transitions :

(call1 -- communicating1 --> strip1) ;
(strip1 -- updating1 --> call2) ;
(call2 -- communicating2 --> strip2) ;
(strip2 -- updating2 --> call3) ;
(call3 -- communicating3 --> strip3) ;
(strip3 -- updating3 --> stop),

task : < radioCommunication : Task | ... >,
previousAction : noAction,
currentState : call1 >

Finally, the third task, checking that an assistant carries
out an assignment, is formalized by the following object:

< checkingAssignedTask : Task | subtasks :
((noInfo | assistantReady ==> checkingTask | noInfo

duration 3 difficulty 3/10 delay 0)),
waitTime : 0,
status : notStarted,
criticalityLevel : 3/10,
cognitiveLoad : 0 >

We model the assistant as an interface with which the con-
troller has to interact: he/she is formalized by the following
Interface object:

< assistant : Interface |
transitions :

(assistantReady -- checkingTask --> stop),
task : < checkingAssignedTask : Task | ... >,
previousAction : noAction,
currentState : assistantReady >

5.2.2 Analyzing urgency

As in the car/GPS example, some of the tasks are not only
characterized by high criticality but also by urgency. If two
aircrafts violate separation, the controller has to monitor the
identified conflict situation as soon as she perceives it. The
fact that many such tasks may have to be performed at the
same time could lead to a dangerous situation where some
urgent actions are not performed when they should.

To analyze urgency,wemodel a situationwhere an air traf-
fic controller monitors her radar sector while communicating
with a pilot via radio. During the monitoring activity, the
ATC operator finds three possible collisions (we model three
subtasks with actions monitorClsn1, monitorClsn2,
and monitorClsn3); however, the radio communication
task might prevent him/her from monitoring such collisions
at a specific time. We check the longest time needed for the
controller to complete all monitorClsnX actions:

Maude> (find latest {initState1} =>*
{< radar : Interface | previousAction : monitorClsn >
REST:Configuration }

with no time limit .)

The result of this analysis shows that the monitorClsn1
action is completed at time 15, the monitorClsn2 action
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is completed at time 42, and the monitorClsn3 action is
completed at time 57. However, the same analysis with an
initial state with just the radar interface object and task shows
that when the ACT operator is not distracted, she finishes
the monitorClsn2 action at time 50—8 time units later
than in themultitasking scenario—and themonitorClsn3
action completes at time 72, i.e., 15 time units later than in
the multitasking scenario.

5.2.3 Analyzing memory failures due to multitasking

Analysis of interviews with air traffic controllers in [44] indi-
cate that memory errors are associatedwithworkingmemory
overload and distraction. We focus on three kinds of errors
presented in the report by modeling, simulating, and analyz-
ing them, and we try to give a plausible explanation of these
errors in term of cognitive causes: prospective memory fail-
ure, retrospective memory failure, and forgetting temporary
information.

Prospective memory is the form of memory involved in
remembering to perform a planned action. Sixteen errors pre-
sented in [44] involve prospective memory failure.

To analyze prospective memory failures, we model a sit-
uation where the controller monitors three different zones
in her radar sector while communicating with two different
pilots and checking that an assistant carries out an assigned
task. The checking assignment task has a delay of 20 time
units, since controller plans to perform this task in the
future.

The initial state of the working memory is

< wm : WorkingMemory | capacity : 7,
memory : (radar1 |-> goal(lookAtScreen3)) ;

(radar2 |-> goal(lookAtScreen12)) ;
(radar3 |-> goal(lookAtScreen7)) ;
(radio1 |-> goal(updating1)) ;
(radio2 |-> goal(updating2)) ;
(assistant |-> goal(checkingTask)) >

We check if all tasks are guaranteed to be completed:

Maude > (utsearch [1] initState1 =>!
{< I:InterfaceId : Interface | task :

< T:Oid : Task | status : TS:TaskStatus,
A:AttributeSet > >

REST:Configuration }
such that TS:TaskStatus =/= completed .)

and we find a bad state: the goal associated to the assistant
interface is deleted from memory and the controller cannot
complete the checking assignment task.

Retrospective memory is the memory of people, words, or
events encountered or experienced in the past. Three of the
errors presented in [44] involve retrospective memory fail-
ure: controllers lose track of task progress since they forget
the action previously performed. Task interruptions have dis-
ruptive effects on task performance, although several studies

show that they have different consequences when performed
at different moments [1,28].

To analyze retrospective memory failures, we model a
situation where the air traffic controller monitors the radar
and decides tomove an airplane to the next controller’s sector
when she perceives that she is too busy. At the same time, she
has to answer three different calls from pilots and annotate
the information received by them on strips.

We show that interrupting the monitoring task at different
moments can have different consequences. We model two
initial states, initState1 and initState2. In the first
one, the controller receives three calls after a delay of 7, 8
and 9 time units, respectively; in the second one the con-
troller receives three calls after a delay of 8, 9 and 10 time
units, respectively. The difficulties of the radio communica-
tion tasks have been set in order to have the same cognitive
load for each task.

We check whether all tasks are guaranteed to complete
for both initial states. Our analysis found an undesired state
for initState1, and no such state for initState2. In
the first case the main task is interrupted after the operator
decides to transfer the aircraft: adding new information from
calls lead to memory overload which resulted in forgetting
this decision. In the second case, the monitoring is not inter-
rupted after the controller’s decision to move the airplane.

Many of the errors reported in [44] concern forgetting
temporary information. Some of these errors involve forget-
ting about the presence of aircrafts that require little active
control. To analyze such errors, we model a situation where
the air traffic controller monitors different zones of the radar
screen at the same time. Some of these zones have highly
critical situations to monitor, while one of them have air-
crafts that require low control and thus have lower criticality.
We show that the controller can forget the less critical sec-
tor because she is distracted by other sectors, and too much
information is added to her memory.

We model five interfaces representing the different zones
of the screen. Each zone has a different cognitive load and a
different criticality level, depending on the number of flights
and the type of aircrafts flying there.

We analyze whether all tasks are guaranteed to complete.
The usual command shows that the task associated with the
zone with low criticality, representing a zone with flights
which require little control, does not complete because that
task’s goal is deleted from the working memory. We check
whether the task associated with that zone is at least started
with commands:

Maude> (find latest {initState1} =>*
{< zone2 : Interface | previousAction : lookAtScreen4 >
REST:Configuration }

with no time limit .)
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Fig. 4 Example scenario with
two infusion pumps

and

Maude> (find latest {initState1} =>*
{< radar : Interface | previousAction : lookAtScreen12 >
REST:Configuration }

with no time limit .)

The first command shows that the first action of the task is
performed at time 33, while the second command shows that
the last action of the task is never performed.

5.3 Concurrent configuration of infusion pumps

This section shows the application of our framework to a case
study based on an experiment described in [7], where users
were asked to interact with two medical devices. The aim of
the experiment was to study multitasking strategies adopted
by clinicians, to assess whether particular strategies could
induce omission errors, for example forgetting to perform a
procedural step required to complete the task.

The original experiment involved the use of two simu-
lated infusion pumps (see Fig. 4). Infusion pumps aremedical
devices routinely used in hospitals to inject fluids (e.g., drugs
or nutrients) into the bloodstream of a patient in precise
amount and at controlled rates. The devices under consid-
eration provide a front panel with a display and a number of
buttons used by clinicians to configure, operate, and monitor
the pump. To set up an infusion pump, clinicians are usually
required to perform five main steps:

1. Read infusion parameters, typically volume to be infused
(vtbi) and infusion duration or infusion rate, from a pre-
scription chart.

2. Enter the infusion parameters using the data entry system
provided by the pump.

Table 1 A multitasking strategy for setting up two infusion pumps

Time Prescription chart Pump 1 Pump 2

1 read vtbi1

2 read vtbi2

3 enter vtbi1

4 enter vtbi2

5 read time1

6 enter time1

7 open clamp1

8 read time2

9 enter time2

10 open clamp2

11 start infusion1

12 start infusion2

3. Connect the pump to the patient using a “giving set” (a
transparent plastic tube with a needle at one end, and a
bag with fluid at the other end).

4. Open the roller clamp to allow the fluid to circulate.
5. Start the infusion.

Intensive care patients may be connected to more than
one infusion pump at the same time. When multiple infusion
pumps need to be configured, clinicians may choose to inter-
leave the steps necessary for setting up the pumps. This is
usually done to optimize cognitive resources (e.g., memory
load), or time (e.g., to perform operations on one pumpwhile
waiting that the other pump executes an operation) [7].

Different multitasking strategies may produce different
memory loads. One possible multitasking strategy for setting
up the two pumps is shown in Table 1. The question we
consider is “What is the capacity of the working memory
needed to ensure that all tasks are successfully completed,
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using a particular multitasking strategy?” An answer to this
question could help manufacturers design devices that are
simpler to use. It could also be used by hospitals to develop
better training material for clinicians. Academic researchers
could also benefit, e.g., to test cognitive hypotheses before
running an experimental study.

5.3.1 Model

Our approach is to first model the concurrent interaction with
two infusion pumps. This model is then used to estimate
expected memory load, by checking whether all tasks can
be successfully completed when the capacity of the work-
ing memory is X . By varying this parameter X , we can find
the smallest capacity necessary. To experiment with differ-
ent multitasking strategies, we use different values for the
difficulty and duration parameters of the basic tasks.

The model includes interfaces representing each pump.
The concurrent tasks relate to the procedure for setting vtbi
and time values for the two pumps. To set the values, clin-
icians must read and memorize the values provided by the
prescription chart, and then use the pumps’ data entry system
to enter the values.

The task for setting up Pump 1 is specified as follows (the
task for Pump 2 is analogous):

< settingPump1 : Task | subtasks :
((noInfo | prescriptionFormVtbiP1 ==> noAction | vtbi300

duration 1 difficulty 2/10 delay 0)
(vtbi300 | setVTBIP1 ==> type300 | noInfo

duration 1 difficulty 2/10 delay 0))
::
((noInfo | prescriptionFormTimeP1 ==> noAction | time3

duration 1 difficulty 2/10 delay 0)
(time3 | setTimeP1 ==> type3 | noInfo

duration 1 difficulty 2/10 delay 0))
::
((clampOpeningP1 | clampP1 ==> openClampP1 | noInfo

duration 1 difficulty 2/10 delay 0))
::
((noInfo | infusionReadyP1 ==> startInfusionP1 | noInfo

duration 1 difficulty 2/10 delay 0)) >

This task consists of six basic tasks, grouped into four sub-
tasks:

1. Read and memorize the vtbi value for Pump 1 from the
prescription chart;

2. Enter vtbi in Pump 1;
3. Read and memorize the infusion duration for Pump 1

from the prescription chart;
4. Enter infusion duration in Pump 1;
5. Open clamp 1;
6. Start infusion.

The basic task

(noInfo | prescriptionFormVtbiP1 ==> noAction | vtbi300
duration 1 difficulty 2/10 delay 0)

models a cognitive basic task: the operator reads from the
prescription chart the vtbi value for the pump 1, she finds
out that the value to be inserted is 300 and inserts into her
working memory the cognition vtbi300.

The infusion pump interface associated to such task is
defined by the following Interface object:

< pump1 : Interface |
transitions :

(setVTBIP1 -- type300 --> setTimeP1) ;
(setTimeP1 -- type3 --> clampP1) ;
(clampP1 -- openClampP1 --> infusionReadyP1) ;
(infusionReadyP1 -- startInfusionP1

--> newInterfaceStateP1),
task : < settingPump1 : Task | ... >, --- see above
previousAction : noAction,
currentState : setVTBIP1 >

5.3.2 Analysis

To analyze whether with working memory capacity X , we
can complete all tasks successfully, the initial state of the
WorkingMemory object wm is

< wm : WorkingMemory |
memory :

(pump1 |-> goal(startInfusionP1) clampOpeningP1);
(pump2 |-> goal(startInfusionP2) clampOpeningP2),

capacity : X >

The initial content of the WM consists of the two task goals
(i.e., starting the infusion), and twomemory items to remem-
ber to open the roller clamps before starting the infusion
(clampOpeningP1 and clampOpeningP2).

Real-Time Maude is then used to check whether a given
WMcapacity X is sufficient to achieve the goal. This helps to
obtain a quantitative evaluation of the complexity of the task
(in terms of memory load) and to identify situations where
the multitasking strategy could exceed the WM capacity of
the operator.

The exact same utsearch command as in Sect. 5.2.3
is then used to check whether, from the given initial state,
it is possible to reach a final state where all tasks have
not completed successfully. By experimenting with differ-
ent parameter values, the model checker finds interleaving
strategies where the user is not able to complete the tasks
when the capacity of the WM is set to 5. One such example
is given in Table 1: with WM capacity set to 5, the user can
perform correctly the concurrent tasks up to enter time 2 (i.e.,
an omission error occurs for action open clamp 2). If theWM
capacity is set to 6, on the other hand, the analysis shows that
the user is always able to reach the goal successfully, with
any multitasking strategy.

The results of our analysis are in linewith the experimental
results in [7] and provide an explanation to the omission error
in terms of CL.
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5.3.3 Modeling and analyzing a redesigned interface

To check whether a design solution could be adopted to
reducememory load, the pumpdesignwasmodifiedusing the
Next-ActionCueing technique [19].A set of cues is presented
in the user interface of the system at appropriate moments, to
remind the operator what action should be performed next.
For example, when the clamp needs to be opened, the oper-
ator does not need to retrieve this information from WM if
there is a visual cue on the pump screen that indicates what
needs to be done (e.g., a simple message “OPEN CLAMP”
on the display of the pump).

This new design incorporated into the model, by intro-
ducing a cognitive basic task in the subtask for setting up an
infusion pump: perceiving the cue will trigger the activation
and execution of a certain action.

< settingPump1 : Task | subtasks :
((noInfo | prescriptionFormVtbiP1 ==> noAction | vtbi300

duration 1 difficulty 2/10 delay 0)
(vtbi300 | setVTBIP1 ==> type300 | noInfo

duration 1 difficulty 2/10 delay 0))
::
((noInfo | prescriptionFormTimeP1 ==> noAction | time3

duration 1 difficulty 2/10 delay 0)
(time3 | setTimeP1 ==> type3|noInfo

duration 1 difficulty 2/10 delay 0))
::
((noInfo | clampP1 ==> noAction| clampOpeningP1

duration 1 difficulty 2/10 delay 0)
(clampOpeningP1 | clampP1 ==> openClampP1 | noInfo

duration 1 difficulty 2/10 delay 0))
::
((noInfo | infusionReadyP1 ==> startInfusionP1 | noInfo

duration 1 difficulty 2/10 delay 0)) >

The basic task

(noInfo | clampP1 ==> noAction | clampOpeningP1
duration 1 difficulty 2/10 delay 0)

models the cognitive basic task mentioned above: the
operator, by looking at the pump interface, notices a sig-
nal and understands that she has to open the clamp.
She then inserts into her working memory the cognition
clampOpeningP1, which she uses in the following basic
task to perform the action openClampP1 with the pump1
interface.

Analysis of this new version of the task indicates that, for
all possible interleaving strategies, the user is always able to
complete the tasks as long as the capacity of the WM is at
least 5.

6 Related work

There has been somework on applying “computational mod-
els” to study human attention and multitasking. The ACT-R
architecture [3], an executable rule-based framework for

modeling cognitive processes, has been applied to study, e.g.,
the effects of distraction by phone dialing while driving [41]
and the sources of errors in aviation [17]. Recent versions of
ACT-R handle human attention in accordance with the the-
ory of concurrent multitasking proposed in [42]. The theory
describes concurrent tasks that can interleave and compete
for resources. Cognition balances task execution simply by
favoring least recently processed tasks. Additional parame-
ters, such as the criticality level or the cognitive load of the
task, are not taken into account.

Other computational models for human multitasking
include the salience, expectancy, effort and value (SEEV)
model [49] and the strategic task overload management
(STOM) model [47]. The SEEV model is specifically
designed to describe (sequential) visual scanning of an instru-
ment panel, where each instrument may serve different tasks.
The model has been validated against data collected by per-
forming experimentswith real users using theBORIS robotic
simulator [45] developed for the training of aerospace pro-
fessionals. The multitasking paradigm underlying SEEV is
different from the one we consider in this paper, which is not
sequential scanning but voluntary task switching [4].

The STOM model, that can be seen as an evolution of
the SEEV model, is closer to our work. Like our frame-
work, STOM deals with voluntary task switching and uses
a multi-attribute approach to predict the decision of the user
switching from one task to another. Which attributes to con-
sider and how they should be weighted in the model are
still open research questions. In its original formulation,
STOM used four attributes for each task: difficulty, prior-
ity, interest, and salience [47]. This version of the model
was validated against data of real users interacting with the
MATB II simulator [43,48]. More recently, new attributes
have been considered, such as the time of tasks [46]. Some of
the attributes considered in STOM are similar to parameters
we consider in our framework. Task difficulty, for instance,
is also used in our framework, although at the level of basic
tasks rather than of whole tasks (our tasks are structured).
Moreover, the priority attribute is somehowsimilar to our task
criticality level. However, a fundamental difference between
STOM and our framework is that we model attention switch-
ing at a lower level of abstraction, namely, by describing
the underlying cognitive processes related to the WM and
the CL. This allows us to base our approach on the well-
established theories described in Sect. 2.1, which have been
validated through several experiments on both adults and
children [8–11,24] and through neuroimaging [24], a tech-
nique which allows studying the activity of different brain
areas as well as specific brain functions. Another important
difference between STOM and our framework is that STOM
does not explicitly model the user’s working memory, its
capacity limit, and its action mechanism. Modeling the WM
enables us to analyze memory issues such as memory over-
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load, retrospective memory failure, and prospective memory
failure, which are some of the main problems in human mul-
titasking. Finally, STOM does not provide a formal model
that can be subjected to different formal analysis methods to
analyze whether the model satisfies desired properties.

The above systems (and other similar approaches) have all
been developed in the context of cognitive psychology and
neuroscience research. They do not provide what computer
scientists would call a formal model, but are typically based
on some mathematical formulas and an implementation (in
Lisp in the case of ACT-R) that supports only simulation.
In contrast, we provide a formal model that can be not only
simulated, but also subjected to a range of formal analy-
ses, including reachability analysis and timed temporal logic
model checking.

On the formal methods side, Gelman et al. [25] model
a pilot and the flight management system (FMS) of a civil
aircraft and use WMC simulation and SAL model check-
ing to study automation surprises (i.e., the system works
as designed but the pilot is unable to predict or explain the
behavior of the aircraft). The occurrence of the automation
surprise is studied by checking the reachability of an unde-
sired state, where the mental state of the pilot differs from
the actual state of the airplane. In [30] the WMC simula-
tor and GALE, an optimization method for complex models,
are applied to study the continuous descent approach (CDA),
a continuous nonstop descent in which only one request for
landing is needed.Thepapers [26,27] propose a formalmodel
for reasoning about excessive task load and concurrency
issues that can lead to errors in human-machine interaction
with complex systems. Task load is a measure of the number
of tasks a user is expected to perform at a given time, and
has been shown to be a good indicator of user mental work-
load in the avionics domain. In [29], the PVS theorem prover
and the NuSMVmodel checker are used to find the potential
source of automation surprises in a flight guidance system. In
contrast to our work, none of these formal frameworks deal
with multitasking.

We discuss the differences with the formal cognitive
framework proposed in [18] in the introduction.

Finally, as mentioned in Sect. 2.1, in [15], we propose
a task switching algorithm for non-structured tasks that we
extend in the current paper. That work does not provide a
formal model, but is used to demonstrate the agreement of
our modeling approach with psychological literature.

7 Concluding remarks

We have presented an executable formal framework for
humanmultitasking in Real-TimeMaude which supports the
modeling, simulation, and formal model checking analysis
of a human interacting with multiple interfaces.

Our framework is able to analyze different problems in
human multitasking, including errors caused by user distrac-
tion, cognitive overload, and memory overload. We focus on
safety-critical multitasking, and therefore include criticality
levels of tasks in our framework.

We have shown how Real-Time Maude can be used
to automatically analyze prototypical properties in safety-
critical human multitasking, and have illustrated our frame-
work with three case studies from different application
domains.

Modeling human behavior is a complex task. Although
the task ranking procedure used to model attention switch-
ing is consistent with studies in psychology, we have been
working on fine-tuning our model by performing experi-
ments with real users. In collaboration with psychologists,
we have devised a web application to administer a test in
which users were asked to interact with two concurrent tasks:
a “main” critical task, and a “distractor” task [12]. Through
these experiments,we identified different typologies of users;
these results should be used to formalize the behavior of these
typologies.

Although we used what we think are plausible task sets
in our case studies, they were not defined based on known
task sets. In general, some parameter values of a task (e.g.,
duration and delay) are measurable, whereas others, like dif-
ficulty and criticality, are not. It is, for example, possible to
measure how long it takes for the user to push a button on
the GPS interface, or how long it takes for the GPS to pro-
cess the inserted address and enable the next basic action.
But it seems hard or impossible to measure the difficulty
of turning the steering wheel, since difficulty is a subjective
parameter.

The proposed framework should be further developed in
different directions. At the moment, our tasks are sequences
of subtasks (which again are sequences of basic tasks) repre-
senting single scenarios, and the task switching algorithm
is essentially deterministic. On the one hand, the frame-
work should be extended to a probabilistic setting, where
a user directs attention to different tasks with certain prob-
abilities. Such probabilistic real-time models could then be
subjected to statistical model checking analysis using tools
such as PVeStA [2]. On the other hand, our framework
should also allow taking into account possible multitasking
strategies.

Finally, we should compare our framework with related
models of human multitasking on selected case studies and
apply it to other safety-critical multitasking applications.
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