arXiv:2107.01566v1 [cs.FL] 4 Jul 2021

Certifying DFA Bounds
for Recognition and Separation*

Orna Kupferman, Nir Lavee, and Salomon Sickert

School of Computer Science and Engineering, The Hebrew University, Israel.
orna@cs.huji.ac.il, nir.lavee@mail.huji.ac.il,
salomon.sickert@mail.huji.ac.il

Abstract The automation of decision procedures makes certification es-
sential. We suggest to use determinacy of turn-based two-player games
with regular winning conditions in order to generate certificates for the
number of states that a deterministic finite automaton (DFA) needs in
order to recognize a given language. Given a language L and a bound k,
recognizability of L by a DFA with & states is reduced to a game between
Prover and Refuter. The interaction along the game then serves as a cer-
tificate. Certificates generated by Prover are minimal DFAs. Certificates
generated by Refuter are faulty attempts to define the required DFA. We
compare the length of offline certificates, which are generated with no
interaction between Prover and Refuter, and online certificates, which
are based on such an interaction, and are thus shorter. We show that
our approach is useful also for certification of separability of regular lan-
guages by a DFA of a given size. Unlike DFA minimization, which can be
solved in polynomial time, separation is NP-complete, and thus the cer-
tification approach is essential. In addition, we prove NP-completeness
of a strict version of separation.

1 Introduction

Deterministic finite automata (DFAs) are among the most studied computation
models in theoretical computer science. In addition to serving as an abstract
mathematical concept, they are often the basis for specification and implemen-
tation of finite-state hardware and software designs [21]. In particular, the theory
of DFAs applies also to deterministic automata of infinite words that recognize
safety languages, which are characterized by finite forbidden behaviors [2/T3].
A fundamental problem about DFAs is their minimization: For k > 1, we
say that a language L C X* is k-DFA-recognizable if there is a k-DFA, namely
a DFA with at most k states, that recognizes L. In the minimization problem,
we are given a DFA A and a bound k > 1, and decide whether L(A), namely

* This is the full version of an article with the same title that appears in the ATVA
2021 conference proceedings. The final authenticated publication is available on-
line at https://doi.org/[insertDOI]. Orna Kupferman is supported in part by the
Israel Science Foundation, grant No. 2357/19. Salomon Sickert is supported by the
Deutsche Forschungsgemeinschaft (DFG) under project number 436811179.

https://doi.org/[insert DOI]

2 Orna Kupferman, Nir Lavee, and Salomon Sickert

the language of A, is k-DFA-recognizable. DFAs enjoy a clean (and beautiful)
theory of canonicity and minimization, based on a right-congruence relation: A
language L C X* induces a relation ~;C X* x X* where for every two words
hi,hy € X*, we have that hy ~p hy iff for all words ¢ € X*, we have that
hi-t € Liff hy -t € L. By the Myhill-Nerode Theorem [16/18], the language
L is k-DFA-recognizable iff the number of equivalence classes of ~ is at most
k. Moreover, a given DFA A can be minimized in polynomial time, by a fixed-
point algorithm that merges states associated with the same equivalence class
of ~L(A)-

Another fundamental problem about DFAs is separation: Given DFAs A,
and A, and a bound k > 1, decide whether there is a k-DFA A that separates
A; and Ajy. That is, L(A;) C L(A) and L(A) N L(Az) = (. Finding a separa-
tor for A; and As is closely related to the DFA identification problem. There,
given sets S1,52 C X* of positive and negative words, and a bound k > 1,
we seek a k-DFA that accepts all words from S; and no word from S;. DFA
identification is NP-complete [I0], with numerous heuristics and applications
[24[TT]. NP-hardness of DFA separation can be obtained by a reduction from
DFA identification, but for DFA separation with additional constraints, in par-
ticular strict separation, NP-hardness is open [9]. Studies of separation include
a search for regular separators of general languages [0], as well as separation of
regular languages by weaker classes of languages, e.g., FO-definable languages
[20] or piecewise testable languages [7].

Let us return to the problem of DFA minimization, and assume we want to
certify the minimality of a given DFA. That is, we are given a DFA A and a
bound k£ > 1, and we seek a proof that L(A) is not k-DFA-recognizable. The
need to accompany results of decision procedures by a certificate is not new, and
includes certification of a “correct” decision of a model checker [14122], reach-
ability certificates in complex multi-agent systems [I], and explainable reactive
synthesis [4]. Certifying that L(A) is not k-DFA-recognizable, we can point to
k+1 words hq,...,hgr1 € X* that belong to different equivalence classes of the
relation ~p(4), along with an explanation why they indeed belong to different
classes, namely words ¢; ; € X*, for all 1 <7 # j <k + 1, such that h; - ¢; ; and
h; - t; ; do not agree on their membership in L(A).

The above certification process is offline: Refuter (that is, the entity prov-
ing that L(A) is not k-DFA-recognizable) generates and outputs the certificate
without an interaction with Prover (that is, the entity claiming that L(A) is
k-DFA-recognizable). In this work we describe an interactive certification proto-
colEI Given A and k > 1, Refuter and Prover interact, aiming to convince each
other about the (non-)existence of a k-DFA for L(A). Our approach offers two
advantages over offline certification. First, the length of the certificate is shorter.
Second, the interactive protocol can also be used for efficiently certifying bounds

! Note that while our certification protocol is interactive, the setting is different from
that of an interactive proof system in computational complexity theory. In particular,
our Prover and Refuter are both finite-state, they have complementary objectives,
and no probability is involved.

Certifying DFA Bounds for Recognition and Separation 3

on the size of DFA separators. In addition, we solve the open problem of the
complexity of deciding strict separation by a k-DFA. We show that it is NP-
complete, and so are variants requiring only one side of the separation to be
strict.

The underlying idea behind the interactive certification protocol is simple:
Consider a language L C X* and a bound k > 1. We consider a turn-based two-
player game between Refuter and Prover. In each round in the game, Prover
provides a letter from a set [k] = {1,2,...,k} that describes the state space of
a DFA for L that Prover claims to exist, and Refuter responds with a letter in
X U {#}, for a special reset letter # ¢ Y. Thus, during the interaction, Prover
generates a word y € [k]* and Refuter generates a word x € (X U {#})“. The
word x describes an infinite sequence of words in X*, separated by #’s, and the
word y aims to describe runs of a k-DFA on the words in the sequence. Prover
wins if the described runs are legal: They all start with the same initial state
and follow some transition function, and are consistent with L: There is a way
to classify the states in [k] to accepting and rejecting such that Prover responds
with an accepting state whenever the word generated by Refuter since the last
is in L. Clearly, if there is a k-DFA for L, then Prover can win by following its
runs. Likewise, a winning strategy for Prover induces a k-DFA for L. The key idea
behind our contribution is that since the above described game is determined
[5], Refuter has a winning strategy iff no k-DFA for L exists. Moreover, since the
game is regular, this winning strategy induces a finite-state transducer, which
we term an (L, k)-refuter, and which generates interactive certificates for L(.A)
not being k-DFA-recognizable.

Consider a language L with index N. Recall that the interaction between
Refuter and Prover generates words = € (X U {#})* and y € [k]¥. If k < N,
Refuter can generate = for which the responses of Prover in y must contain
a violation of legality or agreement with L. Once a violation is detected, the
interaction terminates and it constitutes a certificate: an informative bad prefiz
[13] of the safety language of interactions in which Prover’s responses are legal
and agree with L. We show that the length of certificates generated by offline
refuters is at most O(k?-N), whereas interaction reduces the length to O(k%+N).
We show that both bounds are tight. For separation, we describe a refuter that
generates certificates of length at most O(k? - |X|+ k- (N1 + Nz)), where N7 and
N, are the indices of the separated languages.

Our interactive certification protocol has similarities with the interaction that
takes place in learning of regular languages [3], (see recent survey in [§]). There,
a Learner is tasked to construct a DFA A for an unknown regular set L by
asking a Teacher queries of two types: Membership (“w € L?”) and equivalence
(“L(A) = L?). In our setting, Refuter also wants to “learn” the k-DFA for L
that Prover claims to possess, but she needs to learn only a fraction of it from
Prover — a fraction that reveals that it does not actually recognize L. This is
done with a single type of query (“what is the next state?”), which may give
Refuter more information than the information gained in the learning setting.

4 Orna Kupferman, Nir Lavee, and Salomon Sickert

2 Preliminaries
2.1 Automata

A deterministic automaton on finite words (DFA, for short) is A = (X, Q, qo, 0, F'),
where @) is a finite set of states, ¢o € @ is an initial state, 6 : @ X X — @ is
a partial transition function, and F' C @ is a set of final states. We sometimes
refer to § as a relation A C Q x X' x Q, with (q,0,¢") € Aiff §(¢,0) =¢'. A run
of Aon aword w=w; -wsy---w, € X* is the sequence of states qo,q1,---,qm
such that ¢;+1 = 0(g;, w;x1) for all 0 < ¢ < m. The run is accepting if ¢,, € F. A
word w € X* is accepted by A if the run of A on w is accepting. The language
of A, denoted L(A), is the set of words that A accepts. We define the size of A,
denoted |.A|, as the number of states that A has. For a language L C X*, we use
comp(L) to denote the language complementing L, thus comp(L) = X* \ L.

Consider a language L C X*. For two finite words h; and hs, we say that h;
and ho are right L-indistinguishable, denoted hyi ~p, ho, if for every t € X*, we
have that hy-t € L iff ho-t € L. Thus, ~p is the Myhill-Nerode right congruence
used for minimizing DFAs. For h € X*, let [h] denote the equivalence class of h in
~r, and let (L) denote the set of all equivalence classes. When L is regular, the set
(L) is finite and we use index(L) to denote |(L)|. The set (L) induces the residual
automaton of L, defined by Ry = (¥, (L), A, [¢], F), with ([h],a,[h - a]) € AL
for all [h] € (L) and @ € X. Also, F' contains all classes [h] with h € L. The DFA
Ry is well defined and is the unique minimal DFA for L.

Lemma 1. Consider a regular language L of index N. For every 1 < k < N,
there is a set Hi, = {h1,...,h} of words h; € X* such that h; 1 h; for all
1<i#j<kand|hi|<k-—1forall<i<k.

Proof. Let H be a set of shortest representatives of the classes in (L). If every
word h € H has |h| < k—1, we can define Hy, as an arbitrary subset of size k of

H. Otherwise, there exists h € H with |h| > k. Let [h1], ..., [hx+1] be the prefix
with k4 1 states of a simple path in Ry, from [¢] to [h]. For every 1 <14 < k41,
we have |h;| =i — 1, and we define Hy, = {h1,..., h}. O

Consider a language L C X of infinite words. Here, the language comple-
menting L is comp(L) = X¥\ L. A finite word z € X* is a bad prefiz for L if for
every y € X% we have that -y ¢ L. That is, x is a bad prefix if all its extensions
are words not in L. A language L C X is a safety language if every word not
in L has a bad prefix. A language L is a co-safety language if comp(L) is safety.
Equivalently, every word w € L has a good prefix, namely a prefix z € X* such
that for every y € X*, we have that x -y € L.

2.2 Transducers and Realizability

Consider two finite alphabets X; and Y. For two words = 21 - 22--- € XY
and y =y - y2--- € XY, we define z @ y as the word in (X x Xp)* obtained
by merging x and y. Thus, &y = (x1,y1) - (X2, y2) - - -

Certifying DFA Bounds for Recognition and Separation 5

A (X;1/X0)-transducer models a finite-state system that generates letters in
Yo while interacting with an environment that generates letters in X';. Formally,
a (X/Xo)-transducer is T = (X1, Xo,t, S, so, p, T), where ¢ € {sys, env} indi-
cates who initiates the interaction — the system or the environment, S is a set
of states, sp € S is an initial state, p : S x X — S is a transition function,
and 7 : S — Yo is a labeling function on the states. Consider an input word
=122+ € LY. The run of T on x is the sequence sg, s1, 52 . .. such that for
all j > 0, we have that sj11 = p(s;,2;+1). The annotation of x by T, denoted
T (z), depends on ¢. If « = sys, then T (x) = 7(s0)-7(s1)-7(s2) - - - € 2. Note that
the first letter in 7 (z) is the output of T in sg. This reflects the fact that the sys-
tem initiates the interaction. If ¢ = env, then T (z) = 7(s1)-7(s2)-7(s3) - -- € Xg.
Note that now, the output in s¢ is ignored, reflecting the fact that the environ-
ment initiates the interaction. Then, the computation of T on x is the word
r®T(z) € (X x Xo)v.

We say that a (X[/Xo)-transducer is offline if its behavior is independent
of inputs from the environment. Formally, its transition function p satisfies
p(s,x) = p(s,a’) for all states s € S and input letters x,2’ € X;. Note that
an offline transducer has exactly one run, and it annotates all words by the
same lasso-shaped word u-v“, with u € X7 and v € Zg. We sometimes refer to
general transducers as online transducers, to emphasize they are not offline.

Consider a w-regular language L C (X} x XYp)“. We say that L is (X;/X0o)-
realizable by the system if there exists a (X7/Xo)-transducer T with ¢ = sys all
whose computations are in L. Thus, for every x € XY, we have that x®7 (z) € L.
We then say that T (X;/X0o)-realizes L. Then, L is (X /Xr)-realizable by the
environment if there exists a (Xo/X)-transducer 7 with ¢ = env all whose
computations are in L. When X and Yo are clear from the context, we omit
them. When the language L is w-regular, realizability reduces to deciding a game
with a regular winning condition. Then, by determinacy of games and due to
the existence of finite-memory winning strategies [5], we have the following.

Proposition 1. For every w-regular language L C (X x Xp)¥, exactly one of
the following holds.

1. L is (X1/X0)-realizable by the system.
2. comp(L) is (Yo /XT)-realizable by the environment.

3 Proving and Refuting Bounds on DFAs

Consider a regular language L C X* and a bound k > 1. We view the problem
of deciding whether L can be recognized by a k-DFA as the problem of deciding
a turn-based two-player game between Refuter and Prover. In each round in the
game, Prover provides a letter from a set [k] = {1,2,...,k} that describes the
state space of a DFA for L that Prover claims to exist, and Refuter responds with
a letter in Y U{#}, for a special reset letter # ¢ X. Thus, during the interaction,
Prover generates a word y € [k]* and Refuter generates a word x € (XU {#})v.
The word z describes an infinite sequence of words in X*, separated by #'s,

6 Orna Kupferman, Nir Lavee, and Salomon Sickert

and the word y aims to describe runs of the claimed DFA on the words in the
sequence.

Below we formalize this intuition. Let X/ = X' U {#}, for a letter # ¢ X.
Consider a (finite or infinite) word w = z @y € (X' x [k])* U (X' x [k])¥. Let
rT=x1 Ty and y = y1 - Y2 ---. We say that w is legal if the following two
conditions hold:

1. For all 1 < j < |w| with z; = #, we have y,; 11 = y1.
2. There exists a function ¢ : [k] x X — [k] such that y; 41 = d(y;, z;) for all
1<j<|w| withz; € X.

The first condition ensures that Prover starts all runs in the same state y; €
[k], which serves as the initial state in her claimed DFA. The second condition
ensures that there exists a deterministic transition relation that Prover follows
in all her transitions.

A word w being legal guarantees that Prover follows some k-DFA. We now
add conditions on w in order to guarantee that this DFA recognizes L. Consider
a position 1 < j < |w|. Let #(j) = max{j’ : (j’ < jand z;; = #) or j/ = 0}
be the last position before j in which Refuter generates the reset letter # (or
0, if no such position exists). When the interaction is in position j, we examine
the word w’ that starts at position #(j) + 1 and ends at position j — 1. Thus,
wl = Ty ()41 TH#(j)+2 - Tj—1 € L. The run that Prover suggests to w’ is then
Y ()+1» Y#(j)+25 - - - » Yj, and we say that y maps w’ to y;. When y is clear from
the context, we also say that Prover maps w’ to y;. Note that if j; and j, are
such that w’t = w’2, then w being legal ensures that w/* and w’? are mapped
to the same state. Now, we say that w = x @y € (X' x [k])* U (X’ x [k])¥ agrees
with L if there exists a set F' C [k] such that for all 1 < j < |w|, Prover maps
w? to an element in F iff w’ € L.

Remark 1. Note that a word w agrees with L iff w agrees with comp(L). Indeed,
our definition of agreement with L only guarantees we can define an acceptance
condition on top of the claimed k-DFA for either L and comp(L). Since these
DFAs dualize each other, they have the same index, and so it makes sense not
to distinguish between them in our study. a

Ezample 1. Let ¥ = {a,b} and k = 2. An interaction between Prover and Re-
futer may generate the prefix of a computation in ({a, b, #} x {1,2})“ described
in Table |1} Note that while w fixes §(1,a), 6(2,a), and §(2,b), it does not fix
0(1,b).

In Figure [T} we describe two possible DFAs induced by w and the two possible
choices for §(1,b).

Consider the language Ly C {a,b}* of all words with an even number of a’s.
Then, w agrees with Ly, since there is ' = {1} and all w/ with an even number
of a’s are mapped to F'. However, if we consider the language Lo C {a,b}* of all
words with an even number of b’s, there is no I’ witnessing that w agrees with
Ls. Clearly, any F' C {2} is not a witness, since € € Ly, but 1 ¢ F. Moreover,
F = {1,2} cannot be a witness, since ab ¢ Lo, and F = {1} is also ruled out,
since a € Ly. Thus w does not agree with Ls. O

Certifying DFA Bounds for Recognition and Separation 7

w=z0y=(a,1)(b2) (#,2) (a,1) (a,2) (a,1) (b:2) (#,2) (#,1) (a,1) (a,2)
j= 1 2 3 4 5 6 7 8 9 10 11
#G)= 0 0 0 3 3 3 3 3 8 9 9

w! = € a ab € a aa aaa aaab € € a

Table 1. x @ y and its analysis.

b b b
Ay % E % a %E% A, : a:" b gz%
a a

Figure 1. The DFAs A,, and A}, induced by w.

The language DFA(L, k) C (X' x [k])“ of words with correct annotations
is then DFA(L, k) = {z @y € (X' x [k])¥ : © @ y is legal and agrees with L}.
Then, NoDFA(L, k) is the language of words with incorrect annotations, thus
NoDFA(L, k) = comp(DFA(L, k)).

By Proposition [1} we have the following:

Proposition 2. Consider a language L C X*. Ezactly one of the following
holds:

— L can be recognized by a k-DFA, in which case DFA(L, k) is (X' /[k])-realizable
by the system.

— L cannot be recognized by a k-DFA, in which case NoDFA(L, k) is ([k]/X")-
realizable by the environment.

By Proposition 2} the language DFA(L, k) is (X2”/[k])-realizable by the system
whenever k > index(L). Moreover, as we argue below, a (X /[k])-transducer T
that realizes DFA(L, k) induces a k-DFA for L. To see this, consider the word
r € (X)" = wy - #-wg---F - wxgk - # obtained by concatenating all words
w; - # € ¥ . 4 in some order. Since every transition in a k-DFA is reachable
by traversing a word of length at most & — 1, the computation of 7 on x must
commit on all the transitions in a transition function ¢ : [k] x X' — [k], and must
also induce a single classification of the states in [k] to accepting and rejecting.
Note also that if &k > index(L), the transducer may induce several different DFAs
for L.

By Proposition 2] we also have that the language NoDFA(L, k) is ([k]/X")-
realizable by the environment whenever k < index(L). A ([k]/X’)-transducer
that realizes NoDFA (L, k) is termed an (L, k)-refuter.

4 Certifying Bounds on Recognizability

Recall that DFA(L, k) contains exactly all words that are legal and agree with
L. Accordingly, if a word x @y € (X’ x [k])¥ is not in DFA(L, k), it contains a

8 Orna Kupferman, Nir Lavee, and Salomon Sickert

violation of legality or agreement with L, and thus has a bad prefix for DFA(L, k).
Formally, we define the language Violate(L, k) C (X' x [k])* of words that include
a violation of legality or agreement with L as follows.

Violate(L, k) = {x @ y : there is j > 1 such that x; = # and y; 11 # y1, or
there are ji, 72 > 1 such that
Yji = Yj2r Tjr = Ljas and yj,+1 # Yjo+1,
or w € L,w’? ¢ L and y;, =y, }

Note that while all the words in Violate(L, k) are bad prefixes for DFA(L, k),
there are bad prefixes for DFA(L, k) that are not in Violate(L, k). For example,
if L = {a®" :n > 0}, then the word (a, 1) is a bad prefix for DFA(L, 1), as both
(a,1)(a,1) and (a,1)(#,1), which are the only possible extensions of (a, 1) by
a single letter, are in Violate(L, 1), yet (a, 1) itself is not in Violate(L, 1). For-
mally, using the terminology of [13], the language Violate(L, k) contains all the
informative bad prefizes of DFA(L, k), namely these that contain an explanation
to the prefix being bad. Since every infinite word not in DFA(L, k) has a bad
prefix in Violate(L, k), then restricting attention to bad prefixes in Violate(L, k)
is appropriate in the context of certificates. Also, as we discuss in Remark
a bad prefix of DFA(L, k) that is not informative can be made informative by
concatenating to it any letter in X’ x [k].

Remark 2. Surprisingly, extending a bad prefix of DFA(L, k) by any letter of
X' x [k] transforms it to an informative bad prefixes, i.e., makes it an element
of Violate(L, k): Let w = (x1,y1) - - (Zn, yn) be a bad prefix. In particular, we
have (x1,y1) -+ (Tn, Yn) (F#, Yn+1) - (#,y1)* ¢ DFA(L, k) for all y,,+1 € [k]. Since
continuing a word with (#,y;) after a preceding # does not impact legality or
agreement with L, the word w’ = (z1,y1) - (Tn, Yn) - (#, Yn+1) must include a
violation of legality or agreement with L and thus w’ € Violate(L, k). Lastly,
since the definition of Violate(L, k) does not refer to the X’ component of the
last letter read, we can replace # by any letter of X/ and thus have shown that
any letter of X x [k] transforms a bad prefix to an informative bad prefix. O

Refuting recognizability of L by a k-DFA, we consider two approaches. In the
first, we consider the interaction of Prover with an offline (L, k)-refuter. Such a
refuter has to generate a word 2 € (X’)* such that for all y € [k]/®l, we have
that = @ y € Violate(L, k). We call © a universal informative bad prefiz (see [15]
for a study of bad prefixes for safety languages in an interactive setting). In the
second approach, we consider the interaction of Prover with an online (L, k)-
refuter. There, the goal is to associate every sequence y € [k]“ that is generated
by Prover with a sequence x € (X) such that 2@y has a prefix in Violate(L, k).
In Sections and we compare the two approaches in terms of the length
of the certificate (namely the word in Violate(L, k)) that they generate.

4.1 Certification with Offline Refuters

Recall that a word = € (X')* is a universal informative bad prefiz for DFA(L, k)
if for all y € [k]!*|, we have that 2 @ y € Violate(L, k).

Certifying DFA Bounds for Recognition and Separation 9

Theorem 1. Consider a reqular language L C X* and let N = index(L).
For every k < N, the length of a shortest universal informative bad prefic for
DFA(L, k) is at most O(k?- N). This bound is tight: There is a family of regqular
languages L1, Lo, ... such that for every n > 1, the length of a shortest universal
informative bad prefix for DFA(L,,, N, — 1) is 2(N?2), where N,, = index(L,,).

Proof. We start with the upper bound and construct, for every £ < N, a uni-
versal informative bad prefix for DFA(L, k) of length O(k? - N).

Let H = {hy,...,hg+1} be representatives of k + 1 distinct Myhill-Nerode
classes. Since k < N, such a set H exists. Moreover, by Lemmal[I] we can assume
that |h,;| < k, for all 1 < ¢ < k+1. For each pair (h;, h;), there is a distinguishing
tail ¢; ; of length at most V. Let x be the concatenation of all words of the form
hi-t;;-# and h; - t; ; - #, for all pairs. There are k - (k + 1) such words, each of
length at most K+ N + 1, s0 |z| < (k+ N +1)- k- (k+ 1), which is O(k? - N).
Below we prove that x is a universal informative bad prefix.

Let y € [k]'x‘. For every h; € H, the subword #-h; appears in z, so y maps h;
to some element in [k]. By the pigeonhole principle, there are two distinct words
h; and h; such that y maps both words to the same element. If x ®y is legal, the
transitions are consistent, so y maps both h; - t; ; and h; - t; ; to the same state.
Then, however, as exactly one of h; - t; ; and h; - t; ; is in L, there is no F' C []
that satisfies the condition of agreement with L, and so z @ y € Violate(L, k).
Hence, z is a universal informative bad prefix for DFA(L, k).

For a matching lower bound, we describe a family of regular languages
L1, Lo, ... such that for every n > 1, the length of a shortest universal informa-
tive bad prefix for DFA(L,,, N,,—1) is 2(N2), where N,, = index(L,,). Forn > 1,
let X, = {a,b1,...,b,} and consider the language L,, = {a"b? : 1 <i <n}. Let
A, be a minimal DFA for L,,. For example, Ly = {aaabiby, aaabsbs, aaabsbs},
and the DFA Ajg for Ls appears in Figure

@a@a@a

Figure 2. A DFA for Ls.

It is easy to see that index(L,) = N,, = 2n+3, corresponding to (see Figure|2))
n + 1 states qo,...,qn, n states r1,...,r,, an accepting state, and a rejecting
sink, which we omit from the figure.

Let k = N,, — 1, and consider some prefix « € (X')*. For 1 <i # j < n, the
words a"b; and a”b; belong to different Myhill-Nerode classes, corresponding to

10 Orna Kupferman, Nir Lavee, and Salomon Sickert

the states r; and r;, respectively. The distinguishing tails are b; and b;. We claim
that if x does not contain the subword a™b;b; or a™b;b;, then there is y € [k]1=l
such that x @y ¢ Violate(L, k), and so x is not a universal informative bad
prefix for DFA(L, k). To see this, consider the word y € [k]l*l constructed by
following the DFA obtained from .4,, by merging the states r; and r;. We can
choose ' = #“ and y' € [k]¥ such that y] is consistent with the transitions in
y, and y; =y for all j > 2. If z = y = ¢, we can choose 2’ ©y’ = (#,1)“. Then,
(x-2')® (y-y') € DFA(L, k), and so = @ y is not an informative bad prefix for
DFA(L, k).

Hence, if z is a universal informative bad prefix for DFA(L, k), then for every
1 <7 # j < n, it contains the subwords a"b;b; or a"b;b;, which are of length
n + 2. There are n - (n — 1)/2 such subwords and they are disjoint. Therefore,
|z| > (n+2)-n-(n—1)/2, which is 2(N3). O

4.2 Certification with Online Refuters

We now consider refuters that take Prover’s choices into account when out-
putting letters. We show that this capability allows an interactive refuter to win
in fewer rounds than an offline refuter.

Theorem 2. Consider a regular language L C X* and let N = index(L). For
every k < N, there exists an (L, k)-refuter that generates a word in Violate(L, k)
within O(k* + N) rounds. This bound is tight: There is a family of reqular
languages Ly, Lo, ... such that for every n > 1, every (L,k)-refuter needs at
least 2(N2) rounds to construct a word in Violate(L,, N, — 1), where N,, =
index(Ly,).

Proof. We start with the upper bound, by describing a winning strategy. As in
the offline case, let H = {hq,...,hr411} be representatives of distinct Myhill-
Nerode classes, each of length at most k. Unlike the offline case, where Refuter
outputs all pairs of heads and distinguishing tails, here a single pair suffices to
achieve the same effect. Refuter starts the interaction by outputting hy - # - - - #-
hi+1-#. By the pigeonhole principle, there are distinct words h; and h; that are
mapped by Prover to the same state. Refuter then outputs h;-¢; ;- #-h;-t; ;- #.
If Prover does not violate the conditions of legality, it maps h; - ¢; ; and h; - t; ;
to the same state. Exactly one of them is in L, so there is no F' C [k] that can
satisfy agreement with L, and so the generated word is in Violate(L, k). We now
analyze its length. Recall that Refuter first outputs k+1 words of length at most
k each, separated by #’s, and then two words of length at most k& + N each,
again separated by #. Thus, the length of the prefix is k(k+1)+2(k+ N)+k+3,
which is O(k? + N).

For a matching lower bound, we describe a family of regular languages
Ly, Ly ... such that for every n > 1, every refuter needs at least £2(IN?) rounds
to generate a word in Violate(L,,, N, — 1), where N,, = index(L,,). Consider the
DFA A, from the offline lower bound, again with £k = N,, — 1. We claim that
2(N?2) rounds are required to generate a word in Violate(L,,, N,, — 1).

Certifying DFA Bounds for Recognition and Separation 11

Let x € (X')* be the word generated by Refuter. Assume there exists 1 <
1 < n such that the subword a™b; does not appear in x. The state corresponding
to a™b; is r;. Hence, Prover can follow the DFA obtained by removing the state
r; from A, without violating legality or agreement with L. Therefore, in order
to guarantee a generation of a word in Violate(L,,, N,, — 1), Refuter must output

all the words a”by,...,a"b, in some order. Each of these n words has length
n + 1, and they are disjoint. Their total length is therefore at least n - (n + 1),
which is 2(N2). O

Remark 3. Fixed alphabet In the proofs of Theorems[I]and[2] we use languages
L,, over an alphabet Y, that depends on n. By replacing the letters bq,...,b,
by words in {a,b}!1°8™] one gets languages over the fixed alphabet X = {a,b}
that exhibit the claimed lower bounds for both online and offline refuters. O

4.3 Optimal Survival Strategies for Provers

Assume that L is not k-DFA recognizable. Then, there is an (L, k)-refuter,
and Refuter is going to win a game against Prover and generate a word in
Violate(L, k). Suppose that Prover aims at prolonging the interaction. It is
tempting to think that the following greedy strategy is optimal for such an
objective: Prover follows the transitions of Ry. If k& < index(L), then Prover
may be forced to deviate from Ry and make a “mistake”, namely choose to
output one of the k states that have already been exposed. Using this strategy,
Prover can prolong the game at least until £+ 1 different states are exposed. The
following example shows that this strategy is not necessarily best at prolonging
the game as long as possible (no matter how clever the choice when a “mistake”
is forced is).

Ezample 2. For n > 1, consider the language L,, = {w : w; = b or |w| = n} over
Y ={a,b} .

a,b a,b

ObéQOa,bOa,b©a7b©a,b

Figure 3. A DFA for L.

Denote the canonical DFA for L, by A,,. For example, A4 appears in Figure
[Bl The number of states is n + 3. Let k = n + 2. We claim that if Prover follows
A,, then z = a™*! - # - b - a induces a bad prefix z @ y for L,,. The first word,
a™t1, forces Prover to expose all n + 2 states, after which it cannot have an
accepting sink. Then, # - b forces Prover to choose an existing state instead of
an accepting sink. To prolong the game, it chooses the only accepting state, and

12 Orna Kupferman, Nir Lavee, and Salomon Sickert

then the last a ends the game. The number of rounds needed to win against this
prover is at most n + 4.

Prover can do better than n + 4 rounds. Let L), = {w : w; = bor (w; =
a and |w| = Omod n)} and let B, = Rp, be the minimal DFA for L. For
example, By appears in Figure [The shortest possible word length on which
A, and B,, disagree is 2n (for example, a®" € L/ \ L,), which is better than
n + 4. It can be shown that an (L,, k)-refuter can generate a bad prefix for L,
in at most 2n rounds against all provers, so B,, is optimal in that sense. a

(l,b a,b
a a,b a,b a,b
8 : é OO0

Figure 4. The DFA Bj.

5 Bounds on DFA Separation

Consider three languages L1, Ly, L C X*. We say that L is a separator for
(L1, Ls) if Ly C L and LN Ly = (. Equivalently, L; C L C comp(Ls). For k > 1,
we say that a pair of languages (L1, Lo) is k-DFA-separable iff there is a k-DFA
A such that L(A) separates (L, L2). We extend the definition to DFAs and say
that two DFAs A; and As are separated by a DFA A, if their languages are
separated by L(A).

In this section we study refuting and certifying bounds on DFA separation.
We first give proofs that deciding (strict and non-strict) k-DFA-separability, is
NP-complete. The problem being NP-hard suggests that there is no clean theory
of equivalence classes that is the base for offline certification. We continue and
describe interactive certification protocol for k-DFA-separability.

5.1 Hardness of Separation

The following Theorem [3| is considered by the literature (e.g., [I7]) to be a
consequence of [19)]. Since we also investigate the strict-separation case and there
is a progression of techniques, we describe below an alternative and explicit proof.

Theorem 3. Given DFAs A, and As, and a bound k > 1, deciding whether
(A1, As) is k-DFA-separable is NP-complete.

Proof. Membership in NP is easy, as given a candidate separator A of size k,
we can verify that L(A;) C L(A) and L(A) N L(A2) = 0 in polynomial time.
Note that if & > index(L(A;)), then (Aj;, As) is k-DFA-separable by A;. Thus,
we can assume that k& < index(L(A;)), and so membership in NP applies also
for the case k is given in binary.

Certifying DFA Bounds for Recognition and Separation 13

For NP-hardness, we reduce from the DFA identification problem. Recall
that there, given sets Sp, .52 C X* of positive and negative words, and a bound
k > 1, we seek a k-DFA that accepts all words in S; and no word in S3. By
[10], DFA identification is NP-complete. Given Sj, Sa, and k, our reduction
constructs DFAs A; and A; such that L(A;) = S; and L(Ay) = Ss. Clearly, a
k-DFA solves the DFA identification problem for S, Ss, and k, iff it solves the
k-DFA-separation of A; and As.

Constructing a DFA Ag such that L(Ag) = S, for some finite set S C X*
can be done in polynomial time, by traversing prefixes of words in S. Formally,
we define Ag = (X, Q, qo,0, F'), where Q@ = {w : w is a prefix of a word in S},
qo = €, and for allw € @ and o € X, we have that §(w, o) = w-o if w-o € S, and
0(w, o) is undefined otherwise. Finally, F' = S. Tt is easy to see that L(Ag) = S
and that [As| < > cglw|. O

Consider three languages L1, Lo, L C X*. We say that L is a strict separator
for (L1, Lo) if L1 C L, LN Ly =0, and LU Ly C X*. Equivalently, L; C L C
comp(Ls). For k > 1, we say that a pair of languages (L1, La) is k-DFA-strictly-
separable iff there is a k-DFA A such that L(.A) strictly separates (L1, Lo). Again,
we extend the definition to DFAs.

Theorem 4. Given DFAs A, and As, and a bound k > 1, deciding whether
(A1, As) is k-DFA-strictly-separable is NP-complete.

Proof. We start with membership in NP. As in the proof of Theorem [3] a witness
k-DFA A can be checked in polynomial time. However, if k& is given in binary
and greater than index(L(.A;)) and index(L(.Az)), we cannot base a separator on
Aj or As. We fill this gap by showing that if a DFA strictly separates (A;, As),
then there also exists one that is polynomial in |4;| and |As].

Assume that (A;,.As) are strictly separable, and let T = comp(L(A;) U
L(A3)). Note that (A;,.A2) being strictly separable implies that |T| > 1. Let Arp
be a minimal DFA for T'. Note that |A7p| < |A4]| - |Az2|. Consider a word w € T
that is accepted along a simple path in Ap. Thus, |w| is polynomial in |Ap|.
Consider a DFA A} with L(AY) = L(A1) U {w}. Note that |A}’| is polynomial
in |A;| and |w]|. It is not hard to see that A} is a strict separator for (A;, As).
Indeed, L(AY) strictly contains L(A;), it is contained in comp(L(Az)), and as
|T| > 1, the latter containment is strict. Hence, (A1, .Ay) are strictly separable
by a DFA that is polynomial in |4;| and |As].

For NP-hardness, we describe a reduction from k-DFA-separability, proved to
be NP-hard in Theorem [3| Consider two DFAs A; and A; over X, and assume
that 0 € X. Assume also that L(A;),L(As) # 0, and that L(A;), L(As) are
finite, and thus have rejecting sinks. Clearly, k-DFA-separability is NP-hard also
in this case. Let A} and A/, be DFAs obtained from .4; and Ay by extending the
alphabet to X U {0} and adding a transition labeled 0 from every state to the
rejecting sink. Note that L(A}) = L(A;) and comp(L(Af)) = (ZU{0})*\ L(A2).
We prove that for every k > 1, we have that (A;, As) is k-DFA-separable iff
(A, AS) is k-DFA-strictly-separable.

14 Orna Kupferman, Nir Lavee, and Salomon Sickert

Assume that there is a k-DFA A = (X, Q, 0, qo, F') that separates (A;, As).
Let A’ be the k-DFA obtained from A by extending the alphabet to X U {0},
and adding a transition labeled 0 from every state to qq. It is easy to see that
L(A") = (2*-0)* - L(A), and so L(A) C L(A’). Also, whenever L(A) is not
empty, this containment is strict. Indeed, each word w € L(A) induces the word
0-w e L(A")\ L(A). Hence, as) # L(A;) C L(A), we have that L(A}) C L(A").
In addition, as L(A) N L(As) = 0, then clearly L(A")N L(A5) = 0. Moreover, as
L(Az) # 0, there is a word w € L(As). Then, w ¢ L(A) and so w-0-w ¢ L(A’).
In addition, w - 0-w ¢ L(A5). Thus, L(A") U L(A}) C (¥ U{0})*, and we are
done.

For the other direction, assume there is a k-DFA A’ that strictly separates
(A}, AL). Consider the k-DFA A obtained from A’ by removing all transitions
labeled 0 and changing the alphabet to . Every word in L(A;) is also in L(A’),
and it does not contain 0. So, L(A;) C L(A). Similarly, every word in L(A’)
that does not contain 0 and is not in L(A5), is also not in L(Ag). Therefore,
L(A) N L(A3) = 0. Hence, A separates (A, As), and we are done. O

The reduction described in the proof of Theorem [can be used to prove NP-
completeness also for one-sided strict separation problems. Formally, we have
the following, which generalizes Conjecture 1 from [9].

Theorem 5. Given DFAs Ay and As, and a bound k > 1, the problems of de-
ciding whether there exists a k-DFA A such that L(A;) C L(A) C comp(L(A3))
and whether there exists a k-DFA A’ such that L(A;) C L(A’") C comp(L(A3))
are NP-complete.

Proof. We start with the problem of deciding whether there exists a k-DFA A
such that L(A;) C L(A) C comp(L(As)).

Membership in NP is easy, as we can verify each containment in polynomial
time. Note that, as in the proof of Theorem if k > index(L(A;)), then A; is
a witness. Thus, we can assume that k¥ < index(L(A;)), and so membership in
NP applies also for the case k is given in binary.

For NP-hardness, we follow the same reduction from k-DFA-separability de-
scribed in the proof of Theorem [and argue it is valid also for our problem.
Assume that there is a k-DFA A = (X,Q,4,qo, F) that separates (A, As).
Let A’ be the k-DFA obtained from A by extending the alphabet to X' U {0},
and adding a transition labeled 0 from every state to qg. It is easy to see
that L(A) = (X* - 0)* - L(A), and so L(A) C L(A’). Therefore, we have
L(A}) C L(A). In addition, as L(A)NL(Az2) = 0, then clearly L(A")NL(A}) = 0.
Moreover, as L(Asz) # 0, there is a word w € L(Az). Then, w ¢ L(A) and so
w-0-w ¢ L(A"). In addition, w-0-w ¢ L(A%). Thus, L(A)UL(A}) C (XU{0})*,
and we are done.

For the other direction, assume there is a k-DFA A’ such that L(A;) C
L(A) C comp(L(Az)). Consider the k-DFA A obtained from A’ by removing
all transitions labeled 0 and changing the alphabet to X'. Every word in L(A;)
is also in L(A"), and it does not contain 0. So, L(A;) C L(A). Similarly, every

Certifying DFA Bounds for Recognition and Separation 15

word in L(A’) that does not contain 0 and is not in L(.A}), is also not in L(Az).
Therefore, L(A) N L(As) = 0. Hence, A separates (A;,.As), and we are done.
Now, for the problem of deciding whether there exists a k-DFA A such that
L(A;) € L(A) C comp(L(As3)), note that the latter condition is equivalent to
L(A3) C comp(L(A)) C comp(L(Ay)), which is NP-complete by the above.

5.2 Certifying Bounds on Separation

Consider two regular languages L1, Ly C X* and a bound k£ > 1. Certifying
bounds on separation, we again consider a turn-based two-player game between
Prover and Refuter. This time we are interested in whether Li and Lo can be
separated by a k-DFA. Consider a word x @y € (X' x [k])¥. We say that z @y
agrees with (Ly, Lo) if there exists F' C [k] such that for every j > 1, if w’ € Ly,
then Prover maps w’ to F and if w’ € Lo, then Proven does not map w’ to F.

Accordingly, we define the language SepDFA (L1, Lo, k) C (X' x[k])* of words
with correct annotations as follows:

SepDFA (L1, Lo, k) = {z @y : x Dy is legal and agrees with (L1, La)}.

Then, NoSepDFA (L1, Lo, k) = comp(SepDFA (L1, Lo, k)) is the language of all

words with incorrect annotations.

Proposition 3. Consider two regular languages Ly,Ly C X* and k > 1. Ex-
actly one of the following holds:

— (L4, Loy is k-DFA-separable, in which case SepDFA(Lq, Lo, k) is (X'/[k])-
realizable by the system.

— (L1, Lo} is not k-DFA-separable, in which case NoSepDFA (L1, Lo, k) is ([k]/X")-
realizable by the environment.

A transducer that ([k]/X’)-realizes NoSepDFA (L, k) is termed an (L1, Lo, k)-
refuter, and we seek refuters that generate short certificates. As has been the case
in Section such a certificate is an informative bad prefix for SepDFA (L1, Lo, k).
Formally, we define the language Violate(Lq, Lo, k) C (X' x [k])* of words that
include a violation of legality or agreement with L; and Lo as follows.

Violate(L1, Lo, k) = {x @y : there is j > 1 such that x; = # and y;41 # y1, or
there are ji,jo > 1 such that
Yir = Yja» Tjy = Tj,, and Yj, 41 7 Yjo 41,
or w’' € Ly,w’? € Ly, and y;, = y;, }.

Before constructing an (Li, Lo, k)-refuter that generates short certificates,
we first need some notations and observations. Let A = (X, Q, qo,0, F) and
A =(X,Q, q), &, F') be DFAs. We define the set F4 4/ of states of A that
are reachable by traversing a word in L(A’). Formally, ¢ € Fa 4+ iff there is
w € L(A") such that 6*(go, w) = g, where 0* is the extension of § to words. Note
that F4 4 does not depend on the acceptance condition of A.

16 Orna Kupferman, Nir Lavee, and Salomon Sickert

Lemma 2. For every DFAs A and A’, we have that L(A") C L(A) iff Fa 4 C
F,and LA)NL(A) =0 iff Faa CQ\F.

Proof. We start with the first claim. If Fq o+ C F, then for every word w €
L(A"), we have that 6*(qo,w) € F, and so w € L(A) and L(A") C L(A). If
Fa 4 € F, then there exists a word w € L(A’) such that 6*(qo,w) € Q \ F.
Then, w € L(A") \ L(A), and so L(A’) Z L(A).

For the second claim, note that L(A) N L(A’) = 0 iff L(A") C comp(L(A)).
Let A be A with Q \ F being the set of accepting states. By the first claim, we
have that L(A') € L(A) iff F5 ,, € Q\ F. Since A and A differ only in the
acceptance condition, FA,A/ = F4, 4/, and so we are done. a

Lemma[2]implies the following characterization of separability by a DFA with
a given structure:

Theorem 6. Consider DFAs Ay, Az, and A. Let A= (X,Q, qo,6,0). For a set
F CQ, define Ap = (X,Q,q0,06,F). Then, Fa a, N Fa s, =0 iff there exists a
set F' C Q such that Ap separates (A1, As).

Proof. By Lemma [2} the DFA Ap is a separator for (A;, As) iff Fy 4, C F
and Faa, € Q\ F. If Foua NFEya, =0, then F = Fy 4, satisfies both
containments. In the other direction, if there exists a set F' that satisfies both
containments, then Fq 4, N Fa 4, = 0. ad

Consider a DFA A = (X, Q, qo, 9, 0). If there is no set F such that Ap is a
separator for (A;, As), there exists a state ¢ € Fa _a, N F4 _4,. That is, there are
words wy € L(A;1) and we € L(A3) such that §*(qo, w1) = 6*(go, w2) = ¢. Note
that if Prover follows A, then Refuter can cause the interaction to be a word in
Violate(L(A;1), L(As2), k) by generating wy - # - wq - #. Indeed, then the resulting
prefix cannot agree with L(A;) and L(A3). Accordingly, Refuter’s strategy is to
first force Prover to commit on the transitions of a k-DFA, and then to generate
w1 - # - wo - #, for the appropriate words w; and ws. Next, we show how Refuter
can force Prover to commit on the transitions of a k-DFA.

A legal word w = z @ y induces a partial function 4, : [k] x X' — [k], where
for all j > 1, we have that y; 11 = d,(y;,z;). Forcing Prover to commit on the
transitions of a k-DFA amounts to generating a word w for which §,, is complete.

Lemma 3. For every k > 1, there is a strategy for Refuter that forces Prover
to commit on the transitions of a k-DFA in O(k? -|X|) rounds.

Proof. Refuter maintains a set S C [k] of discovered states, and a set A C
[k] x X x [k] of discovered transitions. Note that for every discovered state g € S,
Refuter can construct a word w € X* that Prover maps to ¢ using transitions in
A. Initially, the sets S and A are empty. Prover starts the interaction outputting
an initial state o, and Refuter sets S = {qo}.

Assume that there is an undiscovered transition from one of the discovered
states. That is, there exist ¢ € S and o € X such that (q,0,7) ¢ A for all r € [k].

Certifying DFA Bounds for Recognition and Separation 17

Refuter outputs w - o - #, where w is a word Prover maps to ¢. Then, Prover
answers with a state ¢/, and Refuter adds ¢’ to S, and (g, 0,¢’) to A.

Refuter repeats the above process until A is complete. Each of the k states
has | ¥| outgoing transitions. Refuter exposes one new transition in at most k+1
rounds: A shortest word w that Prover maps to ¢ has length at most k — 1, then

she outputs the letter o, and then #. Overall, the number of rounds is at most
k- (k+1)-|X]|, which is O(k? - |X|). O

Lemma 4. Let A = (¥,Q,q0,0,F) and A = (¥,Q,q},d, F') be DFAs with
N and N’ states, respectively. For every state ¢ € Q, if there exists a word
w € L(A") such that 6*(qo,w) = q, then there exists a word w' € L(A’) such
that §*(qo,w’) = q and |w'| < N - N'.

Proof. Consider the product DFA P = A x A'. Let w € L(A’) be such that
0*(go, w) = q. Let ¢’ = (8")*(q{), w). Then, the state (g, ¢’} of P is reachable from
(qo, q()- A simple path from (go, ¢{) to (g, ¢’) induces the required word w’. O

Theorem 7. Let L1,Ly C X* be regular languages, and let Ny = index(Lq)
and Ny = index(Lsy). For every k > 1, if (Lq, Ly) is not k-DFA-separable, then
Refuter can generate a word in Violate(Ly, Lo, k) in O(k® - | 2|+ k- Ny + k- Na)
rounds.

Proof. As described in Lemma [3| Refuter can force Prover to commit on a k-
DFA A in O(k? - |X|) rounds. Since (L1, L) is not k-DFA-separable, there are
words wy € Ly, ws € Ly such that the runs of A on w; and on wsy both end in
the same state. By Lemma there exist such words satisfying |w;| < k- N; and
|wa| < k- Na. Refuter maintains a pair of such words for every k-DFA. After
the DFA A is exposed, Refuter outputs the corresponding string wy - # - wa - #,
which has length at most k- N1 + k- Ny + 2. Overall, the interaction requires
O(k? - |X| + k- Ny + k- Na) rounds. O

Recall that when Ly = comp(L4), separation coincides with recognizability,
with N; = Ny = N. Hence, the O(N?) lower bound on the length of certificates
in Theorem [2| applies also for (N — 1)-DFA-separation. Our upper bound for
(N — 1)-DFA-separation in Theorem [7| includes an extra |X| factor, as Refuter
first forces Prover to commit on all transitions of the claimed DFA. We conjecture
that Refuter can do better and force Prover to only to commit on a relevant
part of the claimed DFA; namely one in which we can still point to a state
q € Fa,a, N F4 4, that is reachable via two words wy € L(A;) and we € L(As).
Thus, rather than forcing Prover to commit on all |X] successors of each state,
Refuter forces Prover to commit only on transitions that reveal new states or
reveal the required state q. Then, the prefix of the certificate that is generated
in Lemma (3| is only of length O(N?), making the bound tight. Note that such
a lazy exposure of the claimed DFA could be of help also in implementations of
algorithms for the DFA identification problem [11].

18 Orna Kupferman, Nir Lavee, and Salomon Sickert

6 Discussion and Directions for Future Research

On the Size of Provers and Refuters. Our study of certification focused
on the length of certificates. We did not study the size of the transducers used by
Prover and Refuter in order to generate these certificates. A naive upper bound
on the size of such transducers follows from the fact that they are winning strate-
gies in a game played on a deterministic looping automaton for Violate(L, k).
Such an automaton has to store in its state space the set of transitions com-
mitted by Prover, and is thus exponential in k. The (L, k)-refuter we used for
generating short certificates is also exponential in k, as it stores in its state space
a mapping from the k+1 words in H to [k] (see Theorem. On the other hand,
it is easy to see that Prover can do with a transducer that is polynomial in k,
as she can follow the transitions of Rp.

Interestingly, with a slight change in the setting, we can shift the burden of
maintaining the set of transitions committed by Prover from Refuter to Prover.
We do this by requiring Prover to reveal new states in her claimed k-DFA in
an ordered manner: Prover can respond with a state ¢ € [k] only after she
has responded with states {1,...,i — 1}. Formally, we say that w = z ®y €
(X < [k])* U (X x [k])¥, with * = 21 - @xo--- and y = y1 - Y2 - -+ is ordered iff
for all 1 < j < |w| we have y; < max{y; : 1 <[< j} + 1. Note that if Prover
has a winning strategy in a game on DFA(L, k), she also has a winning strategy
in a game in which DFA(L, k) is restricted to ordered words. In such a game,
however, Refuter can make use of R, and circumvent the maintenance of subsets
of transitions, whereas Prover has to maintain a mapping from the states in R,
to their renaming imposed by the order condition. We leave the analysis of this
setting as well as the study of trade-offs between the size of transducers and the
length of the certificates to future research.

Infinite words. Our setting considers automata on finite words, and it focuses
on the number of states required for recognizing a regular language. In [12], we
used a similar methodology for refuting the recognizability of w-regular languages
by automata with limited expressive power. For example, deterministic Btichi
automata (DBAs) are less expressive than their non-deterministic counterpart,
and a DBA-refuter generates certificates that a given language cannot be recog-
nized by a DBA. Thus, the setting in [12] is of automata on infinite words, and
it focuses on expressive power.

Unlike DFAs, which allow polynomial minimization, minimization of DBAs is
NP-complete [23]. Combining our setting here with the one in [I2] would enable
the certification and refutation of k-DBA-recognizability, namely recognizability
by a DBA with k states. The NP-hardness of DBA minimization makes this
combination very interesting. In particular, there are interesting connections
between polynomial certificates and possible membership of DBA minimization
in co-NP, as well as connections between size of certificates and succinctness of
the different classes of automata.

Certifying DFA Bounds for Recognition and Separation 19

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

S. Almagor and M. Lahijanian. Explainable multi agent path finding. In Proc. 19th
International Conference on Autonomous Agents and Multiagent Systems, pages
34-42, 2020.

. B. Alpern and F.B. Schneider. Recognizing safety and liveness. Distributed com-

puting, 2:117-126, 1987.

D. Angluin. Learning regular sets from queries and counterexamples. Inf. Comput.,
75(2):87-106, 1987.

T. Baumeister, B. Finkbeiner, and H. Torfah. Explainable reactive synthesis. 2020.
J.R. Biichi and L.H. Landweber. Solving sequential conditions by finite-state
strategies. Trans. AMS, 138:295-311, 1969.

W. Czerwinski, S. Lasota, R. Meyer, S. Muskalla, K.N. Kumar, and P. Saivasan.
Regular separability of well-structured transition systems. In Proc. 29th Int. Conf.
on Concurrency Theory, volume 118 of LIPIcs, pages 35:1-35:18. Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, 2018.

W. Czerwinski, W. Martens, and T. Masopust. Efficient separability of regular
languages by subsequences and suffixes. In Proc. 40th Int. Collog. on Automata,
Languages, and Programming, volume 7966 of Lecture Notes in Computer Science,
pages 150-161. Springer, 2013.

D. Fisman. Inferring regular languages and w-languages. J. Log. Algebraic Methods
Program., 98:27-49, 2018.

G. Gange, P. Ganty, and P.J. Stuckey. Fixing the state budget: Approximation of
regular languages with small dfas. In 15th Int. Symp. on Automated Technology
for Verification and Analysis, volume 10482 of Lecture Notes in Computer Science,
pages 67—-83. Springer, 2017.

E. M. Gold. Complexity of automaton identification from given data. Information
and Control, 37(3):302-320, 1978.

M. Heule and S. Verwer. Exact DFA identification using SAT solvers. In Grammati-
cal Inference: Theoretical Results and Applications, 10th International Collogquium,
volume 6339 of Lecture Notes in Computer Science, pages 66-79. Springer, 2010.

O. Kupferman and S. Sickert. Certifying inexpressibility. In Proc. 24th Int. Conf.
on Foundations of Software Science and Computation Structures, volume 12650 of
Lecture Notes in Computer Science, pages 385—405. Springer, 2021.

O. Kupferman and M.Y. Vardi. Model checking of safety properties. Formal
Methods in System Design, 19(3):291-314, 2001.

O. Kupferman and M.Y. Vardi. From complementation to certification. Theoretical
Computer Science, 305:591-606, 2005.

O. Kupferman and S. Weiner. Environment-friendly safety. In 8th International
Haifa Verification Conference, volume 7857 of Lecture Notes in Computer Science,
pages 227-242. Springer, 2012.

J. Myhill. Finite automata and the representation of events. Technical Report
WADD TR-57-624, pages 112-137, Wright Patterson AFB, Ohio, 1957.

D. Neider. Computing minimal separating dfas and regular invariants using SAT
and SMT solvers. In 10th Int. Symp. on Automated Technology for Verification
and Analysis, volume 7561 of Lecture Notes in Computer Science, pages 354—369.
Springer, 2012.

A. Nerode. Linear automaton transformations. Proceedings of the American Math-
ematical Society, 9(4):541-544, 1958.

C.P. Pfleeger. State reduction in incompletely specified finite-state machines. IEEFE
Trans. Computers, 22(12):1099-1102, 1973.

20

20.

21.

22.

23.

24.

Orna Kupferman, Nir Lavee, and Salomon Sickert

T. Place and M. Zeitoun. Separating regular languages with first-order logic. Log.
Methods Comput. Sci., 12(1), 2016.

ESF Network programme. Automata: from mathematics to applications (Au-
toMathA). http://www.esf.org/index.php?id=1789, 2010.

S.Almagor, D. Chistikov, J. Ouaknine, and J. Worrell. O-minimal invariants for
linear loops. In Proc. 45th Int. Colloq. on Automata, Languages, and Programming,
volume 107 of LIPIcs, pages 114:1-114:14. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2018.

S. Schewe. Beyond Hyper-Minimisation—Minimising DBAs and DPAs is NP-
Complete. In Proc. 30th Conf. on Foundations of Software Technology and Theo-
retical Computer Science, volume 8 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 400411, 2010.

B.A. Trakhtenbrot and Y.M. Barzdin. Finite Automata. North Holland, 1973.

	Certifying DFA Bounds for Recognition and Separation

