
A Certi�ed Access Control Policy Language: TEpla
Amir Eaman  (  aeaman@uottawa.ca )

Acadia University
Amy Felty 

University of Ottawa

Research Article

Keywords:

Posted Date: July 25th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3183540/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Additional Declarations: No competing interests reported.

Version of Record: A version of this preprint was published at Innovations in Systems and Software
Engineering on August 28th, 2023. See the published version at https://doi.org/10.1007/s11334-023-
00534-1.

https://doi.org/10.21203/rs.3.rs-3183540/v1
mailto:aeaman@uottawa.ca
https://doi.org/10.21203/rs.3.rs-3183540/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11334-023-00534-1


Springer Nature 2021 LATEX template

A Certified Access Control Policy Language:

TEpla

Amir Eaman1,2* and Amy Felty2†

1*Jodrey School of Computer Science, Acadia University, 15
University Ave, Wolfville, B4P 2P7, NS, Canada.

2*School of Electrical Engineering and Computer Science,
University of Ottawa, 800 King Edward Ave, Ottawa, K1N 6N5,

ON, Canada.

*Corresponding author(s). E-mail(s): amir.eaman@acadiau.ca;
Contributing authors: afelty@uottawa.ca;

†These authors contributed equally to this work.

Abstract

Access control is an information security process which guards pro-
tected resources against unauthorized access, as specified by restrictions
in security policies. A variety of policy languages have been designed to
specify security policies of systems. In this paper, we introduce a cer-
tified policy language, called TEpla, with formal semantics and simple
language constructs, which we have leveraged to express and formally
verify properties about complex security goals. In developing TEpla,
we focus on security in operating systems and exploit security contexts
used in the Type Enforcement mechanism of the SELinux security mod-
ule. TEpla is certified in the sense that we have encoded the formal
semantics and machine-checked the proofs of its properties using the
Coq Proof Assistant. In order to express the desired properties, we first
analyze the behavior of the language by defining different ordering rela-
tions on policies, queries, and decisions. These ordering relations enable
us to evaluate how algorithms for deciding whether or not requests are
granted by policies will react to changes in policies and queries. The
machine-checked mathematical proofs guarantee that TEpla behaves as
prescribed by the semantics. TEpla is a crucial step toward developing
certifiably correct policy-related tools for Type Enforcement policies.

1
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1 Introduction

Access control as a security mechanism is concerned with the management
of access requests to resources. To determine if a request is allowed, it is
checked against a set of authorization rules which are written in a particu-
lar policy language dependent on the type of access control available in the
underlying computer system. Access control policy languages have an essen-
tial role in expressing the intended access authorization to regulate requests to
resources. Security policy languages used to develop security policies signifi-
cantly affect this process, mainly because the policy developers’ understanding
of the semantics of the languages has a direct effect on the way they write
policies. Formal semantics can tremendously improve the use of a language by
constructing a precise reference for the underlying language. Semantic-related
tools which analyze or reason about specifications written in the language
require formal semantics to process the language correctly. Moreover, the
implementation of such tools can be verified, which is another important
consequence of formal semantics.

We propose a small and certifiably correct policy language, TEpla. The
design of TEpla is motivated, on one hand by the necessity of supporting fea-
tures of real policy languages (like those of SELinux) and on another hand
by the necessity of staying generic, thus amenable to capture various types of
security policies and relations between them. TEpla can provide ease of use,
analysis, and verification of its properties. By certified policy language, we
mean a policy language with formal semantics and formally verified mathemat-
ical proofs of important properties, which reflects the concept of certification in
formal methods communities and programming languages [1]. One of our goals
is to avoid language-introduced errors (i.e., errors that are introduced to IT
systems due to multiple contradictory interpretations of policies). Ease of rea-
soning and analysis of policies is facilitated by a clear specification of TEpla’s
behavior and semantics as it satisfies important formal properties designed for
this purpose [2]. In addition to these properties, TEpla is flexible enough for
defining complex security constraints through introducing user-defined pred-
icates. This enables security administrators to define various security goals
in security policies. We analyze the language’s behavior by defining different
ordering relations on policies, queries, and decisions. These ordering relations
enable us to evaluate how language decisions react to changes in policies
and queries. See, for example, the non-decreasing property of TEpla policies
discussed in Sect. 4.3.

In order to keep the core of the language simple, we focus on develop-
ing a new certified policy language for the Type Enforcement mechanism,
which is a subset of the SELinux security module [3] implemented in Linux
distributions. Type Enforcement exploits the security context of resources to
regulate accesses. The security context is a set of allowable values for particular
attributes assigned to system resources.

SELinux is a Linux Security Module (LSM) that enables security develop-
ers to define security policies. It implements the Mandatory Access Control
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(MAC) [4] strategy, which allows policy writers to express whether a subject
can perform an operation on an object, e.g., whether an SELinux process can
perform a read or write on a file or socket.

We carried out a study [5] on policy languages, which proposes solutions for
dealing with the many gaps for using policy languages with informal semantics,
mainly focusing on the SELinux policy language in particular, and gaps in
developing verified security policies in general. TEpla is an important step in
closing these gaps. We believe that the same development paradigm used for
TEpla can be adopted to develop other verified policy languages, such as one
for AppArmor [6] or one for full SELinux, thus providing higher-trust policy
languages for Linux.

As mentioned earlier, TEpla also provides additional language constructs
that allow security administrators to encode different security goals in policies
as user-defined predicates. Using this mechanism, administrators can express
a variety of conditions, thus significantly increasing the flexibility over the
language’s built-in conditions. However, there are some conditions that policy
writers need to verify about their predicate definitions in order to ensure that
their defined predicates are compatible with TEpla properties. Note that our
proof development uses no axioms; we require all conditions to be proved.

We use the Coq Proof Assistant [7, 8] (version 8.16) to develop machine-
checked mathematical proofs for TEpla’s properties. The Coq development of
TEpla contains approximately 4700 lines of script and is available in an online
appendix [9]. This appendix also contains a mapping from names used in this
paper to names used in the Coq code.

In Sect. 2, we describe the TEpla language structures and their meaning,
including rules, decisions, queries, constraints, and policies. A constraint can
be considered as an additional form of a policy rule, which takes a user-defined
predicate as an argument. This section also defines ordering relations on TEpla
decisions, policies, and queries. In Sect. 3, we present the Coq encoding of the
syntax and semantics of TEpla. In Sect. 4, we discuss the main properties that
we have proved about TEpla, and Sect. 5 concludes the paper. Appendix A
contains the full BNF grammar of TEpla.

This paper is an extended version of [10]. The work presented here also
appears in the Ph.D. thesis of the first author [11], and the reader can find
further details there.

2 Infrastructure of TEpla

The main element in a system is a resource, which can be either a subject
or an object, as described in the previous section. In fact, a resource can act
as a subject in some contexts and an object in others. In many policy lan-
guages, including TEpla, resources have attributes. As mentioned, the values
of these attributes form the security context of the resources. The main build-
ing block of TEpla is type which is the core language concept in TEpla’s syntax
and semantics. This section outlines the key language concepts of TEpla. In
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the next section, we go a bit deeper and go through the overall mechanized
formalization of infrastructure of TEpla using the Coq Proof Assistant.

2.1 Overview

Virtually all language constructs and semantics of TEpla revolve around the
concept of type. One of the main design decisions in developing TEpla is to
develop a policy language that is easy to comprehend, which is attained by
keeping the core of language simple and basing it on the concept of type.
This feature and the provided insights into TEpla policy behaviors, presented
by the formal properties of TEpla, contribute to having a correct common
understanding of the language for developing and analyzing security policies.
It also provides certain guarantees. In TEpla, the security context is the values
of an attribute called basic type. Each resource is assigned one basic type,
providing it with an identity in the same way as done in SELinux. For example,
consider two resources of a system called file web and port protocol. We can
assign, for instance, the values of the basic type attribute to be mail t and
http t, respectively.

TEpla allows policy developers to group basic types of resources together
to form a group type, providing a single identifier for a group of resources. We
group together basic types when there exists a conceptual relationship among
them. For example, we can group together the basic types mentioned above
to form the group type {mail t, http t}, here represented as a set. Basic and
group types together form the notion of a type. Thus mail t, http t, and
{mail t, http t} are all examples of types.

SELinux uses the terminology source and destination to mean subjects and
objects, and domain and type to classify their types, respectively. Here, we
continue to use subject and object and we use type to classify both.

Two other central data types in TEpla include object class and permitted
action. Object classes specify possible instances of all resources of a certain
kind, such as files, sockets, and directories. In particular, primarily, this group-
ing is used to define a set of permitted actions for each group (i.e., object class).
Permitted actions specify the actions that subjects are authorized to perform
on objects. Permitted actions can range from being as simple as reading data,
sharing data, or executing a file [12].

2.2 Language

As mentioned above, the primitive attributes include type, Object Class, Per-
mitted Action. Note that the concept of type is different from Object Class
because the former act as labels for elements of computer systems (single
element or aggregate group of elements for identifying them), which are for
identifying elements in a system, however, the latter determines the category
of objects to which each element belongs. TEpla uses permitted actions defined
in access rules to authorize queries, and we assume that the security frame-
work of the system controls, instead of the policy language, whether or not
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performing an action on an object class is allowed, however, we leave this fea-
ture (i.e., defining a valid set of permitted actions for each object class) as
future work. These data types provide a straightforward syntax for policy writ-
ers. The BNF grammar of TEpla is defined in Appendix A in Fig. A1. In the
following sections, we denote the terms which are used in the BNF grammar
inside parentheses after the name of the language constructs.

2.3 Access Decisions

TEpla has a three-valued decision set for access requests including NotPer-
mitted, Permitted and UnKnown. The NotPermitted decision is for denying
an access request, and the Permitted decision for granting an access request.
The UnKnown decision arises from conflicts in policies. Conflicts are caused
by rendering a decision for access requests in a part of security policies that is
different from an already taken decision according to other policy statements.
More specifically, when the result is UnKnown, it is the job of the adminis-
trators to fix it, using their discretion. Refining TEpla’s policies or revisiting
the security framework of the system are two possible options for administra-
tors to address this issue. In TEpla, policies have two parts: rules (TErules)
and constraints (TEconstraints). That is, TEpla policies (TEpolicy) consist of
a pair of a TErules sequence and a TEcontraints sequence (see Sections 2.4
and 2.6). Constraints add conditions on the rules that may replace a decision
obtained from considering only the rules alone.

access request

TErules

TEconstraints

TEpolicy

Not Permitted
Not-authorized

authorized
Permitted

UnKnown

Not-authorized

Rule Decision-Making

Constraint Decision-Making

authorized, access request

Figure 1 The overall architecture and decision making flow in TEpla

Security policies in TEpla allow administrators to express access permis-
sions as well as security conditions which specify additional restrictions based
on security requirements of systems. Policies thus can be formed by any
sequences of TErules and TEconstraints.

Figure 1 represents architecture and decision making process of TEpla.
Access requests are first evaluated against allow rules of policies. A query which
is not granted by the allow rules will cause a NotPermitted decision without
considering the decision for constraints. If a query is authorized by the allow
rules, it will be checked against constraints to check if it violates any security
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goals. Two possible decisions of checking a query against constraints of the
policies are Permitted and Unknown, which means that the query satisfies the
security goals, or violates a security goal, respectively. If non of the constraints
are applicable to the query, the decision of the allow rules (i.e., Permitted) will
be the final access decision for the query (see section 2.9)

Type Enforcement exploits the security context of resources to regulate
accesses. As mentioned above, every system resource is labeled with a value
from the basictype syntax class. This makes TEpla a fine-grained policy lan-
guage as administrators can apply different access regulations on different
entities of a system.

2.4 Policy Rules

Allow rules (TErules) enable policy writers to express eligible access from
a source type to a destination type. The components of Allow rules
include Source Type (subject), Destination Type (object), Object Class (cls),
Permitted Actions (prm), and Boolean Condition (cond bool). Source Type
and Destination Type, as their names indicate, identify the subject and object
type of the rules. Object Class specifies the object class of the Destination Type
and Permitted Actions determines possible actions which Source Type can per-
form on the Destination Type. The last component of Allow rules is a boolean
condition. Granting the specified access depends on the value of the condition
expressed by Boolean Condition as it is only granted if the value is true. This
feature enables policy writers to specify conditions to control granting accesses
by Allow rules. As an example, suppose File is an Object Class and Read is
a Permitted Action. Then ({mail t, http t}, mail t, File, Read, true) is an
example Allow rule. We note that we do not use the last argument in this
paper, so the value will always be true; we discuss it further in future work.

TEpla supports transition of types in security contexts. Type Transition
rules are policy statements which determine types that can switch to other
types. Type Transition rules include three components: Source Type (subject),
Target Type (type), and Object Class (cls). The Source Type, Target Type
state the initial type of the context and the new value for it, respectively.
Similar to source type of Allow rules, we can use attributes in Source Type
of Type Transition rules. However, Target Type of Type Transition rules has
to precisely specify the intended type (i.e., a basictype or an attribute with
one basictype) because using multiple basictypes in attributes for the Target
Type, the transition rule would be ambiguous. This is not enforced by the BNF
grammar of TEpla and adding a constraint that an attribute must be a set of
at least size two basictypes, is left for future work.

2.5 Access Requests

Access requests or queries consist of four components Source Type, Destination
Type, Object Class and Requested Action. Access requests are inquiries into
the policy to check the possibility that Source Type is allowed to perform
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the action Reguested Action on the object Destination Type of the object
class Object Class (see the BNF grammar of TEpla in Fig. A1). Processing of
a query with respect to a policy involves an attempt to check the authorization
of a subject element to carry out a specific access on an object element of a
particular class; both the subject and object belong to the type syntax class.
Continuing our example, the following is a sample query: (mail t, http t,
File, Write). In this request, a subject of type mail t is requesting to write
to an object whose class is File and whose type is http t.

2.6 Constraints

As discussed earlier, rules alone cannot always accommodate the security
requirements of systems precisely enough. TEpla’s constraints (TEconstraints)
can complement TErules with the goal of providing administrators a feature
to precisely express detailed aspects of safe systems. TEconstraints represent
one of the powerful features of TEpla, which can be tailored to different secu-
rity requirements. In comparison to other languages which lack this feature,
TEconstraints allow policy writers not only to rely on conditions or constraints
defined in the language but also to define their complementary security logic.

TEconstraints, (see the BNF grammar of TEpla), have six arguments. The
first two arguments are Object Class (cls) and Permitted Action (prm). These
two arguments are compared to the Object Class (cls) and Permitted Action
(prm) of a query to check if the TEconstraint is applicable to the query. The
constraint is only applicable when the values of these components match. The
next three arguments are type, type, and {type} (i.e., a set of types) whose val-
ues are provided by the policy writers; they can provide important information
when a constraint is evaluated.

TEconstraints in TEpla include a function that returns a boolean as their
last argument, expressing when the constraint is satisfied.

To illustrate constraints and predicates, we use a “sep-
aration of duty” running example defined as follows, which
uses the predicate Prd SoD, defined in the next subsection:
(File, Read, {mail t, http t}, networkManager ssh t, [], Prd SoD). This con-
straint only allows subjects whose types are elements of {mail t, http t} to
perform the action Read on objects whose basic type is networkManager ssh t

and whose object class is File as long as the additional requirement is met
that objects of types {mail t, http t} and networkManager ssh t are never
permitted to be acted upon by subjects of the same type. Prd SoD will
formally express what is meant by this additional requirement. Informally,
whenever two Allow rules permit subjects of the same type to perform actions,
if the object in one of the rules has a type in {mail t, http t}, then the
object in the other rule cannot have type networkManager ssh t. Similarly,
if the object in one rule has type networkManager ssh t, then the object
in the other rule cannot have a type that is a subset of {mail t, http t}.
This constraint is applicable to all queries whose Object Class and Permitted
Action are File and Read, respectively.



Springer Nature 2021 LATEX template

8 A Certified Access Control Policy Language: TEpla

2.7 Predicates

Predicates (TEpredicates ID), i.e., a function that returns a boolean, are the
last input argument of a TEconstraint, which makes these functions act as
predicates[13]. When a query is evaluated against a policy (made up of TErules
and TEconstraints) the TEpredicate is evaluated, provided that the TEcon-
straint is applicable to the query, with specific arguments provided by the
TEconstraint and the query. TEpredicates ID has eight arguments, which sup-
ply a comprehensive set of values by which policy developers can define the
required security criteria. We will see in Sect. 2.9 how a query is evaluated
against a constraint. Here, we present the definition of Prd SoD.

Algorithm 1 Defining the predicate Prd SoD

Function Prd SoD (rules: list TErule, types:list type, sClass:cls, perm:prm,
(qSrcT qDestT predSrcT predDestT : type))
if (qSrcT ⊆ predSrcT ) ∧ (qDestT ⊆ predDestT ) then

list1 ← search rules to find subject types that access predSrcT
list2 ← search rules to find subject types that access predDestT
return (list1 ∩ list2) = ∅

else
return true

In the above procedure, T1 ⊆ T2 means that all the basic types in T1

are also included in T2. The parameter rules contains all the Allow rules of
the policy. Note that this predicate does not use the second input argument
because it is not required in computing the intersection of the two lists. The
body of this predicate function searches the first input argument, i.e., rules, to
find all the subject types that access the seventh and eighth input arguments.
If these two sets share common types, the predicate returns false, otherwise,
true. As we will see in Section 2.9, to check if the predicate is applicable to a
query, we compare the fifth input argument (i.e., the subject type of the input
query) with the seventh input argument (i.e., the subject type received from
the constraint). Similarly, we check the same relation between the sixth and
eighth input arguments (i.e., the subject type of input queries and the subject
type received from the constraint, respectively).

2.8 Ordering Relation on Decisions, Queries and Policies

We define a Partially Ordered Set (poset) [13] called (DCS,<::) on TEpla’s
three-valued set of decisions as NotPermitted <:: Permitted <:: UnKnown.
The lowest decision in this ordering is NotPermitted, which means that all
accesses are first denied by default. To permit an access query, a relevant rule
in the first component of policies must authorize the access. If the query is
not granted at this stage, TEpla denies the access, which means that the ulti-
mate access decision is NotPermitted. In the case that the query is granted
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(with decision Permitted), TEpla proceeds to check whether or not the query
satisfies the constraint component of policies. The decision for the query con-
tinues to be Permitted as long as it satisfies the constraints; if not, that is
the query fails to satisfy some constraints, the decision changes to UnKnown
(see Fig. 1). We allow composition of policies in which decisions never go from
UnKnown or Permitted to NotPermitted when TEpla checks the sub-policies
of the composed policy (see Sect. 4.3 for more details about this property).

Additionally, we define a relation on queries (Q, <<=). Two queries Q1

= (srcTQ1 , dstTQ1 , clsQ1 , prmActQ1 ) and Q2 = (srcTQ2 , dstTQ2 , clsQ2 ,
prmActQ1 ) are in relation Q1 <<= Q2 if and only if srcTQ2 ⊆ srcTQ1 and
dstTQ2 ⊆ dstTQ1 hold.

Finally, we define the binary relation (TEPLCY,≲) on policies, where p1 ≲

p2 whenever p2 has more information that p1. More formally:

∀(p1, p2 ∈ TEPLCY), p1 ≲ p2 iff length(p1) ⩽ length(p2) ∧ p1 ⊆ p2.

In this definition, length means the sum of the lengths of the rule component
and the constraint component of a policy. We call the combined list authoriza-
tion rules. Here, we overload the ⊆ operator; p1 ⊆ p2 means that p2 has more
authorization rules and it contains all the authorization rules in p1.

1

Policy writers should make sure the predicates that they develop satisfy cer-
tain conditions. Note that this checking is performed statically for predicates,
by proving the required properties before using them in policies, and there is
no dynamic checking needed. These conditions express that given two queries
related by “<<=” or two policies related by “≲”, the evaluation of predicates
by the function that evaluates a query against a constraint (Algorithm (3) in
Sect. 2.9) preserves the defined order on decisions “<::”.

2.9 Semantics

We define the semantics of TEpla as a mapping from policies and access
requests to decisions, in the form of five translation functions, which together
act as the decision-making chain that evaluates a query against a policy, tak-
ing into account all the various parts of the policy. The first function, shown
in Algorithm (2), evaluates a query against a single rule leading to a decision
of either Permitted or NotPermitted.

For Allow rules, the authorization conditions include checking to see
whether a rule applies to the query, the boolean condition is true, types of the
subject and object in the query are a subset of the corresponding types in the
rule, and the object class and permitted action are the same. If all conditions
are satisfied, the result is Permitted ; otherwise it is NotPermitted. The func-
tion for Type Transition rules is similar (details omitted), but only the types
of the subject and object need to be checked in order to determine that the
rule applies.

1In the Coq implementation, we do not have a separate definition for ≲. Instead, we express it
directly when needed using list operators.
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Algorithm 2 Evaluating a Query against an Allow rule

Function Translation Function 1 (allowRule, query)

(srcType,dstType,clsRule,prmActions,boolCond)← allowRule
(srcTQuery,dstTQuery,clsQuery,prmActQry)← query

if ((boolCond)∧(srcTQuery ⊆ srcType)∧(dstTQuery ⊆ dstType)

∧ (clsQuery = clsRule) ∧(prmActQry = prmActions)) then
return Permitted

else
return NotPermitted

The second translation function, shown in Algorithm (3) evaluates a query
against a constraint. It takes a single constraint, a query, and a list of rules
(all the rules in the rule component of a policy) as arguments. The rules
argument can be used to extract access information required for expressing
security goals encoded in predicates. In order to check whether or not the
constraint is applicable to the query, the object class and permitted action
components are compared and must be the same. If applicable, the constraint
predicate is checked. Note that the arguments passed to Prdct include the
list of rules as well as all the other components of the constraint and query,
except the two that are used to check the applicability of the constraint. If
the evaluation of the predicate returns true, then the decision is Permitted.
Otherwise, the decision is UnKnown. Note that if the constraint does not apply
to the query, the default value NotPermitted is returned, which means the
constraint has no role in changing the access decision for the query, and other
parts of the policy will make the final decision.

Algorithm 3 Evaluating a Query against a Constraint

Function Translation Function 2 (cstrt,query,policyRules)

(clsCst,prmCst,tArg1,tArg2,typeList,Prdct)← cstrt
(srcQry,dstQry,clsQry,prmQry)← query

if (clsCst=clsQry) ∧ (prmCst=prmQry) then

if (Prdct(policyRules,typeList,clsCst,prmCst,srcQry,dstQry,tArg1,tArg2)) then
return Permitted

else
return UnKown

else
return NotPermitted

A query must be evaluated against all the rules and constraints in a policy.
We omit the other translation functions that are defined to complete this task.
They include two functions for processing every element in a list against the
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query, one for rules and one for constraints, plus a function for putting every-
thing together to evaluate a query against a policy. The Coq implementation
of the main translation function that combines the decisions of different parts
of policies, taking into account the ordering relations we defined on decisions
in subsection 2.8, is called TEPLCY EvalTE; it takes a policy and query as its
two input arguments.

3 Coq Development

In this section, we describe the Coq implementation of the infrastructure of
TEpla (i.e., the elements of syntax and semantics of TEpla described in Chap-
ter 2). As mentioned above, the whole Coq development of TEpla is available
in [9]. All the proofs of lemmas and theorems of TEpla are available in the
Coq source of TEpla.

3.1 Syntax in Coq

We start by defining the basic data types. Here, C, P, basicT, which rep-
resent object classes, permitted actions, and basic types, respectively, are all
defined as nat (N), which is the datatype of natural numbers in Coq [8]. These
definitions plus the implementation of some examples discussed earlier are
below.

Definition C := N. Definition P := N. Definition basicT := N.
Definition File : C := 600.
Definition mail_t : basicT := 300. Definition http_t : basicT := 301.
Definition networkManager_ssh_t : basicT := 302.
Definition Read : P := 702. Definition Write : P := 703.

We encode a group type as a list of basic types, i.e., we represent them
using Coq’s built-in datatype for lists. For example, the code below introduces
G to define group types and program G, which represents the example set
{mail t, http t}. A group type should contain at least 2 elements.

Definition G : Set := list basicT.
Definition program_G : G := [mail_t ;http_t ].

We can now encode our principle entity, the type structure; we define the
inductive datatype T with two constructors singleT and groupT. These con-
structors take arguments of type basicT and G respectively to produce a term
belonging to T.

Inductive T : Type:=
| singleT : basicT →T

| groupT : G →T.

Continuing our example, consider two subjects whose security contexts are rep-
resented by the values http t and mail t, and a third subject that is allowed
to access objects of both types. These are represented by (singleT http t),
(singleT mail t), and (groupT program G), respectively.
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Rules, which include both Allow and Type Transition, are encoded as the
inductive type R below. This definition is followed by an encoding of the
example Allow rule given in Section 2.4.

Inductive R : Set :=
| Allow : T ∗ T ∗ C ∗ P ∗ B →R

| Type_Transition :T ∗ T ∗ C →R.
Definition R_A : R :=
Allow (groupT program_G, singleT mail_t , File , Read , true) .

The * operator represents tuple types in Coq; Allow rules are represented
using a 5-tuple and Type Transition rules are represented using a triple.

Decisions are defined by the inductive type DCS and access requests or
queries (Q) by a 4-tuple. These definitions along with the example query from
Section 2.5 are below:

Inductive DCS : Set := Permitted | NotPermitted | UnKnown .
Definition Q : Set := T ∗ T ∗ C ∗ P .
Definition sampleQ : Q := (singleT mail_t , singleT http_t , File , Write

) .

Constraints are defined below as the type CSTE. This definition is followed
by the example constraint from Section 2.6.

Inductive CSTE: Set :=
| Constraint : C ∗ P ∗ T ∗ T ∗ list T ∗

(list R → list T →C → P →T → T → T → T → B) → CSTE.
Definition CSTE_SoD : CSTE:= Constraint(File, Read, groupT program_G,

singleT networkManager_ssh_t , [],
Prd_SoD) .

Note that constraints are encoded using a 6-tuple, where the last element of
the tuple is a function that returns a Coq boolean. The above example includes
the function Prd SoD, defined later in Sect. 3.4.

Policies are defined below as the type TEPLCY using a tuple consisting of
a list of rules and a list of constraints. We also define an example policy below
using the example rule and example constraint above; in this example both
the rule component and the constraint component are lists of length 1.

Inductive TEPLCY: Set := TEPolicy : listR ∗ list CSTE → TEPLCY.
Definition TEPLCY_example : TEPLCY:= TEPolicy ([R_A], [CSTE_SoD]).

3.2 Semantics in Coq

The Coq definitions of Algorithms (2) and (3) are shown in Listings 1 and 2,
respectively.

Definition R_EvalTE (R_policy :R) (q :Q) : DCS :=
match R_policy with

| Allow ( alw_srcT , alw_dstT , alw_C , alw_P , alw_B) ⇒
match q with

|( qsrcT , qdsT , qC , qP) ⇒
if ((TSubset qsrcT alw_srcT) && (TSubset qdsT alw_dstT) &&
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( Nat . eqb qC alw_C) && (Nat . eqb qP alw_P) && (alw_B)
then Permitted else NotPermitted

end

|Type_Transition (trn_srcT, trn_dstT , trn_C) ⇒ ...
end .

Listing 1 Evaluation of a rule and a query

In Listing 1, the Coq function TSubset does the subset check, making sure
that the types of the subject and object in the query are a subset of the
corresponding types in the rule. Note that in both listings, the built-in Coq
function Nat.eqb is used for the equality checks.

The function CSTE EvalTE implemented in Listing 2 evaluates a query
against a constraint. As mentioned in Section 2, The rules argument can
be used to extract access information required for expressing security goals
encoded in predicates.

Definition CSTE_EvalTE

( constraint_rule :CSTE) (Q_to_constr:Q) (listR: list R) : DCS :=
match constraint_rule with

| Constraint ( cstrn_C , cstrn_P , cstrn_T_arg1 , cstrn_T_arg2 ,
cstrn_list T , cstrn_PRDT) ⇒

match Q _to_constr with

|(Q_srcT , Q_dstT , Q_C , Q_P) ⇒
if ( Nat . eqb Q_C cstrn_C && Nat.eqb Q_P cstrn_P) then

match ( cstrn_PRDT listR cstrn_listT cstrn_C cstrn_P

Q_srcT Q_dstT cstrn_T_arg1 cstrn_T_arg2 ) with

| true ⇒ Permitted

| false ⇒ UnKnown

end

else NotPermitted

end

end .

Listing 2 Evaluation of a constraint

3.3 Processing Access Information

It is often useful to view various kinds of information in the list of rules as
sets of values, and so we provide several general operators that support this
view, such as intersection, union, as well as set comparison operators such as
subset and set equality. TSubset from the previous section was an example
of this. Here, we follow the general approach in [14], where it is shown that
such operators form a suitable formalism for expressing security conditions and
goals formulated as constraints. Selector functions process access information
in policies by retrieving various kinds of information from a list of rules. In
contrast, operator functions apply certain operations on the results of selector
functions along with other arguments of the predicate. The selector function
called Search subject is defined in Listing 3. The Search subject function
receives a list of rules and an object type as inputs. It searches all the Allow

rules of input rules to find all types of subjects that are allowed to access (i.e.,
perform any kind of action on) objects of the type specified by the object type
argument. In particular, the output of Search subject is a list of elements
of type that are authorized to access the object type dscType to perform the
action sdaction. The result is a list containing these subject types.
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Fixpoint Search_subject

( listrule : list R) ( dscType:T) (sdaction: P) : list T :=
match listrule with

| Allow ( alw_srcT , alw_dstT , alw_C , alw_P , alw_B) :: reclistrule ⇒
if (T_Equal alw_dsT dscType && Nat.eqb alw_P sdaction) then

alw_srcT :: Search_subject reclistrule dscType sdaction

else

Search_subject reclistrule dscType sdaction

|Type_Transition (trn_srcT, trn_dstT , trn_C) :: reclistrule ⇒ ...
end .

Listing 3 The selector function Search subject

Listing 4 expresses the distributive property of the selector function
Search subject. In particular, the results of applying selector functions to an
input that is the concatenation of two lists of elements of TErule are the same
as the concatenation of the results of the application of the selector functions
to each sub-list.

Lemma dstrb_destination (l1 l2:listR) (tp:T) (act:P):
Search_subject (l1 ++ l2 ) tp act =

Search_subject (l1 ) tp act ++ Search_subject (l2 ) tp act .

Listing 4 The distributive property of the selector function Search subject

The operator function we develop next is IntersectionList. Listing 5
expresses this function, which returns the set of common elements of two lists of
elements of type represented by lstFirst, and lstSecond input arguments.
The operator function IntersectionList checks if its two input lists contain
any common elements, and the operator is empty list checks to see if its
input list has no elements.

Fixpoint IntersectionList ( lstFirst lstSecond : list T) : list T:=
match lstFirst with

| (a1 ) :: l ’ ⇒
match lstSecond with

| l ⇒ if (∃b (T_Equal a1 ) lstSecond )
then (a1 ) :: IntersectionList l ’ lstSecond

else ...
| ...

Listing 5 The operator function IntersectionList

The operator function IntersectionList uses existsb (denoted by ∃b in
code), defined in the Coq library Coq.Lists.List (depicted in Listing 6), to
check whether or not an element of the first input list lstFirst is T Equal to
any elements of the input list lstSecond.

Fixpoint ∃b (l : list A) : B :=
match l with

| [] ⇒ false

| a :: l ⇒ f a || ∃b l

end .

Listing 6 The function existsb

Listing 7 depicts two basic properties of the operator function
IntersectionList. The lemma notNil intrsec, for example, expresses that
if the result of the application of IntersectionList to two lists of elements
of type is not empty then by adding another element to these lists, the result
of the intersection is still not empty.
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Lemma intserc_distrib (l1 l2 tl : list T) :
IntersectionList (l2 ++ l1 ) tl =

IntersectionList l2 ta ++ IntersectionList l1 tl .

Lemma notNil_intrsec (l1 l2 l3 l4 : list T) :
IntersectionList (l1 ) (l2 ) <> [] →

IntersectionList (l3++l1) (l4++l2) <> [].

Listing 7 Some properties of the operator function IntersectionList

3.4 Predicates and Their Conditions

Returning to our example, the Coq implementation of the Prd SoD predicate
exploits selector function Search subject along with the operator functions
IntersectionList and is emptylist. In general, selector and operator func-
tions enable policy developers to extract access information from Allow rules
that might be useful for applying security goals that are encoded in constraints
and predicates. The Coq implementation of Prd SoD predicate is shown in
Listing 8.

Fixpoint Prd_SoD ( listR: list R) ( ListT : list T) ( sClass :C) ( perm :P)
(QSrcT : T) (QDesT : T) (PRDTsrcT :T) (PRDTDesT :T) : B :=

if (TSubset QSrcT PRDTsrcT&&TSubset QDesT PRDTDesT)
then is_emptylist ( IntersectionList

( Search_subject listR PRDTsrcT)
( Search_subject listR PRDTDesT))

else true .

Listing 8 The predicate Prd SoD

Returning to our example constraint CSTE SoD in Sect. 3.1, we have now com-
pleted the definition of its last component, and thus we can now see how a
query is evaluated against this constraint by CSTE EvalTE in Listing 2. When
Prd SoD is called inside CSTE EvalTE, it first checks whether or not the predi-
cate is applicable to the query, by checking that the subject and object types of
the query (arguments QSrcT and QDesT) are subsets of the input arguments
PRDTsrcT and PRDTDesT, respectively. The predicate returns true if this
condition is false. When the condition is true, it gathers all the types of subjects
in rules that act on objects of types mail t and/or http t, and gathers all the
types of subjects in rules that act on objects of type networkManager ssh t,
and ensures that there is no overlap. It checks all rules in a policy, which can
be seen by the fact that the first argument to Prd SoD is passed on directly to
both calls to Search subject.

Recall that in the definition of CSTE, a predicate takes eight arguments.
Note that arguments 1 as well as 5-8 are the important ones for expressing
Prd SoD; the fact that the second argument is not used is why an empty list
[] appears as the fifth component of CSTE SoD.

We have used Prd SoD and some other predicates to develop a security pol-
icy called TEpla policy as a case study, which can be found in the Coq code.
This example policy has twenty rules and five constraints. All the predicates
used there satisfy the conditions on predicates that we now present in the next
section.
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As mentioned in section 2.8, Policy writers have to verify three condi-
tions on predicates using a library of lemmas we provide for this purpose.
We describe the Coq encoding of these conditions briefly here. The first one
is about queries (involving the <<= relation) and the other two are about
policies (involving the ≲ relation).

Two of the conditions involve a relation on boolean values called transit-

ion Verify Decision that relates the boolean results of applying a predicate
twice with some argument or collection of arguments differing between the two
calls.

The first condition is one of the two that uses this relation on booleans. It
is called Predicate Query condition and the specific arguments that differ
in the two calls are the query subject and object types. This condition is used
in a lemma called predicate query condition implication, which simply
states that whenever a predicate P satisfies Predicate Query condition, then
given any two queries Q1 and Q2 such that Q1 <<= Q2, a constraint C whose
last argument is P, and any list of rules listR, if d1 and d2 are the decisions
resulting from evaluating Q1 and Q2, respectively, against C and listR (i.e.,
applying function CSTE EvalTE in Listing 2), then d1 <:: d2.

The second and third conditions involve evaluating a predicate in a con-
straint on a single query but with two sets of rules (the first argument of
the predicate). The second condition simply states that the same result is
obtained from applying the predicate on the two lists of rules, whenever
the two lists differ only in the order of the rules. This condition is called
Predicate plc cdn.

The third condition, called Predicate plc cdn Transition, is the other
condition that uses the relation transition Verify Decision on Booleans.
The condition states that given two lists of rules, listR and listR′, the
transition Verify Decision relation holds between the results of applying
the predicate to listR and listR ++ listR′. This condition and the second
condition are used in a lemma called constraintEvalPropSnd.

Lemma constraintEvalPropSnd :
∀ (( listRuleA listRuleB : list R) ( listCnstrt : list CSTE) (q:Q)),
( cnsrt_prd_plcyRulesList ( listCnstrt ) ) →
( listCSTE_EvalTE listCnstrt q listRuleA ) <::

( listCSTE_EvalTE listCnstrt q ( listRuleA ++listRuleB) ) = true .

Listing 9 Lemma constraintEvalPropSnd

This lemma states that whenever all the constraints in a given
listC of constraints satisfy both conditions (expressed by the lemma
cnsrt prd plcyRulesList), then given a query Q and two lists of rules
listRuleA and listRuleB, if d1 and d2 are the decisions resulting from eval-
uating Q against listC and the two rule lists listRuleA, and listRuleA

++ listRuleB, respectively, (i.e., applying function listCSTE EvalTE), then
d1 <:: d2.
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As mentioned above, predicates have to satisfy the three conditions
predicate query condition, Predicate plc cdn, and Predicate plc cd-

n Transition. Three lemmas (qry condition SoDpdct, plc conditionS -

SoDpdct, and plc conditionF SoDpdct) express that the predicate Prd SoD

satisfies these three conditions and the proofs are available in the source
code [9].

We note here that the expressive power of predicates is limited by the
conditions discussed above that they are required to satisfy. Alternatively,
however, we propose two methods to extend the expressive power of predicates.
The first is simply to relax the restriction and not require these conditions to
be verified, which would allow constraints to violate the ordering on decisions
by changing an UnKnown to a Permitted. Allowing this freedom provides policy
developers with the same expressive power as the studies that use sets to
express security goals, such as [14], which empirically illustrates that practical
binary constraints can be expressed by comparisons of two sets. The second
method is to replace the above constraints with a structural restriction on
policies that requires that the rule component never changes. Such a situation
can occur, for example, when different departments in an organization have
different security goals, but they all have the same set of rules defined by a
central security administrator. With this change, some formal properties we
present in Sect. 4 will still hold. This solution eliminates the need for an expert
in Coq to verify conditions.

4 Formalization of Language Properties

In this section, we express the Coq encoding of the main formal properties
of TEpla. We evaluate the behavior of TEpla through studying how TEpla
semantics acts as a mapping between the posets we defined in the Section
2.8. In other words, defining posets (TEPLCY,≲), (Q, <<=) and (DCS, <::)
allows us to evaluate language properties. In each subsection, we present the
Coq statement of one of the main theorems. In addition, we provide further
information about the proofs in Sections 4.1 and 4.2. In particular, Section 4.1
provides information about a common proof technique in Coq, proof by reflec-
tion, which is used to prove decidability of decisions, and Section 4.2 discusses
the mathematical proof before presenting the Coq implementation, and also
discusses Coq proof strategies.

4.1 Decidability of Decisions

Determinism is one of the important properties of policy languages discussed
in [2]. A deterministic language always produces the same decision for the
same policies and queries. Recall that the function TEPLCY EvalTE eval-
uates a query against a policy. The behavior of this function specifies the
overall semantics of TEpla. Thus, TEpla satisfies determinism simply because
evaluation is defined as a function.
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Here, we prove the decidability of decisions using proof by reflection [8, 15].
Proof by reflection enables us to write proofs that exploit both the boolean
interpretations and the propositional representations of facts. That is, proof
by reflection takes advantage of combining computations with logical facts in
proving theorems. In particular, boolean interpretations provide computations
and propositional representations provide logical facts. Accordingly, by proving
that a proposition holds when a boolean expression is true, we can use a
combination of these interpretations in proofs because they form rewritable
equations [16] that can be used in a case analysis of inductive types. We prove
the decidability of decisions in TEpla through the boolean reflection approach
for partial orders presented by the author of [17].

We define the boolean relation compare decisions (in listing 10) for com-
paring decisions by considering the partial order of decisions expressed in
Section 2.8.

Definition compare_decisions (c d : DCS) : B :=
match c , d with

| NotPermitted , _ ⇒ true

| Permitted , Permitted ⇒ true

| _ , UnKnown ⇒ true

| _ , _ ⇒ false

end .

Listing 10 The function compare decisions to compare decisions

For exploiting the proof by reflection approach, we need to define a
propositional representation of the order of decisions, which is expressed as
ans compr Prop in listing 11. As depicted in listing 11, we need four con-
structors to cover all the possible relations of decisions. The constructor
Prp refl for constructing the reflexive relation of each decisions, the con-
structor Prp trans for building the transitivity relation of decisions, and the
two constructors Prp dnp dp and Prp dp duk for expressing the basic rela-
tion between NotPermitted, Permitted decisions, and Permitted, UnKnown
decisions.

Inductive ans_compr_Prop : DCS → DCS→ Prop :=
| Prp_refl : ∀ d , ans_compr_Prop d d

| Prp_trans : ∀ dnp dp duk ,
ans_compr_Prop dnp dp →

ans_compr_Prop dp duk → ans_compr_Prop dnp duk

| Prp_dnp_dp : ans_compr_Prop NotPermitted Permitted

| Prp_dp_duk : ans_compr_Prop Permitted UnKnown .

Listing 11 The inductively defined relation ans compr Prop

The proof begins by proving that the boolean and propositional represen-
tation of the order of decisions are equivalent. That is we now prove that a
propositional representation, defined as ans compr Prop, of the boolean rela-
tion compare decisions, are logically equivalent (stated as a theorem in listing
12).

Theorem aPrp_Boolreflection d1 d2 :
reflect ( ans_compr_Prop d1 d2 ) ( compare_decisions d1 d2 ) .

Listing 12 The reflection relation between ans compr Prop and compare decision
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After proving the equivalence of between the two characterizations of the
order of decisions, we then define the decidability of decisions according to the
theorem decidability of decisions in listing 13.

Theorem decidability_of_decisions dcsF dcsS :
{ ans_compr_Prop dcsF dcsS} + {∼ ans_compr_Prop dcsF dcsS }.

Listing 13 Decidability of TEpla decisions

The theorem in listing 13 indicates that the relation “<::” on decisions is
decidable. That is when we compare decisions by the relation “<::”, there is
always an answer for this comparison.

The running time of TEPLCY EvalTE is O(n+mn) in which n and m are
the number of rules and constraints, respectively. The running time of checking
a query against rules is O(n), and if granted, the running time of checking
the query against one constraint is O(n) because, in worst case, to process
access information needed in the constraint, the entire list of rules should be
traversed. Assuming that the number of rules is greater than constraints, the
running time of TEPLCY EvalTE is O(n2).

4.2 Order Preservation of Queries

TEpla has in fact been designed so TEPLCY EvalTE is order-preserving for
the relation ≲ on policies, <<= on queries, and <:: on decisions. This means
that TEPLCY EvalTE acts as a homomorphism [13] on the posets we defined
on TEPLCY, Q, and DCS.

Of particular importance is the preservation of order on decisions with
respect to queries: if q1 <<= q2, then the decisions d1 and d2 that result
applying function TEPLCY EvalTE on q1 and q2, respectively, are in the rela-
tion d1 <:: d2. The <<= relation is defined (see Sect. 2.8) to be as general
as possible; it involves only subject and object types, which are elements that
queries in any language must have. When policies are large, verifying poli-
cies often involves testing a number of queries against the policy. In a policy
language with this property, undue access, i.e., bypassing security checks or
unauthorized access to internal data [18], is impossible for queries that have
incomplete information [2], which is helpful for policy reasoning. In addition,
having an unambiguous ordering of queries facilitates sorting, filtering, and
optimizing query evaluations.

We first introduce a lemma which helps us to prove order preservation of
queries. As mentioned earlier, TEpla policies (TEPLCY) consist of two parts
TErules and TEconstraints. Thus, it is logical to prove this property for the
elements of these components: a TErule and a TEconstraint. The stepping
stone is to prove this property for a TErule. Lemma (1) below shows order
preservation of queries for a TErule. In particular, if two queries q, q′ have the
relation <<=, then the decisions of applying Algorithm (2) with same TErule,
have the relation <::.

∀ (q, q′ ∈ Q), (r ∈ TErule),
q <<= q′ =⇒ Algorithm 2 (r, q) <:: Algorithm 2 (r, q′).

(1)
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After expressing order preservation of queries for a TErule, now it is time
to consider the corresponding property for a TEconstraint. Lemma 2) below
expresses the order preservation of queries for a TEconstraint. In particular, if
two queries q, q′ have the relation <<=, then the decisions of applying Algo-
rithm (3) with the same list of TErules and TEconstraint, have the relation
<::.

∀ (q, q′ ∈ Q), (c ∈ TEconstraint), (l ∈ list TErule),
q <<= q′ =⇒ Algorithm 3 (c, q, l) <:: Algorithm 3 (c, q′, l).

(2)

We now express the order preservation of queries as a theorem for TEpla
policies. Proving this theorem requires the two lemmas we mentioned earlier.

∀ (p ∈ TEPLCY), (q, q′ ∈ Q),
q <<= q′ =⇒ TEPLCY EvalTE (p, q) <:: TEPLCY EvalTE (p, q′).

As the theorem states, for the same policies, queries with the relation <<=
render decisions with the relation <::. The Coq version of this theorem is
stated below as Theorem Order Preservation TEpla in Listing 14.

Theorem Order_Preservation_TEpla :
∀ ( listrule : list R) ( listconstraint : list CSTE) (q q’ : Q),

(q <<= q’) ∧ const_imp_prd_List listCSTE →
((TEPLCY_EvalTE (TEPLCY (listrule, listconstraint)) q) <::
(TEPLCY_EvalTE (TEPLCY (listrule, listconstraint)) q’)) = true.

Listing 14 Order preservation of decisions with respect to queries

The const imp prd List predicate in this theorem expresses that all the pred-
icates of the input list of constraints listCSTE satisfy the first condition from
Sect. 3.4 (predicate query condition).

The proof script for the theorem Order Preservation TEpla is shown in
Figure 2.
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Theorem Order_Preservation_TEpla :
∀ (listrule :list R) (listCnstrt :list CSTE) (q q’ : Q),

(q <<= q’) ∧ const_imp_prd_List listCSTE →
((TEPLCY_EvalTE (TEPLCY (listrule, listCnstrt)) q) <::
(TEPLCY_EvalTE (TEPLCY (listrule, listCnstrt)) q’)) = true.

Proof .
induction listCnstrt .
− intros . simpl . (* proving subgoal I *)

elim H . intros .
apply maximalpolicy_Prop .
split . + apply max_prop2 . assumption .

+ simpl . reflexivity .
− intros . rewrite max_appendAns4 . (* proving subgoal II *)

assert(TEPLCY_EvalTE (TEPLCY (listRule, a :: listCnstrt)) q’ =
(maximalDcs (TEPLCY_EvalTE (TEPLCY (listRule, [a])) q’)
(TEPLCY_EvalTE (TEPLCY (listRule, listCnstrt)) q’) )).

rewrite max_appendAns4 . reflexivity .
rewrite H0 .
apply maximalDcs_prop .
split . + simpl . apply maximalpolicy_Prop . split .
apply max_prop2 . elim H . intros . assumption .
apply maximalDcs_prop . split .
apply OrdPreserv_cstrt .
split . elim H . intros . assumption .
elim H . intros . apply validconst_prop in H2 .
elim H2 . intros . assumption .
simpl . reflexivity .

+ apply IHlistCnstrt . split . elim H . intros . assumption .
elim H . intros . apply validconst_prop in H2 .

elim H2 . intros . assumption .
Qed .

Fig. 2 The proof script of Theorem Order Preservation TEpla

In the Coq proof, tactics are used to decompose the proof into subgoals,
or to transform a subgoal to a simpler one until the proof is complete. This
proof is by induction on the length of the list of constraints and the induction
tactic on the first line of the proof breaks the proof into these two cases. The
symbols “-”, “+”, and “*” mark the cases of proofs that correspond to each
subgoal on different levels. Here, the subproof starting with the first “-” is the
base case of the induction, when the list is empty. The subproof starting with
the second “-” is for the inductive case. The application of the induction

tactic generates the induction hypothesis for this case.
In general, theorems and lemmas in Coq are written as follows:

Hyp (H1, H2, . . . , Hn) ⊢ Conclusion (G).
We have hypotheses H1, H2, . . . , Hn as the context of the proof and at any
point during the proof, we are proving one of the possible sub-goals (G). Here
we explain a few of the other tactics used in the proof in Figure 2. The intro
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tactic adds the current variable or premise of the goal as a new variable to
the context. We can provide a new name for this variable by writing intro

new name. Moreover, we can use the tactic intros to introduce all variables or
propositions on the left side of an implication as assumptions. Similar to the
intro tactic, we can assign names to the assumptions which will be introduced
after applying the intros tactic, through providing names as arguments to
this tactic such as intros new name1 new name2 .... The rewrite tactic
transforms one term of the current goal into the equivalent term in the context.
Suppose we want, for example, to prove that C= B + B and the hypothesis H1:
A = B is in the context of our proof and the current goal is C= A + B, we can
transform the current goal to C= B + B by using the tactic rewrite H1.

The assert tactic enables us to add a new hypothesis to the context. In
this case, first, we prove the goal using the new hypothesis and then we have
to prove that the introduced hypothesis is true as well. For example, the tactic
assert (A = B) allows us to add the proposition (A = B) to the context, as
long as (A = B) is provable from the current context. The reflexivity tactic
proves a goal if it is in the form of an equality A = B, where A and B are exactly
the same term, possibly after some simplification.

The apply tactic can be used to apply previously proved lemmas. Note
that the proof in Figure 2 uses many such lemmas. For example, they include
validconst prop, maximalDcs prop, and max appendAns4, shown in list-
ings 15, 16 and 17, respectively. The binary function maximalDcs, used in
listings 16 and 17, takes two input decisions and returns the greater decision
according to the order of decisions defined in Section 2.8.

Lemma validconst_prop :
∀ (c : CSTE)(l:list CSTE),

const_imp_prd_List (c :: l) →
constraints_implication_prd c ∧ const_imp_prd_List l .

Listing 15 Lemma validconst prop

Lemma maximalDcs_prop :
∀ (d1 d2 d3 d4 : DCS),

(d1<:: d3 )=true ∧ (d2<:: d4 )=true →
( maximalDcs d1 d2 <:: maximalDcs d3 d4)=true .

Listing 16 Lemma maximalDcs prop

Lemma max_appendAns4 :
∀ (a: list R) (h :CSTE)(l:list CSTE)
(q :Q) ,
(TEPLCY_EvalTE (TEPolicy (a, h :: l)) q) =

maximalDcs

(TEPLCY_EvalTE (TEPolicy (a, [h])) q)
(TEPLCY_EvalTE (TEPolicy (a, l)) q).

Listing 17 Lemma max appendAns4

In addition, the OrdPreserv cstrt lemma is the Coq version of Lemma (2)
above, and the max prop2 lemma is a corollary of Lemma (1) above.
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4.3 Non-Decreasing Property of Policies

It is common to add new policy statements as new regulations arise. The next
property states that when adding new rules, policies do not change their deci-
sions in the reverse direction of the order on decisions (i.e., <::). When adding
new rules, changing decisions, for example, from Permitted to NotPermitted,
is impossible. Thus, granted requests will never be revoked. Revoking access
from already granted requests is problematic because once the information has
been revealed, there is no way to reverse the effect of revealing this informa-
tion. This property is aligned with monotonicity defined in [2]. We state and
prove the property in Listing 18, which expresses that TEpla is non-decreasing.

Theorem Non_Decreasing_TEpla :
∀ (Pol_list : list TEPLCY) (Single_pol:TEPLCY) (q:Q) (d d’: DCS),

validCnstrtListPolicy Pol_list ∧ validConstrt Single_pol →
(TEPLCY_EvalTE (⊕ (Pol_list)) q) = d →
(TEPLCY_EvalTE (⊕ (Single_pol::Pol_list)) q) = d’ →
(d <:: d’) = true.

Listing 18 Theorem Non Decreasing TEpla

This theorem states that adding a policy Single pol, to any list of
policies Pol list can change the decisions only according to the order
relation <:: on decisions. The predicate validCnstrt expresses that the
constraints in Single pol satisfy the second and third conditions from
Sect. 3.4 (Predicate pl cdn and Predicate plc cdn Transition). The pred-
icate validCnstrtListPolicy applies this check to every policy in Pol list.
The ⊕ operator extracts the rule lists of all the policies in its argument list of
policies and combines them into one list, and similarly for constraints, form-
ing a single policy from these rules and constraints. Note that in this theorem,
(⊕ Pol list) ≲ (⊕ (Single pol :: Pol list)).

4.4 Independent Composition of Policies

It is important to be able to analyze the behavior of access control policies
based on their components or sub-policies, as the decisions for the combined
policies can be determined from the decisions of included policies. Similar to
independent composition in [2], we codify the following property of TEpla.

Theorem Independent_Composition :
∀ ( PLCY_DCS_pair : list (TEPLCY ∗ DCS)) (q : Q) (dstar : DCS),
Foreach q ( map fst PLCY_DCS_pair) ( map snd PLCY_DCS_pair) ∧
(TEPLCY_EvalTE (⊕ (map fst PLCY_DCS_pair)) q) = dstar →
( maximum ( map snd PLCY_DCS_pair) <:: dstar ) = true .

Listing 19 Theorem Independent Composition

In this statement, PLCY DCS pair is a list of policies and a list of deci-
sions of the same length such that for each index i into these lists, if pi
and di are the policy and decision at this index, respectively, then (pi, di)
is an evaluation pair on q, which means that (TEPLCY EvalTE pi q) = di,
i.e., that di is the decision returned from evaluating policy pi on query q.
Although we do not show its definition, the Foreach predicate is defined to
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express this property. It also expresses that all the constraints in each pol-
icy satisfy the second and third conditions from Sect. 3.4 (Predicate pl cdn

and Predicate plc cdn Transition). The independent composition theorem
states that whenever a pair of lists satisfies this property, then the decision
obtained by evaluating the combined policy on q is the maximum of the
decisions resulting from evaluating each policy independently. The function
maximum takes a list of decisions and returns the maximum according to the
binary relation <::.

5 Conclusion

We have presented the infrastructure of the TEpla Type Enforcement pol-
icy language, and formally verified some of its important properties in Coq.
TEpla, with formal semantics and verified properties, is an essential step
toward developing certifiably correct policy-related tools for Type Enforcement
policies.

The properties that we have considered here, namely determinism, order
preservation, independent composition, and non-decreasing, analyze the behav-
ior of the language by defining different ordering relations on policies, queries,
and decisions. These ordering relations enabled us to evaluate how language
decisions react to changes in policies and queries.

Moreover, we provide the language constructs (in particular, the integra-
tion of user-defined predicates) for allowing security administrators to encode
different security goals in policies. This makes the language flexible because
policy developers are not limited to built-in conditions to express their intended
predicates.

In related work, ACCPL (A Certified Core Policy Language) [19] represents
some preliminary work using our approach, i.e., building in formal semantics
from the start, but in the domain of web services and digital resources, with
some very basic properties proved, which include determinism, but not the
other properties considered here. In other work, a variety of other studies have
included the formalization of various aspects of access control policies using
different and sometimes quite complex logics and algorithms, e.g., [20–23]. In
our approach, we start with a simple language, and some simple notions of
orderings and relations on sets, and show that it is possible to express fairly
complex access control requirements. We were inspired, for example, by the
work in [14], which shows that complex access control constraints such as
separation of duty [4, 24] can be expressed using set operators. Additionally,
although we began with the particular domain of policies for operating systems,
one of our goals is to develop general ideas that can be adapted to other
domains such as the web and distributed platforms. Future work will include
exploring such extensions. Eventually, we plan to use the program extraction
feature of Coq to generate a certified program from the algorithms used to
express TEpla semantics, similar to what was done in [25] for firewall policy
evaluation.
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With regard to work on SELinux in particular, different studies have been
carried out that put forward some possible tools for helping policy writers write
policies that are more easily understood and reasoned about. Languages such
as Lobster [26], Seng [27], Please [28], and CDSFramework [29] are intended
to enhance the SELinux policy language by providing easier syntax and more
language features, such as defining object-oriented policy syntax, for example.
Despite their attempt to help users to specify SELinux security policies, as
analyzed in [5], these languages give rise to limited results that cannot be ver-
ified due to a lack of formalized definition of semantics and language behavior,
which results in potentially contradictory interpretations and precludes correct
reasoning. These issues contribute to the ongoing development of numerous
policy-related tools that try to model SELinux policies without proving the
correctness of the results and analyses, as each tool attempts to cover more
features rather than verifying their properties and results.

Our future work will also include addressing some of the current limitations
of the language, including extending the kinds of constraints provided, as well
as designing and developing certified tools for policy-related tasks such as
automating various kind of policy analyses. We expect to be able to reuse
many definitions and lemmas of the current Coq development.

Appendix A The BNF grammar of TEpla

Figure A1 represents the BNF grammar of TEpla. We use { } notation to
represent the Kleene operator meaning 0 or more occurrences. In this grammar,
the primitive attributes type, Object Class, Permitted Action are denoted by
type, cls, prm respectively.
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cls ::= ; object class
net socket | filesystem |
tcp socket | . . .

; classes

prm ::= ; permitted action
read | signal | setattr |
entrypoint | . . .

; actions

basictype ::= ; basic type
print exec t | http t |
mail t | . . .

; basic types

attribute ::= ; attribute
basictype {basictype}

type ::= ; TEpla type
basictype | attribute ; types

subject ::= type ; subject type

object ::= type ; object type

target ::= type∗ ; target type (type∗ is a basictye or an attribute with one basictype)

cond bool ::= ; bool
true | false | · · · ; bool value or expression

Allow ::= ; allow rule
(subject, object, cls, prm, cond bool) ; allow rule

Type Transition ::= ; type transition
(subject, target, cls) ; type transition rule

TErule ::= ; policy rule
Allow | Type Transition ; rules

TEpredicate ID ::= ; identifiers for predicates in TEpla (TEpredicates)
identifier ; a TEpredicate function name

TEconstraint ::= ; policy constraint
(cls, prm, type, type, {type}, TEpredicate ID) ; constraint

TEpolicy ::= ; TEpla policy
({TErule}, {TEconstraint}) ; policy

qr ::= ; query
(subject, (object | target), cls, prm) ; query specifics

dcs ::= ; decisions of TEpla
UnKnown | Permitted |NotPermitted ;decisions

Figure A1 The BNF Grammar of TEpla
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