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Abstract A new adaptive strategy for performing data
collection with a sonar-equipped autonomous underwater
vehicle (AUV) is proposed. The approach is general in the
sense that it is applicable to a wide range of underwater
tasks that rely on subsequent processing of side-looking sonar
imagery. By intelligently allocating resources and immedi-
ately reacting to the data collected in-mission, the proposed
approach simultaneously maximizes the information content
in the data and decreases overall survey time. These improve-
ments are achieved by adapting the AUV route to prevent
portions of the mission area from being either character-
ized by poor image quality or obscured by shadows caused
by sand ripples. The peak correlation of consecutive sonar
returns is used as a measure for image quality. To detect
the presence of and estimate the orientation of sand ripples,
a new innovative algorithm is developed. The components
of the overall data-driven path-planning algorithm are pur-
posely constructed to permit fast real-time execution with
only minimal AUV onboard processing capabilities. Exper-
imental results based on real sonar data collected at sea are
used to demonstrate the promise of the proposed approach.

Keywords Autonomous underwater vehicles - Sonar data -
Image quality - Ripple detection - Adaptive route planning
1 Introduction

The high-resolution imaging of underwater environments

afforded by sonar has proven useful in a wide range
of applications, including habitat mapping [1,2], seabed
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classification [3-5], mine detection [6,7], port protection [8],
archaeology [9], and pipeline monitoring [10]. Thanks to
breakthroughs in marine robot technology, the sonar data
used to address these diverse tasks is invariably collected by
an autonomous underwater vehicle (AUV).

Typically, however, the data collection process itself does
not receive much attention. Instead, the aforementioned
applications that exploit and rely on sonar data implicitly
assume that the collected data is of sufficient quality to com-
plete the desired task.

Unfortunately, data collected at sea with an AUV is rarely
flawless [11]. For example, excessive undesired vehicle
motion caused by currents can result in defocused imaging,
navigation errors can lead to gaps in data coverage, and shad-
ows caused by bathymetric features can obscure the seabed.

But recent advances in the onboard processing capabili-
ties of AUVs now permit increasingly sophisticated ways to
perform the data collection task. In particular, these advances
make the in situ adaptation of AUV data-collection survey
routes possible. This capability has the potential to ensure
that the data collected at sea by an AUV meets the standards
necessary for various subsequent objectives.

The promise of guaranteed data quality is intriguing
because collecting data at sea is an extremely expensive
enterprise that requires substantial assets as well as signifi-
cant manpower (to handle everything from ship operation to
AUV deployment and recovery). Moreover, ship transit and
travel costs further increase the cost of performing sonar data
collection.

With such costs, repeating an experiment at sea because
some data is of poor quality is oftentimes simply not feasible.
Instead, flawed data is usually quietly discarded and ignored.
In certain applications, however, it is absolutely imperative
that high-quality data is collected everywhere in the area
of interest. In such cases, collecting additional data—and
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incurring the substantial costs associated with doing so—is
unavoidable.

The development of intelligent methods to control AUV
data collection to ensure high-quality sonar data would there-
fore be a considerable boon for a wide range of applications.
Not only would these advances provide the opportunity to
save resources, reduce manpower requirements, and reduce
mission times at sea, but the various tasks that subsequently
process the data would also benefit from the data being of
increased quality.

In this work, we address this challenge. Specifically, we
develop a strategy to collect optimal side-looking sonar data
by adapting, in situ, the AUV survey route based on the envi-
ronmental characteristics observed in the data itself, such that
the data quality is sufficiently high to allow the completion of
any desired task. By developing a general strategy rather than
restricting ourselves to a single application, the algorithms
presented here will be applicable to a wide range of tasks
and will be useful for all researchers in the field of marine
robotics who deal with sonar data.

Previous work related to adaptive underwater path plan-
ning has not focused on ensuring the quality of the data being
collected, as we do here. Instead, the main body of work has
been interested in finding selected regions of particular inter-
est to survey or routes that satisfy certain objectives, rather
than performing an exhaustive search of an area. For example,
adaptive surveys have been used to locate oil spills [12] and
reefs [13] by surveying only a subset of an area after the event
of interest has been detected. Other work has adopted adap-
tive strategies to minimize errors due to temporal evolution of
the ocean during the survey [14], or to reach a mission-spec-
ified destination while minimizing energy costs [15]. The
work involving dense, exhaustive surveys of an area with an
AUV has tended to focus on navigation correction and local-
ization [16] or the fusion of multiple images into a mosaic of
the seabed [17] for subsequent object detection tasks.

The remainder of this paper is organized as follows. In
Sect. 2, background about sonar data collection with an AUV
is discussed. Section 3 proposes a way to quantify the infor-
mation content of a sonar image, based on image quality
and shadows cast by sand ripples. A new, fast algorithm for
the detection of sand ripples in sonar imagery is detailed in
Sect. 4. The proposed strategy for performing adaptive data
collection is outlined in Sect. 5. Experimental results based
on real sonar data are shown in Sect. 6. Concluding remarks
and directions for future work are provided in Sect. 7.

2 Side-looking sonar data collection

AUVs equipped with side-looking sonar—simple side-
scan sonar or synthetic aperture sonar (SAS) [18]—are
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increasingly used to acquire high-resolution images of under-
water environments.

Usually, such AUVs are equipped with two sonars, one
on the port side and one on the starboard side. These sen-
sors image in a direction orthogonal to the direction in which
the AUV travels. Because of the geometry of the problem, a
“dead zone”—from directly below the AUV out to a certain
range on either side—between the two sonar swaths will lack
sonar coverage [11].

The standard AUV survey plan used in practice [19-21]
is a series of equidistant parallel tracks—often referred to as
a “lawnmower pattern”—such that the sonar swaths of con-
secutive tracks interleave, resulting in sonar coverage for the
entire area of interest. After the area has been surveyed in
this primary orientation, a second survey is often performed
in an orientation orthogonal to the first survey. This “cross-
hatching” ensures that each seabed location is observed at
least twice [22].

In benign environments, having two complementary
views of the seabed is overkill for object detection purposes
(having two views can still be desirable for classification
objectives, in which the difficulty of identifying an object
can be a strong function of aspect [23]). Obtaining orthogo-
nal views becomes a necessity only in complex environments,
so that the shadows cast by bathymetric features or objects
will obscure different areas.

However, the inflexibility of this rigid pre-planned appro-
ach introduces major flaws in the standard sonar data collec-
tion procedure. Specifically, the inability to adapt the survey
based on the data that is collected in situ during the mission—
and the coverage actually achieved by the AUV—introduces
severe inefficiencies into the process.

To see this, it must be noted that pre-planned survey routes
are designed under the assumption that successful sonar cov-
erage will be achieved up to a certain maximum range. If this
maximum range is underestimated, the survey mission will
take longer to complete and a considerable portion of the data
collected will overlap, covering the same area unnecessarily.
However, if the maximum range for which sonar coverage
is expected is overestimated, the result will be gaps in data
coverage. In order to successfully cover the entire mission
area in this scenario, the AUV would need to be re-deployed
to execute additional survey tracks.

A second major flaw with the pre-planned surveying
approach is that it prevents the efficient allocation of
resources. Surveying the entire area of interest from two dif-
ferent orientations virtually guarantees that excessive atten-
tion will be devoted to some areas and insufficient resources
will be applied to others. For areas characterized by flat,
benign seabed, a single view is sufficient for acquiring all
of the relevant information present. Therefore, surveying
such an area twice (i.e., with the cross-hatching) doubles the
mission time while providing very little new or additional
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information. It would be better to instead execute additional
surveys only on areas that warrant them, such as complex
seabed containing anomalous features of interest.

These aforementioned inefficiencies result in longer mis-
sion times, which then translate directly into higher costs.
Moreover, in time-sensitive military applications, protracted
surveys can also delay subsequent operations and adversely
impact future aspects of the mission.

The solution for overcoming these drawbacks of the stan-
dard surveying approach is to allow the AUV to adapt its
route, in situ, based on the characteristics observed in the
data being collected. In this work, we propose such a strat-
egy based on the information content of the sonar imagery
collected.

3 Information content of sonar imagery

The proposed survey strategy is based on adapting the route
of an AUV according to the data that it collects in situ so that
it can be exploited in the remainder of the mission. More spe-
cifically, the procedure will select survey routes to maximize
the information contained in the data.

To accomplish this objective while also maintaining gen-
eral applicability, some universal measure of information—
that is relevant regardless of the eventual application for
which the data is collected—must be defined and extracted
from the sonar data.

We argue that the pertinent question entailed by this chal-
lenge is: Does the current data allow accurate, confident
assessment of a given location of seabed? If the answer is
affirmative, the data at the considered location can be deemed
to contain information. Each pixel in an image can thus be
classified in a binary manner based on this query.

More concretely, in this work we define the information
content of a sonar image in terms of two quantities: image
quality and shadows cast by sand ripples. Although extremely
simple, this formulation will prove to be a powerful way to
rapidly assess the information content in the sonar data. And
importantly, both quantities can be evaluated quickly in near
real-time onboard an AUV with limited processing capabil-
ities. Other factors that can have a profound impact on the
utility of the sonar data, such as a steeply sloped seabed, are
not addressed in this work.

When an area of seabed is characterized by poor image
quality or obscured by shadows, no information is provided
by the data because the true nature of the location cannot be
deduced. That is, an accurate assessment of what is present
on the seabed is not possible.

To illustrate this point, an example SAS image is shown
in Fig. 1. At long range (beyond approximately 112 m), the
image is blurry because unwanted vehicle motion exceeded
the allowable limits for successful imaging; at short range,
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Fig. 1 Example SAS image exhibiting shadows due to sand ripples
at short range and poor image quality at long range (beyond 112 m)

a significant portion of the seabed is obscured by shadows
cast by a field of sand ripples.

3.1 Image quality

In our formulation, the first quantity on which the information
content of sonar data depends is image quality. A sonar image
with good image quality is one in which objects and seabed
features appear more or less as they would when observed
under the ideal operating conditions of the sonar system.

It is commonly assumed that the full extent of all sonar
images are of good quality, but that is often not the case
with real sonar data collected at sea [11]. In particular, image
quality often degrades significantly at long range when the
effects of multipath manifest [24]. Additionally, with SAS,
the motion correction requirements for successful image for-
mation are more stringent at long range [25]. As a result, the
image quality of data at the longest ranges of the sonar system
is often inadequate.

If it is assumed that good quality sonar data will be
achieved up to some maximum range that is longer than
is actually achieved, a substantial portion of the data that
is collected will contain no useable information. This point
highlights the importance of allowing the AUV survey route
to adapt based on the image quality of the data collected.

The issue as to how to quantify the rather subjective con-
cept of image quality must be addressed next.

Synthetic aperture sonar (SAS) provides an order-of-mag-
nitude improvement in resolution over simple (real aperture)
side-scan sonar data [18]. Because the higher-resolution data
permits much more accurate assessment of underwater envi-
ronments, challenging tasks are now often undertaken with
SAS instead of side-scan sonar.

However, the ability to successfully form SAS images—
and in turn, the achievable area coverage—depends on the
motion of the sonar-equipped platform and on the environ-
mental characteristics of the area (such as the seabed-type
and the water properties) [26]. Excessive platform motion
will limit the range for which successful image formation is
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possible. Similarly, if the seabed is soft (e.g., muddy), less
sonar energy will return to the receivers, also limiting the
range to which a SAS image can be formed successfully.

SAS works by coherently summing received sonar sig-
nals, or ping-returns, of overlapping elements in the array.
The (cross-)correlation between two received time-series sig-
nals, s;(t) and s (¢), is simply

K(T) = (5 (05 + 1), o

where t is a time-shift. The normalized peak correlation
between successive pings, termed the coherence [27], is then
simply

Kij (T)
p = max | ————
T | Vkii (0)kj;(0)
This peak correlation between successive pings at a given
range (i.e., distance from the sonar) provides a measure of

the success of the SAS processing, as this quantity is directly
proportional to the signal-to-noise ratio (SNR) [28],

SNR = 2, 3)
I—p

and in turn, the image quality. Granted, a high coherence does

not always ensure good image quality, but in general, it is a

reliable indicator that has been employed with success [27].

Although full SAS processing is a computationally inten-
sive procedure, the coherence can be easily calculated
onboard an AUV in a streaming manner as data is collected.
Therefore, this work uses the coherence (or “ping-to-ping
correlation”), p, calculated also as a function of range, as a
measure of image quality.

Based on our extensive experience visually assessing the
quality of sonar images, we deem an image at ranges where p
is below the threshold 7, = 2/3 to be of poor image quality
containing no information. (A threshold of 7, = 3/4 is used
in [27].) To more rigorously justify this choice, we analyzed
the performance of a detection algorithm [29] on a large data
set of sonar images containing 480 man-made targets. In the-
ory, the detection algorithm should detect all of these targets
if the image quality is sufficient. The detection performance
that resulted, as a function of the minimum coherence value
of the targets, is shown in Fig. 2. From the figure, it can be
seen that approximately 95% of the targets are successfully
detected if the coherence at the target location is at least 2/3,
which suggests that the threshold 7, = 2/3 is reasonable.

Thus, with a threshold selected, the (binary) image quality
as a function of range can be predicted, and the survey route
adapted accordingly, without forming the actual SAS image.

: 2

3.2 Sand-ripple shadows

Because of the unique geometry defined by the AUV’s sonar
and the seafloor, a general object or structure that rises above
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Fig. 2 For one sonar data set, the probability of detecting a man-made
target when considering only those targets with a coherence above some
minimum threshold

the seafloor will necessarily cast a shadow (except in patho-
logical cases that can be ignored here).

Whereas the image quality is mainly a factor when pro-
cessing side-scan sonar into SAS, the second quantity on
which we defined information content, shadows, is relevant
even for side-scan sonar data.

In this work, we focus specifically on the shadows cast by
sand ripples because such shadows are largely preventable by
surveying at particular orientations. An object such as a boul-
der will cast a shadow—albeit over different areas—regard-
less of the survey orientation. Moreover, sand ripples are
usually large-scale phenomena that can impact a substantial
portion of a set of collected data, a situation for which the
execution of additional survey tracks would be justified and
worthwhile.

Seabed characterized by sand ripples exhibits a strong
orientation dependence; when the sand ripple “waves” prop-
agate in the along-track direction of the vehicle (which is
assumed to be orthogonal to the look-direction of the sonar),
the proportion of seabed that is obscured by shadows is min-
imized. An example of this phenomenon in real SAS data is
shown in Fig. 3 [unless otherwise noted, for the remainder
of this paper, we define the orientation of a sand ripple as
the orientation at which a given crest or trough of the ripple
field is directed (i.e., orthogonal to the “wave” propagation
direction), as measured from the across-track direction of a
sonar survey].

As can be noted in Fig. 3, the amount of seabed obscured
by shadows cast by ripples is strongly influenced by the rel-
ative survey orientation. This anecdotal evidence suggests
that, according to our definition of information content, data
will be much more informative and valuable when areas char-
acterized by sand ripples are surveyed at certain orientations.
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Fig. 3 Sonar imagery of the same area of seabed characterized by ripples when the along-track direction of the vehicle is (a) nearly parallel to the
ripple orientation (6 ~ 65°), and (b) nearly perpendicular to the ripple orientation (0 ~ —25°)

To better illustrate this fact more rigorously, we conducted
experiments using simulated sonar data generated by the
method in [30]. Specifically, patches of seabed character-
ized by sand ripples with different amplitudes and different
wavelengths were generated. We then simulated the sonar
data that would result if the data was collected at various sur-
vey orientations and also at different ranges, when the sonar
was at an altitude of 13 m. For each case, the fraction of the
sonar data that would be obscured by shadows caused by
the ripples was calculated. The mean results of these exper-
iments, averaged over 100 random trials (i.e., seabed patch
realizations), are shown in Fig. 4.

As can be seen from the figure, the proportion of the sea-
bed obscured by shadows caused by sand ripples is mini-
mized when the along-track direction of the vehicle is nearly
perpendicular to the ripple orientation (i.e., when the sonar
look-direction is along a ripple wave’s crest or trough).

These experimental results provide further evidence that
basing the information content of sonar data on shadows
caused by ripples is justified. At certain survey orientations,
a substantial portion of the resulting sonar data may be
obscured by shadows, and therefore not useful for subse-
quent tasks.

It should be noted that any data processing required to
determine how best to adapt the survey route must also be
executed in near real-time. With this caveat in mind, we
developed a new fast algorithm that both detects the presence
of and estimates the orientation of sand ripples. The ripple
detection algorithm in [31], relying on numerous wavelet
transforms, is too computationally demanding and slow for
this purpose and cannot be executed in a streaming manner
the way our proposed approach can. The algorithm proposed
in [32] is more accurately a ripple suppression algorithm that
artificially removes the ripple shadows from the image. Since
this neither adds information to the image nor establishes the

orientation of the ripples, the approach is not appropriate for
the adaptive surveying approach.

Since ripples are relatively large structures (compared to
the resolution of the imagery), even lower-resolution side-
scan data is sufficient for ripple detection and estimation.
Therefore, the computationally expensive SAS image for-
mation can be avoided in this context as well. Although SAS
could achieve higher detection precision, side-scan data is
adequate for detecting ripples and estimating their orienta-
tion for purposes of survey route adaptation.

Because of its import on information content and the adap-
tive survey strategy, our new ripple detection algorithm is
described in detail in the next section.

4 Ripple detection algorithm
4.1 Overview

The proposed ripple detection algorithm is composed of sev-
eral components. Before becoming mired in the necessary
details, we first briefly provide an overview of the motiva-
tions and general philosophy used to create the algorithm.

The overall objective is to create a robust algorithm that
will reliably detect sand ripples. However, the algorithm must
also be fast to permit real-time streaming detection onboard
an AUV equipped with limited processing capabilities. Since
no human intervention is allowed, the algorithm must be flex-
ible enough to sense and adapt to changing environmental
conditions from the data collected in situ.

To satisfy these requirements, extensive domain-specific
knowledge we possess about the problem is exploited.
Emphasis is also placed on tailoring the algorithm, where
possible, to the fundamental underlying physics and geom-
etry of the application. The result is a hybrid of rigor and
flexibility.
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Fig. 4 For an image characterized by sand ripples, fraction of image
that would be obscured by shadows, as a function of range and rip-
ple orientation, for different ripple amplitudes, «, and wavelengths, A.

The following sections will describe each step of the
detection algorithm that resulted from these considerations.
Because of the visual nature of the application, the algorithm
description will be supplemented by figures illustrating the
effects of each step on a sonar image containing sand ripples,
shown in Fig. 5a.

However, it should be noted that the algorithm does not
require a fully formed image as the input (i.e., streaming
detection using only a few rows of an “image” is possible).
But for illustrative purposes, the stages of the algorithm will
be shown applied to a full image.

4.2 Integral image

Anintegral image [33] is an image representation that allows
for very fast computation of rectangular, Haar-like features
at any scale or location in constant time. In subsequent stages
of the algorithm, such rectangular features will be invaluable
for assessing certain distinguishing characteristics of ripples.
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The ripple orientation is the angle at which one ripple wave’s crest or
trough is directed, with 0° in the across-track direction

The use of an integral-image representation is also a key that
makes streaming detection possible.

Thus, rather than operating on the pixel-based system of
the sonar image, we immediately transform to an integral-
image system. (In fact, one need not ever form the full sonar
image onboard the AUV since the integral-image representa-
tion contains equivalent information.) Starting from an orig-
inal sonar image, A, the corresponding integral image, I, is
constructed as follows.

The value at a location (x, y) in the integral image corre-
sponds to the sum of the pixels above and to the left of (x, y),
inclusive, in the original image, A. That is,

> AWLY). )

X'<x,y'<y

I(x,y) =

The integral image is quickly generated using the recur-
sive relation

I(x,y)=1(x—1,y)+z(x,y), )
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produces a shadow map (e). A location and orientation feature are then
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extracted for each discrete shadow (g), from which density estimation is
performed (h) to determine the presence and orientation of sand ripple
shadows, resulting in a final ripple-shadow map (f). The principal ori-
entation of the ripples in this image was estimated to be 6, = 73°, with
the full set of ripple orientations spanning ®, = [57°, 86°]
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where z(x, y) is the cumulative sum of pixels in a row of the
original image,

z(x,y) =z(x,y = 1) + Ax, y). (6)

The integral-image approach is particularly well-suited
for tasks with streaming sonar data because the construction
of an integral image exactly mimics the manner in which
the data is collected, namely in a row-wise fashion. For a
given along-track position of the AUV, the sonar returns cor-
responding to a set of ranges—which comprise the columns
of the sonar “row-image”—are used in the calculation.

The integral-image representation corresponding to the
sonar image in Fig. 5a is shown in Fig. 5b.

Once the integral image is constructed, the ripple detec-
tion algorithm never again requires use of the original sonar
image. Subsequent stages of the detection algorithm instead
repeatedly exploit the integral image.

4.3 Background estimation

The first use of the integral image, /, is in the estimation
of the sonar-image background map, B. The purpose of the
background map is to establish the reverberation level of the
seabed in order to subsequently determine locations of shad-
ows in the image.

The reverberation level is a strong function of the seabed
composition, so assuming a pre-defined threshold to deter-
mine what constitutes background levels is not reliable. For
instance, the reverberation level of a soft muddy seabed will
be lower than that of a seabed of hard-packed sand.

In fact, natural seabed variations can cause the reverbera-
tion level to vary substantially at a given site or even within
the same image. In Fig. 5a, it can be seen that significant
variation exists within the region of flat seabed; the presence
of sand ripples complicates matters even further.

A data-driven approach that defines the background level
according to some global average over the sonar image would
therefore fail catastrophically on such an image. Such a
method would also require possession of a full image, which
would preclude the possibility of streaming, real-time execu-
tion. Instead, we argue that the background estimation should
be performed in the image locally.

Thus, in this work, a robust estimation of the background
is obtained by using the local characteristics of the seabed in
the measured data. The inherent flexibility afforded by tai-
loring the estimation to the data itself improves the method’s
robustness for successfully dealing with different environ-
ments. The adaptive estimation also eliminates the possibil-
ity of training data mismatch [34,35], since no training data
is used.

The background estimation is calculated using a split win-
dow that we call an “Austrian flag” template since it is com-
posed of three equally-sized horizontal bands of which the
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top and bottom bands (red in the flag) contribute to the back-
ground value, while the middle band (white in the flag) does
not. Each band, or rectangle, is of the same size, by = 2.5 m
in the along-track direction and by, = 5.0 m in the range
direction. These sizes are chosen so that a sufficiently large
area of seabed is used in the background calculation to pro-
duce relatively smooth estimates.

The background score at location (x, y), B(x, y), is then
the mean pixel value in the two rectangles with the “flag”
centered around (x, y). Thanks to the integral-image repre-
sentation, the calculation of the two rectangles that contribute
to the background value at a given location can be computed
quickly, with a total of only eight array references from the
integral image.

Specifically, the background score at (x, y) is calculated
as
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where §x and 8§y are the numbers of pixels that correspond to
by and by, respectively, and ay is the total number of pixels
involved in the sums, so that the result is the mean pixel value
from the two rectangular areas.

The region immediately surrounding a location (i.e., the
“middle band”) is not used in the background calculation
because those pixels are more representative of the “fore-
ground.”

The resulting background map from using the integral
image in Fig. 5b is shown in Fig. 5c.

4.4 Foreground estimation

Next, the integral image is used again to construct a fore-
ground map. The purpose of the foreground map is to subse-
quently aid in locating shadows in the image.

The foreground score at (x, y), F(x, y), is taken to be the
mean pixel value over arectangle centered around (x, y). The
size of the rectangle used in the calculation is fy = 0.5m
in the along-track direction and fy, = 1.5m in the range-
direction. These sizes are chosen so shadows (cast by sand
ripples) that are large enough to obscure objects of potential
interest—e.g., mines—would be detected by the algorithm.
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The foreground score is again calculated quickly thanks
to the integral-image representation,

—1 Sx
F(x,y)=af x |1 x—;,y

— -, +

Sx §x
—1 x—i—?,y + 1 x+7,y+8y s (8)

where §x and 8y are the numbers of pixels that correspond to
fx and fy, respectively, and a ¢ is the total number of pixels
involved in the sum, so that the result is the mean pixel value
from the rectangular area.

The resulting foreground map from using the integral
image in Fig. 5b is shown in Fig. 5d.

4.5 Shadow determination

After a background map B and a foreground map F are con-
structed, a shadow map S indicating the regions of the image
that contain shadows is determined.

The substantial variations that exist in sonar images and
at different sites mean that defining shadows simply as loca-
tions with low pixel values would be unreliable. Instead, any
pixel for which the foreground map value is sufficiently lower
than the corresponding background map value is declared to
be a shadow that will receive further investigation.

Specifically, if F(x, y) < BB(x, y), then the pixel (x, y)
is deemed to be part of a shadow. The scaling factor 8 = 0.5
is used in this work to make the requirement for shadows
more stringent. (Essentially, this defines that a shadow exists
when the pixel value is less than half of the average value of
the surrounding background.) This use of contextual infor-
mation makes the shadow detection process more robust in
order to succeed across different environments.

The resulting shadow map from using the background and
foreground maps in Fig. 5c and Fig. 5d, respectively, is shown
in Fig. Se.

4.6 Ripple-shadow determination
4.6.1 Overview

The principled ripple detection algorithm developed here is
tailored both to the fundamental characteristics that define
sand ripples and the underlying physics that creates them.

Sand ripples are formed when currents or waves flow in
a particular direction [36-38]. Because of this underlying
mechanism by which they are created, ripples tend to exist
in large fields, rather than as individual instantiations. But a
ripple field, by definition, must contain a certain high density
of ripples.

Although the ripples will be characterized by a dominant
orientation (dictated by the direction of flow), considerable
variability will also exist. That is, ripples will not manifest
at a single fixed orientation. Rather, they will span a range of
orientations about some dominant one. Moreover, the ampli-
tudes and periods of the ripples can also vary. Therefore, in
order to be able to detect such variability, a method that is
inherently flexible is required.

Additionally, the relative geometry between the sonar and
the mound of sand that defines the ripple means that the shad-
ows that are cast by the ripples will be elongated along the
direction of the ripple crest (or trough) [39].

These three fundamental physical characteristics of rip-
ples, which can be observed in Fig. 5a, will be exploited in
the ensuing stages of the ripple-detection algorithm. Specif-
ically, the proposed ripple detection algorithm searches for a
high density of elongated shadows that are oriented similarly.

To perform this search efficiently, each discrete shadow
region from the shadow map (cf. Fig. 5e) is mapped into
a new feature space in which it is easy to detect such
characteristics. A novel, unconventional use of the integral-
image formulation for purposes of density estimation is then
employed.

4.6.2 Feature extraction

To begin, the centroid and orientation is calculated for each
discrete shadow (i.e., each connected region, or “blob”) in the
shadow map. The orientation (in degrees), ¢, of a shadow is
obtained by fitting an ellipse to the shadow area, and then cor-
recting for unequal pixel sizes. The centroid is converted to
a distance feature (in meters), y, that is simply the distance
of the centroid to a fixed reference location in the mission
(for the case of a single image here, the “first” pixel of the
image: the pixel at the nearest range at the initial along-track
position).

This feature extraction process effectively maps each
shadow to a specific location, (x, ¢), in a new feature space
in R? (in order to treat this space as an image later, these fea-
tures are then discretized to 1° in the orientation-dimension
and 1 m in the location-dimension).

Before proceeding though, certain shadows are removed
from further consideration. If ¢ < dy/20r¢ > 180°—dy /2,
an indication that the shadow is nearly horizontal, the shadow
is ignored. (In this work, dy = 30°.) This choice is made
because it is known a priori, from the geometry of the sonar
and seabed, that the majority of shadows at those prohibited
near-horizontal orientations are likely caused by objects like
rocks (as opposed to ripples). Additionally, this choice elimi-
nates any inconsistency that would arise from not respecting
the “wrap-around” nature of orientations in the upcoming
integral-image density estimation.
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The result of this feature extraction process that transforms
the shadows in sonar-image space in Fig. Se to location-ori-
entation space is shown in Fig. 5g.

4.6.3 Density estimation

By treating this new feature space as a two-dimensional
“image,” A’, the corresponding integral image, I’, can be
computed readily. The integral-image formulation can then
be exploited to quickly perform density estimation in this
space. Specifically, the mean number of discrete shadows
in a rectangular area about a given location is used as the
shadow density estimate.

The size of the rectangle used in the calculation is d, =
25 m in the location-dimension and dy = 30° in the orien-
tation-dimension. This size is chosen because it respects the
physical proximity and orientation variability of the under-
lying mechanisms that help define ripple fields.

The density estimate at D(x, ¢) is taken to be the mean
pixel value (though irrespective of orientation) over the rect-
angle centered around (yx, ¢), calculated quickly as

d d,
-1 X ¢
Plo) =, X[I/(X_z’ _2)
d d
. _ X 4
(x 2,¢+2)

N7 A W dy .
1(x+2,¢ 2)+1 (x+2,¢+2)] 9)

Although a span of orientations are included in the density
estimate, the mean is calculated over only the location-
dimension because we do not wish to distinguish among rip-
ples at similar orientations (since minor orientation variations
naturally exist in a general ripple field).

The resulting shadow density estimate, calculated from
Fig. 5g, is shown in Fig. 5h.

4.6.4 Classification

If the maximum density is above a predefined threshold, z;,
sand ripples are declared to be present in the original sonar
image. The threshold t, effectively defines the minimum den-
sity of shadows, oriented similarly, needed to constitute a rip-
ple field. (In this work, t; = 0.5, which dictates that at least
12 shadows at similar orientations within a given distance
of each other are needed to permit a declaration of a ripple
field.)

The principal (center) orientation of the ripple field is esti-
mated to be the orientation at which the density achieves a
maximum. Additionally, the ripple field is deemed to span
a set of orientations, with the minimum and maximum ori-
entations of that span set to the orientations at which the
density drops to half the maximum density. That is, the span
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is defined adaptively based on the evidence supported by the
data itself.

For the image related to Fig. 5h, the principal ripple orien-
tation was declared to be 6, = 73°, spanning the orientations
®, = [57°, 86°]. Comparison with the original sonar image
in Fig. 5a indicates the ripple orientations were estimated
accurately.

If the presence of sand ripples has been detected, those
shadows for which the orientation is within the estimated
span of ripple orientations, ©®,, are classified as shadows
caused by ripples. The final ripple-shadow map is shown
in Fig. 5f, from which it can be observed that the ripple shad-
ows have been detected successfully, albeit with some false
alarms.

5 Proposed adaptive data-collection algorithm
5.1 Strategy

The proposed adaptive data-collection algorithm is com-
posed of two distinct surveys. The first survey is executed
in an adaptive manner based on the image quality of the data
being collected in situ, until quality data has been collected
over the entire mission area. The data quality is measured in
terms of the coherence (i.e., ping-to-ping peak correlation).
Ripple detection is also performed on this data to establish
the presence and orientation of any ripples that may exist.

The objective of the second survey pass is to reduce the
amount of mission area obscured by ripple shadows. There-
fore, the second survey is executed only if sand ripples have
been detected during the first survey, and only on those por-
tions of the mission area characterized by sand ripples. This
selective re-survey, which depends heavily on the data col-
lected during the first survey, is conducted in an orientation
orthogonal to that at which the ripples were estimated to
exist.

Additionally, after the first survey pass, a confident esti-
mate of the maximum range for which good quality data
can be achieved at the site will be possessed. The tracks of
the second survey will also exploit these reliable data-driven
estimates of the sonar coverage.

5.2 Implementation: first survey pass

In the previous section, the strategy for the adaptive data
collection was outlined. Now this strategy must be trans-
lated into an actual plan that can be implemented on the
vehicle and executed quickly (so that the next track can be
selected as soon as the current track has been completed).
The description is overly detailed in parts for the benefit of
other researchers wishing to re-implement the algorithm.
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5.2.1 Preliminaries

For ease of discussion, assume the mission area that we wish
to survey is a parallelogram. If no a priori preference about
the initial survey orientation is held, proceed as follows.

Determine which pair of sides of the mission area par-
allelogram is longer. The vehicle tracks in the mission will
run parallel to these sides in order to minimize transit time
between tracks. Denote the distance between this pair of
longer sides as the mission area width, w.

Next discretize the mission area into N = w/§ parallel
swaths at intervals of § (e.g., § = 10 m); the line segments
demarcating the swaths will be the locations of the possible
tracks. Compute the geographical coordinates of the pair of
endpoints of each of the N hypothetical track-centerlines.
Store these N pairs of coordinates and associate a unique
track identification number, ¢; € {1, 2, ..., N}, with each.

Similarly, assign a unique swath identification number,
si € {1,2,..., N — 1}, to each §-sized swath of seabed.
Let a binary indicator, «(s;), denote whether or not swath s;
has been successfully covered to a sufficient level of quality.
(Initially, o (s;) = O for all s;.)

Let7 = {1 }lN: | indicate the set of all possible tracks, and
S= {s,-}lN: _11 indicate the set of all swaths of seabed.

The set of tracks, 7, will be the universe of possible tracks
from which the AUV will be allowed to adaptively choose
during the survey. (Since there is no human supervision dur-
ing the onboard decision-making process, this discretization
provides a layer of safety that prevents unexpected com-
mands from being made.)

To begin the survey, an initial track near one edge of the
mission area—i.e., either the first or last track in the track uni-
verse—will be selected. The starting point (and hence direc-
tion, also) of the initial track will be chosen to be the endpoint
(of the two tracks considered) closest to the vehicle’s loca-
tion, thereby minimizing transit time. All subsequent tracks
will be parallel to this first track.!

Associated with each track #; is a set of swaths, S(z;), that
is expected to be covered when the track is executed. This
set of swaths is based on geographical considerations and
the minimum and maximum ranges of the sonar. Let kmin
and kmax be the minimum and maximum range of the sonar,
respectively (e.g., kmin = 40 m and kpax = 150 m).

The coverage quality achieved for each swath, based on
the coherence, will be maintained during the course of a track.
The determination of whether sonar data of sufficient quality
has been collected for a given swath of seabed is calculated
as follows.

! The adherence to traversing parallel tracks is partly because the col-
lected raw data is subsequently processed into imagery, for which such
data is preferable.

5.2.2 Quality coverage calculation

Suppose atrack, #;, is being executed. During the course of the
track, the AUV’s onboard processor will compute the coher-
ence (i.e., peak correlation value between consecutive pings),
p(r,u), at range r on each sonar side u € {port starboard}.
The range and sonar side associated with a coherence value,
when coupled with the track information, will uniquely deter-
mine the swath in which each coherence value falls. That is,
there exists a mapping from each (r, u) to some particular s;.

For each swath, a running mean of the coherence values
within the swath will be maintained during a given track. By
storing only the running mean of the coherence values and
the number of values used to produce that mean, the com-
puter storage requirements are independent of track length,
requiring space for only two values per swath (or equiva-
lently, range bin). In addition, the mean coherence value
calculation will be immediately available at the end of the
track, thereby minimizing computation at the critical end-of-
track time. Therefore, the AUV can immediately maneuver
to begin the subsequent track without delay.

The update equation for the running coherence mean is
simply

Mp'(r,u) + p(r,u)

p(r.u) = M (10)

where the previous coherence mean, o’ (r, u), was calculated
from M coherence values, and p(r, u) is the new input value.

Once the AUV has completed its track, the mean coher-
ence value of each range bin (of each sonar side) will be
immediately available. If this mean value is above a set
threshold forimage-quality, 7, the corresponding swath cov-
erage variable, o (s;), will be set to unity. (Recall that, for a
given track, each range-sonar side pair is associated with a
particular seabed swath in the mission area.)

Once the coverage variables have been updated, a new
track must be selected. The procedure for doing so is as
follows.

5.2.3 Track selection

Upon completing the execution of a track, the utility of run-
ning each track in the track universe will be calculated. This
utility quantity will be comprised of two terms, the benefit
expressing the improved coverage expected to be achieved
by the hypothetical track, and the cost (in terms of transit
distance) of running the track.

The benefit expressing the expected improvement in cov-
erage is calculated as follows.

The historical success rate, v, of the vehicle in collecting
quality sonar data as a function of range r and sonar side u
will be maintained during the mission. This success rate will
be simply a running tabulation of the proportion of tracks at

@ Springer



44

Intel Serv Robotics (2012) 5:33-54

each range bin that resulted in quality data during the mis-
sion, and will be updated after each track is executed.

Initially, the prior expressing our a priori beliefs about
the sonar’s performance is v(r,u) = 1 for ranges r €
[kmin» kmax] and sonar side u € {port starboard}. After each
track run, v(r, u) will be updated according to whether the
given area of seabed corresponding to a particular range and
sonar side was interrogated with sufficient quality, as

1+37, 00w
1+T

v(r,u) = , (1D
where Q;(r, u) is a binary variable indicating whether or
not the i-th of T tracks in the present mission resulted in
quality coverage at range r from sonar side u (i.e., whether
p(r,u) > 1, during the i-th track).

As will be described below, this quantity will be used to
influence the expectation we have about successfully cov-
ering any given swath of seabed during a future track. For
example, if during the mission, the port sonar has been col-
lecting quality data up to only, say, 100 m rather than the
anticipated 150 m, expectations for collecting quality data
out to 150 m in the remainder of the mission will be tempered
accordingly. That is, the anticipated coverage is adapted in
situ based on the data quality collected during the mission
thus far.

The benefit of running each particular track, ; € 7, as
the next track is then taken to be the weighted sum of the
expected quality coverage

B(ti) = D> D> v u)(1 — alr, ), (12)

where «(r, u) is the binary coverage quantity for the swath of
seabed at range » on sonar side u, computed with respect to
the track centerline of track #;. It can readily be seen that those
swaths of seabed for which quality coverage has already been
achieved (i.e., « = 1) will contribute nothing to the benefit.

The cost of running each particular track, #; € 7, will be
a function of the transit distance required to reach the new
track from the vehicle’s present location (at the end of the
most-recently executed track). Let d(#,, t;) be the (absolute,
or unsigned) distance between the most-recently executed
track, 7,, and a potential track #;. Let w denote twice the
turning radius of the vehicle. The cost of executing track #;,
having just executed track 7,, is defined to be

2
iv o0 2 i’ 0
C(z,-|ro>:(d(’w’)) _ 2d0it) Ly (13)

w

which is the equation of a parabola with a vertex at (d, C) =
(w, 0), indicating that the transit cost is a minimum (namely,
zero) when two tracks are separated by twice the turning
radius of the vehicle.

@ Springer

This cost is then weighted by a scaling factor, y, that
reduces the transit penalty as the mission progresses,

Nl oo
y:exp[%]. (14)

That is, as more and more of the N — 1 seabed swaths are
covered to sufficient quality, y decreases, thereby lessening
the impact of the transit penalty. Therefore, this scaling fac-
tor acts as a “soft” constraint such that in the beginning of
a mission, the vehicle will avoid making long transits to a
distant track that would produce only marginally better cov-
erage than a nearby track. Instead, this factor encourages
the vehicle to follow a traditional “lawn-mower pattern” that
progressively moves from one edge of the mission area to
the opposite edge in an orderly manner. When much of the
mission area has been covered, the influence of this factor
will be smaller, giving the vehicle greater freedom to make
longer transits to cover the remaining uncovered swaths of
seabed rapidly.

One final stipulation is included for determining the next
track to select. Only those potential tracks for which the ben-
efit, B, is positive are considered. This constraint ensures that
every track selected contributes toward covering the mission
area. (Otherwise, a case could arise in which a track that made
no progress in covering new swaths of seabed but possessed
alow transit cost had the highest overall benefit of any track.)

The overall utility of running a new track, #;, having just
executed track 7,, is then simply the difference between the
expected benefit and the weighted cost,

Ul(iilto) = [B(t) — v C(ti|10) ] 1B(1)>0- (15)

where the indicator function 1p(;)~¢ is included to ensure
only tracks with positive benefits are considered.

The track #; (that improves the coverage) for which the
utility is maximized is then selected as the next track to be
executed. The track is forced to begin at the endpoint that
is closer to the current location of the vehicle. (Invariably,
this means that consecutive tracks will be run in opposite
directions, as in a standard survey.)

This entire process is repeated until «(s;) = 1Vs; (i.e., all
coverage variables are unity), indicating that quality sonar
data has been collected for the entire mission area.

However, as a safety precaution, a second condition that
can cause the mission to terminate is related to the number of
tracks executed. If the number of tracks executed reaches a
predefined maximum number, t;, the mission is terminated.
This condition is included to guard against the case in which
the battery life of the vehicle is insufficient to cover a large
mission area.
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5.2.4 Ripple detection

While the AUV is collecting data, the ripple detection algo-
rithm from Sect. 4 is executed in a streaming manner, this
enabled by the integral-image representation employed. The
ripple detection algorithm will determine whether sand rip-
ples are present in the track, and if so, the principal orientation
and span of orientations at which the ripples are present.

To combine the ripple detection results from multiple
tracks, we collect the span, ®,, of orientations that the rip-
ples were deemed to exist at (discretized to 1° precision),
across all tracks. The mode of this set of ripple orientations
is then taken to be the principal orientation, 8,, of the rip-
ples in the mission area. For a reasonably sized mission area,
the distribution of the ripple orientations should be unimodal
since sand ripples are created mainly by currents and waves
[36-38].2

The result of the ripple detection algorithm effectively
performs binary classification, segmenting the mission area
according to whether each seabed location is characterized
by sand ripple shadows. Let the binary information map, J,
at a location (x, y) be equal to unity if the location is not
characterized by shadows cast by a sand ripple; otherwise,
J (x, y) = 0. This information map is exploited in the second
survey pass, which will seek to ensure the information at all
locations is unity.

5.3 Implementation: second survey pass

By construction, after the first survey pass, good quality data
will have been obtained everywhere in the mission area. The
objective of the second survey pass is to further increase the
information content of the data by exploiting the results of
the ripple detection algorithm on the data collected during the
first survey pass. Specifically, the second survey pass seeks
to further refine the mission data by reducing the area that is
obscured by shadows cast by sand ripples.

If no ripples have been detected in the first survey pass—
and therefore J (x, y) = 1V(x, y)—the second survey is not
executed. If ripples have been detected, at a principal ori-
entation 6,, a second survey is conducted orthogonal to this
orientation. Furthermore, this second survey is performed
only over a subset of the mission area, namely in regions
characterized by sand ripples.

5.3.1 Objective function

The approach we employ for the second survey pass is
adapted from [40], where here the focus is placed on

2 If multiple sections of the mission area are characterized by substan-
tially different principal ripple orientations, the second survey can be
adjusted accordingly to allow tracks of different orientations in differ-
ent sections of the mission area. In our experience with sonar data,
multi-modal ripple orientations have not been observed.

surveying ripple areas rather than on maximizing object
detection probabilities.

The objective function we seek to optimize in the second
survey is defined to be the utility of performing a track; this
utility is simply the difference of the benefit and the cost of
the track. The benefit of the track is defined to be the increase
in the information content gained from collecting additional
data on an area that had been obscured by ripple shadows
during the first survey.

This benefit is calculated using the binary information
map, J, constructed during the first survey. Specifically, the
benefit at a location (x, y) covered by a track’s swath is
B(x,y) = J(x,y) — J'(x, y), where J'(x, y) and J(x, y)
are the information contents at the given location before and
after the new track is run, respectively. For any location (x, y)
covered by a track, the information map will be updated to
be J(x,y) = 1, indicating that the location has now been
re-surveyed at the optimal orientation. (It should be noted
that ripple shadows may yet persist at the location, but it is
not theoretically feasible to continually re-survey until every
ripple shadow is eliminated, since ripples exist at a contin-
uum of orientations.)

Because a track need not necessarily span the entire length
of the mission area, unlike in the first survey pass, the length
of each potential track is made to be the minimum length
needed to achieve the full benefit of the track. That is, a track
whose end portion would cover only areas free of ripples—
and hence would not increase the information content—
would be terminated prematurely; this reduces energy costs.

The cost of the track is again defined to be the energy
costs (e.g., battery)—in units adapted to be consistent with
those of the benefit—required to perform the track, which
are proportional to the distance of the track (plus transit dis-
tance between tracks). This formulation naturally leads to an
intuitive termination criterion: perform tracks as long as they
would produce a positive utility (i.e., the benefit exceeds the
cost).

In practice, the relationship between the benefit and cost of
a track depends on the specific mission objectives and must
be specified by the controller of the AUV. Defining this rela-
tionship will effectively determine the relative importance of
re-surveying areas obscured by ripple shadows, and in turn,
the number of tracks that can be executed before the algo-
rithm should terminate.

Alternatively, it can be assumed that the AUV has suffi-
cient energy to re-inspect all areas initially deemed to contain
sand ripples; in this case, the cost can be ignored so that the
utility is equivalent to the benefit.

To maintain the focus on the general nature of the
track-selection algorithm, as opposed to effects of applica-
tion-specific costs, we assume we are operating in this regime
hereafter. That is, we assume we can re-inspect all areas ini-
tially deemed to contain sand ripples.
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Thus, the challenge of the second survey lies solely on
determining the best tracks for the AUV to execute.

5.3.2 Track selection

In the first survey pass, each track was adaptively determined
based on the image quality that was obtained. In the second
survey pass, we take an alternative approach to more fully
exploit the information obtained about the site under investi-
gation during the first survey pass. Specifically, an informed
estimate of the maximum range for which image quality was
reliably achieved will be possessed after the first survey pass.
Therefore, we assume this maximum range in the second sur-
vey, which allows the pre-planning of the entire set of second
survey pass tracks before any of them are executed.

Thus, the proposed track-selection algorithm consists of
a myopic (greedy) search for the best tracks. At each itera-
tion, the expected benefit (and cost) of every possible track
is calculated. The track that maximizes the expected utility
(or benefit when costs are ignored) at each iteration is chosen
and added to the set of tracks to execute. When it is deter-
mined that the objective will have been met with the set of
selected tracks—i.e., that all of the ripple areas will have been
re-surveyed—the algorithm terminates.

Because of the greedy approach employed, the set of
selected tracks is necessarily ordered in terms of decreasing
utility. Even so, it is not guaranteed that a (local) optimum of
the objective function has been reached. To further improve
upon the initial set of tracks selected, and to compensate for
the adverse effects of the greedy approach, a small geograph-
ical displacement of each track is considered. One at a time,
we consider the result if a given track is shifted to the port
or starboard side one spatial increment, §. If the objective
function increases, the displaced track replaces the previous
version of the track. This iterative process continues sequen-
tially for all tracks, one at a time, until no such new shift
improves the objective function. This adjustment stage can
be thought of as improving closer to the (local) optimum.

A second optional adjustment can also be made. The set
of selected tracks are ordered in terms of decreasing util-
ity. However, because we possess this entire set of tracks
before any track is executed, the set of tracks can easily be
resorted in terms of geography so that the total transit dis-
tance (i.e., between the end and beginning of consecutive
tracks) is minimized. Although this rearrangement will not
impact the benefit of the set of the tracks, it will minimize
energy consumption costs.

It should be noted that the exhaustive, brute-force track
search that comprises the main portion of the track selection
process for the second survey pass is not as computationally
demanding as one may expect. This fact is because the swath
coverage of many tracks will not intersect with the swath cov-
erage of most other tracks. As a result, the benefit of certain
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tracks can be calculated once and saved. Only the tracks for
which the coverage of the previously selected track intersects
must be recomputed in a given iteration. The computational
savings from exploiting this insight increase proportionally
to the size of the mission area to be re-surveyed.

In summary, the proposed track-selection algorithm for
the second survey pass consists of three parts. First, an
exhaustive greedy search is conducted until the coverage cri-
terion is reached. Second, minor track-adjustments via small
centerline displacements are considered. Third, the set of
tracks is reordered in terms of geography.

6 Experimental results

In April-May 2008, the NATO Undersea Research Centre
(NURC) conducted the Colossus II sea trial in the Baltic Sea
off the coast of Latvia. During this trial, high-resolution sonar
data was collected by an AUV called MUSCLE, operating at
an altitude of 13 m. This AUV is equipped with a 300 kHz
sonar with a 60 kHz bandwidth that can achieve image reso-
lution of approximately 3 cm.

In total, 8170 sonar images covering a collective area
of 44.93 km? were collected during the trial (each sonar
image covers approximately 50 m in the along-track direc-
tion). Sonar data from this trial will be used to experimentally
evaluate the proposed approach.

A subset of this data set from one particular site off the
coast of Liepaja, composed of 526 sonar images, will receive
additional attention to demonstrate the various components
of the proposed data-collection framework as fully as possi-
ble. The data collected during the trial at this site, denoted
“Area B” here, is particularly appealing because the surveys
were performed at five different orientations over the same
area of seabed that contained large ripple fields.

6.1 Image quality

To demonstrate the fact that sonar data collected at sea is
rarely flawless, for all 8170 images from the Colossus II
sea trial, we plot the distribution of the maximum range for
which image quality (in terms of the the coherence) was
deemed sufficient—i.e., where p > 2/3—inFig. 6. The aver-
age maximum range (mean % one standard deviation) among
all images was 135.79 £ 18.13 m, meaning that 13% of the
datacollected during the trial was of insufficient quality, since
each image was assumed to be of good quality out to 150 m.

The maximum range for which good image quality was
obtained at Area B, as a function of survey orientation,
is shown in Table 1. As can be seen from the table, the
image quality was consistent for all five survey orientations.
This result justifies the plan, in the adaptive data-collec-
tion method, to use the maximum sonar range that reliably
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Fig. 6 Of images from the Colossus II sea trial, distribution of the
maximum range for which image quality is good

resulted in good quality data during the first survey pass as
the fixed, assumed maximum sonar range for the second sur-
vey pass (however, it should be noted that this trend may not
hold at sites with steep seabed slopes).

It can also be seen from the table that only 72% of the
data collected in this area was of good quality, when it
was assumed that quality data would be achieved out to
150 m. As a result, quality data was missing over significant

o
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»

Range (m)
(a) Sidescan sonar image
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Orientation (degrees)

(c) Shadows in location-orientation space

Table 1 Image quality (mean =+ one standard deviation) at Area B

Survey Maximum range (m) Fraction of data
orientation with good quality with good quality
0° 120.63 +10.12 0.7330
45° 117.57 + 18.65 0.7052
70° 127.29 + 13.84 0.7936
90° 117.18 £24.13 0.7017
135° 114.12 +20.90 0.6738
All 119.68 +18.43 0.7244

portions of the mission area. The existence of such gaps in
the data coverage highlights the gains that can be achieved by
an adaptive survey strategy. These results also provide sup-
port for the manner in which the the first survey pass of the
adaptive data-collection plan was constructed, namely based
on the image quality.

6.2 Ripple detection

To qualitatively demonstrate the ripple detection algorithm,
we show the results of the algorithm on two side-scan images
in Fig. 7, which contains ripples, and Fig. 8, which does not.

These results support our claim that the lower resolu-
tion side-scan imagery is adequate for performing the ripple
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Fig. 7 Example ripple detection result on a sidescan sonar image with sand ripples. The principal orientation of the ripples was estimated to be
6, = 116° (with respect to the across-track direction), with the full set of orientations spanning ®, = [99°, 130°]
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Fig. 8 Example ripple detection result on a sidescan sonar image with no sand ripples

Table 2 Confusion matrix for ripple detection results at Area B

True status Predicted status of ripples

Present Absent
Present 0.9425 0.0575
Absent 0 1

detection, thereby allowing us to avoid full SAS image for-
mation onboard the vehicle, if necessary.

We present the results of the ripple detection algorithm,
for the 526 images from Area B, quantitatively in the form
of a confusion matrix in Table 2. Entries in the table indicate
the proportion of images that were classified as containing or
not containing sand ripples. Ground-truthing of the images
had been performed manually (i.e., by visual inspection).

The results show that the presence of ripples was suc-
cessfully detected (and the orientation estimated correctly)
in 213 images, while 13 images had ripples that were failed
to be detected and/or estimated correctly. In the 13 images for
which the ripples were not detected, the area in the images
covered by ripples was extremely small. All 300 images for
which ripples were not present were correctly declared to
contain no ripples.

Of the 213 images for which ripples were correctly
detected, Fig. 9 shows the proportion of times each ori-
entation—in the reference frame that defines the survey
orientations—was included in the images’ estimated rip-
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Fig. 9 Proportion of images containing ripples at Area B for which
the estimated span of ripple orientations contained each particular
orientation

ple spans, ®,. The mode of the distribution (and hence the
principal ripple orientation at which a “second” survey pass
would have been executed) was 6, = 69°, with the support
[50°, 107°]. It can be noted that the distribution is unimodal,
indicating that the ripples in this data set were indeed directed
in a single dominant direction.

The estimated principal ripple orientation as a function
of survey orientation, in the reference frame that defines the
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Table 3 Estimated principal orientation (mean =+ one standard devia-
tion) of sand ripples at Area B

Survey Estimated principal
orientation ripple orientation
0° 75.20° £ 4.60°

45° 72.25° £3.23°

70° 74.31° £1.05°

90° 73.56° £4.26°
135° 72.48° £4.35°

Table 4 Area obscured by sand ripple shadows at Area B, and angle
between the principal ripple orientation, 6,, and the survey’s across-
track angle, 0,

Survey Area (x10* m?) Angle between
orientation in ripple shadows 6, and 0,

0° 1.4240 21°

45° 2.0588 64°

70° 2.2945 89°

90° 1.4820 69°

135° 1.5698 24°

survey orientations, is shown in Table 3 for the data from
Area B. As can be seen from the small variations in the table,
the ripple detection algorithm reliably produces similar rip-
ple-orientation estimates for all five survey orientations.

The purpose of the second survey pass in the proposed
adaptive data-collection method is to reduce the area of
seabed obscured by ripple shadows. The theoretical results
shown in Fig. 4 demonstrated that the area covered by shad-
ows exhibits a strong orientation dependence, with larger
shadows cast when the orientations of the ripples and the
survey are similar (i.e., when the across-track direction of
the survey is furthest from the ripple orientation).

To substantiate this claim with real measured sonar data,
we show the total image-area that was calculated to be
obscured by shadows cast by sand ripples at Area B, as
a function of survey orientation, in Table 4. As in Fig. 4,
these results support our argument that the second survey
pass should be performed orthogonal to the orientation of
the detected ripples so that the ripple shadows can be mini-
mized and the information content of the data maximized.

For example, by surveying at 0° instead of 70°, the area
obscured by ripple shadows would be 8705 m? smaller.
(However, it must be noted that the relative ripple-shadow
area realized in the 90° survey orientation case in Table 4
was less than anticipated by theory.) The ideal orientation to
survey at this site would have been 159°, since this survey ori-
entation would have an across-track direction that matched
the estimated principal ripple orientation, thereby minimiz-
ing the area obscured by ripple shadows.

The preceding results on the data from Area B suggest
that the ripple detection algorithm reliably detects sand rip-
ples and accurately estimates their orientation. The results
also suggest that the decision to perform a second survey
pass based on the ripple orientation observed during the first
survey pass, in order to reduce the area obscured by shad-
ows, is also sound. Collectively, then, these results provide
support for the manner in which the the second survey pass
of the adaptive data-collection plan was constructed.

6.3 Adaptive surveying

The experimental results obtained in the previous sections
suggest that the various components of the adaptive survey-
ing algorithm were designed reasonably. Finally, we shall
demonstrate the full adaptive surveying algorithm in action,
as fully as possible given the limitations of the data.

Ideally, the survey algorithm would be demonstrated at sea
(as it will be in the near future). In lieu of that opportunity,
experiments were conducted here for a simulated, rectangular
mission area that is approximately 3.82 km x 1.71 km. The
data that is used in the experiments is real measured sonar
data, but it is treated as if it was collected in this artificial
mission area.

Given this area of interest to be surveyed, we compare
the performance of the adaptive survey algorithm with the
standard pre-planned survey approach.

The maximum range at which quality sonar data was
assumed to be achieved was determined using real data from
AreaB. To ensure fair comparisons between the two methods,
the same image quality was assumed to have been achieved
for each method at a given track number. That is, the area
for which quality data was collected during the adaptive
method’s first track was equal to the area for which qual-
ity data was collected during the pre-planned method’s first
track, and so on.

6.3.1 First survey pass

The tracks of the pre-planned survey approach are designed
optimally in the sense that the fewest number of tracks must
be executed if sonar swath coverage is always achieved from
40 to 150 m away from the AUV in both the port and star-
board directions. That is, the pre-planned tracks are designed
with minimal overlap, fully exploiting the interleaving nature
of the swath coverage on consecutive tracks.

For this mission area, the pre-planned survey approach
would require 10 tracks (in the lengthwise direction) to col-
lect sonar data everywhere in the mission area. The pre-
planned approach cannot adapt its tracks if the image quality
collected is not perfect. In contrast, the adaptive survey algo-
rithm executes tracks until sonar data of sufficient quality is
collected everywhere in the mission area.
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Fig. 10 Map of tracks executed in the first survey pass by the pre-
planned and adaptive algorithms
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Fig. 11 Order of the tracks that were selected during the first survey
pass by each algorithm

The tracks selected by the two competing methods are
shown in Fig. 10, where green circles indicate the corners of
the mission area of interest.

The universe of possible tracks is discretized at 10 m
increments, meaning there exist 172 potential tracks that can
be selected by the adaptive algorithm (and the pre-planned
algorithm, in fact). These potential tracks are numbered in
increasing order vertically. The order of the tracks executed
by each method is shown in Fig. 11.

In Fig. 11, it can be observed that the two methods exe-
cute different tracks. It can also be observed that the adaptive
algorithm executed 14 tracks in order to collect quality data
over the entire mission area.

@ Springer

It is interesting to note, in Fig. 11, the pattern of the tracks
selected by the adaptive method. This method followed a
natural progression of tracks down the mission area from the
top side of the area to the bottom in its first 9 tracks. Then
the method proceeded to execute tracks back toward the top
of the mission area. The reason for this is that the algorithm
was re-collecting data in the areas for which the image qual-
ity had been poor on the first pass through the mission area,
effectively filling in the gaps in coverage.

The pre-planned method executed 10 tracks, since that
was the number of tracks, in theory, needed to cover the
entire area (i.e., collect quality data over 100% of the mission
area). But because of poor image quality (cf. Table 1), the pre-
planned method did not collect informative data everywhere
in the mission area. In fact, after executing its 10 pre-planned
tracks, quality data was collected over only 80.12% of the
mission area. In contrast, the adaptive survey collected qual-
ity data over 100% of the mission area, as it was designed
to do.

The progression of the fraction of the mission area for
which quality data was collected, as a function of the num-
ber of tracks executed by each method, is shown in Fig. 12.

Next, results for the second survey pass will be examined
when different environmental scenarios are assumed.

6.3.2 Second survey pass: ripples absent

First assume that the mission area does not contain any
ripples.

If sand ripples were not detected during the first survey
pass, then the adaptive survey algorithm would not conduct a
second survey pass. However, the pre-planned survey method
will still cross-hatch the entire mission area. The tracks
selected by the pre-planned method for this cross-hatching
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Fig. 14 Coverage map achieved by the pre-planned algorithm after
executing two survey passes (white areas indicate locations where qual-
ity data was collected, black areas indicate locations where quality data
is lacking)

is shown in Fig. 13, where it was deemed that (because of
the wider mission area) 22 tracks were needed to fully cover
the mission area in this direction orthogonal to the original
survey direction.

If the image quality of the data was sufficient out to a max-
imum range of 150 m, the pre-planned method would have
collected quality data twice for every location in the mission
area with the cross-hatching. Because the image quality was
flawed, the coverage map that resulted for the pre-planned
method is shown in Fig. 14.

Fig. 15 Progression of the fraction of the mission area for which qual-
ity data was collected by each algorithm, when the pre-planned method’s
second survey pass is included

Table 5 Number of tracks executed and total distance traveled for each
method

Survey type Number of tracks Total distance (km)
First pass Second pass

Pre-planned 10 22 81.35

Adaptive 14 0 61.12

Ascanbe seenin Fig. 14, there exist numerous gaps in cov-
erage because of the image-quality issue and the pre-planned
method’s inability to react to it. In contrast, the corresponding
map of the adaptive algorithm would show coverage every-
where in the mission area after the first survey pass (i.e., the
figure would be completely white).

The progression of the fraction of the mission area for
which quality data was collected, as a function of the num-
ber of tracks executed by each method, when the pre-planned
method’s second survey pass is included, is shown in Fig. 15.
Since no ripples were present in the mission area, the adaptive
algorithm did not execute a second pass.

To summarize, the number of tracks executed by each
method, for each survey pass, is shown in Table 5. The total
distance traveled in executing these tracks (including transit
distance between tracks) is also shown. The fraction of the
mission area for which data of sufficient quality (0 > 2/3)
was obtained is shown in Table 6.

As can be seen from the two tables, the 22 additional tracks
the pre-planned method executed during the second survey
pass raised the proportion of mission area with quality cov-
erage from 0.8012 to 0.9480, though still short of complete
coverage. In contrast, with 18 fewer tracks, the proposed
adaptive method was able to achieve complete coverage.
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Table 6 Proportion of mission area covered to sufficient image quality
by each method

Survey type Proportion of area covered

After first pass After second pass
Pre-planned 0.8012 0.9480
Adaptive 1.0 1.0
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Fig. 16 The final success rate estimating the maximum range at which
image quality was achieved, to port and starboard, at the end of the adap-
tive algorithm’s first survey pass

6.3.3 Second survey pass: ripples present

The results of the second survey pass in the previous section
assumed that the mission area did not contain any ripples.
Instead, let us suppose that ripples were indeed present at the
site. The tracks of the pre-planned method would not change
because the method does not react to the data or the environ-
ment. But in the case of the adaptive algorithm, the presence
of ripples would prompt a second survey pass to be executed.

From the results in Sect. 6.2, it can be seen that the ripple
detection algorithm reliably detects ripples and also estimates
their orientation accurately. So let us suppose that the ripple
detection algorithm resulted in the detection of ripples at a
principal orientation of 6, = 90° (vertical on the page), and
that the ripple field is delineated by the solid box marked in
Fig. 17.

According to the adaptive algorithm, the AUV would then
execute a second survey pass in the horizontal direction, 0°,
so that the orientation of the ripples matches the across-track
direction of the survey.

This second survey pass is designed by exploiting the data
collected in the first survey pass. Specifically, the maximum
range for which quality data was collected during the first
pass is assumed to be the true maximum sonar range for
planning the second survey pass. This quantity is determined
from the final success rate, v in (11), for which quality data
was obtained in the first pass; for this experiment, v is shown
in Fig. 16.

This figure shows the updated prediction of where qual-
ity data would be obtained, based on the experience of the
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Fig. 17 Map of tracks executed by the adaptive algorithm in the first
survey pass (diagonal dashed lines) and second survey pass (horizontal
dashed lines), when sand ripples exist in the area delineated by the solid
box

14 tracks run by the adaptive method during the first pass.
For the second pass, the maximum range for image qual-
ity on each sonar side is set to the range for which quality
data was always achieved (i.e., v = 1). In these experiments,
this corresponds to 120 m on the port side and 100 m on the
starboard side.

Using these values for the assumed maximum sonar
ranges, in conjunction with the estimated principal ripple
orientation and the area for which ripples were detected, the
adaptive algorithm then plans the tracks for the second sur-
vey pass. The resulting six tracks that were planned and exe-
cuted by the algorithm are shown as horizontal dashed lines
in Fig. 17.

As can be seen from Fig. 17, the second survey pass is
performed only in the area for which re-surveying is neces-
sary, namely over the area of ripples. Additionally, the tracks
were executed in the orientation dictated by the estimated
ripple orientation, in order to minimize the area obscured by
the ripple shadows.

Because the adaptive algorithm plans the entire set of
tracks in the second survey pass before executing them, the
algorithm also ordered the tracks to minimize the transit dis-
tance. In this experiment, the second survey pass tracks were
run from top to bottom.

In conclusion, we have demonstrated the various com-
ponents of the proposed data-collection strategy as fully as
possible given the limitations of using pre-collected, albeit
real, data. A future experimental sea trial will demonstrate
the full algorithm on the MUSCLE AUV at sea to further
prove the method’s value.
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The adaptive strategy does have its limitations, however.
Currently, ripple fields that are detected are enclosed by a
bounding box (parallelogram) to facilitate the second survey
pass. A more refined approach is needed that would minimize
the amount of unnecessary surveying, as would arise when
presented with the case of disjoint ripple fields. Another spe-
cial case that must be addressed is the possibility of steep
seabed slopes. This scenario would cause the sonar coverage
success to be dependent more on survey direction than on
sonar side. Lastly, to be a reliable algorithm employed at sea
requires the inclusion of various safety precautions, includ-
ing obstacle avoidance and vehicle monitoring checks.

7 Conclusion

A new adaptive strategy for performing data collection with a
sonar-equipped AUV was proposed. The approach is general
in the sense that it is applicable to a wide range of underwa-
ter tasks that rely on subsequent processing of side-looking
sonar imagery. With the intelligent allocation of resources
and the in situ reaction to the data collected, the proposed
approach simultaneously maximizes the information content
in the data and decreases overall survey time. These improve-
ments are achieved by adapting the AUV route to prevent
portions of the mission area from being either characterized
by poor image quality or obscured by shadows caused by
sand ripples.

To detect the presence of and estimate the orientation of
sand ripples, a new innovative algorithm was also developed.
The components of the overall adaptive path-planning algo-
rithm were purposely constructed to permit fast real-time
execution assuming only minimal AUV onboard processing
capabilities.

Experimental results testing the various components of
the algorithm, based on real sonar data collected at sea, high-
lighted the promise of the proposed approach. An upcoming
experimental sea trial will further demonstrate the capabil-
ity of the proposed adaptive surveying algorithm using the
MUSCLE AUV.

Future work will refine the second pass of the adaptive
survey algorithm to better address the case of disjoint ripple
fields, by approximating the ripple fields to be re-surveyed
as a stack of single-track blocks (of varying lengths) rather
than a single parallelogram (bounding box). Additional effort
will be devoted to addressing the special case of steep seabed
slopes and other bathymetric anomalies.

Other future work will focus on incorporating additional
application-specific objectives into the information-content
quantity. For example, a component of the information con-
tent for a mine detection task could be defined to be a function
of the expected gain in classification confidence provided by
interrogating an object at certain aspects [41].

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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