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Abstract—Although sound event recognition attracted much attention in the scientific community, applications in the
robotics domain have not been in the focus. New databases were published and classifiers were explored in this paper to
guide the future practical developments of domestic robots. A corpus (CSIBE-RAW) was collected from the internet to
build acoustic models to recognize 13 sound events and omit background noises. As a case study, CSIBE-RAW was
rerecorded in four room settings (CSIBE-AIBO) to create reverberation-tolerant classifiers for a Sony ERS-7. After nine
classifiers were reviewed, the convolutional neural network (CNN) achieved the best accuracy (95.07%) after multi-
conditional learning and it was suitable for real-time classification on the robot. The effects of lossy audio codecs were
studied, lossy encoder-tolerant audio statistics were specified for the feature vector and the Ogg Vorbis encoder with
128 kbit VBR was found superior to store big data and avoid any significant accuracy loss with the compression ratio
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- New sound event corpus for domestic robotics with background noise modeling

- A practical approach to deploy the convolutional neural network model to a robot
- Analysis about the lossy encoding effects on recognition accuracy
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INTRODUCTION

The contextual interpretation of the environment involves the fusion of multiple cues for the human
beings (Goldstein, 2010). The localization and object recognition have been traditional research
fields in robotics to reach human-level performance in visual senses and hearing (speech
recognition (Yamamoto et al., 2006), music annotation (Ness et al., 2011)). Sound event recognition
is a relatively new research field in the last decade that shifted the interest from the
anthropomorphic bias to a more natural point of view of the auditory scene. This paper introduces a
new corpora for isolated sound event recognition for indoor robotic applications and some common
problems are highlighted with possible solutions to build robust acoustic models.

The only sound event database for robotics was published in (Maxime et. al., 2014). The NAR
Dataset was recorded with a Nao humanoid robot from Aldebaran Robotics in a kitchen and
contained 22 sound events as well as 20 English words. The average signal-to-noise ratio (SNR) of
the recordings was 15 dB because of the noisy fans inside the robot body and the SVM classifier
achieved 91.5% accuracy after 10-fold cross-validation despite the challenging conditions. This
result was reached with file-averaged feature vectors and the model was not evaluated with unseen
data.

The Acoustic Event Dataset (AED) (Plinge et al.,, 2014) was recorded in a smart room
environment and Gaussian mixture model (GMM) was trained with a 600 msec sliding data window.
The classifier was tested with unseen data and it distinguished 11 events with 87% accuracy from
their relative small database. The unknown events were not modeled in their system, but the silence
was a separate class.

The IEEE DCASE Challenge was organized in 2013 to establish an international competition for
identifying sound scenes and events. The DCASE-OL dataset with 16 events was dedicated for
event detection in real office environment (Stowell et al., 2015). The best system in the challenge
had 61% frame-based precision on unseen data without modeling the background sounds.

Beltran et al. (2015) proposed a novel sound event recognition method with temporal histograms
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of Mel-based Multi-Band Spectral Entropy Signature coefficients and they reported better results
than MFCC-based SVM classification with source separation (non-negative matrix factorization).
The background noise was not modeled, but their approach can detect the mixture of two events
without any source separation technique. Their CICESE corpus contained several reusable datasets,
but most of them are incomplete and do not reflect the description in their published paper which
makes any comparison hard with their results.

Unlike the previous works with event classes, the CHIME-Home database (Foster et al., 2015)
was annotated on a higher granularity for speech, human activity, television and household
appliances. 4-second long audio chunks were allowed to hold multiple labels and the GMM
classifier obtained 89% accuracy after 10-fold cross-validation. Some event classes represented the
background noise (television, household appliances), but GMM was not evaluated with unseen data.

To mention an outdoor example, Salamon et al (Salamon et al., 2014) invented a new taxonomy
for urban sound classification and their dataset (UrbanSound8K) had 18.5 hours of audio with 10
events. Temporal statistics complemented the feature vectors and they found the 4 seconds-long
sliding window optimal. The model performance was estimated to 69% with 10-fold cross-
validation of random forest (RF) and SVM classifiers.

Usually, the unintended sound events and the background noises were not modeled in the past
works (Beltran el al, 2015; Salamon et al., 2014; Stowell et al., 2015) unlike in (Foster et al., 2015).
The new corpora (CSIBE) in this paper are specialized to the indoor robotics applications and an
event class is dedicated to represent the auditory background with appliance sounds, object and
human related noises. The audio files were acquired from free sources on the internet to have a clear
licensing situation for the further usage. Creating universal acoustic models is a challenge because
of the different noise levels and microphone characteristics. To provide a practical example for
robots, the collected sounds were recorded again by replaying through a high-quality speaker and
capturing with the stereo microphones of a Sony ERS-7 robot dog. A baseline sound event
recognition system was developed and these two datasets (CSIBE-RAW, CSIBE-AIBO) were
evaluated with 10-fold cross-validation and unseen data. CSIBE-AIBO had to be stored in lossy
audio format, therefore, the effect of Ogg Vorbis and MP3 codecs were examined before drawing
the conclusion at the end of the paper.

CSIBE CORPORA

The available sound event corpora contain events of specific scenarios (smart room (Plinge et al.,
2014), office (Stowell et al., 2015), kitchen (Maxime, et. al, 2014), urban area (Salamon et al.,
2014)) and they have been built without modeling the background noises. This paper proposes that
modeling the audio events out of interest and sources in alternate locations are important to shorten
the gap between research and practical applications. The authors could not find a free or
commercial audio corpus for indoor applications which has a separate event class for background
noise and the samples provide high intraclass variability. (The background noise is defined as a
sound that should not take the attention of the robot.) Therefore, a corpus was assembled from free
online databases, public research datasets, own recordings and it was contributed back to the
scientific community on the internet (DOI: 10.5281/zenodo.1243714). The license of each sound
sample was included in the package to enable the reuse with a clear legal status of the research data.
The new Common Sounds In BEdrooms corpus (CSIBE) consists of typical sound events in
bedrooms/living rooms as people interact with social robots in these places at home. The database
have two parts:

- CSIBE-RAW: Human speech and other events were collected from the internet in this dataset,
complemented with new recordings. The samples had excellent and clear sound quality, they were
stored in mono WAV format with 16 bit depth, 44.1 kHz sampling rate. All files were labeled



according to the sound event type.
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Fig. 1. Sample counts for each sound event in CSIBE-RAW.

- CSIBE-AIBO: The samples of CSIBE-RAW were played back through a speaker and recorded
with the robot microphone. The details about the recording conditions are described in Chapter 2.2.

2.1 CSIBE-RAW

The core part of CSIBE was collected from public internet sources (freesound.org, AED (Plinge et
al., 2014), DCASE-OL - IEEE DCASE Challenge (Stowell et al., 2015), NAR Dataset (Maxime,
et. al.,, 2014)) and new recordings were done. The sample file counts of 14 sound events in the
database were balanced around 300 except the ambient noise and speech (Fig. 1). The first was
overrepresented to have a strong class for the uninteresting background noises, the latter was
important for reliable speech detection in human-robot interactions. Further characteristics of
CSIBE-RAW can be observed on Fig. 1. when the sample counts (blue lines) are compared to the
sample size (red line). When those two lines are close to each other for a certain event (e.g piano,
bell, vacuum cleaner, traffic), the average duration of the samples are close to 1 second, but short
events (100-200 msec) cause a shorter red line (e.g flatulence, parrot, ambient noise) because the
same amount of data is divided among more samples.

The overall size of CSIBE-RAW is comparable to the indoor sound event databases in the
literature:

- AED for smart rooms has 11 events (350 MB), 213 samples.

- NAR (Maxime, et. al., 2014) for kitchen scene with Nao robot has 42 events, 831 samples (42
MB).

- DCASE-OL (Stowell et al., 2015) for office scene has 16 events (398 MB in 16 bit WAV), 1280
samples.

Although more events are in NAR (42) and DCASE-OL (16), CSIBE-RAW has a much larger
sample set (5954 samples). Each event in CSIBE-RAW was recorded with multiple microphones
and sound sources to ensure the high intraclass variability and the higher chance for interclass
correlation. For example, male, female and children voices in various languages (English, Spanish,
Hungarian, French and Japanese) are represented in the speech event and the ambient noise class
includes a diverse range of sounds. Enough samples were available on the internet except flatulence
and parrot events. The church bell and traffic noises are environmental sounds, but they were



included in the database because they are audible inside, similar to cicada, that is a common insect
in Asia with high pitch sound. The background noise includes ambient sounds which are not
important for a robot or their short audition is not sufficient for a human without visual cue: door,
drawer, keys, knock, pen, chair, cup, keyboard, breathing, throat, cough, microwave, steps and zip.
CSIBE-RAW was randomly split into a training (CRt) and a validation set (CRv) what is

denoted in the following brackets (CRt/CRy) for each event: ambient noise (326/824 samples),
baby cry (39/201 samples), church bell (70/273 samples), cat meow (62/263 samples), cicada
(39/221 samples), dog bark (149/282 samples), flatulence (226/292 samples), guitar (109/296
samples), laugh (154/244 samples), parrot (111/198 samples), piano (57/253 samples), speech
(125/588 samples), traffic (32/277 samples) and vacuum cleaner (32/211 samples), in overall 5954
samples. The audio data durations of the classes were balanced in CRr thus there were many short
flatulences in CRrt, but fewer samples of cat meows, traffic and vacuum cleaner.

One file in the database corresponds to one sound event sample where the silent audio chunks
were removed from. In this way, the database is easier to process because there are no additional
files for labeling.

2.2 CSIBE-AIBO

The standard datasets are often not suitable to develop practical acoustic models for robotics
because the training data must incorporate microphone dynamics, various noise levels and
reverberant conditions. CSIBE-AIBO attempts to step forward in this direction to show how a base
model can be developed by rerecording CSIBE-RAW in multiple settings.

Sony ERS-7 has two “ears” with microphones and these devices feature 16 kHz sampling rate in
16 bit depth. This robot is an embedded platform, therefore, the recording quality is not so clear like
a Zoom H1 or H2 recorder. CSIBE-RAW samples were played back with a high quality speaker
(Audio Pro Addon One) in silent rooms from different locations relative to the robot:

Reverberant room, speaker was 1 meter away, 30° counterclockwise to the head.
Non-reverberant room, speaker was 1 meter away, 30° counterclockwise to the head.
Reverberant room, speaker was 3 meters away, 1 meter high, 180° clockwise to the head.
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Non-reverberant room, speaker was 3 meters away, 1 meter high, 180° clockwise to the head.

CSIBE-RAW samples were recorded in these room settings with stereo microphones which
resulted eight times more data compared to the mono CSIBE-RAW samples. The new sounds were
affected by the low-end input quality, reverberation, the recording distance, the microphone
displacement relative to the source direction and the microphone self-noise. CSIBE-AIBO was
separated to training and validation sets using the same partitions as CSIBE-RAW. CA'r contains
the rerecorded samples of CRr in the first setting, CAr in all settings and CA'v, CAv were generated
from CRy respectively.

Transferring the audio data from the robot was a challenge because CSIBE-RAW has more than
an hour of samples and this procedure had to be automated. The internal storage of the robot could
not be used to store the rerecorded samples by reasons of being small (max. 128 MB) and slow
read/write speeds. The other option was to transfer the recordings from AIBO via the built-in
wireless card with low throughput (appr. 30 KB/sec). The authors found the best compromise with
encoding the recorded audio in lossy format and sending the compressed data to a PC on the same
WLAN. The SNR of the sound events in CSIBE-AIBO varied between 8.31-16.15 dB (average:
10.85 dB) which was a bit lower than the noisy NAR Dataset (15 dB). The encoding parameters
were explored during the initial experimentation and they are discussed in Chapter 4.5 and 4.6.



RECOGNITION SYSTEM

Features must be extracted from the audio to train a classifier. The most popular features in the
literature are the Mel-frequency cepstrum coefficients (MFCC) (Beltran el al., 2015; Mesaros et al.,
2010; Salamon et al., 2014) which approximate the human auditory perception. In this paper, the
audio data were framed by a sliding Hann-filtered window (32 msec) with 33% of overlap, fast
Fourier analysis was performed to extract harmonic spectrum, spectral peaks and 26 MFCCs for
each frame. The first MFCC coefficient was dropped, the remaining were added to the feature
vector. There is no clear consensus in the literature about the ideal MFCC count, some earlier
studies employed 13 MFCC components (Beltran et al., 2015; Chu et al., 2009; Terence et al., 2013),
but other works included 15 (Phan et al., 2015), 16 (Mesaros et al., 2010), 20 (Ruiz-Martinez et al.,
2013), 26 (Salamon et al., 2014) and 40 (Nouza et al., 2013).

The feature extraction was done with the libxtract library (Bullock, 2007) in C++ and the
implementation details of each audio statistic can be found in the github repository!. The following
23 statistics were calculated to complement 25 MFCC to 48 features:

i Audio data frames: standard deviation, maximum, min-max range, kurtosis, fundamental
frequency, non-zero count, average deviation, variance and zero crossing rate.

s FFT spectrum: pitch of Harmonic Product Spectrum analysis, irregularity (Jensen, 1999),
centroid, variance and standard deviation.

i Bark coefficients: loudness.

i Peak spectrum: standard deviation, partials count (non-zero component count) and centroid.

i Harmonic spectrum: arithmetic mean and tristimulus (Pollard and Jansson, 1982).

W MFCC frames: minimum, arithmetic mean and standard deviation.

These statistics were selected by sequential forward floating feature selection and an iterative
examination of the feature importances with cross-validation in the initial experiments. Two
features (spectral crest, variance of spectral harmonics) were removed since they were sensitive to
lossy encoding. Eventually, the feature vector had small computational cost (1 msec) on the robot
and it was robust to lossy audio codecs.

The temporal frame integration (superframes, bag-of-words) was tried without satisfactory results
in the initial experiments, therefore, majority voting was used for temporal smoothing to do the
classification of each sample file in the next chapters. When a label must be associated with a file,
feature vectors are extracted, predicted with a classifier and the label with the most predictions is
voted to be the final.

EXPERIMENTAL RESULTS

4.1 Classifier Comparison

The classifiers were mostly implemented with the Machine Learning module of OpenCV (Bradski
and Kaehler, 2008), except maximum entropy (ME) (Andrew and Gao, 2007; Tsuruoka et al., 2009),
convolutional neural network with tiny-dnn> and SVM with linear kernel (King, 2009). The latter
was chosen because of the SVM codes in OpenCV uses an old fork of libsvm with custom
modifications and several users reported reduced performance with linear kernel behind libsvm.
The linear SVM with Dual Coordinate Descent Method (Hsieh et al., 2008) in Dlib provided better

1 https://github.com/jamiebullock/LibXtract
2 https://github.com/tiny-dnn/tiny-dnn



hts/gtu.o/aiblokLbtat䋉䋉䉓䉦䉓䋉䋉
hts/gtu.o/iydntn-n����������

accuracy for the authors with this dataset. The SVMs used C = 0.1 parameter while ME was
regularized with an Orthant-Wise Limited-memory Quasi-Newton Optimizer (L1 = 0.00001). The
hyperparameters for the decision tree and random forest were Tre€aepn = 20, Forestsize = 20 and the
minimal sample count for node split was set to 100.

Several earlier studies focused on deep neural networks for sound event recognition (Hertel et al.,
2016; Choi et al., 2016; Cakir et al., 2016). Some explored the input features (Dennis, 2014;
McLoughlin et al., 2015; Hertel et al., 2016) for the networks, some compared different network
topologies (McLoughlin et al.,, 2015; Phan et al.,, 2016). This paper introduces a simple
convolutional neural network without automatic feature extraction which can be deployed to
embedded systems. The first two layers in the proposed neural network were fully-connected with
200 units, one convolutional layer had 9x1 kernel with stride 1 and the last fully-connected layer
contained 100 neurons. The fully-connected layers had leaky rectified linear activation function and
the convolutional layer had tanh. The CNN training was executed for 50 epochs with adaptive
gradient method (adagrad) and batch size 64.

Each hyperparameter was specified with parameter search on preliminary data during the initial
experimentation. The features were rescaled to [0, 1] for CNN, other classifiers got the data after
standardization before training and prediction.

The previous datasets were evaluated with cross-validation (CV) (Beltran et al., 2015; Stowell et
al., 2015; Terence et al., 2013) what estimates the model accuracy, but the proper validation is done
with unseen data. The 10-fold cross-validation was done with the training sets of CSIBE (CRt, CA'r)
in this paper and the model generalization was explored by building models with these sets and
evaluating them with CRy or CA'v.

Fig. 2 shows the CV of nine classifiers with the training set of CSIBE-RAW (CRrt) and the
rerecorded version (CA'r) from CSIBE-AIBO where all results were calculated with majority
voting. Apart from the standard, frame-based evaluation, aggregated frames (Bergstra et al., 2006)
were computed by replacing the original frames with temporally calculated mean and standard
deviation of every 9 frames with 30% overlap (CRta9, CA'ta9). This data aggregation results smaller
training set size by negligible computational costs and improved accuracy is expected compared to
the frame-based evaluation (Terence et al., 2013). As we can see, the aggregated frames enhanced
performance (even columns are higher) except SVMgrgr, KNN and DT what was a bit surprising.
CNN was the top performing classifier in all cases, nevertheless, KNN, DT, RF provided solid
accuracies over 80%. Because of SVMggr and expectation-maximization (EM) with Gaussian
mixtures did not reach the performance of other classifiers, they were left out from the further
analysis.

SVM and EM can collapse if the training dataset is too big, the training time can increase rapidly
and performance is degraded. These algorithms can perform better if the frame count is reduced
with sliding window approaches (mean and standard deviation vectors or ARMA models) (Maxime,
et. al., 2014; Terence et al., 2013). SVMgrer, NB and EM on Fig. 2 had the biggest improvements
among the other classifiers when the cross-validation was done with aggregated frames (CRrtao,
CA'1a9) which reduced the training set sizes to 1/3. Although the aggregation yielded the least
improvement for CNN, but its training time was reduced by 1/3 what is important to speed up the
slow training of deep learning networks.
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Fig. 2. Cross-validation results for several classifiers over the training set (CRt) of CSIBE-RAW (red) and CA'r of
CSIBE-AIBO (blue). The lighter colors (odd columns) were the frame-based votes and the aggregated frames were used
in the darker (even columns), but the final results were calculated with majority voting. Classifiers: maximum entropy
(ME), support vector machine with linear kernel (SVMvin), support vector machine with radial basis function (SVMkgor),
naive Bayes (NB), k-nearest neighbors (KNN), decision tree (DT), random forest (RF), expectation-maximization (EM)
algorithm and convolutional neural network (CNN).

The past studies used various methods to check their datasets and a natural point is how the
baseline system (BS) in this paper relates to the literature. Two public corpora were tested by BS
with the same preprocessing steps of the original studies, but distinct classifier implementations and
audio statistics. The dataset A of CICESE was cross-validated with a hidden Markov model (HMM)
to 98% (F-score) in (Beltran et al., 2015) while BS reached 99.2% accuracy with KNN, 98.8% with
DT and 98.3% with RF. The file averaged NAR dataset was cross-validated to 88.4% with KNN
and 91.5% with SVM in (Maxime, et. al., 2014) although BS had 91.41% with KNN and 92.1%
with SVMuin. These results showed that the recognition system of this paper provides the same or
slightly better performance compared to (Beltran et al., 2015) and (Maxime, et. al., 2014).

4.2 Model Evaluation

The cross-validation estimates the model accuracy with unseen data, but it can lead to
misunderstandings about the generalization power. Fig. 3 shows the model evaluations for seven
classifiers which were selected after the cross-validation in Chapter 4.1. Models were built with the
aggregated frames of the previous training sets (CRtas, CA'rag) and they were evaluated with the
aggregated frames of their validation sets (CRyas, CA'vas) to identify any difference in the
performance with unseen samples. The aggregated frame-based accuracies (lighter columns) varied
between 70%-90%, the majority voting enhanced these results up to 90%-96% (darker columns).
All classifiers were satisfactory after majority voting, but CNN was again the best in every situation.
The actual model accuracies were underestimated by the cross-validation because all CRmy and
CA'ny evaluations in Fig. 3 were over 90% while almost none of the cross-validations of the same
classifiers reached 90% in Fig. 2.

CSIBE-RAW contains the collected samples from the internet and CSIBE-AIBO the rerecorded
versions. The original sounds achieved higher frame-based results in all cases (CR¢r vs. CA'cr in Fig.
3), but the majority voting turned this into the other direction and every CA'mv was higher than
CRuv. The classifiers delivered accuracies over 90% with majority voting regardless of the datasets
(CR vs. CA'). The next subchapter will examine why the multi-conditional learning is needed for
real-world applications.



4.3 Multi-conditional Learning (MCL)

The room reverberation and the microphone dynamics alter the feature vector and may raise the
recognition error significantly. In MCL, the classifier is trained with samples with different
distortions and the built model will be robust to these conditions. Training and validation sets were
constructed in Chapter 2.2 for MCL, CA'r contained rerecorded samples from one room setting and
this training set represents the learning in one condition. However, the same sample files rerecorded
in all four settings were included in CAr to provide a training set with multiple reverberant and
SNR conditions.

In (Mesaros et al., 2010), the isolated sound events were recognized with a GMM-HMM model
and the system had 53% accuracy for clean samples, 47% for 10 dB SNR, 38% for 5 dB SNR and it
decreased to 28% for 0 dB SNR. Ruiz-Martinez et al implemented SVM for environmental sounds
(Ruiz-Martinez et al., 2013) and their model achieved 89% accuracy for clean samples, 85% for 10
dB SNR, 79% for 5 dB and 71% for 0 dB. These earlier works had considerable loss in the
performance by adding artificial noise what can be handled with some solutions. The model
adaption, signal enhancement and feature compensation can make the system more robust against
noise (Dennis, 2014), but this paper uses the multi-conditional learning to build models that are
tolerant for lower SNR, reverberant and non-reverberant conditions. On one hand, this learning
method requires large training set, on the other hand, the authors wanted to avoid synthetic training
data what often is not applicable outside the laboratory environment. The CSIBE-AIBO corpus was
built according to these principles (Chapter 2.2) although the rerecording in four settings was a time
consuming process.

The aforementioned problems were analyzed in Table I how DT, RF, SVMLi, and CNN classifiers
performed in model evaluation when the training and the validation sets were varied. The first two
rows represent the baseline and come from Fig. 3. The model of the first row was built and
evaluated on the clean samples of CSIBE-RAW, all accuracies were over 90%. Similar results were
achieved with rerecorded sets in the second row because the recording environment altered both the
training and the validation sets.
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Fig. 3. Model evaluation of seven classifiers over the validation set (CRy) of CSIBE-RAW (red) and CA'v of CSIBE-
AIBO (blue). The lighter colors (odd columns) were the aggregated frame-based evaluations and majority voting was
used in the darker (even columns) in addition.



TABLE 1. MODEL EVALUATION WITHOUT MULTI-CONDITIONAL LEARNING
DECISION TREE, RANDOM FOREST, LINEAR SVM AND CONVOLUTIONAL NEURAL NETWORK PERFORMANCES WITH DIFFERENT TRAINING AND VALIDATION
SETS. ALL RESULTS WERE CALCULATED WITH AGGREGATED FRAMES AND MAJORITY VOTING. THE FIRST TWO ROWS CONTAIN ACCURACIES FROM FIG. 3.

Training Set Validation Set DT RF SVMLin CNN
CRrag CRvag 90.78 95.41 94.69 96.45
CA'ra CA'vag 92.83 95.57 95.07 97.54
CRrag CA'vag 65.36 74.84 79.20 79.88
CRra9 CAva 38.36 44.28 53.22 52.02
CA'ra CAvo 62.30 62.21 64.62 66.49
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Fig. 4. Model evaluation with and without multi-conditional training. The validation set is CAvao of CSIBE-AIBO in all
cases, but the training set is CA'rqo for the red columns and CAra9 for blue columns. The lighter colors show the
aggregated frame-based evaluation and the darker represent the results after majority voting.

When the clean training set (CRta9) was tested against the rerecorded validation set in one room
setting (CA'vao), the accuracies were decreased by 15-25% in the third row compared to the first.
Evaluating CRras with the rerecorded validation set in all four settings (fourth row), the
performance was dropped even more (41-52%) compared to the first row. These results confirmed
that models built on the original samples in CSIBE-RAW were not successful to generalize the
recording conditions of CSIBE-AIBO. The last row in Table I contains the results for rerecorded
training set in one setting (CA'rao) and rerecorded validation set in four room settings (CAvag).
Despite the both sets were affected by the robot microphone and the reverberation, the accuracies
were as low as 62-64% since CAvag was altered by all four settings.

To summarize the findings:

i CNN delivers the best performance almost every time without MCL (except the fourth row
in Table I).

i The more challenges the validation set have (lower SNR, reverberation), the more the
accuracies decrease.

i Deep neural networks cannot handle these problems with hand-crafted features. (Moving the
feature extraction to autoencoders can be a solution if large amount of training data and
GPU power are available.)



TABLE II. CLASSIFIER PROPERTIES

THE ACCURACIES ARE CAwymurrt RESULTS FROM FIG. 4. THE TRAINING TIMES ARE SINGLE-THREADED FOR SVM, DT AND RE, BUT MULTITHREADED
FOR CNN ON CPU. PREDICTION TIME PER FEATURE VECTOR IS PRESENTED FOR SVM AND CNN BECAUSE THEY FIT IN THE MEMORY OF THE ROBOT.

SVMLin DT RF KNN CNN
Accuracy (%) 90.2 89.9 92.6 90.5 95.07
Training time (sec) 56 13 213 - 3359
Memory usage (MB) 0.364 64.5 1136.7 63.6 3.5
Prediction time (msec) 0.36 "2 "2 "2 6

"I KNN classifier does not have training step.
*2 DT, RF and KNN classifiers do not fit in the 64 MB RAM of the robot.

TABLE III. CONFUSION MATRIX OF CNN MODEL.

THE ROWS SHOW THE REAL EVENTS AND THE COLUMNS HOW THEY WERE CLASSIFIED. (AMBIENT NOISE: AN; BABY CRY: BC; BELL: B; CAT MEOW:
CM; CICADA: C; DOG BARK: DB; FLATULENCE: F; GUITAR: G; LAUGH: L; PARROT: PA; PIANO: PI; SPEECH: S; TRAFFIC: T; VACUUM CLEANER: V)
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As a consequence, when big data is not accessible, multi-conditional learning is required to solve
these obstacles. McLoughlin et al trained deep neural networks with spectrogram image features
(McLoughlin et al., 2015) from different noise conditions and the models delivered similar
accuracies for the clean and 20dB SNR testing samples though 1-6% decreases were for 10dB. In
(Terence et al., 2013), when the MFCC features were trained to GMM, the model had 67.40%
accuracy without MCL and 95.12% with MCL. Dennis had two systems based on SVM and HMM
(Dennis, 2014) and dropped 20-90% accuracy without MCL, but the degradation was reduced to 2-
30% under 0-20 dB SNR conditions with MCL. According to these earlier works, multi-conditional
learning is an effective method to deal with different SNRs.

CActnomal and CAcrmuri (red columns) in Fig. 4 present seven classifiers trained with the
aggregated frames of CA'ta and evaluated on CAvag, similar to the fifth row in Table 1. All
classifiers delivered low accuracies (62-66%) after majority voting, none of them could generalize
to the three unknown rerecording settings in the validation set CAva9. Once the training set
comprehended the rerecorded samples of CRt in all four room settings (CArtq), the multi-
conditional learning improved the results (CActmuii) by 24-30% and achieved 87-95% accuracies
(dark blue columns) except naive Bayes which had 77.10% after majority voting. As it happened in
Fig. 2 and 3, CNN outperformed other algorithms again. The top-5 classifiers were picked for



further analysis to select a final model for real-time usage on the robot.

4.4 Classifier Selection

The support vector machines (Salamon et al., 2014; Stowell et al., 2015; Terence et al., 2013) and
KNN (Chmulik and Jarina, 2012; Plinge et al., 2014; Theodorou et al., 2014) have been widely
implemented for sound event recognition while the decision tree-based classifiers have been
received less attention (Delgado-Contreras et al., 2014; Phan et al., 2015; Salamon et al., 2014) and
deep learning is the current mainstream (Hertel et al., 2016; Phan et al., 2016; Choi et al., 2016). To
choice the final model, multiple aspects must be considered such as accuracy, training time,
memory usage and prediction time. All classifiers in Table II show reasonable accuracies between
89.9%-95.07% which satisfied the first criterion. When the training set size is increased, the DT and
RF models grow larger (Sebbanii et al., 2000; Sug, 2009). Although the RF model had the second
best accuracy (92.6%) in Table II, but the memory consumption was over 1 GB after learning
165872 aggregated frames what was not acceptable for embedded systems. Similarly, the DT model
(64 MB) also did not fit in the memory. In a previous work, KNN performed closely to SVM in
(Maxime, et. al.,, 2014) and this classifier does not include a training phase, nevertheless, the
training set must be cached in the memory and the bigger the training set, the longer the prediction
time. Namely, KNN with CAr can make one prediction in 23 msec on a high-end AMD FX 8350
desktop CPU which is not enough for real-time processing on the robot and the training set also
does not fit in 64 MB RAM. Because of these reasons, DT, RF and KNN were not suitable for
eventual tests on the robot.

CNN had the best accuracy (95.07%) after 1 hour-long training with moderate memory and CPU
usage on the robot (Table II), therefore, this classifier was selected for onboard deployment. It is
worth mentioning that SVMy,, is a good alternative to CNN if some accuracy can be scarified for
negligible memory usage (364 KB) and prediction time (0.36 msec).

The confusion matrix of the CNN model (accuracy: 95.07%, F-score: 95.54%, precision: 95.71%,
recall: 95.47%) is shown in Table III where the cells were left blank if they contained less than 1%.
The cicada samples were recognized all the time correctly because of the unique voice
characteristics (high pitch) of this animal. Some sound events were challenging for the model
because the laugh had similarities with the human speech (6% misclassification), the flatulences
were short events and harder to distinguish from the ambient noise. In overall, the events were
recognized with adequate accuracies (>85%).

The authors executed a preliminary test with the CNN model after multi-conditional learning.
This model was deployed to the robot, feature vectors were generated directly from the microphone
data. CNN predicted well live input, but the implementation details of a final recognition system on
a Sony ERS-7 are out of scope in this paper.

4.5 Lossy Encoding Effects

As it was described in Chapter 2.2, CSIBE-AIBO was recorded with lossy Ogg encoder. This
chapter explains the codec selection procedure and how the VBR settings were determinated. The
target was to find a lossy codec which does not effect the classifier accuracy if either the training or
the validation set is transcoded. Full transcoding denotes when both the training and the validation
set are transcoded with the same lossy codec before the model building and evaluation processes.
This is relevant for storing large audio databases in the fraction of the original disk space and using
these big data to train and test deep neural networks without performance degradation. Half
transcoding means transcoded training set and unaltered validation set. This evaluation step ensures
that the DNN models built with full transcoding can be deployed on consumer devices where the



model will recognize uncompressed audio from a real microphone.

Two popular lossy compression algorithms were examined, the Ogg Vorbis transcoding was
implemented with libvorbis®, the MP3 encoding with libmp3lame* and the MP3 decoding with
LAME's mpglib version. The effects of lossy encoding has been studied in the literature for speech
(Besacier et al., 2001; Pollak and Behunek, 2011; Saenz-Lechén et al., 2008) and music (Uemura et
al., 2014; Urbano et al., 2014) classifications, but this paper provides the first analysis for sound
event recognition. The cited papers from the literature examined only the MP3 encoding while both
Ogg and MP3 codecs are reviewed here. Some past works trained the acoustic model with
uncompressed audio and the training set was transcoded with lossy codecs to check the effects
(Besacier et al., 2001; Borsky et al., 2015), but half transcoding was employed in (Ng et al., 2004)
and full transcoding in (Nouza et al., 2013; Uemura et al., 2014; Urbano et al., 2014). Minimum 32
kbit MP3 profile was sufficient to avoid performance decrease for speech recognition in (Besacier
et al., 2001; Ng et al., 2004) and 64 kbit in (Sdenz-Lechén et al., 2008). Uemura et al (Uemura et al.,
2014) found 32 kbit VBR enough for chord recognition while Urbano et al preferred at least 160
kbit CBR MP3 encoding (Urbano et al., 2014).
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Fig. 5. CNN model performance when both the training (CRTq9) and the validation set (CRva9) of CSIBE-RAW were
transcoded with lossy codecs (MP3un, Oggru) and when only the training set was transcoded (MP3 ain, Oggirain), but
CRya9 remained in wave format. The results are shown in the function of the target VBR bitrate. The gray reference line
(Ref) shows the baseline CNN accuracy with the untouched training (CRta9) and validation sets (Crya9).
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Fig. 6. Processing times on the robot and the encoded sizes of 3-seconds long, 16 kHz, stereo audio chunk with Ogg
codec. The results are shown in the function of the target VBR bitrate. The crosses are related to the left scale, the lines
to the right scale.

3 https://xiph.org/vorbis/
4 http://lame.sourceforge.net
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The lossy codec influence on CSIBE-RAW was investigated in Fig. 5. A gray line (Ref) shows the
baseline performance of the convolutional neural network model with uncompressed data, MP3ain
and Oggu.in Were obtained with half transcoding as well as MP3s1 and Oggran with full transcoding.
The accuracies of MP3y.in and Oggrain  matched at 100 kbit VBR otherwise the MP3 encoding
caused 0.2-1.2% loss against the Ogg Vorbis results. Ogguain lost maximum 0.8% from the reference
line even on lower bitrates, therefore, Ogg Vorbis is recommended for half transcoding on any
bitrates.

The full transcoding with MP3 caused surprise because MP3:n was lower by 2.7-7.9% from
Oggsu, especially on higher bitrates what contradicts the expectation of good quality over 128 kbit
VBR. There might be some special encoding settings in LAME which can make some frequency
bands sensitive to the MP3 format. Further investigation is needed later to answer this question.

Oggtun (blue line in Fig. 5) delivered very similar accuracies compared to Ogguain thus the same
suggestion applies, Ogg Vorbis codec is advised for full transcoding and the accuracy did not
decrease over 128 kbit VBR in comparison with the CNN model built from uncompressed audio.

Ogg Vorbis achieved minimal losses in accuracy in both full and half transcoding, therefore, this
format is advised to store big audio databases for deep learning training in data centers.

4.6 Lossy Encoding on AIBO

The targets for the rerecorded samples on AIBO were the small compressed size and the short
encoding speed. The small size saved wireless bandwidth and the encoding speed shortened the
wait time when the samples were recorded again and collected for multi-conditional learning. Fig. 6
shows these variables in the function of different Ogg VBR settings. All processing times (blue
crosses) were between 590-680 psec, but the produced data size was 4 times bigger between 50 kbit
and 250 kbit VBR profiles. To determinate the best compromise between the quality and encoding
speed, the Ogg Vorbis codec performance can be compared on the Fig. 5 and Fig. 6. The higher
variable bitrates (>128 kbit) of Ogg Vorbis increase the encoded data size (Oggsi,. in Fig. 6) without
offering additional performance (Oggru in Fig. 5). Therefore, 128 kbit VBR setting for Ogg Vorbis
was the optimal selection to avoid any loss in accuracy caused by audio compression when CSIBE-
RAW was rerecorded with the robot for CSIBE-AIBO. Once the audio was encoded with an
average compression ratio 1:8, the data were transferred from the robot to a PC in a few hundred
milliseconds via wireless network.

CONCLUSION

The paper described how the CSIBE corpora were created for non-overlapping sound event
recognition in the robotics field. The samples were mainly gathered from free internet sources to
build a redistributable CSIBE-RAW. This database contained 14 sound events where 13 events
represented human speech, animal voices, musical instruments and household appliances. One
special class modeled the ambient noises (e.g knock, drawer, keyboard, paper, breathing, steps)
which are not important for a domestic robot. CSIBE-RAW was compared to the literature, its size
(5954 sample files) was higher than the existing databases for indoor environment and the modeling
of uninteresting events (ambient noise class) was also unique.

CSIBE-RAW was rerecorded with a stereo microphone of a robot in four room settings (CSIBE-
AIBO) to train acoustic models which were tolerant to reverberant conditions and challenging SNR
levels. Multiple experiments were carried out to find the optimal classifier and lossy encoding



settings to deploy a real-time capable acoustic model on a Sony ERS-7 robot. The convolutional
neural network was the appropriate classifier with multi-conditional learning to reach 95.07%
accuracy with unseen audio data from CSIBE-AIBO.

Further contributions of the paper were the reported audio statistics in the recognition system
which improved the standard MFCC results and they were robust against the lossy encodings hence
the previously mentioned CNN model was built with compressed audio data. The lossy Ogg Vorbis
and MP3 codecs were studied and the results suggested to select the Ogg Vorbis format with 128
kbit VBR profile.

Future work can include the introduction of new sound classes to the CSIBE corpora to recognize
more environmental events, working out the details of the live sound event recognition on the robot
and the investigation of the performance loss with MP3 codec with high VBR profiles.

The authors would like to emphasize that the lack of the classifier hyperparameters makes the
reported performance measurements hard to interpret because direct comparisons will not be
possible with new methods. For example, the NAR dataset evaluation (Maxime, et. al., 2014)
involved SVM classifier, but it is unclear which kernel (linear, radial basis function or polynomial)
and hyperparameters were used. The authors of this paper encourage the future works to present the
classifier hyperparameters for reproducible research.
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