Edinburgh Research Explorer

Updating Recursive XML Views of Relations

Citation for published version:

Choi, B, Cong, G, Fan, W & Viglas, S 2007, Updating Recursive XML Views of Relations. in Proceedings of
the 23rd International Conference on Data Engineering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey,
April 15-20, 2007. Institute of Electrical and Electronics Engineers (IEEE), pp. 766-775.
https://doi.org/10.1109/ICDE.2007.367922

Digital Object Identifier (DOI):
10.1109/ICDE.2007.367922

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
Proceedings of the 23rd International Conference on Data Engineering, ICDE 2007, The Marmara Hotel,
Istanbul, Turkey, April 15-20, 2007

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN (75 ACCESS

Download date: 28. Apr. 2024

https://doi.org/10.1109/ICDE.2007.367922
https://doi.org/10.1109/ICDE.2007.367922
https://www.research.ed.ac.uk/en/publications/0b5db184-3eb3-469f-ae77-55c2ab076c2f

Nanyang Technological University

Updating Recursive XML Views of Relations

Byron Choi Gao Cong

Univeristy of Edinburgh &

kkchoientu.edu.sg Microsoft Research Asia

gao.congeed.ac.uk

Abstract

This paper investigates the view update problem for XML views
published from relational data. We consider (possibly) recursively
defined XML views, compressed into DAGs and stored in rela-
tions. We provide new techniques to efficiently support XML view
updates specified in terms of XPath expressions with recursion and
complex filters. The interaction between XPath recursion and DAG
compression of XML views makes the analysis of XML view up-
dates intriguing. Furthermore, many issues are still open even for
relational view updates, and need to be explored. In response to
these, we revise the update semantics to accommodate XML side
effects based on the semantics of XML views, and present efficient
algorithms to translate XML updates to relational view updates.
Moreover, we propose a mild condition on SPJ views, and show
that under this condition the analysis of deletions on relational
views becomes PTIME while the insertion analysis is NP-complete.
Finally, we present an experimental study to verify the effective-
ness of our techniques.

1 Introduction

Views provide an abstraction of the data stored in a
database and are commonly used in practice. Commer-
cial DBMSs have identified the need for materializing and/or
providing ways of updating them, and propagating the up-
dates to the underlying data [13, 20, 23]. Indeed, the study
of relational views and their update mechanisms have re-
ceived considerable attention (see, e.g., [10, 14, 18]). Re-
cently, a number of systems have been developed to publish
relational data to XML [1, 4, 11, 13, 20, 23]; the published
data is effectively XML views of the relational data. Thus,
the problem of transparently updating the XML views needs
to be revisited. Given an XML view of a relational database,
we want to propagate updates of the XML view to the origi-
nal relational tables, without compromising the integrity of
neither the XML nor the relational data.

While several commercial systems [13, 20, 23] allow
users to define XML views of relations, their support for
XML view updates is either very restricted or not yet avail-
able. Previous work on XML view updates [2, 25, 26] has
focused on translating XML view updates to relational view
updates and delegating the problem to the relational DBMS;

1-4244-0803-2/07/$20.00 ©2007 IEEE.

Wenfei Fan
University of Edinburgh &

Stratis D. Viglas
University of Edinburgh
Bell Laboratories sviglaseinf.ed.ac.uk

wenfei@einf.ed.ac.uk
db
coursel - C()lll‘Sez

cno; title; prereq takenBy;
"CS320" "Logic"

cno, title, Prereq,
'CS650" "Complexity
course;

takenBy,

course student; student, student ;student 3

sid; name; sid, name,
01" "Joe" 02" "Bill"

Figure 1. Example XML view

however, most commercial DBMSs only have limited view-
update capability [13, 20, 23]. The state of the art in XML
view updates research explicitly focuses on non-recursively
defined XML views and XML updates defined without recur-
sive XPath queries. These restrictions are unfortunate since
the recent proposals on XML update languages (e.g., [24])
employ recursive XPath queries while DTDs (and thus XML
view definitions) found in practice are often recursive [6].
Given these requirements, we consider more general XML
views and updates: possibly recursive XML view definitions
and XML updates specified in terms of XPath expressions
with recursion and complex filters, as illustrated below.

Example 1.1: Consider a registrar database with the follow-
ing schema (keys are underlined): course(cno, title, dept),
student(ssn, name), enroll(ssn, cno), prereq(cnol, cno2),
where a tuple (cl, c2) in prereq indicates that c2 is a pre-
requisite of cl. As depicted in Fig. 1 (the dotted lines
will be explained shortly), an XML view T of the relational
database is published for the CS department. The view is
required to conform to the DTD below (the definition of el-
ements whose type is PCDATA is omitted):

<!ELEMENT db (course™)>
<!ELEMENT course (cno, title, prereq, takenBy)>
<!ELEMENT prereq (course™)>

<!ELEMENT takenBy (student™)>
< !ELEMENT student (ssn, name)>

The view is defined recursively since the DTD is
recursive (course is indirectly defined in terms of it-
self via prereq). Consider an XML update Ax, which
inserts the subtree for course CS240, as a prerequi-
site of all courses given by the recursive XPath query
course[cno=CS650]//course[cno=CS320]/prereq. To propa-
gate A x means that we need to find an equivalent Ag over
the relational database that inserts the same information in
the underlying tables so that if the data is re-published in

766

XML it leads to the same XML view as the one we have after
applying Ax on T i

The analysis becomes complicated since there are three
sub-problems that cannot be treated in isolation, namely:
(i) how are the XML views efficiently materialized, (ii) what
are the correct update semantics for XML views of relational
data over the materialization primitives, and (iii) how are the
new semantics implemented and the updates propagated to
the materialized XML views and the relational database.

Efficient materialization of XML views. An XML doc-
ument published from a relational database has high com-
pression potential. In the document of Fig. 1 (Example 1.1),
certain subtree instances can be shared; one can material-
ize each subtree shared by multiple nodes in the tree only
once, as indicated in Fig. 1 (replacing the subtrees in the
dotted triangles by dotted edges — e. g., the subtree for course
CS320). The compressed view becomes a directed acyclic
graph (DAG), which is often significantly (at times even ex-
ponentially) smaller than the original tree. Moreover, one
may want to store the view (DAG) in relations itself. Fur-
ther, the aim is to use recursive XPath expressions for de-
noting the parts of the document to be updated. Trans-
lation from (recursive) XPath queries over recursive XML
views to SQL queries is hard [17]. To our knowledge, no
efficient algorithm exists for evaluating XPath queries with
complex filters on DAGs stored in relations. To this end, we
present an efficient algorithm for evaluating XPath queries
with complex filters on DAGs, based on a new and incremen-
tally maintained indexing structure to handle recursion and
a technique for handling filters.

XML update semantics. Update semantics should be re-
vised given the XML view materialization primitives. In
Example 1.1, we are to insert CS240 as a prereq of only
those CS320 nodes below CS650; however, CS320 nodes also
occur elsewhere. As the XML view is published from the
same relational database, all courses have unique prereq hi-
erarchies. An insertion on selected paths of the hierarchy
will result in side effects that should be detected. The users
should then be consulted and, if they insist on continuing,
the insert semantics needs to be revised so that the inser-
tion will be performed at every CS320 node. The details of
side effects on deletions are even more subtle and call for a
new semantics. In light of this we refine the update seman-
tics for XML views of relations to accommodate XML side
effects. In addition, we develop an algorithm to translate re-
cursive updates on a possibly recursively defined XML view
to updates on the relational representation of the XML view.

Update propagation. Since the XML view is materialized
in relations there is substantial work to be carried out in the
relational realm. To this end, we identify a key-preservation
condition on SPJ views, which is less restrictive than the
conditions imposed by previous work [10, 14]. We es-

1-4244-0803-2/07/$20.00 ©2007 IEEE.

XML update Ay reject

IV
_.| prp |___ | translation: v relational view V
validation Ax to Ay (compression)

|

translation:

Ay toAg

report side effects reject

RDB

Figure 2. Overview of XML view updates

tablish complexity results for the updatability problem to
extend the few existing ones [3, 8]. We show that under
key-preservation on SPJ views, while the problem for tuple
insertions is NP-complete, it becomes tractable for group
deletions (which is NP-complete without key preservation).

Problem statement and proposed solution. Given an XML
view defined as a mapping o : R — D from relations of
a schema R to XML documents (trees) of a DTD D, a re-
lational instance I of R, the XML view T' = o(I), and
updates Ax on the XML view T, we want to compute re-
lational updates A g such that Ax (T) = o(Ag(I)). That
is, the relational updates A r, when propagated to XML via
the mapping o, yield the desired XML updates A x on the
view T'. We propose a framework for processing XML view
updates, as shown in Fig. 2. For each XML view definition
o : R — D, we maintain a relational database I of R, and
the relational views V' that encode the DAG compression of
T = o(I). The users pose updates on T (Section 2). Given
a single XML update A x on T as input, we generate a group
update Ag on I such that Ax (T') = o(Ag(I)) if such Ag
exists; otherwise reject Ax as early as possible. Specifi-
cally, the framework processes an XML update Ax on T'
in three phases, namely, DTD validation (see [7]), transla-
tion from Ax to Ay (Section 3), and translation from Ay
to AR (Section 4). If our algorithm detects a side effect,
we report it to the user. After the relational update Ap is
computed, we update the underlying database I using Ag,
update the relational views V using Ay, and finally, in the
background, invoke our incremental algorithm to maintain
our auxiliary structures. An experimental study is presented
in Section 5, followed by related work in Section 6 and fu-
ture work in Section 7. See the full version [7] for details.

2 View Updates Revisited in the XML Setting

We give a brief overview of publishing XML from re-
lational data and present a way of efficiently materializing
the XML view in relations. We then define the syntax and
semantics of XML updates over this representation.

2.1 Schema-Directed XML View Definition

Our techniques are applicable to XML views published
from relations via any system (e.g., Attribute Translation
Grammars—-ATG [1], SilkRoute, XPERANTO). We first
briefly review ATG, a DTD-directed method for defining
XML views; we then present a way of materializing the pub-
lished XML view in a relational database.

767

DTDs. A DTD D is a triplet (E, P, r), where F is a finite
set of element types; r € F is called the root type; P defines
the element types: for each A in F, there is a production
A — a, where a is a regular expression of the form:

o == PCDATA | €| Bi,...,By,|Bi+...+ B, | B*

where € is the empty word, B is a type in E (a child type of
A), and ‘+’, °” and ‘x’ denote disjunction, concatenation
and the Kleene star, respectively. A DTD is recursive if a
type is defined (directly or indirectly) in terms of itself.

XML views. A publishing system implements a mapping
0 : R — D from instances of a relational schema R to doc-
uments of the target DTD D. (a) For each element type A of
D, o defines a semantic attribute $A whose value is a single
relational tuple of a fixed arity and type; intuitively, $ A con-
trols the generation of A elements in the XML view, and is
used to pass data downwards as the document is produced.
(b) For each production p = A — «a in D and each type B
in o, o specifies a SPJ query, Q(4_p)($A), which extracts
data from a relational database I, using $ A as a constant; it
generates the B children of an A element and their $ B val-
ues. For example, for the production prereq — course*, the
SPJ query Qprereq_course(Sprereq) can be specified as:
select distinct c.cno, c.title

from prereq p, course ¢
where p.cnol = $prereq and p.cno2 = c.cno

Intuitively, at a prereq node v with $prereq value p, the sub-
tree of v is constructed as follows: (1) Qprereq_course(P)
is evaluated on the database I; (2) for each distinct tuple ¢
in the result of the query, a course child v. of v is gener-
ated, which carries ¢ as the value of its semantic attribute
$course; and (3) c is then used in a similar fashion to ex-
pand the subtree rooted at v.. The entire XML view is gen-
erated top-down starting from the root db, and conforms to
the DTD of Example 1.1 (see [1, 7] for details).

The subtree property and DAG compression. An XML
view of a relational database is determined by the under-
lying relational data. XML node uniqueness in this context
is reflected as the subtree property. More specifically, con-
sider a mapping 0 : R — D. For any database I of R and
any type A of D, an A-element (subtree) in the XML view
o(I) is uniquely determined by the value of the semantic
attribute $ A at its root. Thus, the publishing system in fact
defines a function ST() such that, given an element type A
and a value ¢ of $A, ST(A, t) returns a subtree rooted at a
node tagged A and carrying ¢ as its attribute.

As noted in Section 1, a subtree ST(A, $A) may appear
at multiple places in the XML view o(I). It is natural and
more efficient to compress the XML tree by storing a single
copy of ST(A,$A) no matter how many times it occurs in
the XML view. This leads to a DAG representation of XML
view o(I). In Fig. 1, for example, course; and student, are
shared subtrees (see dashed lines).

1-4244-0803-2/07/$20.00 ©2007 IEEE.

2.2 XML View Updates: Side Effects, Semantics

Syntax. We consider a class of XML updates [24] specified
in terms of XPath: (a) insert (A,t) into p, (b) delete p.
Here, A is an element type, and ¢ is an instantiation of the
semantic attribute $A of A. Given the instantiation we can
uniquely identify the root of a subtree of type A. We define
p as an XPath expression (¢ in p[q] is called a filter):

s= e | AL = | // | p/p | pld,
q = p|p:‘8’|label():A | q/\q|q\/Q|ﬁq7

Side effects. On detecting side effects, users can choose
either to abort the update, or to carry on under the semantics
we provide in the sequence. Detection of side effects will
be further elaborated in Section 3.2.

Recall that each subtree in the XML tree is uniquely
identified by the value of the semantic attribute of its root.
Moreover, under DAG compression, a single subtree may be
shared among multiple parents. Therefore any changes to
the subtree must be reflected to all instances of the subtree,
irrespective of the XPath specified in the update operation.
This forms the very basis for the appearance of side effects.

Example 2.1: In Example 1.1, a new subtree was to be
inserted to change the prerequisite hierarchy of only those
CS320 nodes below CS650. However, since there is a unique
CS320 subtree, all changes to its prerequisite hierarchy must
be reflected to all CS320 nodes, rather than only to those
below CS650, leading to side effects.

Side effects are more subtle for deletions. Con-
sider delete course[cno=CS650]/prereq/course[cno=CS320]
on the same XML tree, that aims to remove course CS320
from the prerequisites of course CS650. This cannot be
simply performed by physically removing all CS320 nodes
as in previous work on XML view updates [2, 25, 26]: CS320
is itself an independent CS course and may be a prerequisite
of other courses. For a correct deletion we need to find, for
the root of the subtree to be removed, all its parents such
that they are reachable via the XPath of the delete statement,
i.e., those prereq nodes (prereqz2) below CS650 nodes, and
then remove CS320 from the children list of only those par-
ent nodes. Note that CS320 is not removed from the children
list of node db since it is not reachable via the XPath. O

The semantics of XML view updates. It is obvious that
a new semantics should be developed to cope with side ef-
fects. This semantics needs to respect the hierarchical na-
ture of XML views. Note that this semantics is different than
the semantics of updates on XML data [24]. Given an XML
view T" with root r, an insert operation: (a) finds the set
of all elements reachable from r via p in T, denoted by
r[p]; (b) for each element v in r[p], it adds the new subtree
ST(A, t) as the rightmost child of v; and moreover, (c) for
each element u that has the same type and semantic attribute

768

value as v, it also adds ST(A,) as the rightmost child of u
as required by the semantics of XML views.

A deletion on XML views (a) computes r[p]; (b) for each
node v € r[p], it removes the subtree ST(A,t) from the
children list of the parent node u of v such that u is reach-
able via XPath p, where A is the type of v and ¢ is the value
of $A at v; and (¢) for any node u’ of the same type and
semantic attribute value as the parent u of v, it removes
ST(A, t) from the children list of «’.

Compared to previous work [2, 25, 26], we support XML
view updates that (a) are defined with much richer XpPath ex-
pressions with recursion and complex filters, (b) operate on
(possibly) recursively defined XML views, and (c) possess
a new semantics that captures side effects, if any, of XML
view updates. We also provide techniques to defect whether
there are side effects and, in those cases, allow the users
to cancel the update; otherwise, the operation will carry on
with the semantics described earlier.

2.3 Relational Coding of Recursive XML Views

To reduce the update problem to a strictly relational one,
we employ relational views to represent the XML views de-
fined by a mapping o : R — D from a relational schema
R to a DTD D. This is nontrivial: (a) o is possibly recur-
sively defined; on such views the encoding methods of pre-
vious work (e.g., [2]) may lead to infinitely many relational
views; (b) we consider DAG compressions of XML views,
i.e., a DAG representation of o (/) where I is an instance of
‘R as opposed to trees assumed in previous work. To this
end we define a relational representation), for the map-
ping o by means of the edge relations in o (1) as follows.

(a) We assume a compact, unique value associated with the
tuple value of semantic attribute $A in o(I). We assume
w.lL.o.g. the existence of a Skolem function [1] gen_id that,
given the tuple value of $A, computes a unique :d_A. We
use gen_A to denote the set of the identities of all $ A tuples.

(b) We encode an XML view definition ¢ in terms of V, as
a set of SPJ queries Qcqge_a_p Mmaterializing the edge re-
lations of . More specifically, for each production A —
P(A) in the DTD of o, and for each child type B in P(A),
we create a relation edge_A_B with two columns, id_A
and id_B. Consider productions of the form A — B*,
where $B «— Q($A) is the associated SPJ query in o.
Then edge_A_B is the set of pairs (ia, ib) such that ia =
gen_id(a), ib = gen_id(b), where a € gen_A, b € Q(a).
The definition of Qcgge_a_p is similar for productions of
other forms. One example of an edge-relation query for the
example of Fig. 1 is Qcdge_prereq_course:

select gen_id(gp), gen_id(c.cno, c.title)
from gen_prereq gp, prereq p, course ¢
where p.cnol = gp.cno and p.cno2 = c.cno

Observe the following about V,. (1) V, encodes the
DAG compression of XML view o (I). Indeed, for any sub-

1-4244-0803-2/07/$20.00 ©2007 IEEE.

tree ST(A, $A) in o(I), each edge (ia,ib) in ST(A, $4) is
stored only once in a relation edge_A_B no matter how
many times ST(A, $A) (and thus the edge) appears in o ().
(2) Each Qcage_a_p in V, is defined by a SPJ query. Thus
V,; consists of only SPJ views. (3) V,, consists of a bounded
number of relational views even if o is recursively defined.

Updates on relational views. Given an update Ax on a
DAG compressed XML view o (I), we convert it to updates
Ay on the relational view V' = V,(I). The relational view
updates Ay consist of edge tuples of the form ¢ = (ia, ib) to
be inserted into or deleted from an edge relation edge_A_B.

To account for the side effects described earlier we com-
pute the relational view updates Ay such that (a) a newly
inserted subtree is only stored once in V' no matter how
many times it appears in the updated view, and (b) a deleted
subtree is not physically removed: only the tuple (ia,ib)
in V representing the corresponding parent-child edge is
deleted from its edge relation edge_A_B. More specifically,
the tuple corresponding to ia is not removed from gen_A
because ia is a parent node in r[p] and needs to be kept in
the XML view. To cope with subtree sharing, ¢b is not re-
moved from gen_B when the edge (ia, ib) is removed from
edge_A_B; instead, upon the completion of processing Ay,
our incremental maintenance algorithm runs in the back-
ground to remove tuples from gen_B’s that are not linked
from any node; at the completion of Ay gen_B’s are up-
dated.

3 Mapping XML View Updates to Relations

We present a technique for translating XML updates on
an XML view to updates on relational views representing the
DAG compression of the XML view. The technique consists
of four parts: (a) indexing structures for checking ancestor-
descendant relationships, (b) an efficient algorithm for eval-
uating XPath queries on DAGs and detecting side effects,
(c) algorithms to translate updates on the XML view to up-
dates on its relational representation, based on the indexing
structures and the evaluation algorithm, and (d) incremental
algorithms for maintaining the indexing structures.

3.1 Auxiliary Structures

To efficiently process recursion (‘//”) and filters in a DAG,
we introduce two auxiliary structures: a topological order
and a reachability matrix.

Topological order. Recall from Section 2 the function
gen_id(), which generates a unique id for each node based
on the value of its semantic attribute. Given a representation
of a DAG V/, we create a list L consisting of all the distinct
node ids in V' topologically sorted such that u precedes v
in L only if u is not an ancestor of v in the DAG, i.e., there
is no path from u to v. As will be seen shortly, L is use-
ful in evaluating XPath filters as well as in computing and

769

Input: the relational view V and topological order L.

Output: reachability matrix M.

M =0,

for(k := |L|; k > 0; k- -) /*process L from right to left */
d = L[k];
Aq = {az| a2 € anc(a1), a1 € parent(d) };
insert (a, d) into M for each a € Ag;

Uk W=

return M

Figure 3. Algorithm Reach

maintaining the reachability matrix. The list L can be com-
puted in O(|V|) time (see, e.g., [9]), where | V| is the size of
the relational views. Its size, |L|, is the number of distinct
nodes in the DAG, denoted by n. Note that L is computed
once when V is created and it is maintained incrementally.

Reachability matrix. To efficiently evaluate ancestor-
descendant relationship between pairs of nodes in a DAG,
we use a conceptual rechability matrix encoded as a rela-
tion M (anc, desc), where anc is an ancestor node, and desc
a descendant. We use desc(a) (resp. anc(a)) to denote the
descendants (resp. ancestors) of node a retrieved from M.

Relation M can be computed in O(|V|?log|V]|) time
from V (see, e.g., [9]). Capitalizing on the topological order
L we give Algorithm Reach, shown in Fig. 3, that computes
M in O(n |V|) time. It is based on dynamic programming:
for a node d, the ancestors of the nodes in the set of parents
of d, denoted by parent(d), are already known before we
compute ancestors Ay, such that we can compute A, by us-
ing those previously computed ancestors (lines 4-5). Given
the topological order guaranteed by L, this can be achieved
by traversing L backwards (line 2). Note that parent(d) can
be computed from the edge relations in V.

Algorithm Reach runs in O(n |V]) time: (a) for each
node in L we visit its parents once and thus any node v is
visited as many times as its in-degree, i.e., the number of
incoming edges to v in the DAG; (b) the sum of incoming
edges to all nodes v is |V]; (c) each visit takes at most O(n)
time. In practice, |[M| < n? < |V|?, where V is even up
to an exponential factor smaller than the XML tree 7T'.

3.2 Evaluating XPath Queries on DAGs

To translate updates Ax on XML views to updates Ag
on relational views and detect whether the update will yield
side effects, we must evaluate the XPath expression used in
Ax. The DAG compression of XML views introduces new
challenges: previous work on XPath evaluation has mostly
focused on trees rather than DAGs. While evaluation algo-
rithms were developed for path queries on DAGs [5, 21],
they cannot be applied in our setting because they (a) ei-
ther do not deal with complex filters which, as will be seen
shortly, require a separate pass of the input DAG, or (b) do
not address maintenance of the indexing structures they em-
ploy, which is necessary when the DAG is updated. Path-
query evaluation algorithms were also developed for semi-

1-4244-0803-2/07/$20.00 ©2007 IEEE.

structured data (general graphs). However, these algorithms
neither treat DAGs differently from cyclic graphs (and thus
may not be efficient when dealing with DAGSs), nor consider
XPath queries used in XML view updates.

To this end we outline an efficient algorithm for evaluat-
ing an XPath query on an XML tree that is (a) compressed
as a DAG, and (b) stored in edge relations V. The algorithm
takes as input an XPath query p over XML tree T, the rela-
tional views V/, and the reachability matrix M. It computes
(a) a set r[p] consisting of, for each node reached by p, a
pair (B, v), where v is the id and B the type of the node re-
spectively; (b) a set E,(r) consisting of, for each v reached
by p, tuples of the form ((C,u),v), where w is the id of
a parent of v in the DAG such that p reaches v through w,
and C is the type of u; the set F,(r) is needed for handling
deletions; and (c) the set of nodes S in T" which are affected
by the update but are not reachable via p. If the set S is not
empty, the update will generate XML side effects.

For XML data stored as a tree T, [16] developed an al-
gorithm that evaluates an XPath query p in two passes of 7.
The basic idea of [16] is to first convert 7" to a binary-tree
representation (before the two-pass process is invoked), and
then run a bottom-up tree automaton on the binary tree to
evaluate filters, followed by a run of a top-down tree au-
tomaton to identify nodes reached by p. It has linear-time
complexity, the “optimal” one can expect [16]. We next
show that a comparable complexity can be achieved when
evaluating XPath queries on a DAG.

Our algorithm uses the following variables: (a) A list
@ of filters including all the sub-expressions of filters in p,
sorted such that for any ¢;, g; in Q, ¢; precedes g; if g; is a
sub-expression of ¢;. (b) For each ¢ in) and each node v in
L, two Boolean variables val(g, v) and desc(q, v) to denote
whether or not the filter ¢ holds at v and at any descendant u
of v, respectively. The algorithm has two phases: a bottom-
up phase that evaluates filters in p and computes val(g, v)
and desc(q, v) for each node v € L, followed by a top-down
phase that computes r[p] and E,(r). Due to lack of space
we only outline the algorithm below.

Bottom-up. The key idea is based on dynamic program-
ming. For each node v in the topological order L, and
for each sub-filter ¢ in the topological order (), we com-
pute the values of val(gq,v) and desc(q,v). This can be
done by structural induction on the form of ¢. For exam-
ple, when ¢ is label() = A, val(q, v) is true if and only if v
is in gen_A. When q is ¢1 V g2, val(q,v) := val(q1,v) V
val(g2, v). When q is a path expression p, p can be rewritten
into a “normal form” 7;/ ... /n,, where each n; is either
(a) €[g:], (b) a label A, (c) wildcard ‘«’, or (d) ‘//’. The
normal form can be obtained in O(|p|) time. Then, if ¢ is
rewritten as //n2/ ... /n, with n; = //, val(g,v) is true
if either val(ny/ ... /nn,v) or desc(nz/ ... /nn,w) is true
for some child u of v; correspondingly, desc(q, v) is true

770

Input: an insertion of the form A x =insert (4,¢) into p
over T, and the relational view V.
Output: a group insertion Ay over V.
1. AV = @;
2 Bai={ (B, gen.id(Su), (C, gen_id($0))) | (u,0)
is an edge in ST(A, t), u, v with type B, C resp.};
r4 :=the id of ST(A, t)’s root as generated by gen_id(t);
for each ((B,ui), (C,vi)) € Ea
Av := Ay U { insert (ui, vi) into edge_B_C'};
for each (B, ui) € r[p]
Av := Ay U {insert (ui, r4) into edge_B_A};
return Ay ;

PN W

Figure 4. Algorithm Xinsert

if either val(q, v) or desc(q, u) holds. The algorithm pro-
ceeds in the topological orders L. Thus the truth values
of val(ne/ ... /nn,v) and desc(nz/ ... /nn,u) are already
available before evaluating val(g, v) and desc(q, v).

Top-down. We compute 7[p], E,(r) and S as follows.
As mentioned, p can be rewritten as 11/ ... /n,, in which
all the filters have already been evaluated to a truth value
at each node. Starting from the root r, we find nodes C;
reached after each step 7; and maintain a set of nodes .S in
T that are not reachable via p but will be affected by the
update. When n; is */* (resp. ‘//’), S is extended with the
parent (resp. ancestor) nodes of C; that are not reached via
p. These nodes can be found by using indexes on the edge
relations V' when 7); is A or %, and by means of the reach-
ability matrix M when 7; is ‘//’. The nodes reached by the
last step 7, are put in [p], along with their types. The par-
ents through which they are reached via p are put in E,(r)
along with their types. There is a side effect iff S is not
empty. At that point, users may either abort the update, or
continue using our update semantics.

Complexity. In the bottom-up phase, each node v is visited
at most as many times as its incoming edges. In the top-
down phase, each node is visited only once, except the final
step when a node u may be included in E,(r) at most as
many times as its the fan-out. The complexity of the algo-
rithm is therefore O(|p| |V]).

Observe the following: (a) When the DAG is a tree each
node has one incoming edge and our algorithm visits each
node at most twice, i.e., it has the same complexity as that
of [16]. When dealing with DAGs that do not have a tree
structure, it is necessary to visit all the edges in a DAG in the
worst case and thus our algorithm is optimal. (b) In contrast
to [16], our algorithm does not require the conversion to
binary trees and the construction of tree automata, which
are potentially very large. (c) Our algorithm works on DAGs
(including trees) while [16] cannot work on DAGs.

3.3 Translating Updates from XML to Relations

On account of the relational coding of XML views, a sin-
gle XML update may be mapped to multiple relational up-
dates (a group update) over the edge relations. We next give

1-4244-0803-2/07/$20.00 ©2007 IEEE.

two algorithms, Xinsert and Xdelete, for translating XML
view insertions and deletions to relational view updates.

Insertion. Algorithm Xinsert is presented in Fig. 4. Given
Ax = insert (A,t) into p on the XML view 7', the algo-
rithm returns the group insertions Ay over V' (which will
then be tested for acceptance). We first compute the set of
edges in the newly inserted subtree ST(A, t) rooted at r 4,
according to the publishing mapping (lines 2-3), through
function gen_id(). We then generate the relational view
updates: for each edge (ui,vi) in the newly inserted sub-
tree, we add (ui, vi) to Ay (lines 4-5); moreover, for each
(B,ui) € r[p], we add (ui,r4) as a new edge in Ay
(lines 6-7). The set r[p] of pairs (B, ui) of node identifiers
along with their types reached by XPath p from the root of T’
(line 6) is computed using our XPath evaluation algorithm.

Deletion. Given Ax = delete p, Algorithm Xdelete (not
shown due to space constraints — see [7]) returns the group
of deletions Ay over the edge relations, which will be tested
for acceptance. For each node vi in r[p] and each parent u¢
of vi in E,(r), Xdelete removes the edge (ui, vi) from V
(lines 2-3). The parent-child relation is computed by using
the set E,(r), whose computation is coupled with that of
r[p] (see Section 3.2).

Example 3.1: Consider the XML update Ax, = delete
//course [cno=CS320]//student[sid=S02] on the XML tree
in Fig. 1, which is to delete student SO2 from the CS320
subtree. Given this as input, Algorithm Xdelete yields
Ay, = {(takenBy,, studenty)}. O

Complexity. Alg. Xinsert takes O(|E4| + |r[p]|) time
at most (|E4| is the number of edges in ST(A,t)).
Alg. Xdelete takes O(|E,(r)]) time. Added to O(|p| |V])
for evaluating p, this is the cost of generating Ay from A x.

3.4 Maintaining Auxiliary Structures

The maintenance of auxiliary structures L and M is
performed in the background in parallel with the process-
ing of relational updates. What we ideally would like is
to incrementally update M. Existing incremental tech-
niques [12, 15] for updating reachability information are
not applicable since they rely on special auxiliary structures
which are themselves expensive to construct and maintain
(e.g., [12] requires the computation of a spanning tree, tak-
ing O(n |V|) time for each node insertion). Incremental al-
gorithms of updating topologically ordered lists (e.g., [19])
take O(|V'|) time per edge insertion. We give a maintenance
algorithm for M with O(n |V'|) complexity by using L, and
for L with O(n) time for each edge insertion using M.
Deletion. Incremental maintenance in response to XML
view deletions is given in Algorithm A, 1)delete (Fig. 5).
The algorithm efficiently produces the following by scan-
ning the elements of an XML deletion Ax: (a) deletions
Ajps over M, (b) an updated L, and (c) the set of edges

771

Input: a deletion of the form A x = delete p over T, the rel.
view V, reachability matrix M and topological order L.
Output: deletions A’V over V', Aps over M, and updated list L.
A,V =0, Ay =0
L :=the sorted list desc(r[p]) according to topological order L;
keep(d) :=true for each d € T'; /*initialize state */
for each d in L i traversed backwards
Pd = (D;
for each a € parent(d)
if ((C,a),d) ¢ Ep(r) and keep(a) = true
then P, := P; U{a};
Ag:={a2 | a2 € anc(a1),a1 € Py};
10. for each a € anc(d) \ Ay
11. Ay = Apg U { delete (a, d) from M};
12. if P; =0 /*compute A}, and update L*/
13. then keep(d) := false;

R

14. delete d from list L;
15. for any child d’ (of type H) of d (of type G)
16. Af, = Af, U { delete (d, d’) from edge . G_H };

17. return (AQ/, A]\{, L)

Figure 5. Maintenance algorithm A, 1 delete

A, in the deleted subtree that are no longer connected to
any nodes in the DAG and are to be passed to the garbage
collector for background processing. The set Aj, is a con-
sequence of deletions Ay computed by Xdelete. The need
arises when a node d € Ay is to be completely removed.
The algorithm progresses by populating deletions Ajy
while, simultaneously, removing elements from L and
populating Af,. The first step is arranging all nodes in
all deleted subtrees in a list Lr (line 2): we compute
desc(r[p]), i.e., the descendants of all nodes in r[p]; we
then sort L according to L; this is always possible since
Lgr C L. For each node d in the XML tree T" we associate a
state keep(d), initialized to true, that keeps track of whether
the node should be ultimately deleted or not (line 3). Lg
is then traversed backwards (line 4); this processing order
ensures that each d in Ly is processed after its ancestors
thus guaranteeing correct deletion semantics. For each d in
Lr we compute its undeleted parents (lines 6-8) Py (i.e.,
any node a in its parent set for which keep(a) is true) and
then its new ancestors Ay (line 9). If there is a node in d’s
current ancestors anc(d) that is not in A, it should be re-
moved from M (lines 10-11). If d does not have any parents
(i.e., P; = 0) we set keep(d) to false and delete it from L
(lines 13-14). According to the semantics of L, an element
removal does not affect the topological order, In addition,
all outgoing edges from a deleted node d are deleted from
V (lines 15-16); children d’ of d can be readily identified
from the edge relation determined by the types of d and d’.

Example 3.2: Recall Ax, of Example 3.1, Algorithm
Ay, pdelete returns (1) Alvl = @, (2) an unchanged
L, and (3) Ay = {(prereq,, students), (prereqs, sids),
(prereq,, names), ...}, ie., the reachability information
from nodes prereq,, course; and takenBy, to nodes in
the S02 subtree (studenty, sids and names). Note that
the set of edges {(takenBy,,studenty), (takenBy,, sidz),
(takenBy,,namez), ...}, i.e., the edges between takenBy,

1-4244-0803-2/07/$20.00 ©2007 IEEE.

(and thus courses) and the S02 subtree are still valid and are
therefore not included in Ay, . O

Insertion. Algorithm Ay)insert is shown in Fig. 6.
Given Ax = insert (A, t) into p, it finds the A »; over M to
maintain the reachability information, and updates the topo-
logical order L in response to the insertion of st(A,t).

It is simple to compute Ajs, which consists of two
parts: (a) the reachability matrix for the newly inserted DAG
ST(A, t) is computed by invoking Algorithm Reach (line 3);
(b) for each a € anc(r[p]) (ancestors of nodes in [p]) and
each d € ST(A,t), we add (a, d) to Aps (lines 4-5).

Maintaining L is a bit cumbersome. As will be shown,
M is useful in maintaining L. Before considering to in-
sert a DAG (st(A, 1)), we first consider how to maintain L
when one edge is inserted. For an edge insertion (u,v),
if v is already in front of w in L, L remains valid with-
out any change; otherwise, special care is needed to update
node positions in L. We illustrate this by an example. Con-
sider part of L: (..., dy,u,ay,,a1,dy, , Quy, v, . . .), where
a4y, and a,,, are ancestors of u, d,, is a descendant of v,
d, is a descendant of u, and a; is neither an ancestor of
u nor a descendant of v. After (u,v) is inserted, we can
obtain a correct topological order by moving v and its de-
scendants (d,,) between u and v such that they precede w.
This yields (..., dy,dy,, vV, U, Gy, , A1, Gy, - . .). Note that
d,, must be neither an ancestor of u (otherwise there is a
cycle) nor an ancestor of a;. To formalize this, we denote
the nodes between v and v in L as L[u : v]. Given an
edge insertion (u,v), the correct topological order can be
obtained by moving nodes in L{u : v] N desc(v) to be im-
mediately in front of v in L. The procedure of changing
L to reflect the insertion (u, v) is denoted as swap(L, u, v),
where u precedes v in L before the move.

We next explain the algorithm for updating L when in-
serting ST(A,t) (lines 6-14). Let L be the topological
order for ST(A,t) (line 2) and N¢ be the set of common
nodes in L and L 4. The basic idea of the algorithm is to
make the relative orders of nodes in N consistent in lists
L and L 4 before we merge L and L 4 to obtain the updated
L. To do this, we compute the topological order Ly, for
nodes in N¢ by considering the edges that connect nodes
of N¢ in either T' or ST(A, t) (line 7), and then align L and
L 4 with Ly, to make their positions consistent with Ly,
(lines 8-11). One subtlety is worth mentioning: when per-
forming the alignment we follow the order of Ly, from the
right to the left. This processing order ensures that the po-
sition of aligned nodes will not be changed by subsequent
alignment. To be specific, the aligned nodes are not descen-
dants of nodes to be aligned and thus will not be moved
any more when swap(L, u, v) is called in subsequent align-
ment (they are not descendants of v). Furthermore, if the
root of ST(A, t) is already in T', we may need to change the
order of L in response to the inserted edge (u,r4), where

772

Input: an insertion of the form A x =insert (A, t) into p over T, the
rel. view V/, reachability matrix M and topological order L.
Output: insertions A s over M, and updated list L.

compute N4 and 7 4, as lines 2-4 in Algorithm Xinsert;

L 4 := the topological order of nodes in ST(A, t);

A s = reachability matrix for ST(A, t); /*using Algorithm Reach*/

for each a € anc(r[p]) andeach d € Ny /* computing Ay */
Apg = App U {insert (a, d) into M };

N¢ := the set of common nodes in lists L and L 4; /*update L*/

L, := the topological order of nodes in N¢;

for (k = |Ln,|;k > 1;k——) /*align L4 and L with Ly */
= Lchk:]; vi= Ly [k —1];

10. ifordr, (u) < ordr, (v) thenswap(L4,u,v);

11. ifordy(u) < ordr(v) thenswap(L,u,v);

12.ifr4 € L then for each w in r[p]

13. ifordr(u) < ordp(ra) thenswap(L,u,r4);

14. L :=merge L 4 into L;

15. return (A s, L);

OR NN Nh W=

Figure 6. Maintenance algorithm Ay, insert

u € r[p](u ¢ L4) (lines 12-13). After we obtain two con-
sistent lists I and L 4, we can merge L 4 into L to generate
the updated L (line 14). This can be done by regarding the
nodes in N¢ as “pivots” and inserting the new nodes (i.e.
L4 \ N¢) into L before their respective “pivots”.

Complexity. The worst-case time complexity of Algo-
rithm Ay ydelete is O(n [V]), which is the cost of com-
puting new ancestors for nodes in L. For each node in
L we visit its parents once, which in total takes O(|V])
time in the worst-case (in practice it is often much smaller
than |V]); at each visit, the algorithm takes O(n) time. The
worst-case time complexity of Algorithm Ay)insert is
O(|Eal+|Eng |+ (INc|+Irlpll) n+|Nall Eal £ |Na| n),
where (a) [N 4| is the number of distinct nodes, and |F 4]
is the number of edges in the inserted subtree ST(A,¢),
(b) |N¢| is the number of common nodes in L and L4,
|Eng| is the number of those edges that connect nodes of
N¢ in either T or ST(A, t), and (c) n is the number of dis-
tinct nodes in 7. In practice |[N¢| < |Na| < |Ea| <
n < |V|. The first and second factors are the cost of com-
puting L4 and Ly, respectively, and the third factor is
the cost of maintaining L, where swap() is called at most
2|N¢| + |r[p]| times and each takes at most O(n) time.
The fourth factor is the cost of computing the reachability
matrix for ST(A, t), while the last factor is the cost of main-
taining the reachability between ST(A, t) and 7.

4 Updating Relational Views

We briefly outline the techniques for processing SPJ view
updates under key preservation. Details can be found in [7].

Key preservation. Consider an SPJ query Q (R, ..., Ry)
that takes base relations R, ..., R; of R as input, and re-
turns tuples of the schema R(d). We say that @ is key pre-
serving if for each R;, the primary key of R; is included in
a (with possible renaming).

Key preservation is far less restrictive than other condi-
tions proposed in earlier work for handling relational view
updates (e.g., [10, 14]). A mapping 0 : R — D from a

1-4244-0803-2/07/$20.00 ©2007 IEEE.

R (TCT T ToAG T [Ttveel [121 [T8]

F H K 25K 36.6K 25k 88K
avg. 3 shared #" 1N TOK | 251K | 366K | 251K | 900K
Cechildren = = ™\ [TT00K | 25M | 3./M | 25M | 9.64M
max.8 ~ F H .. [IM | 25.IM | 36.6M | 25.IM | 102M

4N — L -
¢ ¢ ¢ (b) Dataset statistics; |C| is measured in tu-

ples, the remaining in number of nodes.

recursion levels
(a) XML view
Figure 7. Description of the datasets

relational schema to a DTD employs SPJ queries [1]. Ev-
ery SPJ query can be made key-preserving by extending its
projection-attribute list to include the primary keys.

Analysis. Given a collection of views) defined as SPJ
queries under key preservation, a relational database I of
schema R, and a group view update Ay, is there a group
update Ar on the database I such that Ay (V(I)) =
V(ARr(I))? In this setting, Ay consists of either only tuple
deletions or only tuple insertions, as produced by the trans-
lation algorithms of the last section. These deletions and
insertions in Ay are translated to deletions and insertions
in A g, respectively. We use V' to denote the view V(I). We
refer to this problem as the view updatability problem.

It is known [3] that without key preservation, the updata-
bility problem is NP-hard for a single deletion and a single
PJ view, i.e., when Ay, consists of a single deletion and V is
a view defined with projection and join operators only. We
show that key preservation simplifies the updatability anal-
ysis for a collection of SPJ views and group deletions. More
complexity results of view updates can be found in [8].

Theorem 4.1: For group view deletions Ay, the SPJ view
updatability problem is in PTIME. O

The problem is intractable for insertions under key
preservation; the lower bound is verified by reduction from
the non-tautology problem, which is NP-complete.

Theorem 4.2: The SPJ view updatability problem is NP-
complete even when Ay has a single insertion and V has a
single view. O

We give a PTIME algorithm for computing database tuple
deletions A i from a group of view deletions Ay in [7]. We
also provide in [7] a heuristic algorithm for handling group
view insertions by reducing the SPJ view insertion problem
to SAT, one of the most studied NP-complete problems. This
allows us to leverage a well-developed SAT solver [22] to
efficiently compute Ay, if it exists.

S Experimental Study

We conducted a preliminary experimental study of our
proposed view update mechanism in order to verify its ef-
fectiveness.

All experiments were conducted on a dataset of four base
relations: C(cy,--- ,c16), F(f1, -, fi6), H(h1, ho) and
Cu(dcy, -+, c}g), where underlined attributes indicate keys.
The domain of f; was equal to that of ¢; and ¢;. The

773

"1000 10000 100000 1e+006

o o
Q Q
& &
() ()
£ £
€ €
> >
i i
0.1 ‘ 1 0.1 s .
1000 10000 100000 1e+006 1000 10000 100000 1e+006
Relation size |C| (tuples) Relation size |C| (tuples)
(a) W deletion (b) W5 deletion
o)
Q Q
L <L
[} (o}
£ £
S S
5 S
[i
0.1 Il Il Il Il

0.1
1000 10000 100000 1e+006

Runtime (sec)

Raw data processing (sec)

0.1
1000

S N N)

10000 100000

1e

Relation size |C| (tuples)

(c) W3 deletion

Xdelete —+—
Xinsert ---x---

insert
M/L delete =~
M/Linsert ---&- L

=) é!e\%e{rén B G B

12 3 4 5 6 7 8 9 10
|E_p(r)| (deletions) or |r[|p|]| (insertions)

45
40
35
30
25
20
15
10
5

+006

Auxiliary structure maintenance (sec)

Runtime (sec)

Raw data processing (sec)

0.1
1000

o - v w A o o N

10000 100000
Relation size |C| (tuples)

(d) W1 insertion

Xdelete —+—

B
ke o
r insert .-
M/L delete -~
F MLinsert =~
Lo

0y
[N
‘

|ST(A,1)| (in terms of C-subtrees)

1e+006

70
60
50
40
30
20
10
0

Auxiliary structure maintenance (sec)

Relation size |C] (tuples)
(e) Ws insertion

Relation size |C| (tuples)

(f) W3 insertion

(2) Varying |r[p]|or |Ep(r)] (h) Varying [ST(A,)]

Figure 8. Update performance as a function of the sizes of the relational database and the view update

remaining C' and F' attributes controlled how many join-
ing C and F tuples were filtered out. The domains of £
and hy were the same as that of ¢;. In addition (1) for
each ¢ € C U Cy there would be on average three tu-
ples h € H, where c;=hy, and (2) hy<hs, where (hq,
ho) € H. The universe of C, namely Cy, consisting of
100M C-tuples, ensured that whenever ho joined with ¢q
it always yielded a C-tuple. The sizes of F' and H were
proportional to the size of C, used for reporting the size of
the database; specifically, we report |C|, which ranges from
1,000 to 1,000,000 tuples, while |F'| = |C| and |H| ~ 3|C]|.
We defined an XML view of C,F and H; as indicated
in Fig. 7(a), the C' nodes in the view were recursively de-
fined, and a recursion of C'in the view can be understood as
ey, f1,h1,h2 (061:f1 Afi=hiAha=c{Aca=faAcs=fsNca=fa (C X
F x H x Cy)). Here C subtrees are shared, and subtree
sharing accounted for 31.4% of C instances. Figure 7(b)
lists some statistics on the number of published C' subtrees
and their compressed DAGs, and the corresponding sizes of
the reachability matrix M and topological order L.

Varying database size. We generated two random up-
date workloads over the XML view, one for insertions, and
one for deletions; each workload consisted of three update
classes, each class including ten operations. The classes
were characterized by the XPath queries used to define the
updates. Class W; used XPath queries using the descen-
dant axis and value filters; XPath queries in W5 used the
child axis and value filters; finally, W3 contained XPath
queries using the child axis and both structural and value
filters. The times we report include: (a) the time to evaluate
XPath queries; (b) the time to translate Ax to Ay (Algo-
rithms Xinsert and Xdelete) and subsequently Ay to Ag,
and the time to execute the update; and (c) the time to main-
tain the auxiliary structures in the background (Algorithms
Am,Lyinsert and Ay 1)delete).

Figures 8(a), 8(b) and 8(c) show the performance of the
deletion algorithms for Wy, Wy and W3, respectively. We
plot the runtime of performing the updates broken into their
(a), (b) and (c) above constituents for various database sizes.

1-4244-0803-2/07/$20.00 ©2007 IEEE.

Note that both axes use a logarithmic scale. The algorithms
scale linearly with the size of the relational database. As
shown, deletion time is dominated by XPath evaluation. Al-
though the cost for auxiliary structure maintenance is rela-
tively high, it is performed in the background. W (b) is the
highest reported time among the three workloads since its
XPath queries generate more edges (i.e., a greater |E,(r)]),
which are then examined by Algorithm delete.

Similar results are reported for insertions, as shown in
Figures 8(d), 8(e) and 8(f) for Wy, W5 and W3, respectively
(again, using logarithmic scales). The size of the inserted
subtree was fixed. The SAT solver [22] returned a truth as-
signment in 78% of the cases and we only report the time
for insertions where the SAT solver successfully returned a
truth assignment. As for deletions, our insertion algorithms
scale linearly with the size of the relational database.

Varying update size. For these experiments, we fixed |C|
to 100K tuples. Figure 8(g) shows the performance of
each algorithm as we varied |E,(r)| (see Section 3.2) for
deletions and |r[p]| for insertions, while keeping ST(A, t)
constant to a single C-subtree. The runtimes for Algo-
rithms Xinsert, Xdelete, delete and insert are shown on the
left y-axis and the runtimes for algorithms Ay,)insert and
A(m,L)delete are shown on the right one. The translation
time from Ax to Ay for Algorithm Xinsert (resp. Algo-
rithm Xdelete) increases slightly as |r[p]| (resp. |E,(r)])
increases. The slope for Algorithm delete is large, as the in-
crease of |E,(r)| involves more queries to determine the
source tuples to be deleted. The performance of Algo-
rithm insert is dominated by the coding time. As |C| is
far larger than |ST(A,t)| and |r[p]|, and the number of
database queries required remains fixed, the coding time re-
mains roughly constant though the size of the resulting cod-
ing increases; that only results in a non-observable increase
in the SAT solver’s runtime keeping the curve relatively flat.
The performance of Algorithm Ay)insert (which can be
found in [7]) and Algorithm Ay)delete is almost unaf-
fected by [r[p]]| (resp. |Ey(r)|) since [ST(A, t)] is fixed.
Similar results are shown in Fig. 8(h) where we var-

774

Sizes Incremental (Sec.) Recomputation (Sec.)
[C] Insertion | Deletion L] M
1K 1.0 1.0 6.3 9.8
10K 4.6 3.1 86 288
100K 22.7 16.9 631 3,600
M 84.2 61.5 8611 14,000

Table 1. Incremental maintenance of L and M
ied the size of |ST(A,t)| while fixing |E,(r)] = 1 and
|r[p]| = 1. The performance of Algorithm Xdelete re-
mains unchanged and its runtime is negligible for a fixed
|Ep(r)|. Algorithm Xinsert scales linearly with the update
size [ST(A,)| as it needs to process ST(A,t) to generate
Ay. Algorithms Ay)insert and Ay)delete evidently
scale linearly with the update size for similar reasons.

Effectiveness of incremental maintenance. The cost of
incrementally maintaining the reachability matrix M and
the topological order L is shown in Table 1. The first col-
umn is the size of the database. The total time needed for
incrementally maintaining both auxiliary structures is given
in the second column for Algorithm Ay,)insert and in the
third column for Algorithm Ay)delete. The time for re-
computing each structure is shown in the last two columns.
The advantages of incremental maintenance become more
prominent as the size of the data increases.

6 Related Work

Commercial database systems [13, 20, 23] provide sup-
port for defining XML views of relations and restricted view
updates. IBM DB2 XML Extender [13] supports only propa-
gation of updates from relations to XML but not vice-versa.
Oracle XML DB [20] does not directly allow updates on
XML (XMLType) views. In SQL Server [23], users specify
the “before” and “after” XML views using updategram in-
stead of update statements; the system then computes the
difference and generates SQL update statements. The views
supported are very restricted: only key-foreign key joins
are allowed; neither recursive views nor updates defined in
terms of recursive XPath expressions are supported.

There have been recent studies on updating XML views
published from relational data [2, 26]. In [2], XML views are
defined as query trees and are mapped to relational views.
XML view updates are propagated to relations only if XML
views are well-nested (i.e., key-foreign key joins), and if the
query tree is restricted to avoid duplication. An analysis on
deciding whether or not an update on XML views is translat-
able to relational updates, along with detection algorithms,
are provided in [26] and demonstrated in [25].

There has been a host of work ([10, 13, 14, 18, 20, 23])
on relational view updates. [10] provides algorithms for
handling restricted view updates without side effects in the
presence of functional dependencies. The algorithm in [14]
studies updates (with side effects) on a restricted class of
SPJ view: key-foreign key joins and join attributes must be
preserved. Our key preservation condition is less restrictive

1-4244-0803-2/07/$20.00 ©2007 IEEE.

than that of [10, 14]. Commercial DBMSs [13, 20, 23] allow
updates on very restricted views.

7 Conclusions

We have proposed new techniques for updating XML
views published from relational data. We plan to extend
our techniques to handle more general XML updates in [24].

References

[1] P. Bohannon, B. Choi, and W. Fan. Incremental evaluation of
schema-directed XML publishing. In SIGMOD, 2004.

[2] V. P. Braganholo, S. B. Davidson, and C. A. Heuser. From
XML view updates to relational view updates: old solutions
to a new problem. In VLDB, 2004.

[3] P.Buneman, S. Khanna, and W. Tan. On propagation of dele-
tions and annotations through views. In PODS, 2002.

[4] M. . Carey, J. Kiernan, J. Shanmugasundaram, E. J. Shekita,
and S. N. Subramanian. XPERANTO: Middleware for pub-
lishing object-relational data as XML documents. In VLDB,
2000.

[5] L. Chen, A. Gupta, and M. E. Kurul. Stack-based algorithms

for pattern matching on dags. In VLDB, 2005.

[6] B. Choi. What are real DTDs like. In WebDB, 2002.

[7]1 B. Choi, G. Cong, W. Fan, and S. D. Viglas. Updating Re-
cursive XML Views of Relations, 2006. Full paper.

[8] G. Cong, W. Fan, and F. Geerts. Annotation propagation re-
visited for key preserving views. In CIKM, 2006.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to algorithms. McGraw-Hill, 2001.

[10] U. Dayal and P. A. Bernstein. On the correct translation of
update operations on relational views. TODS, 7‘53%, 1982.

[11] M. F. Fernandez, A. Morishima, and D. Suciu. Efficient eval-
uation of XML middleware queries. In SIGMOD, 2001.

[12] G.F.Italiano. Finding paths and deleting edges in directed

acyclic gra hs. Inf. Process. Lett., 28, 1988.
[13] IBM. IBM DB2 Universal Database SQL Reference.
[14] A. Keller. Algorithms for translating view updates to

database updates for views involving selections, projections,

and joins. In PODS, 1985.
[15] V. King and G. Sagert. A fully dynamic algorithm for main-

taining the transitive closure. In ACM Symposium on Theory
oéComputin% 1999.)

[16] C. Koch. Efficient processing of expressive node-selecting
queries on XML data in secondary storage: A tree automata-
based approach. In VLDB, 2003.

[17] R. Krishnamurthy, R. Kaushik, and J. Naughton. XML-SQL
query translation literature: The state of the art and open
problems. In Xsym, 2003.]

[18] J. Lechtenborger and G. Vossen. On the computation of re-
lational view complements. TODS, 28(2):175-208, 2003.

[19] A. Marchetti-Spaccamela, U. Nanni, and H. Rohnert. Main-
taining a topological order under edge insertions. Inf. Pro-
cess. Lett., 59(1), 1996.

[20] Oracle. SQL Reference.

[21] R. Schenkel, A. Theobald, and G. Weikum. Efficient creation
and incremental maintenance of the HOPI index for complex
XML document collections. In /ICDE, 2005.

[22] B. Selman and H. Kautz. Walksat home page, 2004.
http://www.cs.washington.edu/homes/kautz/walksat/.

[23] SQL server. MSDN Library.

[24] W3C. XQuery Update Facility. W3C Working Draft, May
2006. http://www.w3 .org/TR/}ﬁ{uﬁdate/.

[25] L. Wang, E. A. Rundensteiner, and M. Mani. Ufilter: A
lightweight XML view update checker. In /ICDE, 2006.

[26] L. Wang, E. A. Rundensteiner, and M. Mani. Updating XML
views published over relational databases: Towards the exis-
tence of a correct update mapping. DKE, to appear.

775

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

