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Abstract Built specifically for the Semantic Web, triple stores are required to accommodate a large

number of RDF triples and remain primarily centralized. As triple stores grow and evolve with time,

there is a demanding need for scalable techniques to remove resource and performance bottlenecks in

such systems. To this end, we propose a fully decentralized peer-to-peer architecture for large scale

triple stores in which triples are maintained by individual stakeholders, and a semantics-directed search

protocol, mediated by topology reorganization, for locating triples of interest. We test our design through

simulations and results show anticipated improvements over existing techniques for distributed triple

stores. In addition to engineering future large scale triple stores, our work will in particular benefit the

federation of stand-alone triple stores of today to achieve desired scalability.
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1 Introduction

The Semantic Web is intended to allow

people to find, share and integrate informa-

tion more easily than ever before by giving

it well-defined meaning expressed by RDF (Re-

source Description Framework) and OWL (Web

Ontology Language) which is built on RDF

and RDF Schema. RDF encodes the mean-

ing in set of “triples”, where each triple con-
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sists of a subject, predicate and object that

correspond to a resource, property and prop-

erty value. RDF triples form the web of in-

formation about resources identifiable on the

Web and can be utilized by machines to effec-

tively process information on the Web based

on the attached meaning (in the form of meta-

data). As the development and deployment

of practical Semantic Web applications re-

quire technologies that support efficient storage

and retrieval of RDF data (that is, triples),

a number of triple stores (e.g. Sesame[1 ],

3store[2 ], Joseki (http://www.joseki.org/),

Kowari (http://www.kowari.org/) and Jena[3 ])

came into existence which provide facilities for

persistent storage of RDF data by means of a

relational database, an XML file or proprietary

information repositories.

Most of the triple stores are centralized in

the sense that RDF data management occurs

at a single place and scalability is achieved by

supporting more triples in a single store. The

number of triples that are handled by existing

triple stores can be up to 1 billion, loading time

for which is about several hours1 . To deal with

triple stores hosting triples of higher orders of

magnitude, satisfactory solutions have yet to

appear on the horizon.

Relying upon uninteroperable centralized

triple stores to realize the vision of the Seman-

tic Web, is unrealistic. This is because the

real magic of the Semantic Web comes from

the fact that there is one Semantic Web and

from the network effects of sharing (of infor-

mation), but obviously, centralized triple stores

do not facilitate full exploitation of information

as expected. Although URIs help identify dis-

tributed resources (that is, distribution of data

is supported), the centralized nature of triple

stores severely limits its extent of distribution

of data management which, as well as distribu-

tion of data, is considered crucial in removing

resource and performance bottlenecks in such

systems.

In view of this, decentralized approaches

have been proposed using peer-to-peer (P2P

hereafter) as the main paradigm for managing

RDF data[4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ]. P2P computing[12 ]

is notable for supporting collaboration: it pro-

vides individual nodes (or peers) with autonomy

in control of their resources and empowers shar-

ing of the resources in a decentralized, scalable

and ad hoc fashion. By consolidating their re-

sources (bandwidth, storage capacity and pro-

cessing power for example), an array of peers

in a P2P network are capable of carrying out

distributed computing tasks.

In this work (referred to as S-RDF) we pro-

1http://esw.w3.org/topic/LargeTripleStores



Jing Zhou et al.: Building a Distributed Infrastructure for Scalable Triple Stores 3

posed an unstructured P2P architecture (see

Section 3.3) for large scale RDF data manage-

ment systems in which no centralized control is

present: the corpus of RDF triples is distributed

among peers and each peer is responsible for

maintaining and publishing (or advertising) the

triples that they would like to share with oth-

ers. Triples are managed in multiple files, or

RDF data files, and are only loaded into triple

stores when needed. Location of RDF data files

is supported by a semantics-directed search pro-

tocol (see Section 3.7.1) which makes use of the

semantic relationship between resources hosted

by neighboring peers to propagate queries. The

operation of the search protocol is mediated by

topology reorganization that aims to achieve a

desirable global performance by adapting the

neighborhood of peers locally.

Note that although our approach is based

on unstructured P2P, the semantics-directed

search (SDS) protocol differs much from canon-

ical searching techniques for unstructured P2P,

e.g. flooding and random walk, in that queries

are forwarded to peers with a high probability

of satisfying the queries in most cases. The an-

ticipated performance gain of our design over

existing techniques is confirmed through simu-

lations. In contrast to database researchers[4 ,5 ]

who focus studies on acquiring semantically cor-

rect answers for scalable RDF data manage-

ment, we explore techniques in large scale triple

store to enable efficient query routing. It is as-

sumed in this work that queries propagated to

other peers that use different ontologies[13 ] can

be reformulated by employing ontology map-

ping tools (e.g. [14] and [15]).

We review related work in the following sec-

tion. The design issues of S-RDF are discussed

in Section 3. In Section 4 we present the eval-

uation results of our work. Finally, we outline

some conclusions and future work in Section 5.

2 Related Work

In recent years, there has been a plethora

of research on P2P computing and we restrict

our discussion to those which aimed to address

RDF data management and closely related is-

sues, and others that gave us much inspiration.

Edutella[6 ] aimed to provide an RDF-based

metadata infrastructure for P2P networks based

on the JXTA framework[16 ]. Peers register the

queries they may be asked through the query

service. Queries are propagated through the

network to peers that have registered their in-

terest in this kind of queries. The results are

sent back to the requester. In subsequent work

on Edutella, Nejdl et al.[7 ] proposed a super-

peer-based query routing mechanism with rout-

ing indices. Super-peers in the network are ar-



4 J. Comput. Sci. & Technol., Month 200X, Vol.21, No.X

ranged in a hypercube topology that allows for

efficient broadcast and search. Kokkinidis et

al.[8 ] described a SQPeer Middleware (with two

candidate architectures) for routing and plan-

ning queries in a P2P network. In the super-

peer-based P2P alternative, each peer is con-

nected to at least one super-peer. A peer for-

wards its corresponding view to a super-peer

when it connects to the super-peer. All super-

peers are aware of each other in order to answer

queries. In SQPeer built on DHT-based struc-

tured P2P[17 ], peers are logically placed accord-

ing to the value obtained by applying a hash

function to their IP address. No single peer

has a global knowledge about all peer views and

the localization information about remote peer

views is provided by a lookup service.

Piazza[9 ] is one of the very few unstructured

P2P systems designed to support data manage-

ment in Semantic Web applications. Both lo-

cal point-to-point mappings between small sets

of nodes and collaboration through mediated

schemas or ontologies are supported. A query

is answered by rewriting it using the informa-

tion, which is captured in mappings, about

the relationship between schemas and about

data instances. A flooding-like technique was

employed to process queries and the designers

claimed that they focus mostly on obtaining se-

mantically correct answers.

P2P systems using flooding to propagate

queries are notorious for poor scalability since

query processing consumes a large amount of

bandwidth as the network size increases. For

scalable solutions, Lv et al.[18 ] proposed using

multiple random walk and demonstrated that,

with a fixed number of random walkers, the al-

gorithm can locate the data object of interest

almost as quickly as Gnutella’s flooding while

reducing the network traffic by two orders of

magnitude in many cases at the expense of a

slight increase in the number of hops.

Cai and Frank[10 ] proposed a scalable RDF

repository called RDFPeers in which a triple is

stored at three places in a multi-attribute ad-

dressable network. They extended Chord[19 ] by

applying hash functions to the subject, predi-

cate and object values of the triple. RDFPeers

was demonstrated to provide very good scalabil-

ity and fault resilience due to its roots in Chord.

Stuckenschmidt et al.[11 ] presented an archi-

tecture for querying distributed RDF reposito-

ries by extending the Sesame system[1 ]. Well-

understood database techniques were borrowed

to optimize queries against distributed RDF

repositories. Their work focused on resolving

queries in a limited scenario in which queries

were sent from a single query originator and

query answers might only reside on one-hop

away neighbors.
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The five approaches mentioned above (ex-

cept [18]) were primarily intended to address

RDF data management and associated issues

in P2P environments. Among others, SQPeer

(adopting a structured P2P architecture) and

RDFPeers provide the best scalability because

of the use of DHTs. However, as we will dis-

cuss in Section 3.3, DHTs-based solutions place

severe limits on the network topology and the

placement of the resources in the system, which

makes them unable to cater for S-RDF that al-

lows peers to maintain their own triples. Al-

though Edutella, Piazza and the architecture

presented in [11] solved this problem, Edutella

(super-peer-based) imposed a deterministic hy-

percube shape on P2P networks, thus gener-

ating an overhead to establish it, and none of

the others focused on scalable schemes for query

routing as S-RDF did.

Our work was much motivated by Gia[20 ].

In view of the natural heterogeneity present in

most P2P systems, Chawathe et al. proposed

new mechanisms, including dynamic topology

adaptation, active flow control, one-hop replica-

tion of pointers to content, and biased random

walk-based search, to improve the scalability of

Gnutella-like P2P systems. The aggregate of

these design components was demonstrated to

provide three to five orders of magnitude im-

provement in the total capacity of the resultant

system with significant robustness to failures.

Also directly relevant is the work of Haase

et al.[21 ] They proposed using expertise-based

selection of peers and ontology-based matching

with a similarity measure to improve the search

performance of P2P systems. Queries were for-

warded to the best n peers on a peer list. Dy-

namic semantic topologies and scalable search

mechanisms have yet to be incorporated into

their model. In this regard, our efforts in this

paper complement their work. The technique

of expertise-based selection of peers was later

adopted by Bibster[22 ], a semantic-based P2P

system built upon the JXTA platform, for ex-

changing bibliographic metadata.

Two other pieces of work examined the use

of the shortcut-based search technique to im-

plement efficient content location in P2P sys-

tems. Menascé[23 ] presented a probabilistic

search protocol that made use of a directory

cache at peers. When a resource of interest

was found, a ResourceFound message was sent

along the path that the query message had

traversed until it reached the requester. This

message updated the directory cache at every

peer it visited. Sripanidkulchai et al.[24 ] pro-

posed building the interest-based shortcuts on

top of P2P systems. Peers sharing similar inter-

est created shortcuts to one another and used

these shortcuts to locate content in the first
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place. When shortcuts failed, they resorted to

the search mechanism provided by the underly-

ing P2P system. Our work utilizes the varia-

tion of the aforementioned shortcuts to achieve

efficient resource location, making peers with

similar resources closer to one another through

topology reorganization (see Section 3.6).

3 S-RDF

In this section, we begin with a discussion on

how to disintegrate a large scale RDF repository

and describe its fragments. Then, we detail the

proposed architecture for S-RDF and describe

the querying scenarios of S-RDF. Finally, we

present the primary components of the solution

to S-RDF: ontology-based matching, topology

reorganization, and the SDS protocol.

3.1 Disintegrating Large Scale RDF

Repository

Contrary to common practice of maintaining

hundreds of millions of triples in a centralized

triple store, we believe storing triples in mul-

tiple RDF data files, organizing the files in a

semantics-aware hierarchy, and loading files or

merely groups of triples into a triple store on de-

mand will mitigate the inherent scaling problem

in centralized triple stores and facilitate efficient

resource discovery.

One can break down a very large RDF repos-

itory at several levels of granularity, ranging

from a single triple and the URIrefs it comprises

to a snippet (that is, a collection of triples with

a common subject and made within a particular

context)[25 ]. The level of granularity is closely

related to the way the fragments of the RDF

repository can be well described and efficiently

queried.

Our previous work on unstructured P2P hy-

permedia link services[26 ] in which each resource

was characterized by means of a number of top-

ics that best represented its content, gives us in-

sight into how to split and describe RDF data

files in S-RDF and to perform efficient search

over them. As the subject in an RDF triple sim-

ilarity with the concept of topic that we used in

[26 ], we assign triples to RDF data files in re-

sponse to the type of their subject2 . This, how-

ever, should not be interpreted as obviating the

use of predicates or objects to group triples3 .

2Sayers and Wilkinson[25 ] adopted a similar granularity based on a combination of subject and context for

caching and distribution of RDF triples.
3Property tables and vertical paritioning have shown to outperform the standard triple store approach by more

than a factor of 2 and have superior scaling properties in a centralized setting[27 ]. However, for a decentralized

RDF triple store like the S-RDF, grouping RDF triples based on subject seems more viable in terms of supporting

efficient query resolving and routing, and thus can help deliver desirable scalability as demonstrated in this work.
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<akt:Researcher-In-Academia rdf:about="http://194.66.183.26/WEBSITE/GOW/ViewPerson.aspx?Person=6610"> 
  <akt:family-name>Hall</akt:family-name>  
  <akt:has-appellation rdf:resource="http://www.aktors.org/ontology/portal#Prof" />  
  <akt:full-name>W Hall</akt:full-name>  
  <akt:works-for rdf:resource="http://www.hesa.ac.uk/#H-0160" />  
  <akt:works-in-unit rdf:resource="http://194.66.183.26/WEBSITE/GOW/ViewDepartment.aspx?Department=750" />  
  <akt:has-telephone-number>+442380592388</akt:has-telephone-number>  
  <akt:has-fax-number>+442380592865</akt:has-fax-number>  
  <akt:has-email-address>wh@ecs.soton.ac.uk</akt:has-email-address>  
  <akt:has-research-interest rdf:resource="http://194.66.183.26/WEBSITE/GOW/research_topics_def.htm#4" />  
  <akt:has-research-interest rdf:resource="http://194.66.183.26/WEBSITE/GOW/research_topics_def.htm#23" />  
  <akt:has-research-interest rdf:resource="http://194.66.183.26/WEBSITE/GOW/research_topics_def.htm#31" />  
  <akt:has-research-interest rdf:resource="http://194.66.183.26/WEBSITE/GOW/research_topics_def.htm#45" />  
  <akt:has-research-interest rdf:resource="http://194.66.183.26/WEBSITE/GOW/research_topics_def.htm#61" />  
  <akt:has-research-interest rdf:resource="http://194.66.183.26/WEBSITE/GOW/research_topics_def.htm#62" />  
  <akt:has-research-interest rdf:resource="http://194.66.183.26/WEBSITE/GOW/research_topics_def.htm#67" />  
  <akt:has-research-interest rdf:resource="http://194.66.183.26/WEBSITE/GOW/research_topics_def.htm#97" />  
  <akt:has-research-interest rdf:resource="http://194.66.183.26/WEBSITE/GOW/research_topics_def.htm#86" />  
  <akt:has-research-interest rdf:resource="http://194.66.183.26/WEBSITE/GOW/research_topics_def.htm#88" />  
  <akt:has-research-interest rdf:resource="http://194.66.183.26/WEBSITE/GOW/research_topics_def.htm#123" />  
  <akt:has-research-interest rdf:resource="http://194.66.183.26/WEBSITE/GOW/research_topics_def.htm#145" />  
  <akt:has-research-interest rdf:resource="http://194.66.183.26/WEBSITE/GOW/research_topics_def.htm#173" />  

 </akt:Researcher-In-Academia> 

 

Figure 1: Snapshot of statements describing a common subject resource

The practice of grouping RDF triples

based on subject can also be seen in

3store[2 ]. For instance, the statements

in Fig. 1, extracted from the file at

http://triplestore.aktors.org/data/EPSRC/epsrc-

people.rdf, describe the properties of a subject

resource specified by http://194.66.183.26/WEB-

SITE/GOW/ViewPerson.aspx?Person=6610

and this resource is an instance of

acm:Research-In-Academia.

The subject-based split of an RDF triple

repository may be accompanied by some issue.

Suppose if a query involves a path in the RDF

graph of length N , resolving the query would

typically entail location of at least N different

sources. To what extent this problem would

affect the overall performance of RDF query re-

solving (only if these sources are associated with

distinct peers), depends on the fraction of such

queries that is different from application to ap-

plication. The overhead incurred can be par-

tially reduced by efficient search mechanisms.

3.2 Describing RDF Data Files

Apart from splitting a large scale RDF repos-

itory with a fine-grained level, describing its

fragments (that is, the RDF data files) using

characteristic terms is also crucial in achieving
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increased scalability since we can then develop a

search mechanism to locate and load associated

RDF data files.

We use the subjects of the triples that an

RDF data file contains to describe the file since

a large scale triple repository is divided based

on the subject of triples. This process can be

carried out by the description generator, an au-

tomatic tool we developed for this work. The

description generator takes an RDF data file as

input, parses it, and extracts distinct types of

subjects to generate a description of the file.

In certain cases, the description generator

may resort to ontologies for analyzing the re-

lationship between the types of subjects and

then select the most appropriate one to de-

scribe an RDF data file. For instance, Fig-

ure 2 presents the description of a peer’s

RDF data files that contain triples describing

three different kinds of resources. Of all re-

sources, we observed that the one identified by

http://triplestore.aktors.org/data/EPSRC/epsrc-

institutions.rdf needs to be examined fur-

ther. In this file, some resources are in-

stances of class akt:Organization4 , whereas

others are instances of akt:University. We

eventually chose akt:Organization as the

descriptive term since the related ontol-

ogy at http://www.aktors.org/ontology/portal

shows that akt:University is a subclass of

akt:Organization. There can be more than one

term used to describe an RDF data file.

3.3 Selecting a Software Architecture

The primary goal of this work is to explore

scalable techniques to eliminate resource and

performance bottlenecks in large scale triple

stores. To this end, we chose the unstructured

P2P5 as the architecture of the S-RDF since it

helps satisfy our requirements.

Of all P2P systems, structured P2P ac-

complishes satisfactory scalability by employ-

ing the DHT (Distributed Hash Table) ab-

straction. However, Chawathe et al.[20 ] dis-

covered in P2P file sharing systems that peer

clients were extremely transient and the high

rate of churn would cause significantly more

overhead for structured P2P systems than for

those based on an unstructured overlay network

(e.g. Gnutella). Moreover, the network topol-

ogy in structured P2P is assumed to be tightly

controlled and the placement of resources is

4http://www.aktors.org/ontology/portal#Organization
5P2P systems can be simply divided into hybrid P2P (e.g. Napster), unstructured P2P (e.g. Gnutella), and

structured P2P (e.g. CAN[28 ], Chord[19 ] and Pastry[29 ]). This classification may not be as rigid as it used to

be. However, it emphasizes the different ways resource discovery is carried out in P2P systems and is sufficient to

distinguish our approach from others.
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<?xml version=“1.0” encoding=“UTF-8”?> 
<rdf:RDF xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#” 
        xmlns:ex=“http://www.example.com/”> 
        <ex:rdf-data-file rdf:about=“http://triplestore.aktors.org/data/ccs98.rdf”> 
               <ex:subject rdf:resource=“http://www.acm.org/class/1998/Research-Area”/> 
        </ex:rdf-data-file> 
        <ex:rdf-data-file rdf:about=“http://triplestore.aktors.org/data/EPSRC/epsrc-people.rdf”> 
              <ex:subject rdf:resource=“http://www.aktors.org/ontology/portal#Researcher-In-Academia”/> 
       </ex:rdf-data-file> 
       <ex:rdf-data-file rdf:about=“http://triplestore.aktors.org/data/EPSRC/epsrc-institutions.rdf”> 
              <ex:subject rdf:resource=“http://www.aktors.org/ontology/portal#Organization”/> 
       </ex:rdf-data-file> 
</rdf:RDF> 
 
 

Figure 2: Example descriptions of a peer’s RDF data files

precisely determined. We believe that an un-

structured P2P paradigm can better model our

collaborative scenario in which peers maintain

their triples and share them with others.

A large scale RDF triple repository to be

disintegrated may involve triples belonging to

multiple users. In this case, triples are always

allocated to their own users in the first place.

They are then locally partitioned on the basis

of their subject.

3.3.1 S-RDF Architecture

S-RDF is based on unstructured P2P and the

individual components of each peer include the

user interface, the query processor, the router,

the triple store, and the repository for local

RDF data files as in Fig. 3. The user inter-

face interacts with the query processor which in

turn deals with the repository of RDF data files.

The query processor is an important component

in S-RDF and it hides the details of query exe-

cution from the users—users specify the result

whilst the query processor determines how this

result is obtained. The router gives each peer

a single interface to the peer network and it

handles all messages going to and arriving from

other peers. The triple store loads local and

remote RDF data files of interest for querying

when needed.

A user query can be one looking for desirable

resources or another that tries to identify the

relationship between resources. Which kind of

queries can be satisfied is subject to the capabil-

ities that the involved triple store provides. Fig-

ure 3 describes a process in which a user query

posed on one of the peers (that is, peer pi) in

S-RDF is satisfied. Upon receiving a query Q

(1), the user interface of pi wraps it and passes
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query
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Figure 3: Process of resolving a user’s query in S-RDF

it onto the query processor (2). The query pro-

cessor parses the incoming query and may con-

vert it to several sub-queries q1 , q2 , q3 , · · · , qn

(e.g. conjuncts, Q = q1 ∩ q2 ∩ q3 ∩ · · · ∩ qn)6 .

Against these sub-queries, the query processor

examines the local RDF data files and discovers

the targets (3). Meanwhile, these sub-queries

are propagated in the network (4) conforming to

a specified protocol (see Section 3.7.1). Once re-

mote desirable RDF data files are located, their

information is returned to the query processor

(5). The query processor instructs the triple

store to load all the located (local and remote)

RDF data files for query resolution (6), collects

the result (7), and presents it to the user (9)

through the user interface (8). As operating in a

decentralized environment, S-RDF can provide

access to the RDF data files via query languages

of choice such as SPARQL7 .

The peer network shown in Fig. 3 is an

application-level overlay on top of the physical

network. To join the network, a peer initially

connects to several peers (already on the net-

work) known by out-of-band mechanisms. The

6Query decomposition is a big research issue for RDF data and there is no trivial answer on how to decompose

an RDF query into conjuncts. How S-RDF deals with query decomposition is what is currently supported and we

leave in-depth research into this issue to future work.
7http://www.w3.org/TR/rdf-sparql-query/
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Table 1: Example neighbor table of pi with dscriptive terms A, B, C, D, E and G

neighbor descriptive terms PP ON

pj A, B, C, D 4

pk B, E, F, G 3

pm C, D, H, I, J 2

peer exchanges the descriptive terms of its RDF

data files with each of the new neighbors and es-

tablishes its neighbor table.

A peer’s neighbor table comprise a number

of entries (see Table 1 for an example). Each

entry records the identifier of a neighbor, the

descriptive terms of the neighbor, and PP ON.

PP ON is defined as the number of the peer’s

descriptive terms that are semantically related

to those of its neighbor. Table 1, for instance,

reveals that pi and pk have 3 semantically re-

lated descriptive terms in common.

The departure of a peer results in a notifica-

tion sent to its neighbors. The neighbors then

update their neighbor table by searching for and

discarding the entry that involves the leaving

peer. If a peer does not inform neighbors be-

fore leaving, the latter can still detect the depar-

ture and remove the related entry from neighbor

tables since all peers periodically probe their

neighbors.

3.4 Querying for Data

We consider two querying scenarios of S-

RDF. First, users may only query the triple

store for a list of triples that satisfy their needs

using the following function:

getTriples(s, p, o)

where s, p, and o are the subject, predicate,

and object of a triple that can be either con-

crete URI references or literals (for the object

only). Moreover, s, p, and o can be a wildcard

‘∗’ that indicates any URI reference or literal

would match here. According to the informa-

tion provided in the function, the query process

formulates an internal query (contrary to the

external query from users) and propagates it to

the rest of the network. In this scenario, peers

would return triples they have that match the

request. Note that we assign triples to RDF

data files according to the type of their subject,

and therefore a query that involves retrieval of

triples in the form of (∗, p, o) may use flooding-

like query routing in the worst case8 .

8To reduce the significant message overhead in flooding, other techniques, such as expanding ring in [18], can

be adopted instead.
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Second, a user can issue a complex request

to a triple store that requires multiple remote

RDF data files be located and then loaded into

the local triple store prior to query resolving9 .

Under such a circumstance, the query processor

is responsible for extracting useful information

from the original user query and formulating an

internal query to locate those RDF data files.

Still, due to the way we allocate triples to RDF

data files, users are suggested to provide in their

queries information about pontential subjects

in the desirable RDF data files. If no such in-

formation is available, flooding-like query rout-

ing or its more efficient variants will be con-

ducted. Peers would return information (e.g.

URI references) about the RDF data files of in-

terest (rather than triples) to the query proces-

sor which subsequently instructs the triple store

to load those files.

3.5 Ontology-supported Matching

In the context of S-RDF, matching is a pro-

cess that determines the extent to which a query

and the descriptive terms of a peer, or the de-

scriptive terms of a pair of peers, are simi-

lar. Typically, this involves a similarity func-

tion that produces a numerical number to indi-

cate the similarity between two data items be-

ing compared. As we will see in Section 3.7.1,

matching plays a significant role in deciding

to which neighbor(s) a peer should forward its

queries.

Both queries and the descriptive terms of

peers in S-RDF comprise terms from exist-

ing ontologies and these terms may have well-

defined relationships among them. Hence, we

chose to measure the semantic, other than syn-

tactic, similarity in the matching process. We

assume in S-RDF that, by relying on ontology

mapping10 tools, peers are able to identify the

relationship between any terms.

The primary relationship between any terms

is that of “being semantically related”. Two

terms, t1 and t2 , “being semantically related”

means that class C1 represented by t1 is the

same as, or a subclass of, or a superclass of, or

sharing the same ancestor with, class C2 rep-

resented by t2 . The “same as”, “subclass of”,

“superclass of” and “sharing the same ances-

tor with” relations are discovered by reasoning

over associated ontologies. A match is found

if any descriptive term in a query is semanti-

9For instance, as the FROM keyword in a SPARQL query identifies the data repository against which the

query will be run, a SPARQL query may include multiple FROM keywords as a means to assemble larger RDF

graphs for querying.
10A process whereby two ontologies are semantically related at the conceptual level and the source ontology

instances are transformed into the target ontology entities according to these semantic relations.
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cally related to at least one descriptive term of a

peer. Our similarity function delivers a numer-

ical value of n for a match if the number of the

semantically related terms between a query and

a peer’s description (that is, overlap) is equal to

n. This also applies to matching between the

descriptive terms of a pair of peers.

3.6 Topology Reorganization

Peers may accept new neighbors or discard

old ones, resulting in different topologies. This

act is launched by the proactive behavior of

peers and is termed as topology reorganization

that alters the virtual neighborhood of peers.

In this work, we anticipate to employ reorgani-

zation techniques to deliver an improved perfor-

mance in resource discovery.

Reorganization occurs at a specified inter-

val. Before the process starts, each peer ex-

amines whether the percentage of times it has

successfully answered incoming queries exceeds

a threshold. If not, the peer participates in re-

organization. During reorganization, each in-

volved peer discovers a set of neighbors known

by out-of-band mechanisms or by exchanging

neighbor information with others. These neigh-

bors are most qualified to help achieve the ob-

jectives of reorganization. Within its capacity,

the peer replaces some (or all) of its current

neighbors with the new ones by updating its

neighbor table.

We conjectured that by putting peers with

semantically related descriptive terms together,

a peer that answered a query successfully will

be able to direct subsequent queries to their tar-

gets more easily, thus better performance could

be achieved. However, if a peer shares no se-

mantically related terms with any other peer,

it should be closer (in the number of hops) to

those that are able to answer future queries from

the peer with high probability. Heuristics have

been developed (see Section 3.8) to facilitate re-

organization that is targeted at a better perfor-

mance of the SDS and their efficiency is demon-

strated in Section 4.3.

An evaluation metric taking these factors

into account is defined as potentiality. We

use potentiality as a relative metric to evalu-

ate peers’ capability of satisfying future queries.

The higher the potentiality of peer pi with re-

spect to neighbor pj is, the more likely pi will

successfully answer the future queries from pj .

Potentiality is an important concept used not

only in topology reorganization but also in the

SDS protocol described in the following section.

We delay the detailed discussion on how to es-

timate its value until Section 3.8.
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3.7 Developing an Efficient Search Pro-

tocol

Most research on RDF data management in

P2P environments (see Section 2) focuses on

producing efficient query routing in terms of

high recall levels rather than high scalability,

that is, the ability of the solution to handle in-

creased volume or complexity.

In the context of S-RDF, the efficiency we

pursue in searching remote RDF data files is

reflected in metrics including a high recall, a

small number of hops, and a low system load

(e.g. messages/query and messages/node, see

Section 4.2). Ideally, the search protocol should

be able to handle a larger number of peers with-

out significant performance degradation.

3.7.1 Semantics-directed Search Proto-

col

The search protocol in S-RDF was inspired

by multiple random walk[18 ] in which a query

message (that is, a walker) is forwarded to a

randomly chosen neighbor at each step until the

object of interest is found. We, however, believe

that in some P2P systems, resources may be re-

lated to one another. For instance, RDF data

files (or their descriptive terms) may have se-

mantic relationship among themselves. We in-

tend to take advantage of this relationship to

guide query routing in S-RDF. In the SDS pro-

tocol presented in Fig. 4 and Fig. 5, we define

QP ON as the number of overlap of query terms

and a peer’s descriptive terms.

Figure 4 presents the procedure of query re-

solving and routing at query originators. Ini-

tially, query originator p0 checks its local RDF

files for potential matches and any applicable

results are returned. If p0 has no neighbor with

QP ON > 0, it will broadcast the query mes-

sage to all neighbors. Occasionally, more than

1 neighbor, which shares the highest potential-

ity (that is, best satisfying queries of p0 in the

past), will receive the broadcast message. Of

all the copies of the message, the one sent to

a randomly chosen peer, say pj , is labelled as

COP (Continue tO be Propagated). However,

if p0 has at least 1 neighbor with QP ON > 0,

copies of the query message are forwarded to all

such neighbors. Among all the messages sent,

only one copy is marked as COP and it is the

message sent to any of the neighboring peers,

say pk , with the unique greatest PP ON. This is

because, according to the principle of topology

reorganization, peers with semantically related

descriptive terms should be grouped together

as neighbors, and directing a query to one peer

with a greater PP ON will potentially lead to

more targets to be discovered than forwarding it

to another with a very little PP ON. The field
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p0 checks local RDF data files for matches;

Applicable results are returned;

if all neighbors P all of p0 have QP ON > 0 or

all neighbors P all of p0 have QP ON = 0, then

Add p0 to P broadcast peers in the query message;

Randomly choose a peer pj from the neighbors sharing the unique highest potentiality;

The query message is labelled as COP;

p0 sends a copy of the query message to pj ;

for each pi in P all − {pj}

the query message is labelled as NONE COP;

p0 sends a copy of the query message to pi ;

end for

else if some of p0 ’s neighbors P set have QP ON > 0, then

Randomly choose a peer pk from the neighbors (in P set) sharing the unique

greatest PP ON;

The query message is labelled as COP;

p0 sends a copy of the query message to pk ;

for each pi in P set − {pk}

the query message is labelled as NONE COP;

p0 sends a copy of the query message to pi ;

end for

end if

Figure 4: Query resolving and routing of query originator p0



16 J. Comput. Sci. & Technol., Month 200X, Vol.21, No.X

of broadcast peers in the query message is re-

served for prevention of loops. If the retrans-

mission of query messages involves all neigh-

bors of a peer, then the identifier of the peer is

added to set P broadcast peers and the subsequent

message recipients will exclude nodes recorded

in P broadcast peers when making decisions on the

next hop node to forward queries.

The procedure of query resolving and

decision-making on query routing at query

routers11 is described in Fig. 5. The recipi-

ent of a query message, p0 for example, first

checks for matches against its local RDF data

files and sends results directly to the query orig-

inator. Subsequently, this peer needs to de-

cide whether it should further propagate the

query message. The peer examines all neigh-

bors not in P broadcast peers , that is, P all - P all

∩ P broadcast peers , and tries to find those with

QP ON > 0. Copies of the message will be

forwarded to all neighbors that can satisfy the

query. If the query message is a COP mes-

sage, then the copy of the message sent to the

neighbor with the greatest PP ON should be la-

belled as COP. If more than one neighbor has

the unique greatest PP ON, we can randomly

select one of them and label the message it re-

ceives as COP. However, if no such neighbor

(with QP ON > 0) exists, a NONE COP mes-

sage receiver will remain silent whereas a COP

message recipient will broadcast the query mes-

sage to all neighbors. Again, a randomly chosen

neighbor with the highest potentiality (that is,

best satisfying queries of p0 in the past) will re-

ceive a COP message. The maximum number

of hops a query message can be relayed is spec-

ified by a TTL (Time-To-Live) tag attached to

the message.

The SDS protocol specifies that when a

query message is broadcast to all applicable

neighbors, only the copy sent to one (can be

randomly chosen) of the peers with the highest

potentiality/greatest PP ON should be labelled

as a COP message. The reason is that we in-

tend to discover all peers having the answer to

the query whilst consuming as little system re-

sources as possible. We anticipate to achieve

this by only allowing peers that may lead to

other targets to further broadcast the message

when necessary.

3.8 Revisiting the Concept of Potential-

ity

As we can see, both topology reorganization

and the SDS protocol rely upon the metric of

potentiality. One peer having a higher poten-

11 In the context of S-RDF, a query router refers to the peer that determines the next-hop peer to which queries

received should be forwarded.



Jing Zhou et al.: Building a Distributed Infrastructure for Scalable Triple Stores 17

p0 checks local RDF data files for matches;

Applicable results are sent back from p0 to the query originator;

P set := P all - P all ∩ P broadcast peers ;

Add all peers in P set with QP ON > 0 to P some ;

if P some ⊂ P set , then

if the query message is labelled as COP, then

Randomly choose a peer pj from the neighbors (in P some) sharing the unique

greatest PP ON;

The query message is labelled as COP;

p0 sends a copy of the query message to pj ;

for each pi in P some − {pj}

the query message is labelled as NONE COP;

p0 sends a copy of the query message to pi ;

end for

end if

else if P some = P set or P some = φ, then

if the query message is labelled as COP, then

Add p0 to P broadcast peers in the query message;

Randomly choose a peer pk from the neighbors (in P set) sharing the unique

highest potentiality;

The query message is labelled as COP;

p0 sends a copy of the query message to pk ;

for each pi in P set − {pk}

the query message is labelled as NONE COP;

p0 sends a copy of the query message to pi ;

end for

end if

end if

Figure 5: Query resolving and routing of query router p0
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tiality with respect to another indicates that the

former will answer future queries from the latter

with high probability. Under different circum-

stances, potentiality should be computed in dif-

ferent ways. We developed the following heuris-

tics to help evaluate the metric in the aforemen-

tioned cases.

In topology reorganization, pj gives the

highest potentiality to pi if pi has the greatest

PP ON with pj , or, although pi has 0 PP ON

with pj , it can best answer queries from pj in

the past.

In semantics-directed search, we identify two

situations under which pj considers pi as a

neighbor with the highest potentiality.

• pi has the greatest PP ON with pj if pj

satisfies the incoming query.

• pi can best satisfy the queries encountered

by pj in the past if pj does not satisfy the

incoming query.

The rationale behind the second idea in both

cases is that we assume the recent past can

approximate the immediate future. Hence, if

pi can best satisfy queries received by pj , it is

very likely that pi can also answer future queries

from pj .

To determine the extent to which pi can sat-

isfy queries encountered by pj , we developed a

data structure named query history. Query his-

tory is a collection of all queries a peer has en-

countered over a period of time. It is realized as

a FIFO (First In First Out) queue. Each entry

of query history includes the query identifer, the

query, and the arrival time of the query. The set

of query identifiers is Q, the capacity of query

history of peer pi is hmax
i and the set of arrival

time of queries is A. Query history of pi can

be represented by H i = {(qm
i , h

m
i , a

m
i)|qm

i ∈

Q, hm
i ∈ T, hm

i × hm
i ⊆ T, am

i ∈ A, 0 < m ≤

hmax
i}. The oldest entry of the query history is

discarded when the queue is full. By comparing

the descriptive terms of pi against all the entries

in query history of pj , we can determine the de-

gree to which pi can answer queries propagated

to pj in the past.

4 Simulations

We opted for a simulation study on scalabil-

ity of S-RDF since the testbeds we have avail-

able cannot cope with the network sizes (up to

10,000) that we simulate in this section.

A number of simulations for each combina-

tion of different search protocols and the pa-

rameters described in Section 4.1, were con-

ducted. We anticipated to see performance

improvements that S-RDF (in particular its

semantics-directed search mechanism) brings to

flooding-based P2P networks such as Gnutella.
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Moreover, we expected that bringing semantics

awareness into the search method in S-RDF

would enable better performance to be deliv-

ered than that of random walk. Since tech-

niques, such as shortcuts/interest-based local-

ity, were extensively utilized to implement se-

mantic query routing in P2P networks, we were

keen to examine whether incorportation of these

approaches would further enhance the scalabil-

ity of S-RDF. Results reported in Section 4.3

correspond with our anticipation and provide

answers to our questions.

4.1 Methodology

By varying each of the parameters in Ta-

ble 2, a number of network conditions can

be simulated for testing purposes. We com-

pared semantics-directed search with two well-

established mechanisms: multiple random walk

and constrained flooding12 , owing to the mul-

tiplicity of their variants for efficient search in

P2P networks and their use as baseline for a

large number of performance comparison. Also,

we selected interest-based locality (see Sec-

tion 2) as another baseline for comparison.

We started simulations with P2P networks

the topology of which was generated using net-

work topology generator Inet 3.0[30 ]. The simu-

lations on the SDS used topology reorganiza-

tion to reconfigure this initial topology. For

multiple random walk, constrained flooding,

and interest-based locality, there is no topol-

ogy adaptation; the initial topology remained

unchanged throughout the entire experiment.

We presented in Section 3.8 that both re-

organization and the SDS employ analogous

heuristics to calculate potentiality. To compute

potentiality, one of the heuristics (getGreat-

estPP ON) examines the value of PP ON be-

tween a pair of peers and another (getHighest-

Potentiality) involves using all entries in query

history of a peer captured during a specified

period of time (time window). We were keen

to investigate the impact of both heuristics on

determining potentiality and further the SDS

performance, so, for comparison purpose, we

developed a third one (getRandomNeighbor) in

which a neighbor peer is randomly chosen. Var-

ious combinations of these three heurisitics were

applied to the SDS.

To test the variations in the system load as

the network size increases, we generated net-

works of 303713 , 5000, and 10,000 peers, respec-

tively, using Inet 3.0.

12 In constrained flooding, floods are constrained by means of a TTL field in the query message that is decre-

mented every time the query is forwarded.
13The generator should be used to generate a network of no less than 3037 nodes, which is the number of

Autonomous Systems on the Internet in November 1997.
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Table 2: Configuration parameters

name description

search method The way that specifies how search queries are forwarded and

served within a network

network size The number of all peers in a network

resource replication The distribution of the instances of resources across all peers

replication ratio The fraction of peers that store the instances of resources

following a discrete uniform distribution

query distribution The distribution of the instances of resources across all queries

issued within a specified period of time

minimum degree The minimum number of neighbors (for reorganization use)

walker number The number of query messages sent to a randomly chosen

neighbor at each step (for multiple random walk use)

Our practical experience on unstructured

P2P networks[31 ] has shown that the distribu-

tion of resource instances, the distribution of

queries, and their combinations have an explicit

performance impact on the networks. Hence,

we took this into account and defined the dis-

tribution of resource replication as the distribu-

tion of the resource instances across all peers.

This distribution may follow Gaussian distribu-

tion, Zipf distribution, and the discrete uniform

distribution. Also, we characterized the query

distribution by the distribution of the resource

instances across all queries issued within a spec-

ified period of time and this distribution may

follow discrete uniform distribution and Zipf

distribution14 .

To understand caching and replication

strategies for development and deployment of

large scale triple stores, we also investigated the

performance of the SDS protocol that enables

caching of query results (see Fig. 8).

In all experiments, queries are single

resource-based and the result for multiple re-

source queries can be deduced as we assume

each resource is semantically independent of

others. Our simulator generated a series of

queries at the same rate across all the exper-

iments and randomly selected a peer to be the

originator for each query. We set TTL for all

queries to 60.

14Unlike others using real-world datasets to test systems and algorithms, we made use of synthetic but rea-

sonable datasets to keep our evaluation independent of any particular application.
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4.2 Performance Metrics

We evaluate our design against others by the

extent to which scalability can be obtained as

measured by several metrics described below.

These metrics are intended to capture the fun-

damental properties relevant to this compari-

son.

recall: The fraction of relevant resources that

are retrieved by a search.

hops: The delay in finding all answers as mea-

sured in number of hops.

messages/query: The number of search mes-

sages (exclusive of control messages) gen-

erated in search of the answers to a query.

messages/node: The overhead of the semantics-

directed search algorithm as measured in

number of search messages each node has

to process.

peak # messages: The maximum number of

search messages in the message queue that

any node has to process.

4.3 Results

We now describe the result of applying the

basic metrics we have chosen to specific in-

stances of generated P2P networks. All experi-

mental results in this section are averaged over

20 runs15 .

4.3.1 Performance Comparison

Table 3 presents a comparison among

four techniques: the SDS, interest-based lo-

cality, multiple random walk, and constrained

flooding16 . It can be seen that in the SDS the

recall is proportional to the minimum degree

allowed for each peer. Meanwhile, as the mini-

mum degree increases, more connections are set

up between peers, thus shortening the number

of hops to locate all targets. To achieve the

same level of recall, 0.78 for example, multiple

random walk (2048 walkers) generates 711.24

messages per node and 30952.00 peak # mes-

sages, whereas the SDS only incurs 87.28 mes-

sages per node and 694.33 peak # messages.

We also found that multiple random walk is

15For the sake of space, we omit the standard deviation of all metrics that shows the performance of S-RDF

is almost always close to its average. For instance, the standard deviation of recall in Fig. 7 ranges from 0.0045 to

0.0158 and the standard deviation of hops from 0.2023 to 0.7387.
16We observed that topology reorganization (which also involves increasing the minimum degree for peers) has

a very little impact on the performance of interest-based locatlity, multiple random walk and constrained flooding

and therefore omitted their corresponding results.
17We performed the experiments on MRW with 256, 512, 1024 and 2048 walkers, respectively, and the data

on the right (from the top to the bottom lines) captures the corresponding result.
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Table 3: A comparison between the SDS, multiple random walk (MRW), constrained flooding

(C-FLD), and interest-based locality (IBL), max. degree = 684

median avg. min. peak

degree degree degree recall hops msgs/query msgs/node # msgs

SDS

28.50 4.39 3 0.66 10.94 950.06 46.30 681.00

29.50 6.17 5 0.71 11.03 1323.08 64.48 681.33

30.50 8.04 7 0.78 9.92 1790.99 87.28 694.33

31.50 9.96 9 0.81 8.63 2138.70 104.22 1379.33

32.50 11.90 11 0.83 6.66 2574.15 125.44 2117.67

33.50 13.85 13 0.88 6.66 2976.59 145.06 2001.00

35.00 15.80 15 0.88 6.38 3342.91 162.91 970.00

37.00 17.77 17 0.89 5.87 3746.67 182.58 710.33

38.50 19.74 19 0.91 5.10 4098.75 199.74 1196.67

27.50 3.15 1 0.27 7.20 1856.48 90.47 257.00

MRW17 27.50 3.55 1 0.41 7.32 3684.68 179.56 1078.67

27.50 3.15 1 0.59 7.10 7379.83 359.64 9038.67

27.50 3.15 1 0.78 6.64 14594.82 711.24 30952.00

C-FLD 27.50 3.15 1 1.00 3.64 8284.43 403.72 32119.00

IBL 27.50 3.15 1 1.00 3.61 8284.47 403.72 49218.00
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not necessarily more scalable than constrained

flooding. In our experiments, constrained flood-

ing can lead to a recall level of 1.00 at the cost

of 403.72 messages per node. However, multiple

random walk (with 2048 walkers) creates nearly

twice as much the number of messages per node

as constrained flooding but only obtains a recall

level of 0.78.

By comparing the data from constrained

flooding and interest-based locality, we discov-

ered that in our experimental settings interest-

based locality did not reduce a significant

amount of flooding as claimed in [24]. We

attribute this to the small number of queries

issued within our experiments. According

to its principles, efficient content location us-

ing interest-based locality is achieved by al-

lowing peers that share similar interests to

create shortcuts to one another. Typically,

this requires that each peer accumulate suffi-

cient shortcuts before they can efficiently route

queries and locate content of interest. When

we doubled the number of queries issued dur-

ing an experiment on interest-based locality, the

number of hops was decreased and the num-

ber of messages per query remained at a simi-

lar level, whereas the number of messages per

node was doubled18 . The advantage of the SDS

over interest-based locality is that the former,

by using topology reorganization, can deliver a

comparable level of recall to the later with much

lower system load incurred.

We applied the SDS to simulated P2P net-

works of different scales and collected exper-

imental data in Fig. 6. The performance of

the SDS degrades gracefully as the network size

rises—the level of recall drops from 0.88 in one

network of 3037 nodes to 0.79 in another of

10000 nodes whilst the load on each node, as

indicated by the number of messages per node,

remains nearly constant.

4.3.2 Impact of Heuristics on Reorganization

and the SDS

A number of combinations of heuris-

tics (getGreatestPP ON, getHighestPotential-

ity and getRandomNeighbor) are listed in Ta-

ble 4. We applied them to topology reorganiza-

tion and the SDS in the simulation, and plotted

the result in Table 5.

Table 5 indicates that using both getGreat-

estPP ON and getHighestPotentiality does not

necessarily deliver an enhanced performance for

the SDS. By comparing results of heuristics 1,

2 and 3 we observed that, under certain cir-

cumstances, randomly selecting a peer to be a

new neighbor (in reorganization) or to forward

queries to (in the SDS) can bring a higher level

18Results are omitted from Table 3.
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Figure 6: Applying the SDS to networks of different scales, min. degree = 13

Table 4: Heuristics applied to SDS

name method

heuristic 1 substitutes getRandomNeighbor for getGreatestPP ON and getHighestPotentiality

heuristic 2 substitutes getRandomNeighbor for getHighestPotentiality only

heuristic 3 employs getGreatestPP ON and getHighestPotentiality (148 entries in query history)

heuristic 4 employs getGreatestPP ON and getHighestPotentiality (226 entries in query history)

heuristic 5 employs getGreatestPP ON and getHighestPotentiality (310 entries in query history)

heuristic 6 employs getGreatestPP ON and getHighestPotentiality (406 entries in query history)

Table 5: Impact of various heuristics on SDS performance, min. degree = 13

method recall hops msgs/node msgs/query

heuristic 1 0.90 6.29 153.53 3161.09

heuristic 2 0.90 6.31 154.17 3163.68

heuristic 3 0.88 6.66 145.06 2976.59

heuristic 4 0.92 6.08 198.88 2672.60

heuristic 5 0.94 5.62 290.59 2846.85

heuristic 6 0.94 5.36 392.83 2938.45
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of recall and less hops than adopting a combi-

nation of the two heuristics. However, this also

results in higher system load, that is, more mes-

sages per node and more messages per query.

As we extended the time window, more

queries captured in query history were used

to calculate potentiality, which led to a much

higher level of recall and less number of hops

(see heuristics 4, 5 and 6). Similarly, the per-

formance improvements are obtained at the cost

of higher system load. This conclusion also ap-

plies to networks with different minimum degree

(see Fig. 7).

We noticed that the highest possible level

of recall (0.90) achieved by introducing ran-

domness into reorganization and the SDS is

lower than that (≥ 0.94 if the time window can

be further extended) obtained by using both

getGreatestPP ON and getHighestPotentiality

(see heuristics 1, 2 and 6) with less number of

hops incurred.

4.3.3 Effect of Data Characterisitics

If we could know (or predict by some means)

the distribution of the resource replication and

queries in a P2P network beforehand, we would

be able to determine whether topology reorga-

nization should be applied to the network and

how much improvements we can expect by in-

vestigating the effect of data (e.g. resource in-

stances and queries) characterisitics on topol-

ogy reorganization.

Table 6 shows the performance improve-

ments that topology reorganization brings to

networks characterized by a combination of dif-

ferent distributions of resource instances and

queries19 . We discovered that, without reor-

ganization, networks in which resource replica-

tion follows discrete uniform distribution deliver

the lowest level of recall and the lowest system

load among others. Applying topology reorga-

nization to such networks can make the greatest

improvement to the recall level and also lead to

the least number of hops. Like in all the other

networks, this performance enhancement is ob-

tained at the cost of increased load on nodes.

Meanwhile, Gaussian distribution for re-

source replication in a network without reor-

ganization yields the highest level of recall and

the highest system load regardless of query dis-

tribution. The use of topology reorganization

only makes the least improvement to the recall

level and results in the most number of hops.

The system load incurred after using topology

reorganization still ranks at the top.

19The number in uniform (number) represents the replication ratio.
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Table 6: Performance improvements introduced by topology reorganization

without topology reorganization

resource replication query distribution recall hops msgs/query msgs/node

Gaussian
uniform 0.65 3.45 569.28 18.74

Zipf 0.64 3.43 585.95 28.55

Zipf
uniform 0.40 3.92 161.89 5.33

Zipf 0.37 3.99 185.20 9.03

uniform (0.005)
uniform 0.36 3.63 107.14 3.53

Zipf 0.39 3.89 138.39 6.74

uniform (0.01)
uniform 0.32 3.82 81.26 2.68

Zipf 0.32 3.68 75.95 3.70

uniform (0.05)
uniform 0.29 3.80 114.07 3.76

Zipf 0.27 3.82 106.53 5.19

with topology reorganization

resource replication query distribution recall hops msgs/query msgs/node

Gaussian
uniform 0.72 9.91 1430.17 47.09

Zipf 0.81 12.59 1289.75 62.85

Zipf
uniform 0.81 8.22 791.94 26.08

Zipf 0.88 6.66 2976.59 145.06

uniform (0.005)
uniform 0.88 5.88 323.10 10.64

Zipf 0.88 6.08 348.32 16.97

uniform (0.01)
uniform 0.93 4.34 273.55 9.01

Zipf 0.94 4.31 289.22 14.09

uniform (0.05)
uniform 0.97 4.21 1275.00 41.98

Zipf 0.97 4.20 1182.57 57.63
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4.3.4 Caching of Query Results

As reported in [23] and [20], scalable P2P

search can be achieved by caching query results

at each node along the reverse path that the

query messages have traversed (that is, creat-

ing shortcuts to peers that answered the previ-

ous queries passed successfully), we conducted

experiments to explore the impact of such a

method on the performance enhancement of the

SDS and presented the result in Fig. 8.

We observed that, apart from a marginal re-

duction in the number of hops and increase in

the recall, caching query results does not yield

any significant enhancement to the performance

of the SDS but can incur three times as many

query messages per query and query messages

per node, thus giving the system a high load.

We analyzed the simulation traces and observed

that caching query results at each of the nodes

along the reverse path to the query originator

produces an excessive number of messages.

5 Conclusions and Future Work

In view of the fact that most ongoing ef-

forts to implement large scale triple stores in-

volve supporting more triples in any single triple

store, we intended to provide scalable tech-

niques to eliminate resource and performance

bottlenecks in such centralized systems. Our

work has achieved improved scalability in large

scale triple stores by applying the following

techniques: a fully decentralized P2P architec-

ture in which a large scale RDF repository is

split into multiple RDF data files maintained

by individual nodes, ontology-based matching

for identifying desired resources, a semantics-

directed search protocol for efficiently routing

query messages, and topology reorganization for

further enhancing system performance. Simu-

lations demonstrated the superior ability of our

work over multiple random walk, constrained

flooding, and interest-based locality to deliver

desired scalability whilst incurring the least sys-

tem load.

Due to the large scale of the triple stores in

question, we have yet to demonstrate the effi-

ciency of proposed techniques in any real de-

ployment of RDF triple stores. In future work,

we need to implement these techniques in re-

lated projects. We are in particular keen to

confirm that breaking down a large scale RDF

repository based on the subject type of triples

provides the right level of granularity for or-

ganizing and describing RDF data files, and

that taking advantage of semantics awareness

can make existing triple stores more scalable in

practice.
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