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Abstract In the Bayesian mixture modeling framework it is possible to infer the necessary number of components to model
the data and therefore it is unnecessary to explicitly restrict the number of components. Nonparametric mixture models
sidestep the problem of finding the “correct” number of mixture components by assuming infinitely many components. In this
paper Dirichlet process mixture (DPM) models are cast as infinite mixture models and inference using Markov chain Monte
Carlo is described. The specification of the priors on the model parameters is often guided by mathematical and practical

convenience. The primary goal of this paper is to compare the choice of conjugate and non-conjugate base distributions
on a particular class of DPM models which is widely used in applications, the Dirichlet process Gaussian mixture model
(DPGMM). We compare computational efficiency and modeling performance of DPGMM defined using a conjugate and a
conditionally conjugate base distribution. We show that better density models can result from using a wider class of priors
with no or only a modest increase in computational effort.
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1 Introduction

Bayesian inference requires assigning prior distribu-
tions to all unknown quantities in a model. The uncer-
tainty about the parametric form of the prior distribu-
tion can be expressed by using a nonparametric prior.
The Dirichlet process (DP) is one of the most promi-
nent random probability measures due to its richness,
computational ease, and interpretability. It can be used
to model the uncertainty about the functional form of
the distribution for parameters in a model.

The DP, first defined using Kolmogorov consistency
conditions[1], can be defined in several different per-
spectives. It can be obtained by normalising a gamma
process[1]. Using exchangeability, a generalisation of
the Pólya urn scheme leads to the DP[2]. A closely re-
lated sequential process is the Chinese restaurant pro-
cess (CRP)[3-4], a distribution over partitions, which
also results in the DP when each partition is assigned
an independent parameter with a common distribution.
A constructive definition of the DP was given by [5],
which leads to the characterisation of the DP as a stick-
breaking prior[6].

The hierarchical models in which the DP is used as
a prior over the distribution of the parameters are re-
ferred to as the Dirichlet process mixture (DPM) mod-
els, also called mixture of Dirichlet process models by
some authors due to [7]. Construction of the DP using
a stick-breaking process or a gamma process represents
the DP as a countably infinite sum of atomic measures.
These approaches suggest that a DPM model can be
seen as a mixture model with infinitely many compo-
nents. The distribution of parameters imposed by a DP
can also be obtained as a limiting case of a parametric
mixture model[8-11]. This approach shows that a DPM
can easily be defined as an extension of a parametric
mixture model without the need to do model selection
for determining the number of components to be used.
Here, we take this approach to extend simple finite mix-
ture models to Dirichlet process mixture models.

The DP is defined by two parameters, a positive
scalar α and a probability measure G0, referred to as
the concentration parameter and the base measure, re-
spectively. The base distribution G0 is the parameter
on which the nonparametric distribution is centered,
which can be thought of as the prior guess[7]. The
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concentration parameter α expresses the strength of be-
lief in G0. For small values of α, samples from a DP
is likely to be composed of a small number of atomic
measures with large weights. For large values, most
samples are likely to be distinct, thus concentrated on
G0.

The form of the base distribution and the value of
the concentration parameter are important parts of the
model choice that will effect the modeling performance.
The concentration parameter can be given a vague prior
distribution and its value can be inferred from the data.
It is harder to decide on the base distribution since the
model performance will heavily depend on its paramet-
ric form even if it is defined in a hierarchical manner
for robustness. Generally, the choice of the base distri-
bution is guided by mathematical and practical conve-
nience. In particular, conjugate distributions are pre-
ferred for computational ease. It is important to be
aware of the implications of the particular choice of the
base distribution. An important question is whether
the modeling performance is weakened by using a con-
jugate base distribution instead of a less restricted dis-
tribution. A related interesting question is whether the
inference is actually computationally cheaper for the
conjugate DPM models.

The Dirichlet process Gaussian mixture model
(DPGMM) with both conjugate and non-conjugate
base distributions has been used extensively in appli-
cations of the DPM models for density estimation and
clustering[11-15]. However, the performance of the mod-
els using these different prior specifications have not
been compared. For Gaussian mixture models the con-
jugate (Normal-Inverse-Wishart) priors have some un-
appealing properties with prior dependencies between
the mean and the covariance parameters, see e.g., [16].
The main focus of this paper is empirical evaluation
of the differences between the modeling performance of
the DPGMM with conjugate and non-conjugate base
distributions.

Markov chain Monte Carlo (MCMC) techniques are
the most popular tools used for inference on the DPM
models. Inference algorithms for the DPM models with
a conjugate base distribution are relatively easier to im-
plement than for the non-conjugate case. Nevertheless
several MCMC algorithms have been developed also for
the general case[17-18]. In our experiments, we also com-
pare the computational cost of inference on the conju-
gate and the non-conjugate model specifications.

We define the DPGMM model with a non-conjugate
base distribution by removing the undesirable depen-
dency of the distribution of the mean and the covari-
ance parameters. This results in what we refer to as
a conditionally conjugate base distribution since one of
the parameters (mean or covariance) can be integrated

out conditioned on the other, but both parameters can-
not simultaneously be integrated out. In the following,
we give formulations of the DPGMM with both a con-
jugate and a conditionally conjugate base distribution
G0. For both prior specifications, we define hyperpri-
ors on G0 for robustness, building upon [11]. We refer
to the models with the conjugate and the conditionally
conjugate base distributions shortly as the conjugate
model and the conditionally conjugate model, respec-
tively. After specifying the model structure, we discuss
in detail how to do inference on both models. We show
that mixing performance of the non-conjugate sampler
can be improved substantially by exploiting the con-
ditional conjugacy. We present experimental results
comparing the two prior specifications. Both predic-
tive accuracy and computational demand are compared
systematically on several artificial and real multivariate
density estimation problems.

2 Dirichlet Process Gaussian Mixture Models

A DPM model can be constructed as a limit of a
parametric mixture model[8-11]. We start with setting
out the hierarchical Gaussian mixture model formula-
tion and then take the limit as the number of mixture
components approaches infinity to obtain the Dirichlet
process mixture model. Throughout the paper, vector
quantities are written in bold. The index i always runs
over observations, i = 1, . . . , n, and index j runs over
components, j = 1, . . . , K. Generally, variables that
play no role in conditional distributions are dropped
from the condition for simplicity.

The Gaussian mixture model with K components
may be written as:

p(x|θ1, . . . , θK) =
K∑

j=1

πjN (x|μj , Sj) (1)

where θj = {μj , Sj , πj} is the set of parameters for
component j, π are the mixing proportions (which must
be positive and sum to one), μj is the mean vector for
component j, and Sj is its precision (inverse covariance
matrix).

Defining a joint prior distribution G0 on the com-
ponent parameters and introducing indicator variables
ci, i = 1, . . . , n, the model can be written as:

xi | ci, Θ ∼ N (μci
, Sci)

ci |π ∼ Discrete(π1, . . . , πK)

(μj , Sj) ∼ G0

π |α ∼ Dir(α/K, . . . , α/K). (2)

Given the mixing proportions π, the distribution of the
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number of observations assigned to each component,
called the occupation number, is multinomial

p(n1, . . . , nK |π) =
n!

n1!n2! · · ·nK !

K∏
j=1

π
nj

j ,

and the distribution of the indicators is

p(c1, . . . , cn|π) =
K∏

j=1

π
nj

j . (3)

The indicator variables are stochastic variables whose
values encode the class (or mixture component) to
which observation yi belongs. The actual values of the
indicators are arbitrary, as long as they faithfully rep-
resent which observations belong to the same class, but
they can conveniently be thought of as taking values
from 1, . . . , K, where K is the total number of classes,
to which observations are associated.

2.1 Dirichlet Process Mixtures

Placing a symmetric Dirichlet distribution with pa-
rameter α/K and treating all components as equivalent
is the key in defining the DPM as a limiting case of the
parametric mixture model. Taking the product of the
prior over the mixing proportions p(π), and the indi-
cator variables p(c|π) and integrating out the mixing
proportions, we can write the prior on c directly in
terms of the Dirichlet parameter α:

p(c|α) =
Γ (α)

Γ (n + α)

K∏
j=1

Γ (nj + α/K)
Γ (α/K)

. (4)

Fixing all but a single indicator ci in (4) and using the
fact that the datapoints are exchangeable a priori, we
may obtain the conditional for the individual indica-
tors:

p(ci = j|c−i, α) =
n−i,j + α/K

n − 1 + α
, (5)

where the subscript −i indicates all indices except for
i, and n−i,j is the number of datapoints, excluding
xi, that are associated with class j. Taking the limit
K → ∞, the conditional prior for ci reach the following
limits:
components for which n−i,j > 0 :

p(ci = j|c−i, α) =
n−i,j

n − 1 + α
, (6a)

all other components combined:

p(ci �= ci′ for all i �= i′|c−i, α) =
α

n − 1 + α
.

(6b)

Note that these probabilities are the same as the proba-
bilities of seating a new customer in a Chinese restau-
rant process[4]. Thus, the infinite limit of the model in
(2) is equivalent to a DPM which we define by starting
with Gaussian distributed data xi|θ ∼ N (xi|μi, Si),
with a random distribution of the model parameters
(μi, Si) ∼ G drawn from a DP, G ∼ DP (α, G0).

We need to specify the base distribution G0 to com-
plete the model. The base distribution of the DP is the
prior guess of the distribution of the parameters in a
model. It corresponds to the distribution of the com-
ponent parameters in an infinite mixture model. The
mixture components of a DPGMM are specified by their
mean and precision (or covariance) parameters, there-
fore G0 specifies the prior on the joint distribution of
μ and S. For this model, a conjugate base distribu-
tion exists however it has the unappealing property of
prior dependency between the mean and the covariance
as detailed below. We proceed by giving the detailed
model formulation for both conjugate and conditionally
conjugate cases.

2.2 Conjugate DPGMM

The natural choice of priors for the mean of the
Gaussian is a Gaussian, and a Wishart� distribution
for the precision (inverse-Wishart for the covariance).
To accomplish conjugacy of the joint prior distribution
of the mean and the precision to the likelihood, the dis-
tribution of the mean has to depend on the precision.
The prior distribution of the mean μj is Gaussian con-
ditioned on Sj :

(μj |Sj , ξ, ρ) ∼ N (ξ, (ρSj)−1), (7)

and the prior distribution of Sj is Wishart:

(Sj |β, W ) ∼ W(β, (βW )−1). (8)

The joint distribution of μj and Sj is the Nor-
mal/Wishart distribution denoted as:

(μj , Sj) ∼ NW(ξ, ρ, β, βW ), (9)

with ξ, ρ, β and W being hyperparameters common to
all mixture components, expressing the belief where
the component parameters should be similar, centered
around some particular value. The graphical represen-
tation of the hierarchical model is depicted in Fig.1.

Note in (7) that the data precision and the prior on
the mean are linked, as the precision for the mean is a
multiple of the component precision itself. This depen-
dency is probably not generally desirable since it means

�There are multiple parameterizations used for the density function of the Wishart distribution. We use W(β, (βW )−1) =
(|W |(β/2)D)β/2

ΓD(β/2)
|S|(β−D−1)/2 exp

(
− β

2
tr(SW )

)
, where ΓD(z) = πD(D−1)/4

∏D
d=1 Γ

(
z + (d − D)/2

)
.
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Fig.1. Graphical representation of hierarchical GMM model with conjugate priors. Note the dependency of the distribution of the

component mean on the component precision. Variables are labelled below by the name of their distribution, and the parameters of

these distributions are given above. The circles/ovals are segmented for the parameters whose prior is defined not directly on that

parameter but on a related quantity.

that the prior distribution of the mean of a component
depends on the covariance of that component but it is
an unavoidable consequence of requiring conjugacy.

2.3 Conditionally Conjugate DPGMM

If we remove the undesired dependency of the mean
on the precision, we no longer have conjugacy. For a
more realistic model, we define the prior on μj to be

p(μj |ξ, R) ∼ N (ξ, R−1) (10)

whose mean vector ξ and precision matrix R are hyper-
parameters common to all mixture components. Keep-
ing the Wishart prior over the precisions as in (8), we
obtain the conditionally conjugate model. That is, the
prior of the mean is conjugate to the likelihood condi-
tional on S and the prior of the precision is conjugate
conditional on μ. See Fig.2 for the graphical represen-
tation of the hierarchical model.

A model is required to be flexible to be able to deal

with a large range of datasets. Furthermore, robust-
ness is required so that the performance of the model
does not change drastically with small changes in its
parameter values. Generally it is hard to specify good
parameter values that give rise to a successful model fit
for a given problem and misspecifying parameter values
may lead to poor modeling performance. Using hierar-
chical priors guards against this possibility by allowing
to express the uncertainty about the initial parame-
ter values, leading to flexible and robust models. We
put hyperpriors on the hyperparameters in both prior
specifications to have a robust model. We use the hi-
erarchical model specification of [11] for the condition-
ally conjugate model, and a similar specification for the
conjugate case. Vague priors are put on the hyperpa-
rameters, some of which depend on the observations
which technically they ought not to. However, only the
empirical mean μy and the covariance Σy of the data
are used in such a way that the full procedure becomes
invariant to translations, rotations and rescaling of the

Fig.2. Graphical representation of hierarchical GMM model with conditionally conjugate priors. Note that the mean µk and the

precision Sk are independent conditioned on the data.
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data. One could equivalently use unit priors and scale
the data before the analysis since finding the overall
mean and covariance of the data is not the primary
concern of the analysis, rather, we wish to find struc-
ture within the data.

In detail, for both models the hyperparameters W
and β associated with the component precisions Sj

are given the following priors, keeping in mind that β
should be greater than D − 1:

W ∼ W
(
D,

1
D

Σy

)
,

( 1
β − D + 1

)
∼ G

(
1,

1
D

)
. (11)

For the conjugate model, the priors for the hyper-
parameters ξ and ρ associated with the mixture means
μj are Gaussian and gamma�:

ξ ∼ N (μy,Σy), ρ ∼ G(1/2, 1/2). (12)

For the non-conjugate case, the component means
have a mean vector ξ and a precision matrix R as hy-
perparameters. We put a Gaussian prior on ξ and a
Wishart prior on the precision matrix:

ξ ∼ N (μy,Σy), R ∼ W(D, (DΣy)−1). (13)

The prior number of components is governed by the
concentration parameter α. For both models we chose
the prior for α−1 to have Gamma shape with unit mean
and 1 degree of freedom:

p(α−1) ∼ G(1, 1). (14)

This prior is asymmetric, having a short tail for small
values of α, expressing our prior belief that we do not
expect that a very small number of active classes (say
K† = 1) is overwhelmingly likely a priori.

The probability of the occupation numbers given α
and the number of active components, as a function
of α, is the likelihood function for α. It can be de-
rived from (6) by reinterpreting this equation to draw
a sequence of indicators, each conditioned only on the
previously drawn ones. This gives us the following like-
lihood function:

αK†
n∏

i=1

1
i − 1 + α

=
αK†

Γ (α)
Γ (n + α)

, (15)

where K† is the number of active components, that is
the components that have nonzero occupation numbers.
We notice, that this expression depends only on the to-
tal number of active components, K†, and not on how
the observations are distributed among them.

3 Inference Using Gibbs Sampling

We utilise MCMC algorithms for inference on the
models described in the previous section. The Markov
chain relies on Gibbs updates, where each variable is
updated in turn by sampling from its posterior distri-
bution conditional on all other variables. We repeatedly
sample the parameters, hyperparameters and the indi-
cator variables from their posterior distributions condi-
tional on all other variables. As a general summary, we
iterate:

• update mixture parameters (μj, Sj);
• update hyperparameters;
• update the indicators, conditional on the other in-

dicators and the (hyper) parameters;
• update DP concentration parameter α.
For the models we consider, the conditional poste-

riors for all parameters and hyperparameters except
for α, β and the indicator variables ci are of standard
form, thus can be sampled easily. The conditional pos-
teriors of log(α) and log(β) are both log-concave, so
they can be updated using Adaptive Rejection Sam-
pling (ARS)[19] as suggested in [11].

The likelihood for components that have observa-
tions associated with them is given by the parameters
of that component, and the likelihood pertaining to cur-
rently inactive classes (which have no mixture parame-
ters associated with them) is obtained through integra-
tion over the prior distribution. The conditional pos-
terior class probabilities are calculated by multiplying
the likelihood term by the prior.

The conditional posterior class probabilities for the
DPGMM are:

components for which n−i,j > 0 :

p(ci = j|c−i, μj , Sj , α)
∝ p(ci = j|c−i, α)p(xi|μj , Sj)

∝ n−i,j

n − 1 + α
N (x|μj , Sj), (16a)

all others combined :
p(ci �= ci′ for all i �= i′|c−i, ξ, ρ, β, W, α)

∝ α

n − 1 + α

×
∫

p(xi|μ, S)p(μ, S|ξ, ρ, β, W )dμdS.

(16b)

We can evaluate this integral to obtain the conditional
posterior of the inactive classes in the conjugate case,
but it is analytically intractable in the non-conjugate
case.

�Gamma distribution is equivalent to a one-dimensional Wishart distribution. Its density function is given by G(α, β) =
( α
2β

)α/2

Γ(α/2)
sα/2−1 exp(− sα

2β
).
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For updating the indicator variables of the conjugate
model, we use Algorithm 2 of [9] which makes full use of
conjugacy to integrate out the component parameters,
leaving only the indicator variables as the state of the
Markov chain. For the conditionally conjugate case, we
use Algorithm 8 of [9] utilizing auxiliary variables.

3.1 Conjugate Model

When the priors are conjugate, the integral in (16b)
is analytically tractable. In fact, even for the active
classes, we can marginalise out the component param-
eters using an integral over their posterior, by analogy
with the inactive classes. Thus, in all cases the log
likelihood term is:

log p(xi | c−i, ρ, ξ, β, W ) =
D

2
log

ρ + nj

ρ + nj + 1
−

D

2
log π + log Γ

(β + nj + 1
2

)
−

log Γ
(β + nj + 1 − D

2

)
+

β + nj

2
log |W ∗|−

β + nj + 1
2

log |W ∗ +
ρ + nj

ρ + nj + 1
(xi − ξ∗)(xi − ξ∗)T|,

(17)

where
ξ∗ =

(
ρξ +

∑
l:cl=j

xl

)/
(ρ + nj)

and

W ∗ = βW + ρξξT +
∑

l:cl=j

xlx
T
l − (ρ + nj)ξ∗ξ∗T

,

which simplifies considerably for the inactive classes.
The sampling iterations become:
• update μj and Sj conditional on the data, the in-

dicators and the hyperparameters;
• update hyperparameters conditional on μj and Sj ;
• remove the parameters, μj and Sj from represen-

tation;
• update each indicator variable, conditional on the

data, the other indicators and the hyperparameters;
• update the DP concentration parameter α, using

ARS.

3.2 Conditionally Conjugate Model

As a consequence of not using fully conjugate priors,
the posterior conditional class probabilities for inactive
classes cannot be computed analytically. Here, we give
details for using the auxiliary variable sampling scheme

of [9] and also show how to improve this algorithm by
making use of the conditional conjugacy.

SampleBoth

The auxiliary variable algorithm of [9] (Algorithm
8) suggests the following sampling steps. For each ob-
servation xi in turn, the updates are performed by:
“invent” ζ auxiliary classes by picking means μj and
precisions Sj from their priors. Update ci using Gibbs
sampling, i.e., sample from the discrete conditional pos-
terior class distribution), and finally remove the com-
ponents that are no longer associated with any obser-
vations. Here, to emphasize the difference between the
other sampling schemes that we will describe, we call
it SampleBoth scheme since both means and precisions
are sampled from their priors to represent the inactive
components.

The auxiliary classes represent the effect of the in-
active classes, therefore using (6b), the prior for each
auxiliary class is

α/ζ

n − 1 + α
. (18)

In other words, we define n−i,j = α/ζ for the auxiliary
components.

The sampling iterations are as follows:
• Update μj and Sj conditional on the indicators

and hyperparameters.
• Update hyperparameters conditional on μj and Sj

• For each indicator variable:
– If ci is a singleton, assign its parameters μci

and Sci to one of the auxiliary parameter pairs;
– Invent other auxiliary components by sam-

pling values for μj and Sj from their priors, (10)
and (8) respectively;

– Update the indicator variable, conditional
on the data, the other indicators and hyperpa-
rameters using (16a) and defining n−i,j = α/ζ
for the auxiliary components;

– Discard the empty components;
• Update DP concentration parameter α.
The integral we want to evaluate is over two param-

eters, μj and Sj . Exploiting the conditional conjugacy,
it is possible to integrate over one of these parameters
given the other. Thus, we can pick only one of the pa-
rameters randomly from its prior, and integrate over
the other, which might lead to faster mixing. The log
likelihood for the SampleMu and the SampleS schemes
are as follows:

SampleMu

Sampling μj from its prior and integrating over Sj

give the conditional log likelihood:
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log p(xi|c−i, μj , β, W ) = −D

2
log π +

β + nj

2
log |W ∗| − β + nj + 1

2
log |W ∗ + xix

T
i |+

log Γ
(β + nj + 1

2

)
− log Γ

(β + nj + 1 − D

2

)
,
(19)

where W ∗ = βW +
∑

l:cl=j(xl − μj)(xl − μj)T.
The sampling steps for the indicator variables are:
• Remove all precision parameters Sj from the rep-

resentation;
• If ci is a singleton, assign its mean parameter μci

to one of the auxiliary parameters;
• Invent other auxiliary components by sampling

values for the component mean μj from its prior, (10);
• Update the indicator variable, conditional on the

data, the other indicators, the component means and
hyperparameters using the likelihood given in (19) and
the prior given in (6a) and (18).

• Discard the empty components.
SampleS
Sampling Sj from its prior and integrating over μj ,

the conditional log likelihood becomes:

log p(xi|c−i, Sj, R, ξ)

= − D

2
log(2π) − 1

2
xT

i Sjxi +

1
2
(ξ∗ + Sjxi)T

(
(nj + 1)Sj + R

)−1(ξ∗ + Sjxi)−
1
2
ξ∗T(njSj + R)−1ξ∗ +

1
2

log
|Sj ||njSj + R|
|(nj + 1)Sj + R| ,

where
ξ∗ = Sj

∑
l:cl=j

xj + Rξ. (20)

The sampling steps for the indicator variables are:
• Remove the component means μj from the repre-

sentation;
• If ci is a singleton, assign its precision Sci to one

of the auxiliary parameters;
• Invent other auxiliary components by sampling

values for the component precision Sj from its prior,
(8);

• Update the indicator variable, conditional on the
data, the other indicators, the component precisions
and hyperparameters using the likelihood given in (20)
and the prior given in (6a) and (18);

• Discard the empty components.
The number of auxiliary components ζ can be

thought of as a free parameter of these sampling al-
gorithms. It is important to note that the algorithms
will converge to the same true posterior distribution
regardless of how many auxiliary components are used.

The value of ζ may effect the convergence and mixing
time of the algorithm. If more auxiliary components are
used, the Markov chain may mix faster, however using
more components will increase the computation time
of each iteration. In our experiments, we tried different
values of ζ and found that using a single auxiliary com-
ponent was enough to get a good mixing behaviour. In
the experiments, we report results using ζ = 1.

Note that SampleBoth, SampleMu and SampleS are
three different ways of doing inference for the same
model since there are no approximations involved. One
should expect only the computational cost of the in-
ference algorithm (e.g., the convergence and the mix-
ing time) to differ among these schemes, whereas the
conjugate model discussed in the previous section is a
different model since the prior distribution is different.

4 Predictive Distribution

The predictive distribution is obtained by averaging
over the samples generated by the Markov Chain. For a
particular sample in the chain, the predictive distribu-
tion is a mixture of the finite number of Gaussian com-
ponents which have observations associated with them,
and the infinitely many components that have no data
associated with them given by the integral over the base
distribution:∫

p(xi|μ, S)p(μ, S|ξ, ρ, β, W ) dμ dS. (21)

The combined mass of the represented components is
n/(n + α) and the combined mass of the unrepresented
components is the remaining α/(n + α).

For the conjugate model, the predictive distribution
can be given analytically. For the non-conjugate mod-
els, since the integral for the unrepresented classes (21)
is not tractable, it is approximated by a mixture of a
finite number ζ† of components, with parameters (μ
and S, or μ or S, depending on which of the three
sampling schemes is being used) drawn from the base
distribution p(μ, S). Note that the larger the ζ†, the
better the approximation will get. The predictive per-
formance of the model will be underestimated if we do
not use enough components to approximate the inte-
gral. Therefore the predictive performance calculated
using a finite ζ† can be thought of as a lower bound
on the actual performance of the model. In our exper-
iments, we used ζ† = 10.

5 Experiments

We present results on simulated and real datasets
with different dimensions to compare the predictive ac-
curacy and computational cost of the different model
specifications and sampling schemes described above.
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We use the duration of consecutive eruptions of the
Old Faithful geyser[20] as a two dimensional example.
The three dimensional Spiral dataset used in [11], the
four dimensional “Iris” dataset used in [21] and the 13
dimensional “Wine” dataset[22] are modeled for assess-
ing the model performance and the computational cost
in higher dimensions.

The density of each dataset has been estimated using
the conjugate model (CDP), the three different sam-
pling schemes for the conditionally conjugate model
(CCDP), SampleBoth, SampleMu, and SampleS, and
by kernel density estimation� (KDE) using Gaussian
kernels.

5.1 Density Estimation Performance

As a measure for modeling performance, we use the
average leave one out predictive densities. That is, for
all datasets considered, we leave out one observation,
model the density using all others, and calculate the
log predictive density on the left-out datapoint. We re-
peat this for all datapoints in the training set and report
the average log predictive density. We choose this as a
performance measure because the log predictive den-
sity gives a quantity proportional to the KL divergence
which is a measure of the discrepancy between the ac-
tual generating density and the modeled density. The
three different sampling schemes for the conditionally
conjugate model all have identical equilibrium distribu-
tions, therefore the result of the conditionally conjugate
model is presented only once, instead of discriminating
between different schemes when the predictive densities
are considered.

We use the Old Faithful geyser dataset to visu-
alise the estimated densities, Fig.3. Visualisation is
important for giving an intuition about the behaviour
of the different algorithms. Convergence and mixing
of all samplers is fast for the two dimensional Geyser
dataset. There is also not a significant difference in
the predictive performance, see Tables 1 and 2. How-
ever, we can see form the plots in Fig.3 and the average
entropy values in Table 3 that the resulting density esti-
mates are different for all models. CDP uses fewer com-
ponents to fit the data, therefore the density estimate
has fewer modes compared to the estimates obtained
by CCDP or KDE. In Fig.3 we see three almost Gaus-
sian modes for CDP. Since KDE places a kernel on each
datapoint, its resulting density estimate is less smooth.
Note that both CDP and CCDP have the potential to
use one component per datapoint and return the same
estimate as the KDE, however their prior as well as the

likelihood of the data does not favor this. The density
fit by CCDP can be seen as an interpolation between
the CDP and the KDE results as it utilizes more mix-
ture components than CDP but has a smoother density
estimate than KDE. For all datasets, the KDE model
has the lowest average leave one out predictive density,
and the conditionally conjugate model has the best,
with the difference between the models getting larger
in higher dimensions, see Table 1. For instance, on the
Wine data CCDP is five fold better than KDE.

Fig.3. Old Faithful geyser dataset and its density modelled by

CDP, CCDP and KDE. The two dimensional data consists of the

durations of the consecutive eruptions of the Old Faithful geyser.

Table 1. Average Leave One Out Log-Predictive Densi-
ties for Kernel Density Estimation (KDE), Conjugate DP
Mixture Model (CDP), Conditionally Conjugate DP Mixture
Model (CCDP) on Different Datasets

Dataset KDE CDP CCDP

Geyser −1.906 −1.902 −1.879

Spiral −7.205 −7.123 −7.117

Iris −1.860 −1.577 −1.546

Wine −18.979 −17.595 −17.341

Table 2. Paired t-Test Scores of Leave One Out Predictive
Densities (The test does not give enough evidence in case of
the Geyser data, however it shows that KDE is statistically
significantly different from both DP models for the higher di-
mensional datasets. Also, CDP is significantly different from
CCDP for the Wine data.)

Dataset KDE/CDP KDE/CCDP CDP/CCDP

Geyser 0.95 0.59 0.41

Spiral < 0.01 < 0.01 0.036

Iris < 0.01 < 0.01 0.099

Wine < 0.01 < 0.01 < 0.01

�Kernel density estimation is a classical non parametric density estimation technique which places kernels on each training data-
point. The kernel bandwidth is adjusted separately on each dimension to obtain a smooth density estimate, by maximising the sum of
leave-one-out log densities.
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p-values for a paired t-test are given in Table 2 to
compare the distribution of the leave one out densities.
There is no statistically significant difference between
any of the models on the Geyser dataset. For the Spi-
ral, Iris and Wine datasets, the difference between the
predictions of KDE and both DP models are statisti-
cally significant. CCDP is significantly different from
CDP in terms of its predictive density only on the Wine
dataset.

Furthermore, for all datasets, the CCDP consistently
utilizes more components than CDP. The average num-
ber of datapoints assigned to different components and
the distribution over the number of active components
are given in Fig.4 and Fig.5, respectively. Fig.5 shows
that the distribution of the number of components used
by the CCDP is much broader and centered on higher

Fig.4. Number of datapoints assigned to the components aver-

aged over different positions in the chain. The standard devia-

tions are indicated by the error bars. Note the existence of many

small components for the CCDP model.

Table 3. Average Entropies of Mixing Proportions for the
Conjugate DP Mixture Model (CDP), Conditionally Conju-
gate DP Mixture Model (CCDP) on Various Datasets

Dataset CDP CCDP

Geyser 1.64 (0.14) 2.65 (0.51)

Spiral 4.03 (0.06) 4.10 (0.08)

Iris 1.71 (0.13) 2.13 (0.28)

Wine 1.58 (0.004) 2.35 (0.17)

Fig.5. Distribution of number of active components for DPGMM

from 1000 iterations. The CDP model favors a lower number of

components for all datasets. The average number of components

for the CCDP model is larger, with a more diffuse distribution.

Note that histogram for the CDP model for the Geyser dataset

and the Wine dataset has been cut off on the y-axis.

values. The difference in the density estimates is also
reflected in the average entropy values reported in Ta-
ble 3.

5.2 Clustering Performance

The main objective of the models presented in this
paper is density estimation, but the models can be used
for clustering (or classification where labels are avail-
able) as well by observing the assignment of datapoints
to model components. Since the number of components
change over the chain, one would need to form a con-
fusion matrix showing the frequency of each data pair
being assigned to the same component for the entire
Markov chain, see Fig.6.

Class labels are available for the Iris and Wine
datasets, both datasets consisting of 3 classes. The
CDP model has 3∼4 active components for the Iris data
and 3 active components for the Wine dataset. The
assignment of datapoints to the components shows suc-
cessful clustering. The CCDP model has more compo-
nents on average for both datasets, but datapoints with
different labels are generally not assigned to the same
component, resulting in successful clustering which can
be seen by the block diagonal structure of the confu-
sion matrices given in Fig.6, and comparing to the true
labels given on the right hand side figures. The confu-
sion matrices were constructed by counting the number
of times each datapoint was assigned to the same com-
ponent with another datapoint. Note that the CCDP
utilizes more clusters, resulting in less extreme values
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Fig.6. Confusion matrices for the Iris dataset: (a) CDP; (b) CCDP; (c) Correct labels. Wine dataset: (d) CDP; (e) CCDP; (f) Correct

labels. Brighter means higher, hence the darker gray values for the datapoints that were not always assigned to the same component.

for the confusion matrix entries (darker gray values of
the confusion matrix) which expresses the uncertainty
in cluster assignments for some datapoints. Further-
more, we can see in Fig.6(d) that there is one datapoint
in the Wine dataset that CDP assigns to the wrong
cluster for almost all MCMC iterations, whereas this
datapoint is allowed to have its own cluster by CCDP.

The Spiral dataset is generated by sampling 5 points
form each of the 160 Gaussians whose means lie on a
spiral. For this data, the number of active components
of CDP and CCDP do not go beyond 21 and 28, respec-
tively. This is due to the assumption of independence
of component means for both models, which does not
hold for this dataset, therefore it is not surprising that
the models do not find the correct clustering structure
although they can closely estimate the density.

5.3 Computational Cost

The differences in density estimates and predictive
performances show that different specification of the
base distribution leads to different behaviour of the
model on the same data. It is also interesting to find
out if there is a significant gain (if at all) in compu-
tational efficiency when conjugate base distribution is
used rather than the non-conjugate one. The inference
algorithms considered only differ in the way they up-
date the indicator variables, therefore the computation
time per iteration is similar for all algorithms.

We use the convergence and burn-in time as mea-
sures of computational cost. Convergence was deter-
mined by examining various properties of the state of

the Markov chain, and mixing time was calculated as
the sum of the auto-covariance coefficients of the slow-
est mixing quantities from lag −1000 to 1000.

The slowest mixing quantity was the number of ac-
tive components in all experiments. Example auto-
covariance coefficients are shown in Fig.7. The con-
vergence time for the CDP model is usually shorter
than the SampleBoth scheme of CCDP but longer than
the two other schemes. For the CCDP model, the
SampleBoth scheme is the slowest in terms of both con-
verging and mixing. SampleS has comparable conver-
gence time to the SampleMu scheme.

6 Conclusions

The Dirichlet process mixtures of Gaussians model is
one of the most widely used DPM models. We have pre-
sented hierarchical formulations of DPGMM with con-
jugate and conditionally conjugate base distributions.
The only difference between the two models is the prior
on μ and the related hyperparameters. We kept the
specifications for all other parameters the same so as
to make sure only the presence or absence of conju-
gacy would effect the results. We compared the two
model specifications in terms of their modeling proper-
ties for density estimation and clustering and the com-
putational cost of the inference algorithms on several
datasets with differing dimensions.

Experiments show that the behaviour of the two base
distributions differ. For density estimation, the predic-
tive accuracy of the CCDP model is found to be better
than the CDP model for all datasets considered, the
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Fig.7. Autocorrelation coefficients of the number of active components for CDP and different sampling schemes for CCDP, for the

Spiral data based on 5 × 105 iterations, the Iris data based on 106 iterations and Wine data based on 1.5 × 106 iterations.

difference being larger in high dimensions. The CDP
model tends to use less components than the CCDP
model, having smaller entropy. The clustering perfor-
mance of both cases are comparable, with the CCDP
expressing more uncertainty on some datapoints and al-
lowing some datapoints to have their own cluster when
they do not match the datapoints in other clusters.
From the experimental results we can conclude that the
more restrictive form of the base distribution forces the
conjugate model to be more parsimonious in the num-
ber of components utilized. This may be a desirable
feature if only a rough clustering is adequate for the
task in hand, however it has the risk of overlooking the
outliers in the dataset and assigning them to a cluster
together with other datapoints. Since it is more flexible
in the number of components, the CCDP model may in
general result in more reliable clusterings.

We adjusted MCMC algorithms from [9] for infer-
ence on both specifications of the model and proposed
two sampling schemes for the conditionally conjugate
base model with improved convergence and mixing
properties. Although MCMC inference on the conju-
gate case is relatively easier to implement, experimental
results show that it is not necessarily computationally
cheaper than inference on the conditionally conjugate
model when conditional conjugacy is exploited.

In the light of the empirical results, we conclude that
marginalising over one of the parameters by exploiting
conditional conjugacy leads to considerably faster mix-
ing in the conditionally conjugate model. When using
this trick, the fully conjugate model is not necessar-
ily computationally cheaper in the case of DPGMM.
The DPGMM with the more flexible prior specification
(conditionally conjugate prior) can be used on higher
dimensional density estimation problems, resulting in
better density estimates than the model with conjugate

prior specification.
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Germany, form 2002 to 2007.


