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Abstract—We revisit a new type of a Voronoi diagram, in
which distance is measured from a point to apair of points.
We consider a few more such distance functions, based on
geometric primitives, and analyze the structure and compleity
of the nearest- and furthest-neighbor Voronoi diagrams of a
point set with respect to these distance functions.
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I. INTRODUCTION

The Voronoi diagram is one of the most fundamental

point in the plane to gair of sites from a given seb.
Consequently, each Voronoi region corresponds to an (un-
ordered) pair of sites fror§. The original motivation for the
study [5] was the famous Heilbronn’s triangle problém| [14].
Other motivations are mentioned therein.

For S being a set of points, Voronoi diagrams under a
number of 2-site distance functions have been investigated
which include arithmetic combinations of point-to-poiig-d
tances([5],[[17] and certain geometric distance functi@is [

, [9]. In this work, we develop further the latter diremti.

Let S c R?, and considep, ¢ € S and a pointv in the

concepts in computational geometry, which has plenty ofane. \We shall focus our attention on a few circle-based
applications in science and industry. Much information inyistance functions:

this respect can be found in [4] and [13]; for important reicen

achievements, sekl[8].

The basic definition of the Voronoi diagram applies to a

setS of n points (also callediteg in the plane: itsearest-
neighborVoronoi diagramV'(.S) is a partition of the plane
into n regions, each corresponding to a distinct site S,
and consisting of all the points being closerstthan to any
other site fromS. Similarly, thefurthest-neighboMoronoi

diagram ofS is obtained by assigning each point in the plane
to the region of the most remote site. These notions can be

generalized to higher-dimensional spaces, differentsygfe
sites, and in other ways.

One of the recent generalizations of this concept is a

family of so-called2-site Voronoi diagramg¢5], which are

based on distance functions that define a distance from a
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to servers or lists, or reuse of any copyrighted componerthisfwork in
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o radius of circumscribing circle C(v, (p,q)) =
Rad(o(v,p, q)), whereo(v,p,q) is the circle defined
by v, p, ¢ andRad(c) is the radius of the circle;

. radius of containing circle K(v,(p,q)) =
Rad(C(v,p,q)), where C(v,p,q) is the minimum
circle containingu, p, ¢

« view angle V(v, (p,q)) = £pvq, or, equivalently, half
of the angular measure of the arcdf, p, ¢) that the
angle £pvq subtends;

« radius of inscribed circleR (v, (p, ¢)) is the radius of
the circle inscribed i\ (v, p, q);

« center-of-circumscribing-circle-based functionslet
owpqg denote the center of the circle(v,p,q); then

S(v,(p,q)), Alv,(p,q)), and P(v,(p,q)) are the
distance fromo,,, to the segmenpq, the area of

Noypepg, and the perimeter of\o,,,qpg, respectively;
and on a parameterized perimeter distance function:

1 Obviously,o(v, p, q) # C(v, p, q) if any of the three points is properly
contained in the circle whose diameter is defined by the thergpoints.
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» parameterized perimete. (v, (p, q)) = |vp| + |vg| + Theorem 1:Let S be a set oz points in the plane. The
c-|pg|, wheree > —1. combinatorial complexity o/ (5) is Q(n?).
The first and third circle-based distance functions were  Proof: The n points of S define ©(n?) lines, which
first mentioned in[[10]. The last function generalizes thealways haved(n*) intersection points. All these intersection
perimeter distance functio® (v, (p,q)) = Per(A(v,p,q)  points are features d?c(f)(S), and hence the lower bound.
introduced in[[5], and later addressed [in [7], [9]. |
Since two points define a segment, any 2-point site dis- Theorem 2:Let S be a set ofz points in the plane. The
tance functiond(v, (p,q)) provides a distance between the combinatorial complexity of both/c(")(S) and Vc(f)(S) is
point v and the segmeniq, and vice versa. Consequently, O(n**¢) (for anye > 0).
geometric structures akin to 2-site Voronoi diagrams can  Proof: Clearly, the combinatorial complexity of
arise as Voronoi diagrams of segments. This alternative/{™(S) or V)(9) is identical to that of the respective
approach was independently undertaken by Asano et aldiagram of the 2-site distance functia®? (v, (p,q)) =
and the “view angle” and “radius of circumscribing circle” RadQ(o(v,p, q)). It is known that Raa(o(vapv q)) =
distance functions reappeared in their works [2], [3] on((Jupllvgllpq))/(4|Avpg)))? = ((ve — p2)? + (v, —
Voronoi diagrams for segments soon after they had beep,)?)((v, — ¢.)? + (v, — ¢,))((Px — @2)* + (py —
proposed by Hodorkovsky [10] in the context of 2-site ¢,)?))/(4(vs(py — @) — P2(vy — @) + @u(vy — py))?).
Voronoi diagrams. However, as Asano’s et al. research washe respective collection ad(n?) Voronoi surfaces fulfills
originally motivated by mesh generation and improvemeniAssumptions 7.1 of [16, p. 188]:
tasks, they were mostly interested in sets of segments-repre
senting edges of a simple polygon, and thus, non-intersgcti
(except, possibly, at the endpoints), what significanttgral
the essence of the problem.

1) Each surface is an algebraic surface of maximum
constant degree;

2) Each surface is totally defined (this is stronger than
needed); and

In th|s paper, we analyze the structur_e and complgxny 3) Each triple of surfaces intersects in at most a constant
of 2-site Voronoi diagrams under the distance functions number of points

listed above. Our obtained results are mostly of theorketica .
interest. The method used to derive an upper bound on tHg€nce, we may apply Theorem 7.7 of [ibid., pn.|f1)91] and
complexity of the nearest-neighbor 2-site Voronoi diagramPPtain the claimed bound on the complexity (5)-
under the “parameterized perimeter” distance functionss fi u
developed for the case of = 1, yielding a much simpler

proof for the “perimeter” function than the one developed lIl. CONTAINING CIRCLE

in [Q], and then generalized to any> 0. We summarize

our new results in Tablg I. ) ing three pointg, ¢, andr in the plane. (That itC(p, ¢, r)
(‘If')hroughout the paperwe use the notatigfi’ (S) (resp., _is the minimum circle containing the triangl&pgr.) We
Vz7(S)) for denoting the nearest- (resp., furthest-) 2-sitenow define the 2-site containing-circle distance function:

Let C(p, q,r) denote the minimum-radius circle contain-

Voronoi diagram, under the distance functién of a point Definition 2: Given two pointsp,g in the plane, the
setS. The setS is always assumed to containpoints. “containing-circle distance’C from a pointwv in the plane
to the unordered paifp, q) is defined ask(v, (p,q)) =
Il. CIRCUMSCRIBING CIRCLE Rad(C(v,p, q)).

Let o(p,q,r) denote the unique circle defined by three In our context we have thgt # ¢. Assume first that
distinct pointsp, ¢, andr in the plane. We now define the v # p,q. Observe that if all angles of\pgr are acute
2-site circumscribing-circle distance function: (or Apgr is right-angled), thenC(p,q,r) is identical to

Definition 1: Given two pointsp,q in the plane, the o(p,q,r). Otherwise, if one of the angles dfpqr is obtuse,
“circumcircle distance”C from a pointv in the plane thenC(p,q,r) is the circle whose diameter is the longest
to the unordered paitp,q) is defined asC(v, (p,q)) =  €dge ofApgr, that is, the edge opposite to the obtuse angle.
Rad(o(v,p, q)). If v coincides with eithep or ¢, thenC(v, p, ) is the circle
For a fixed pair of pointg andg, the curveC (v, (p,q)) = oo ~ Whose diameter is the line segment
is the linepg. This implies that all the points opg belong Theorem 3:Let S be a set ofn points in the plane. The
to the region of(p, ¢) in V) (). In this section we assume combinatorial complexity oM (S) is Q(n).
that the points inS are in general position, i.e., there are Proof: For simplicity assume that each point frogh
no three collinear points, and no three pairs of points defindaas a unique closest neighbor $h For each poinp € S,
three distinct lines that intersect at one point. The giviess consider its closest neighber Then, the points on the line
are singular points, that is, for any two sitgs;, the function = segmenpyq lying sufficiently close tg belong to the region
C(v, (p,q)) is not defined ab = p or v = q. of (p,q) in V,é")(S), which is thus non-empty. Since no
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B in V,é”)(S). Furthermore, it follows from the definition of

K(v,(p,q)) that the respective Voronoi surface 0p,q)
is made of a constant number of patches, each of which
is a “well-behaved” function in the sense discussed in
the proof of Theoreni]2. Again, by standard Davenport-
NS Schinzel machinery, the combinatorial complexity of the
B lower envelope of thes®(n) surfaces iO(n**¢) (for any
(a) Acute triangle (b) Obtuse e > 0), and the claim follows. |
Theorem 5:Let S be a set ofx points in the plane. The

combinatorial complexity oﬂ/,éf)(S) is O(n**¢) (for any
e >0).

Proof: As in the proof of Theoreri]2, we prove this
claim by using the upper envelope ®{n?) “well-behaved”
Voronoi surfaces. [ ]
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SR IV. VIEW ANGLE
(c) Obtusey We now define the 2-site view-angle distance function:
Figure 1. Ifp, ¢ have a non-empty region M,é”)(s), thenpg is an edge _Defm't'on 3_: Given two pOII’]tS_p, q _m the plane, the
in DT(S). “view-angle distance’ from a pointv in the plane to the
unordered paifp, ¢) is defined as/(v, (p,q)) = £Lpvg.
Similarly to the circumcircle-radius distance functiohgt
region is thereby encountered more than twlé,é’f)(S) has view-angle function is undefined at thegiven points. For
at least[n/2] non-empty regions. The claim follows. B a fixed pair of pointg andg, the curveV (v, (p,q)) = 7 is
Theorem 4:Let S be a set ofn points in the plane. The the open line segment connecting the two pojmtand g,
combinatorial complexity oﬂ/,é”) (S) is O(n?*¢) (for any  while the curveV(v, (p,q)) = 0 is the linepg excluding
e > 0). the closed line segmept;. The curveV(v, (p,q)) = 7/2 is
Proof: Let a pointv belong to a non-empty region of the circle whose diameter is the line segmepntexcluding,
(p, q). No matter if the triangle\vpq is acute (Figur&ll(a)), again,p andq).
Awvpq is obtuse withw being the obtuse vertex (Figurk 1(b)), Theorem 6:Let S be a set ofz points in the plane. The
or Avpq is obtuse withp or ¢ being the obtuse vertex combinatorial complexity 0Vé”)(S) is Q(nt).
(Figurel[1(c)), the circle’(v, p, ¢) cannot contain any other Proof: Consider a setS of n points in the plane.
point z € S. Otherwise, regardless of the location:ofin ~ An example of the intersection of the complements of two
C(v,p,q), we will always haveX(v, (p, q)) > K(v, (z,q)),  segments defined by two pairs of points (with respect to the
which is a contradiction. This follows from the fact (séé [6, supporting lines) is shown in Figuré 2(a). These intersecti
Lemma 4.14]) that given a point sét and its minimum  points are features dfé”)(S); we show that there a@(n*)
enclosing circleC, where C' is defined by three points such points. To this aim we create a geometric gréph
a,b,c € K (resp., two diametrical points,t € K),  whose vertices are the given points, in which each segment’s
removing from K one of a,b,c¢ (resp., one ofs,t) will complement defines two edges. We add one additional point
result in a point set with a smaller minimum enclosing circle far away from the convex hull of, and connect it (without
Thus, there is a circle containing ¢ that is empty of any adding intersections) to all the rays as shown in Figlire.2(b)
other site fromS. This immediately implies thapq is an ~ We can now use the crossing-number lemma for bounding
edge of the Delaunay triangulation 8f Consequently, there from below the number of intersections of the original rays.
are O(n) pairs of sites inS that have non-empty regions The lemma tells us that every drawing of a graph with
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Figure 3. The graph oVéf)(S).

\

(b) Graph *v

Figure 2. The graph OV\SR)(S)- Figure 4. R(v, (p,q)) is the radius of the circle inscribed ifvvpg.

n vertices andm > 4n edges (without self or parallel fynction assumes its maximum possible valae We can
edges) ha$)(m®/n?) crossing points[1],[[12]. In our case now use the crossing-number lemma for counting these
m = 2(;,) = n(n — 1), so the number of intersection points jntersections. The graph with vertices andn > 4n edges
in G is Q(n°/n?) = Q(n*). All these intersection points are (without self or parallel edges) haQ(m3/n?) crossing

features oﬂ/\E”)(S), and hence the lower bound. B points [1], [12]. In this casen = (}) = n(n—1)/2, hence
Theorem 7:Let S be a set ofn points in the plane. The ¢)(»4) is a lower bound on the complexity @REJ')(S)_ -
combinatorial complexity of botIV(")(S) and V(f)(S) is i i i
ok plexity v v Results by Asano et all][2] immediately imply that the
O(n™"*) (for any e > 0). edges of1;\"/)(3) represent pieces of polynomial curves

Proof: For analyzingV;,"(S) and 1,\(S) we con-  of degree at most three. However, the structure of the part
sider the function(— cos <puvq) instead of that ofdpvg.  of v/)(5) that lies outside the convex huiH(S) of S
This is permissible since the cosine function is strictlyjg fairly simple: it is given by the arrangement of lines
decreasing in the rang®, 7]. By the cosine law, we have gypporting the edges a?#(S). This arrangement can be
—cos £pvg = (|pq|*—|vp|*—|vg|*)/(2|vpllvg|). As we have  computed by a standard incremental algorithm in optimal
already seen more than once in this paper, this means thaf(;2) time and space, wheré denotes the number of
the respective collection @b(n?) Voronoi surfaces fulfills  yertices ofCH(S). Each cell of the arrangement should then
Assumptions 7.1 of[[16, p. 188]. Hence, we may applype |abeled with a pair of sites froii, to the Voronoi region
Theorem 7.7 of [ibid., p. 191] and obtain the claimed boundof which it belongs; this extra task can be completed within

on the complexity ofii\"" (). B the same complexity bounds.
Theorem 8:Let S be a set ofn points in the plane. The
combinatorial complexity ;i () is Q(n?). V. RADIUS OF INSCRIBED CIRCLE

Proof: Given a setS of n points in the plane, we
count the intersections of pairs of line segments, where We now define the 2-site “radius-of-inscribed-circle” dis-
each segment is defined by points $f(see Figurd13(a)). tance function:
We create a geometric graph whose vertices are the given Definition 4: Given two pointsp,q in the plane, the
points, and the edges are the line segments connectiniscribed radius distanceR from a pointv in the plane to
every pair of points (see Figuf@ 3(b)). The intersections othe unordered paifp, ¢), denoted byR (v, (p, q)), is defined
the segments defined by all pairs of points define featureds the radius of the circle inscribed in the trianglepq
of Vi/)(5), because along these segments the view-angl€Figure(3).



Theorem 9:Let S be a set ofn points in the plane. The D
combinatorial complexity onz")(S) is Q(n?). ‘
Proof: The intersection point of any two lines defined q
by the points fromS is a distinct feature of the Voronoi
diagram under discussion. Thuspoints in.S define®(n?)
lines, which haved(n*) intersection points. [ o(v,p, q)
Theorem 10:Let S be a set of points in the plane. The
combinatorial complexity of both/é")(S) and szf)(S) is v
O(n**¢) (for any e > 0).
Proof: Let p,q be two points inS, and v a

point in the plane. It is a well-known fact that , _ _ 5
'R(v,(p,q)) o 2A(v, (p,q))/'P(v, (p7Q))' where equivalently, the height af\o.,qpg perpendicular tpg), and A(v, (p, q)),

A(v, (p,q)) and P(v, (p,q)) are the area and perimeter, and7g(v, (p,q)) are the area and the perimeter &b, qpq, respectively.

respectively, of the triangleAvpq. Both the numerator

and denominator of this fraction can be written asce

algebraic expressions using the coordinates of the poin

v, p,q. Hence, as above, the standard Davenport-Schinz

machinery can be applied for obtaining the claim bounds
[ |

Theorem 11:Let S be a set of: points in the plane. The
combinatorial complexity 01[/7%’0)(8) is ©(n) in the worst
case.

Proof: The complexity ofozf)(S) can be as high as
Q(n). Let S be a set ofx point in convex position with no
three collinear points. Let andq be two antipodal vertices
of CH(S), the convex hull ofS, and consider two parallel
lines ¢, > p and ¢, > ¢ tangent toCH(S) only atp and N the worst case. o . _
¢, respectively. Next, consider any pointe ¢,, and let it _Proof: The I_<ey observation is the foIIowmg_. Cons_lder
move along/,, in either direction. In the limit, the distance & Pair (p,¢) of sites, and leb(p, ¢) denote the circle with
from v to any pair(s, ¢) of sites inS equals the width of the ~the diametepg. Then, for any point € o(p, )\ {p, ¢}, we
infinite strip bounded by two lines parallel tg and passing haveS(v, (p,q)) = A(v, (p,q)) = 0.
throughs andt, respectively. Consequently, the points(pf Consider two parallel lineg andi,, and letd denote the
lying sufficiently far fromp belong to the Voronoi region distance between them. For a giver> 2, let us construct
of (p, q). Since the number of pairs of antipodal vertices ofa setS of n points as a union of two setS; C /; and
CH(S) is ©(n), the bound follows. W S3 Cly consisting of[n/2] and [n/2] points, respectively,

A similar reasoning leads to a conclusion tﬁé,,gf)(s) in the following way. The set$; and S, are constructed
has at most a linear number of unbounded regions. Tdteratively; at each odd step, a new point is addedSto
demonstrate this, consider any pointin the plane, and a and at each even one—i$,. For anyi: 2 < i < n, let
line ¢ 5 u. Observe that the points ¢flying sufficiently far 57 and S; denote the two sets constructed so far, and let
from u belong to the Voronoi region of the pair(s) of points M* = {o(p,q)lp € Si,q € S5} denote the set of circles
from S that define the width of in the direction orthogonal defined by pairs of points from different sets. We want
to ¢, and, thus, represent a pair (pairs) of antipodal vertice¢ach circle fromM™ to pass through precisely two points
of CH(S). Since the union of all such lines gives the wholefrom S (those defining it), each two circles frod/™ to
plane, and the number of antipodal verticesC@f(S) is at ~ intersect, and no three of them to pass through the same
most linear, the claim follows. point not contained inS. Then ©(n?) circles composing
M™ will give rise to ©(n*) distinct intersection points, each
belonging to a separate feature of either Voronoi diagram
under consideration, and the claim will follow.

Letw, p, ¢ be three points in the plane. Consider the circle To ensure the first property, we select the points so that
o(v,p, q) passing through, p, ¢ with centero,,,. We now  the distance between each two points contained in the same
define three more distance functions based on the abowts; is much smaller thad, wherei = 1,2. To guarantee
notation: the second property, at each ste < j < n, when adding

Definition 5: Given two pointsp,¢ in_ the plane, the g new points to the respective set, we make sure that for any
three distances, denoted I8(v, (p,q)), A(v,(p,q)), and  point¢ from the other set, the circle(s,t) passes neither

Figure 5. The circleo(v, p, q) is defined by the points, p, ¢, and has the
center abypg. §(v, (p, q)) is the distance from,,4 to the segmengtg (or,

(v, (p, q)), respectively, are the distance fram,, to the
Jne segmentyg, the area of the trian_gléoqupq, and the
perimeter ofAo,,,pq, respectively (Figurgl5).

" The upper bound oD (n**s) (for any ¢ > 0) on the
complexity of the nearest- and furthest-neighbor Voronoi
diagrams under each of these distance functions can be,
again, derived by means of Davenport-Schinzel machinery.
Below we provide some lower bounds. First, we address the
nearest-neighbor case.

Theorem 12:Let S be a set of: points in the plane. The
combinatorial complexity of/é") (S) and Vj;") (S) is Q(n*)

VI. DISTANCESBASED ON THECENTER OF THE
CIRCUMSCRIBING CIRCLE



through any point froms? ' U 37"\ {¢} nor through any '
intersection point of the circles from/7—!. This completes
the proof. [ |

Theorem 13:Let S be a set of points in the plane. The
combinatorial complexity oﬂ/in)(S) is ©(n) in the worst
case. P

Proof: A linear lower bound in the worst case for Pz

VE")(S) can be obtained in the following way. Choose the
sgtS of points to lie on some liné, so that the distance
between any two consecutive points is 1. Then, the minimum
possible value for the distance functi&n‘s obviously 2, and ;
can be achieved only for a pdip, g) of consecutive points. R4
For each such paifp, ¢), consider the circle(p, ¢) with the
diameterpq. Evidently, for any poinb € o(p, ¢)\ {p, ¢}, we

have7c5(v, (p,q)) = 2, and for any other paifs, t) of sites,

Figure 6. An empty circle containing sites .

P(v, (s,1)) > 2. We conclude that each pair of consecutive comparable to the number of. points!) Again, one can apply
points along/ has a non-empty region m,gn)(s). Since the stqndard Davenport-Schinzel machlr_lery and c_onclude
) ) s P the claimed upper bound on the complexity of the diagram.

there arev—1 pairs of consecutive points, the bound follows. |1 remains unclear whether the worst-case complexity of
) . . the diagram is linear, quadratic, or in between. The proof

Second, we address the furthest-neighbor Voronoi diay, [9] of the main observation was extremely complex. We
grams. provide here an alternative and much simpler proof of the

Theorem 14:Let S be a set ofn poir(w})s in the(f)plane. same bound, which generalizes to the case of “parameterized
The combinatorial complexity of all of/g (9), Vjl (9), perimeter” distance function for any> 0.

and V(f)(S) is Q(n). Theorem 15:Let S be a set(o)h points in the plane. The
o . - . n H 2+
In éach case, the proof is identical to that of Theofém gpo>rn(l)))|nat0r|al complexity o5 (5) is O(n**<) (for any
e .
VII. PARAMETERIZED PERIMETER Proof: Refer to Figure . Letv(,(% € S be two sites
Finally, we define the 2-site parameterized perimetefhich have a non-empty region i, *(5), and letv be a
distance function: point in this region, noncollinear with and¢. In addition,

Definition 6: Given two points, ¢ in the plane and a real 1€t ¢ be the perpendicular bisector of the line segment
constant > —1, the “parameterized perimeter distande? ~ Assume, without loss of generality, that| < [vq].

from a pointv in the plane to the unordered pdis, ¢) is Consider the ellips®,,, passing througly with v andp

defined asP.(v, (p, q)) = |vp| + |vg| + ¢ - |pal. as foci. By definition, for any point inside this ellipse we
We require that be greater than or equal tel since  have[vs| + |ps| < |vg| + |pg|. Therefore,

allowing c < —1 V\_/ould rgsult in negative distances. Letting P(v,(p,s)) = |vs|+ |ps| + |vp| 1)

¢ = —1 results in a distance function that equals 0 for

all the points on the line segmepy. If ¢ = 0, we deal < lval + Ipal + [vp| = P(v, (. 9))-
with the “sum of distances” distance function introducedThis means that cannot be a site irt, for otherwisew
in [5] and recently revisited in[[17]. For = 1, the  would belong to the region dfp, s) instead of to the region
above definition yields the “perimeter” distance functionof (p,q). It follows that the ellipseO,,, is empty of any
P(v,(p,q)) = Per(Avpq). sites other thap andg.

In [9] it was proven that the combinatorial complexity =~ Now consider the ling’ that is tangent t@,,, at ¢, and
of the nearest-neighbor 2-site perimeter Voronoi diagranthe ray7 perpendicular td’ at ¢ and passing throug®,,.
of a set ofn points is slightly superquadratic in. In a It is a known property of ellipses that this ray bisects the
nutshell, the proof was based on the observation that angngle {vgp, and, thus, it intersects the line segmeint
pair of sites that has a non-empty region in the perimetesay, at pointo. The circle C' centered ato and passing
diagram also has a non-empty region in the sum-of-distancebrough ¢ is tangent toO,,, at ¢ (as well as at another
diagram. This immediately implies that the number of suchpoint), and is entirely contained i@,,,. Sincev is closer
pairs is linear im. (However, unlike in the sum-of-distances to p than to ¢ (by our assumption), it follows that the
diagram, a region in the perimeter diagram is not necegsarilcircle C' also containsp. (If p were on the extension of
continuous. We were able to construct examples in whichyp in the shaded area, a contradiction would easily be
the number of connected components dfimgle region is  obtained by using the triangle inequalityp| > |og|, hence



lup| = |ov| + |op| > |ov| + |og| > |vq|, contradicting the
assumption thatvp| < |vg|.) SinceO,,,, is empty of sites
(exceptp and ¢), so is the circleC. Therefore,pq is an
edge of the Delaunay triangulation &f. The number of
such edges is linear in, the cardinality ofS.

Hence, there ar®(n) respective surfaces of these pairs of
sites. One can now apply the standard Davenport-Schinzel
machinery (as in the proof of Theoréin 2). The claim follows.

[ |

Finally, we state the following theorem.

Theorem 16:Let S be a set ofz points in the plane.
(@) The combinatorial complexity o@gﬂ (9)is Q(n*) and
O(n**¢) (for any e > 0).

If there is a unique closest pait ¢ € S, then when
¢ — oo, the combinatorial complexity oVéf)(S) is

(b)

Figure 7. The Cartesian ovﬂf,;,)q is the locus of points;’, for which
lvg’| + ¢ - |pg’| = |vq| + ¢ - |pg|. The ray+ passes througly and is
perpendicular t(Of,;,)q, and intersects the axis of symmetry@ﬁi,)q at the
point o. The circleC' is centered ab, and is tangent t@vi,)q atq. For any
point = on the axis of abscissas residing inside ¢(z) denotes the point

(©

@)

(b)

(©

asymptotically 1.

Forc > 0, the combinatorial complexity oVé?)(S) is
O(n**¢) (for anye > 0).

Proof:

To see the lower bound on the complexilyV;»Sf)1 (9),
note that every point on the segmemi has P_;-
distance zero to the pafp, ¢), and therefore, the inter-
section of any pair of segmenisg; andp.g> defined

by sitespi, q1,p2,q2 € S is a feature 0W7§’j)1(S). As

is demonstrated in the proof of Theorgin 8, the number
of these features & (n*). The upper bound is obtained
by using the usual Davenport-Schinzel machinery, as in
the proof of Theorerh]2.

It is easy to verify that ag — oo, the termc - |pg|
dominates the distanc@.(v, (p, q)), and, hence, every
point v in the plane is closer to the unique closest pair
of sitesp, ¢ € S than to any other pair it5. Hence, the
asymptotic diagram contains zero vertices, zero edges,
and one face (the entire plane).

The proof is a generalized version of the proof of the
special case = 1. Refer to Figurd]7. As in the proof
of Theoren_Ib, we assume that there is a poirih
the region of(p, ¢), such thatlup| < |vg|, andv is
noncollinear withp andq. Our goal is to show that for
anyc > 0 there exists a circle havingon its boundary
and containingy, which is empty of any other site,
implying thatp, ¢ are Delaunay neighbors.

As in the proof of Theoreri 15, Idf)f,‘;)q be the locus
of points ¢’ for which P.(v, (p,q")) = Pe(v, (p,q)).
Thus,O&‘;)q is the Cartesian oval(v, p, ¢, k) consisting

of all points¢’ that satisfy|vg’| + ¢|pq’| = k, where

kE = |vg| + c|pq| is constant. (Unless = 1, this oval
has exactly one axis of symmetry: the line joining the
two foci v, p.) Then, if there were a site within 05;26,,

it would lead to a smaller value d?,, so Oiz)q must

be empty of sites other than

As before, leti” be the ray emanating from perpen-
dicular to and pointing int@ﬁ)q, and leto be the point

of C' lying abovez.

wherer’ crosses the lingv.

Let us further suppose that # 1. Without loss of
generality, assume that;,, is symmetric with respect

to the axis of abscissas (see Figlite 7); consequently,
the pointsp, v, ando belong to the latter. Let),, x,,

z,, andzx, denote the corresponding coordinatepof

v, o, andq, respectively.

Consider a circle€” centered ab of the radiusk = |oq].

By construction(C' is tangent toOf,‘;)q atgq.

For anyx € R, such that the pointz, 0) lies insideC,

let t(x) denote the point o lying above(z,0). For

any suchz, let

fo(x) = d(v, t(x))
oy P 2
=\/2(xo — ) - + 22 + 22 + R2.

Since f,(x) represents a square root of a linear func-
tion, it is concave on its domain. The same will hold
for a function f,,(z) = d(p,t(x)). Consequently, their
weighted combinatiorf(z) = f,(z) +¢- fp(z) is also
concave on the same domain, and, thus, has a single
local maximum.

Recall that the circleC' is tangent toOy,, at ¢ by
construction. It is easy to see thét is tangent to
Oy, from the inside otherwise,r, would be a local
minimum of f(z) achieved at an inner point of the
domain, contradicting the concavity ¢fz). It follows
that f(z) has a local maximum at,. Together with
the previous observation, this implies thétz) has a
global maximum atz,. This means thay is the only
common point ofOl(éq and the upper half of?. By
symmetry, we conclude that' lies insideOf,‘;)q and
touches it aty and the point symmetric tg. Thus,C
must be empty of sites other than

It remains to demonstrate that lies inside C. To



this end, it is sufficient to show that the poiatlies
betweenv and p; then, as in the case af = 1, the

needed property can be easily derived using the triangle

inequality.

Let us argue as follows. The above reasoning can
be carried out for any poiny’ € Oj,, noncollinear
with v and p, providing us with a maximum empty
circle inscribed inOg,,,, and tangent to it at precisely
two points—namely, aty’ and its symmetric point.
It follows that the medial axis 00y, is a segment
of the line vp throughv and p. Let v and p’ be
the intersection points ofp and 05‘;)(, being closer
to v and p, respectively (see Figufd 7). Consider the
circle C, with radius [vv’| centered at. Obviously,

v’ is a common point of”;, and Ogi,)q, but any other
point z of C, lies strictly insideOy,,,, since for any
such pointz, we have|zv| = |[v'v| and |zp| < |[v'p].
This implies that the radius of curvature 0@% atv’

is greater thanfuvv’|. A similar statement holds foy'.
Consequently, the two endpoints of the medial axis
must lie betweerw and p, and the same must hold
for the pointo.

We conclude thatC' is a circle containing bothp
and ¢ and otherwise empty of sites, goand ¢ are
Delaunay neighbors. Hence, there @én) pairs of
sites that generate regions in the Voronoi diagram, and
the claim follows from the standard Davenport-Schinzel

machinery.
[ |

(2]

(3]

[4]

(5]

(6]

[7]

(8]

9]

(10]

VIII. CONCLUSION

In this paper, we have investigated 2-site Voronoi dia-

grams of point sets with respect to a few geometric distancgr 1]
functions. The Voronoi structures obtained in this way
cannot be explained in terms of the previously known kinds

of Voronoi diagrams (which is the case for the 2-site distanc [

functions thoroughly analyzed ir1[5]), what makes them
particularly interesting. On the other hand, our results ca[13]
be exploited to advance research on Voronoi diagram for
segments. Potential directions for future work include-con

sideration of other distance functions, and generalinatio

higher dimensions and te-site Voronoi diagrams.
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