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Abstract—We revisit a new type of a Voronoi diagram, in
which distance is measured from a point to apair of points.
We consider a few more such distance functions, based on
geometric primitives, and analyze the structure and complexity
of the nearest- and furthest-neighbor Voronoi diagrams of a
point set with respect to these distance functions.
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I. I NTRODUCTION

The Voronoi diagram is one of the most fundamental
concepts in computational geometry, which has plenty of
applications in science and industry. Much information in
this respect can be found in [4] and [13]; for important recent
achievements, see [8].

The basic definition of the Voronoi diagram applies to a
setS of n points (also calledsites) in the plane: itsnearest-
neighborVoronoi diagramV (S) is a partition of the plane
into n regions, each corresponding to a distinct sites ∈ S,
and consisting of all the points being closer tos than to any
other site fromS. Similarly, the furthest-neighborVoronoi
diagram ofS is obtained by assigning each point in the plane
to the region of the most remote site. These notions can be
generalized to higher-dimensional spaces, different types of
sites, and in other ways.

One of the recent generalizations of this concept is a
family of so-called2-site Voronoi diagrams[5], which are
based on distance functions that define a distance from a
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point in the plane to apair of sites from a given setS.
Consequently, each Voronoi region corresponds to an (un-
ordered) pair of sites fromS. The original motivation for the
study [5] was the famous Heilbronn’s triangle problem [14].
Other motivations are mentioned therein.

For S being a set of points, Voronoi diagrams under a
number of 2-site distance functions have been investigated,
which include arithmetic combinations of point-to-point dis-
tances [5], [17] and certain geometric distance functions [5],
[7], [9]. In this work, we develop further the latter direction.

Let S ⊂ R
2, and considerp, q ∈ S and a pointv in the

plane. We shall focus our attention on a few circle-based
distance functions:

• radius of circumscribing circle: C(v, (p, q)) =
Rad(◦(v, p, q)), where◦(v, p, q) is the circle defined
by v, p, q andRad(c) is the radius of the circlec;

• radius of containing circle: K(v, (p, q)) =
Rad(C(v, p, q)), where C(v, p, q) is the minimum
circle containingv, p, q;1

• view angle: V(v, (p, q)) = ∡pvq, or, equivalently, half
of the angular measure of the arc of◦(v, p, q) that the
angle∡pvq subtends;

• radius of inscribed circle: R(v, (p, q)) is the radius of
the circle inscribed in△(v, p, q);

• center-of-circumscribing-circle-based functions: let
ovpq denote the center of the circle◦(v, p, q); then
◦

S(v, (p, q)),
◦

A(v, (p, q)), and
◦

P(v, (p, q)) are the
distance fromovpq to the segmentpq, the area of
△ovpqpq, and the perimeter of△ovpqpq, respectively;

and on a parameterized perimeter distance function:

1 Obviously,◦(v, p, q) 6= C(v, p, q) if any of the three points is properly
contained in the circle whose diameter is defined by the two other points.
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• parameterized perimeter: Pc(v, (p, q)) = |vp|+ |vq|+
c · |pq|, wherec ≥ −1.

The first and third circle-based distance functions were
first mentioned in [10]. The last function generalizes the
perimeter distance functionP(v, (p, q)) = Per(△(v, p, q)
introduced in [5], and later addressed in [7], [9].

Since two points define a segment, any 2-point site dis-
tance functiond(v, (p, q)) provides a distance between the
point v and the segmentpq, and vice versa. Consequently,
geometric structures akin to 2-site Voronoi diagrams can
arise as Voronoi diagrams of segments. This alternative
approach was independently undertaken by Asano et al.,
and the “view angle” and “radius of circumscribing circle”
distance functions reappeared in their works [2], [3] on
Voronoi diagrams for segments soon after they had been
proposed by Hodorkovsky [10] in the context of 2-site
Voronoi diagrams. However, as Asano’s et al. research was
originally motivated by mesh generation and improvement
tasks, they were mostly interested in sets of segments repre-
senting edges of a simple polygon, and thus, non-intersecting
(except, possibly, at the endpoints), what significantly alters
the essence of the problem.

In this paper, we analyze the structure and complexity
of 2-site Voronoi diagrams under the distance functions
listed above. Our obtained results are mostly of theoretical
interest. The method used to derive an upper bound on the
complexity of the nearest-neighbor 2-site Voronoi diagram
under the “parameterized perimeter” distance function is first
developed for the case ofc = 1, yielding a much simpler
proof for the “perimeter” function than the one developed
in [9], and then generalized to anyc ≥ 0. We summarize
our new results in Table I.

Throughout the paper we use the notationV
(n)
F (S) (resp.,

V
(f)
F (S)) for denoting the nearest- (resp., furthest-) 2-site

Voronoi diagram, under the distance functionF , of a point
setS. The setS is always assumed to containn points.

II. C IRCUMSCRIBING CIRCLE

Let ◦(p, q, r) denote the unique circle defined by three
distinct pointsp, q, andr in the plane. We now define the
2-site circumscribing-circle distance function:

Definition 1: Given two pointsp, q in the plane, the
“circumcircle distance”C from a point v in the plane
to the unordered pair(p, q) is defined asC(v, (p, q)) =
Rad(◦(v, p, q)).
For a fixed pair of pointsp andq, the curveC(v, (p, q)) = ∞
is the linepq. This implies that all the points onpq belong
to the region of(p, q) in V

(f)
C (S). In this section we assume

that the points inS are in general position, i.e., there are
no three collinear points, and no three pairs of points define
three distinct lines that intersect at one point. The given sites
are singular points, that is, for any two sitesp, q, the function
C(v, (p, q)) is not defined atv = p or v = q.

Theorem 1:Let S be a set ofn points in the plane. The
combinatorial complexity ofV (f)

C (S) is Ω(n4).
Proof: The n points of S defineΘ(n2) lines, which

always haveΘ(n4) intersection points. All these intersection
points are features ofV (f)

C (S), and hence the lower bound.

Theorem 2:Let S be a set ofn points in the plane. The
combinatorial complexity of bothV (n)

C (S) andV
(f)
C (S) is

O(n4+ε) (for any ε > 0).
Proof: Clearly, the combinatorial complexity of

V
(n)
C (S) or V

(f)
C (S) is identical to that of the respective

diagram of the 2-site distance functionC2(v, (p, q)) =
Rad2(◦(v, p, q)). It is known that Rad2(◦(v, p, q)) =
((|vp||vq||pq|)/(4|△vpq|))2 = (((vx − px)

2 + (vy −
py)

2)((vx − qx)
2 + (vy − qy)

2)((px − qx)
2 + (py −

qy)
2))/(4(vx(py − qy) − px(vy − qy) + qx(vy − py))

2).
The respective collection ofΘ(n2) Voronoi surfaces fulfills
Assumptions 7.1 of [16, p. 188]:

1) Each surface is an algebraic surface of maximum
constant degree;

2) Each surface is totally defined (this is stronger than
needed); and

3) Each triple of surfaces intersects in at most a constant
number of points.

Hence, we may apply Theorem 7.7 of [ibid., p. 191] and
obtain the claimed bound on the complexity ofV

(n|f)
C (S).

III. C ONTAINING CIRCLE

Let C(p, q, r) denote the minimum-radius circle contain-
ing three pointsp, q, andr in the plane. (That it,C(p, q, r)
is the minimum circle containing the triangle△pqr.) We
now define the 2-site containing-circle distance function:

Definition 2: Given two pointsp, q in the plane, the
“containing-circle distance”K from a pointv in the plane
to the unordered pair(p, q) is defined asK(v, (p, q)) =
Rad(C(v, p, q)).

In our context we have thatp 6= q. Assume first that
v 6= p, q. Observe that if all angles of△pqr are acute
(or △pqr is right-angled), thenC(p, q, r) is identical to
◦(p, q, r). Otherwise, if one of the angles of△pqr is obtuse,
thenC(p, q, r) is the circle whose diameter is the longest
edge of△pqr, that is, the edge opposite to the obtuse angle.
If v coincides with eitherp or q, thenC(v, p, q) is the circle
whose diameter is the line segmentpq.

Theorem 3:Let S be a set ofn points in the plane. The
combinatorial complexity ofV (n)

K (S) is Ω(n).
Proof: For simplicity assume that each point fromS

has a unique closest neighbor inS. For each pointp ∈ S,
consider its closest neighborq. Then, the points on the line
segmentpq lying sufficiently close top belong to the region
of (p, q) in V

(n)
K (S), which is thus non-empty. Since no
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|V
(n)
F

(S)| O(n4+ε) Ω(n), O(n2+ε) Ω(n4), O(n4+ε) O(n4+ε)

|V
(f)
F

(S)| Ω(n4), O(n4+ε) O(n4+ε) Ω(n), O(n4+ε) Ω(n4), O(n4+ε)

F
◦

S
◦

A
◦

P P

|V
(n)
F

(S)| Ω(n4), O(n4+ε) Ω(n4), O(n4+ε) Ω(n), O(n4+ε) O(n2+ε)

|V
(f)
F

(S)| Ω(n4), O(n4+ε) Ω(n4), O(n4+ε) Ω(n4), O(n4+ε)

Table I
OUR RESULTS: WORST-CASE COMBINATORIAL COMPLEXITIES OF2-SITE VORONOI DIAGRAMS OF A SETS OFn POINTS WITH RESPECT TO

DIFFERENT DISTANCE FUNCTIONS
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Figure 1. Ifp, q have a non-empty region inV (n)
K

(S), thenpq is an edge
in DT(S).

region is thereby encountered more than twice,V
(n)
K (S) has

at least⌈n/2⌉ non-empty regions. The claim follows.
Theorem 4:Let S be a set ofn points in the plane. The

combinatorial complexity ofV (n)
K (S) is O(n2+ε) (for any

ε > 0).
Proof: Let a pointv belong to a non-empty region of

(p, q). No matter if the triangle△vpq is acute (Figure 1(a)),
△vpq is obtuse withv being the obtuse vertex (Figure 1(b)),
or △vpq is obtuse withp or q being the obtuse vertex
(Figure 1(c)), the circleC(v, p, q) cannot contain any other
point x ∈ S. Otherwise, regardless of the location ofx in
C(v, p, q), we will always haveK(v, (p, q)) > K(v, (x, q)),
which is a contradiction. This follows from the fact (see [6,
Lemma 4.14]) that given a point setK and its minimum
enclosing circleC, where C is defined by three points
a, b, c ∈ K (resp., two diametrical pointss, t ∈ K),
removing fromK one of a, b, c (resp., one ofs, t) will
result in a point set with a smaller minimum enclosing circle.
Thus, there is a circle containingp, q that is empty of any
other site fromS. This immediately implies thatpq is an
edge of the Delaunay triangulation ofS. Consequently, there
are O(n) pairs of sites inS that have non-empty regions

in V
(n)
K (S). Furthermore, it follows from the definition of

K(v, (p, q)) that the respective Voronoi surface of(p, q)
is made of a constant number of patches, each of which
is a “well-behaved” function in the sense discussed in
the proof of Theorem 2. Again, by standard Davenport-
Schinzel machinery, the combinatorial complexity of the
lower envelope of theseO(n) surfaces isO(n2+ε) (for any
ε > 0), and the claim follows.

Theorem 5:Let S be a set ofn points in the plane. The
combinatorial complexity ofV (f)

K (S) is O(n4+ε) (for any
ε > 0).

Proof: As in the proof of Theorem 2, we prove this
claim by using the upper envelope ofΘ(n2) “well-behaved”
Voronoi surfaces.

IV. V IEW ANGLE

We now define the 2-site view-angle distance function:
Definition 3: Given two pointsp, q in the plane, the

“view-angle distance”V from a pointv in the plane to the
unordered pair(p, q) is defined asV(v, (p, q)) = ∡pvq.
Similarly to the circumcircle-radius distance function, the
view-angle function is undefined at then given points. For
a fixed pair of pointsp andq, the curveV(v, (p, q)) = π is
the open line segment connecting the two pointsp and q,
while the curveV(v, (p, q)) = 0 is the line pq excluding
the closed line segmentpq. The curveV(v, (p, q)) = π/2 is
the circle whose diameter is the line segmentpq (excluding,
again,p andq).

Theorem 6:Let S be a set ofn points in the plane. The
combinatorial complexity ofV (n)

V (S) is Ω(n4).
Proof: Consider a setS of n points in the plane.

An example of the intersection of the complements of two
segments defined by two pairs of points (with respect to the
supporting lines) is shown in Figure 2(a). These intersection
points are features ofV (n)

V (S); we show that there areΩ(n4)
such points. To this aim we create a geometric graphG
whose vertices are the given points, in which each segment’s
complement defines two edges. We add one additional point
far away from the convex hull ofS, and connect it (without
adding intersections) to all the rays as shown in Figure 2(b).
We can now use the crossing-number lemma for bounding
from below the number of intersections of the original rays.
The lemma tells us that every drawing of a graph with
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(b) Graph

Figure 2. The graph ofV (n)
V

(S).

n vertices andm ≥ 4n edges (without self or parallel
edges) hasΩ(m3/n2) crossing points [1], [12]. In our case
m = 2

(

n

2

)

= n(n− 1), so the number of intersection points
in G is Ω(n6/n2) = Ω(n4). All these intersection points are
features ofV (n)

V (S), and hence the lower bound.
Theorem 7:Let S be a set ofn points in the plane. The

combinatorial complexity of bothV (n)
V (S) andV

(f)
V (S) is

O(n4+ε) (for any ε > 0).
Proof: For analyzingV (n)

V (S) and V
(f)
V (S) we con-

sider the function(− cos∡pvq) instead of that of∡pvq.
This is permissible since the cosine function is strictly
decreasing in the range[0, π]. By the cosine law, we have
− cos∡pvq = (|pq|2−|vp|2−|vq|2)/(2|vp||vq|). As we have
already seen more than once in this paper, this means that
the respective collection ofΘ(n2) Voronoi surfaces fulfills
Assumptions 7.1 of [16, p. 188]. Hence, we may apply
Theorem 7.7 of [ibid., p. 191] and obtain the claimed bound
on the complexity ofV (n|f)

V (S).
Theorem 8:Let S be a set ofn points in the plane. The

combinatorial complexity ofV (f)
V (S) is Ω(n4).

Proof: Given a setS of n points in the plane, we
count the intersections of pairs of line segments, where
each segment is defined by points ofS (see Figure 3(a)).
We create a geometric graph whose vertices are the given
points, and the edges are the line segments connecting
every pair of points (see Figure 3(b)). The intersections of
the segments defined by all pairs of points define features
of V

(f)
V (S), because along these segments the view-angle

feature

(a) Intersection point

2

54
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(b) Graph

Figure 3. The graph ofV (f)
V

(S).

R(v, (p, q))

q
p

v

Figure 4. R(v, (p, q)) is the radius of the circle inscribed in△vpq.

function assumes its maximum possible value,π. We can
now use the crossing-number lemma for counting these
intersections. The graph withn vertices andm ≥ 4n edges
(without self or parallel edges) hasΩ(m3/n2) crossing
points [1], [12]. In this casem =

(

n

2

)

= n(n− 1)/2, hence

Ω(n4) is a lower bound on the complexity ofV (f)
V (S).

Results by Asano et al. [2] immediately imply that the
edges ofV (n|f)

V (S) represent pieces of polynomial curves
of degree at most three. However, the structure of the part
of V

(f)
V (S) that lies outside the convex hullCH(S) of S

is fairly simple: it is given by the arrangement of lines
supporting the edges ofCH(S). This arrangement can be
computed by a standard incremental algorithm in optimal
Θ(k2) time and space, wherek denotes the number of
vertices ofCH(S). Each cell of the arrangement should then
be labeled with a pair of sites fromS, to the Voronoi region
of which it belongs; this extra task can be completed within
the same complexity bounds.

V. RADIUS OF INSCRIBED CIRCLE

We now define the 2-site “radius-of-inscribed-circle” dis-
tance function:

Definition 4: Given two pointsp, q in the plane, the
“inscribed radius distance”R from a pointv in the plane to
the unordered pair(p, q), denoted byR(v, (p, q)), is defined
as the radius of the circle inscribed in the triangle△vpq
(Figure 4).



Theorem 9:Let S be a set ofn points in the plane. The
combinatorial complexity ofV (n)

R (S) is Ω(n4).
Proof: The intersection point of any two lines defined

by the points fromS is a distinct feature of the Voronoi
diagram under discussion. Thus,n points inS defineΘ(n2)
lines, which haveΘ(n4) intersection points.

Theorem 10:Let S be a set ofn points in the plane. The
combinatorial complexity of bothV (n)

R (S) andV
(f)
R (S) is

O(n4+ε) (for any ε > 0).
Proof: Let p, q be two points in S, and v a

point in the plane. It is a well-known fact that
R(v, (p, q)) = 2A(v, (p, q))/P(v, (p, q)), where
A(v, (p, q)) and P(v, (p, q)) are the area and perimeter,
respectively, of the triangle△vpq. Both the numerator
and denominator of this fraction can be written as
algebraic expressions using the coordinates of the points
v, p, q. Hence, as above, the standard Davenport-Schinzel
machinery can be applied for obtaining the claim bounds.

Theorem 11:Let S be a set ofn points in the plane. The
combinatorial complexity ofV (f)

R (S) is Ω(n) in the worst
case.

Proof: The complexity ofV (f)
R (S) can be as high as

Ω(n). Let S be a set ofn point in convex position with no
three collinear points. Letp andq be two antipodal vertices
of CH(S), the convex hull ofS, and consider two parallel
lines ℓp ∋ p and ℓq ∋ q tangent toCH(S) only at p and
q, respectively. Next, consider any pointv ∈ ℓp, and let it
move alongℓp in either direction. In the limit, the distance
from v to any pair(s, t) of sites inS equals the width of the
infinite strip bounded by two lines parallel toℓp and passing
throughs andt, respectively. Consequently, the points ofℓp
lying sufficiently far fromp belong to the Voronoi region
of (p, q). Since the number of pairs of antipodal vertices of
CH(S) is Θ(n), the bound follows.

A similar reasoning leads to a conclusion thatV
(f)
R (S)

has at most a linear number of unbounded regions. To
demonstrate this, consider any pointu in the plane, and a
line ℓ ∋ u. Observe that the points ofℓ lying sufficiently far
from u belong to the Voronoi region of the pair(s) of points
from S that define the width ofS in the direction orthogonal
to ℓ, and, thus, represent a pair (pairs) of antipodal vertices
of CH(S). Since the union of all such lines gives the whole
plane, and the number of antipodal vertices ofCH(S) is at
most linear, the claim follows.

VI. D ISTANCESBASED ON THECENTER OF THE

CIRCUMSCRIBING CIRCLE

Let v, p, q be three points in the plane. Consider the circle
◦(v, p, q) passing throughv, p, q with centerovpq. We now
define three more distance functions based on the above
notation:

Definition 5: Given two pointsp, q in the plane, the

three distances, denoted by
◦

S(v, (p, q)),
◦

A(v, (p, q)), and

ovpq

q

v

p

◦(v, p, q)

Figure 5. The circle◦(v, p, q) is defined by the pointsv, p, q, and has the

center atovpq .
◦

S(v, (p, q)) is the distance fromovpq to the segmentpq (or,

equivalently, the height of△ovpqpq perpendicular topq), and
◦

A(v, (p, q)),

and
◦

P(v, (p, q)) are the area and the perimeter of△ovpqpq, respectively.

◦

P(v, (p, q)), respectively, are the distance fromovpq to the
line segmentpq, the area of the triangle△ovpqpq, and the
perimeter of△ovpqpq, respectively (Figure 5).

The upper bound ofO(n4+ε) (for any ε > 0) on the
complexity of the nearest- and furthest-neighbor Voronoi
diagrams under each of these distance functions can be,
again, derived by means of Davenport-Schinzel machinery.
Below we provide some lower bounds. First, we address the
nearest-neighbor case.

Theorem 12:Let S be a set ofn points in the plane. The
combinatorial complexity ofV (n)

◦

S
(S) andV (n)

◦

A
(S) is Ω(n4)

in the worst case.
Proof: The key observation is the following. Consider

a pair (p, q) of sites, and let◦(p, q) denote the circle with
the diameterpq. Then, for any pointv ∈ ◦(p, q)\{p, q}, we

have
◦

S(v, (p, q)) =
◦

A(v, (p, q)) = 0.
Consider two parallel linesl1 andl2, and letd denote the

distance between them. For a givenn ≥ 2, let us construct
a setS of n points as a union of two setsS1 ⊂ l1 and
S2 ⊂ l2 consisting of⌈n/2⌉ and⌊n/2⌋ points, respectively,
in the following way. The setsS1 and S2 are constructed
iteratively; at each odd step, a new point is added toS1,
and at each even one—toS2. For any i: 2 ≤ i ≤ n, let
Si
1 and Si

2 denote the two sets constructed so far, and let
M i = {◦(p, q)|p ∈ Si

1, q ∈ Si
2} denote the set of circles

defined by pairs of points from different sets. We want
each circle fromMn to pass through precisely two points
from S (those defining it), each two circles fromMn to
intersect, and no three of them to pass through the same
point not contained inS. Then Θ(n2) circles composing
Mn will give rise toΘ(n4) distinct intersection points, each
belonging to a separate feature of either Voronoi diagram
under consideration, and the claim will follow.

To ensure the first property, we select the points so that
the distance between each two points contained in the same
setSi is much smaller thand, wherei = 1, 2. To guarantee
the second property, at each stepj: 3 ≤ j ≤ n, when adding
a new points to the respective set, we make sure that for any
point t from the other set, the circle◦(s, t) passes neither



through any point fromSj−1
1 ∪ Sj−1

2 \ {t} nor through any
intersection point of the circles fromM j−1. This completes
the proof.

Theorem 13:Let S be a set ofn points in the plane. The
combinatorial complexity ofV (n)

◦

P
(S) is Ω(n) in the worst

case.
Proof: A linear lower bound in the worst case for

V
(n)
◦

P
(S) can be obtained in the following way. Choose the

set S of points to lie on some lineℓ, so that the distance
between any two consecutive points is 1. Then, the minimum

possible value for the distance function
◦

P is obviously 2, and
can be achieved only for a pair(p, q) of consecutive points.
For each such pair(p, q), consider the circle◦(p, q) with the
diameterpq. Evidently, for any pointv ∈ ◦(p, q)\{p, q}, we

have
◦

P(v, (p, q)) = 2, and for any other pair(s, t) of sites,
◦

P(v, (s, t)) > 2. We conclude that each pair of consecutive
points alongℓ has a non-empty region inV (n)

◦

P
(S). Since

there aren−1 pairs of consecutive points, the bound follows.

Second, we address the furthest-neighbor Voronoi dia-
grams.

Theorem 14:Let S be a set ofn points in the plane.
The combinatorial complexity of all ofV (f)

◦

S
(S), V (f)

◦

A
(S),

andV (f)
◦

P
(S) is Ω(n4).

In each case, the proof is identical to that of Theorem 9.

VII. PARAMETERIZED PERIMETER

Finally, we define the 2-site parameterized perimeter
distance function:

Definition 6: Given two pointsp, q in the plane and a real
constantc ≥ −1, the “parameterized perimeter distance”Pc

from a pointv in the plane to the unordered pair(p, q) is
defined asPc(v, (p, q)) = |vp|+ |vq|+ c · |pq|.

We require thatc be greater than or equal to−1 since
allowing c < −1 would result in negative distances. Letting
c = −1 results in a distance function that equals 0 for
all the points on the line segmentpq. If c = 0, we deal
with the “sum of distances” distance function introduced
in [5] and recently revisited in [17]. Forc = 1, the
above definition yields the “perimeter” distance function
P(v, (p, q)) = Per(△vpq).

In [9] it was proven that the combinatorial complexity
of the nearest-neighbor 2-site perimeter Voronoi diagram
of a set ofn points is slightly superquadratic inn. In a
nutshell, the proof was based on the observation that any
pair of sites that has a non-empty region in the perimeter
diagram also has a non-empty region in the sum-of-distances
diagram. This immediately implies that the number of such
pairs is linear inn. (However, unlike in the sum-of-distances
diagram, a region in the perimeter diagram is not necessarily
continuous. We were able to construct examples in which
the number of connected components of asingle region is

v

ℓ

p

o

~r
ℓ′

q

Figure 6. An empty circle containing sites inP .

comparable to the number of points!) Again, one can apply
the standard Davenport-Schinzel machinery and conclude
the claimed upper bound on the complexity of the diagram.
It remains unclear whether the worst-case complexity of
the diagram is linear, quadratic, or in between. The proof
in [9] of the main observation was extremely complex. We
provide here an alternative and much simpler proof of the
same bound, which generalizes to the case of “parameterized
perimeter” distance function for anyc ≥ 0.

Theorem 15:Let S be a set ofn points in the plane. The
combinatorial complexity ofV (n)

P (S) is O(n2+ε) (for any
ε > 0).

Proof: Refer to Figure 6. Letp, q ∈ S be two sites
which have a non-empty region inV (n)

P (S), and letv be a
point in this region, noncollinear withp andq. In addition,
let ℓ be the perpendicular bisector of the line segmentpq.
Assume, without loss of generality, that|vp| ≤ |vq|.

Consider the ellipseOvpq passing throughq with v andp
as foci. By definition, for any points inside this ellipse we
have|vs|+ |ps| < |vq|+ |pq|. Therefore,

P(v, (p, s)) = |vs|+ |ps|+ |vp| (1)

< |vq|+ |pq|+ |vp| = P(v, (p, q)).

This means thats cannot be a site inS, for otherwisev
would belong to the region of(p, s) instead of to the region
of (p, q). It follows that the ellipseOvpq is empty of any
sites other thanp andq.

Now consider the lineℓ′ that is tangent toOvpq at q, and
the ray~r perpendicular toℓ′ at q and passing throughOvpq.
It is a known property of ellipses that this ray bisects the
angle ∡vqp, and, thus, it intersects the line segmentvp,
say, at pointo. The circle C centered ato and passing
through q is tangent toOvpq at q (as well as at another
point), and is entirely contained inOvpq . Sincev is closer
to p than to q (by our assumption), it follows that the
circle C also containsp. (If p were on the extension of
vp in the shaded area, a contradiction would easily be
obtained by using the triangle inequality:|op| > |oq|, hence



|vp| = |ov| + |op| > |ov| + |oq| > |vq|, contradicting the
assumption that|vp| ≤ |vq|.) SinceOvpq is empty of sites
(exceptp and q), so is the circleC. Therefore,pq is an
edge of the Delaunay triangulation ofS. The number of
such edges is linear inn, the cardinality ofS.

Hence, there areΘ(n) respective surfaces of these pairs of
sites. One can now apply the standard Davenport-Schinzel
machinery (as in the proof of Theorem 2). The claim follows.

Finally, we state the following theorem.
Theorem 16:Let S be a set ofn points in the plane.

(a) The combinatorial complexity ofV (n)
P−1

(S) isΩ(n4) and
O(n4+ε) (for any ε > 0).

(b) If there is a unique closest pairp, q ∈ S, then when
c → ∞, the combinatorial complexity ofV (n)

Pc

(S) is
asymptotically 1.

(c) For c ≥ 0, the combinatorial complexity ofV (n)
Pc

(S) is
O(n2+ε) (for any ε > 0).
Proof:

(a) To see the lower bound on the complexity ofV
(n)
P−1

(S),
note that every point on the segmentpq has P−1-
distance zero to the pair(p, q), and therefore, the inter-
section of any pair of segmentsp1q1 andp2q2 defined
by sitesp1, q1, p2, q2 ∈ S is a feature ofV (n)

P−1
(S). As

is demonstrated in the proof of Theorem 8, the number
of these features isΩ(n4). The upper bound is obtained
by using the usual Davenport-Schinzel machinery, as in
the proof of Theorem 2.

(b) It is easy to verify that asc → ∞, the termc · |pq|
dominates the distancePc(v, (p, q)), and, hence, every
point v in the plane is closer to the unique closest pair
of sitesp, q ∈ S than to any other pair inS. Hence, the
asymptotic diagram contains zero vertices, zero edges,
and one face (the entire plane).

(c) The proof is a generalized version of the proof of the
special casec = 1. Refer to Figure 7. As in the proof
of Theorem 15, we assume that there is a pointv in
the region of(p, q), such that|vp| ≤ |vq|, and v is
noncollinear withp andq. Our goal is to show that for
anyc ≥ 0 there exists a circle havingq on its boundary
and containingp, which is empty of any other sites,
implying thatp, q are Delaunay neighbors.
As in the proof of Theorem 15, letO(c)

vpq be the locus
of points q′ for which Pc(v, (p, q

′)) = Pc(v, (p, q)).
Thus,O(c)

vpq is theCartesian oval(v, p, c, k) consisting
of all points q′ that satisfy|vq′| + c|pq′| = k, where
k = |vq| + c|pq| is constant. (Unlessc = 1, this oval
has exactly one axis of symmetry: the line joining the
two foci v, p.) Then, if there were a sites within O

(c)
vpq,

it would lead to a smaller value ofPc, so O
(c)
vpq must

be empty of sites other thanp.
As before, let~r be the ray emanating fromq perpen-
dicular to and pointing intoO(c)

vpq, and leto be the point

q

t(x)C

R
O

(c)
vpq

o p xvv′
p′

x

~r

ℓ′

Figure 7. The Cartesian ovalO(c)
vpq is the locus of pointsq′, for which

|vq′| + c · |pq′| = |vq| + c · |pq|. The ray~r passes throughq and is
perpendicular toO(c)

vpq , and intersects the axis of symmetry ofO
(c)
vpq at the

point o. The circleC is centered ato, and is tangent toO(c)
vpq at q. For any

point x on the axis of abscissas residing insideC, t(x) denotes the point
of C lying abovex.

where~r crosses the linepv.
Let us further suppose thatc 6= 1. Without loss of
generality, assume thatOc

vpq is symmetric with respect
to the axis of abscissas (see Figure 7); consequently,
the pointsp, v, ando belong to the latter. Letxp, xv,
xo, andxq denote the corresponding coordinate ofp,
v, o, andq, respectively.
Consider a circleC centered ato of the radiusR = |oq|.
By construction,C is tangent toO(c)

vpq at q.
For anyx ∈ R, such that the point(x, 0) lies insideC,
let t(x) denote the point ofC lying above(x, 0). For
any suchx, let

fv(x) = d(v, t(x))

=
√

R2 − (x− xo)2 + (x− xv)2

=
√

2(xo − xv) · x+ x2
o + x2

v +R2.

Sincefv(x) represents a square root of a linear func-
tion, it is concave on its domain. The same will hold
for a functionfp(x) = d(p, t(x)). Consequently, their
weighted combinationf(x) = fv(x) + c · fp(x) is also
concave on the same domain, and, thus, has a single
local maximum.
Recall that the circleC is tangent toOc

vpq at q by
construction. It is easy to see thatC is tangent to
Oc

vpq from the inside: otherwise,xq would be a local
minimum of f(x) achieved at an inner point of the
domain, contradicting the concavity off(x). It follows
that f(x) has a local maximum atxq. Together with
the previous observation, this implies thatf(x) has a
global maximum atxq. This means thatq is the only
common point ofO(c)

vpq and the upper half ofC. By
symmetry, we conclude thatC lies insideO(c)

vpq and
touches it atq and the point symmetric toq. Thus,C
must be empty of sites other thanp.
It remains to demonstrate thatp lies inside C. To



this end, it is sufficient to show that the pointo lies
betweenv and p; then, as in the case ofc = 1, the
needed property can be easily derived using the triangle
inequality.
Let us argue as follows. The above reasoning can
be carried out for any pointq′ ∈ Oc

vpq noncollinear
with v and p, providing us with a maximum empty
circle inscribed inOc

vpq , and tangent to it at precisely
two points—namely, atq′ and its symmetric point.
It follows that the medial axis ofOc

vpq is a segment
of the line vp through v and p. Let v′ and p′ be
the intersection points ofvp and O

(c)
vpq being closer

to v and p, respectively (see Figure 7). Consider the
circle Cv with radius |vv′| centered atv. Obviously,
v′ is a common point ofCv andO

(c)
vpq , but any other

point z of Cv lies strictly insideOc
vpq, since for any

such pointz, we have|zv| = |v′v| and |zp| < |v′p|.
This implies that the radius of curvature ofO(c)

vpq at v′

is greater than|vv′|. A similar statement holds forp′.
Consequently, the two endpoints of the medial axis
must lie betweenv and p, and the same must hold
for the pointo.
We conclude thatC is a circle containing bothp
and q and otherwise empty of sites, sop and q are
Delaunay neighbors. Hence, there areΘ(n) pairs of
sites that generate regions in the Voronoi diagram, and
the claim follows from the standard Davenport-Schinzel
machinery.

VIII. C ONCLUSION

In this paper, we have investigated 2-site Voronoi dia-
grams of point sets with respect to a few geometric distance
functions. The Voronoi structures obtained in this way
cannot be explained in terms of the previously known kinds
of Voronoi diagrams (which is the case for the 2-site distance
functions thoroughly analyzed in [5]), what makes them
particularly interesting. On the other hand, our results can
be exploited to advance research on Voronoi diagram for
segments. Potential directions for future work include con-
sideration of other distance functions, and generalizations to
higher dimensions and tok-site Voronoi diagrams.
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[1] M. A JTAI, V. CHVÁTAL , M. NEWBORN, AND E. SZE-
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